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Abstract— In this paper we present a biologically-inspired
model of spatio-temporal learning in the hippocampus and
prefrontal cortex which can be used in tasks requiring the
behavior of the robot to be constrained by sensory and temporal
information. In this model chains of sensory events are learned
and associated with motor actions. The temporality of these
sequences is also learned and can be used to predict the
timing of upcoming events. The neural network acts as a
novelty detector and can modulate the behavior of the robot
in case its actions do not have the expected consequences. The
system is used to solve two different robotic navigation tasks
involving an alternation between random exploration, goal-
directed navigation and waiting periods of various lengths.

I. INTRODUCTION

The hippocampus is an essential part of the brain when

it comes to spatial navigation. Its role in navigation has

been brought to light with the discovery of place cells [1],

neurons firing at specific locations in the environment. More

recently, some results have suggested that the hippocampus

encodes not only places but also accessible paths [2]. One

particular experimental protocol has allowed to bring to

light the spatio-temporal role of the hippocampus in goal-

oriented navigation. Solving this task for rats is done in

3 steps: i) navigate toward a goal zone ii) wait without

moving for 2 seconds before a food pellet is dropped from

the ceiling iii) explore the area to find the food. Physi-

ological recordings have provided evidence of spatial but

also temporal information about the timing of the waiting

period being present at the level of the hippocampus [3].

Burton et al. [4] suggest that this activity propagates to the

prefrontal cortex and is necessary for the animal to solve

the task with good performances. The hippocampal spatio-

temporal activity seems to be a key component in the time
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estimation system allowing the animal to predict the delayed

consequences of its own actions.

The place preference task also presents some interesting

challenges for robotic navigation. It requires goal-oriented

navigation skills, a time-estimation mechanism linked with

action selection and the ability to alternate between different

behavioral strategies (move toward a known location, wait,

explore) depending on the phase of the experiment. The time

estimation is crucial for the animal to be able to resume its

motion at the end of the waiting period, especially in the

absence of the rewarding stimulus. To do so, some knowl-

edge of the length of time spent waiting before obtaining

the food must be acquired. The animal must then be able to

adapt its behavior depending on the correspondence between

its temporal predictions and what it observes. Integrating

a temporal aspect is crucial when planning trajectories in

a dynamic environment, especially for multi-robot systems

where each agent must plan to avoid static obstacles as

well as other robots [5]. Predicting when to expect sensory

events and detecting their absence could help a robot know

when to “replan”. The learned temporal characteristics of the

task could thus be used to avoid the computational cost of

constant replanning or the need for user-defined heuristics to

control when to replan [6], [7].

In an attempt to have a better understanding of the mecha-

nisms involved in spatio-temporal processing in the mammal

brain and to apply this knowledge to robotic applications,

we developed a biologically-inspired neural network model.

We discuss how such a neural architecture can give a robot

the ability to control its behavior depending on the timing

of perceived sensory events. The robot can learn temporal

predictions about the delayed consequences of its actions.

As a result, unexpected consequences can be detected and

the behavior of the robot adapted thereof. We show how we

can use our model to solve the place preference task with a

mobile robot. We discuss how this system can be generalized

to perform well in any task requiring both navigation and

time-estimation skills. An example is given by training the

robot to perform a patrol with several checkpoints where it

must stop for various periods of time.

II. MODEL

Banquet et al. [8] presented a theoretical model which

predicted the need for transition cells in order to plan with

a cognitive map. Transition cells were capable of learning

temporal relations between past and present sensory signals.

This learning consequently allowed transition cells to predict

future sensory events. In [9], sequences of motor actions



were learned and reproduced by learning the timing between

motor commands. In [10], transitions between visual place

cells were learned and used in navigation with a planning

strategy based on a cognitive map of transitions. However no

timing was learned for the spatial transitions between places.

The cognitive map provided information about the available

paths between spatial states but not about the time needed

to shift from one state to the next. In an attempt to obtain a

unified model for different robotic applications, a learning

equation (1) based on a Normalized Least Mean Square

(NLMS) algorithm was developed. It allows the model to

learn and predict various types of upcoming signals, coming

from several modalities (visual and proprioceptive) [11].

Fig. 1 shows the neural network for the learning of

the associations. Multi-modal state information is computed

from sensory input coming from visual, auditory, vestibular

systems etc. A winner-take-all (WTA) competition takes

place between the state neurons. Any change in the winning

state triggers the spectral timing memory. Each state has

a corresponding battery of neurons in the memory. These

neurons are activated with different timings, forming a spec-

tral decomposition of time [12]. Only one battery can be

activated at any time, and its activity gives information about

the time passed since the last sensory event (i.e. a change

in the sensory state competition). When a new sensory event

occurs, the association of this new information (coming from

the state neurons) with the spectral timing memory of the

last sensory event is learned by state prediction cells. As a

result, the system learns to connect the first event with the

second and memorizes the timing between the two events.

Later when the first event is experienced again, it activates

its corresponding spectral timing neurons and predictions for

the second event will arise from transitions cells. The shape

of the prediction activity looks like a Gaussian curve which

reaches its maximum value just before the expected timing

of the next event. The equation used for learning the sensory

association shown in fig. 1 is the following:

dWi j(t)

dt
= α ·ηi(t) ·

(XUS
i (t)−Xi(t)) ·X

CS
j (t)

∑XCS
k (t)2 +σ1

(1)

ηi(t) = |XUS
i (t)−mUS

i (t)|+σ2 (2)

mUS
i (t) = γ ·mUS

i (t −dt)+(1− γ) ·XUS
i (t) (3)

Xi is the activity of neuron i, α is the learning rate, ηi a learning

modulation , XUS
i is the unconditional signal for the LMS. σ1 is a

small value used to avoid the divergence of the synaptic weights

for very low memory values. mUS
i is a sliding mean of XUS

i , σ2

is a low value setting a minimal learning rate and γ a parameter

controlling the balance between past and current activities in the

computation of the sliding mean.

Sensory events can include the recognition of a new

visual place cell, the detection of a color on the floor

signaling an important place, the sound being made by the

release of the food reward or a change in the proprioceptive

information coming from odometry. At any time transition

cells can predict reachable sensory states, depending on the

current state. The sensory transitions can then become motor
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transitions when associated with motor actions. Here, the

motor actions of the robot can be controlled in terms of

orientation and speed, allowing it to control whether or

not it is moving. The place preference task can then be

characterized by a series of behaviors controlled by sensory

events (fig. 2). The prediction of the perception of the sound

signaling the reward has to be associated with the immobility

of the robot, since the reward will only be delivered after

a certain period of time spent on the goal location. Other

purely spatial predictions are associated with directions to

take with a particular speed (a default moving speed). Motor

actions associated with each transition are computed from

path integration, using the odometry of the robot.

A navigation strategy (e.g. planning with a cognitive map)

can use the information about available transitions and bias

the selection of a transition and its associated action [10].

The cognitive map forms a topological representation of the

environment by linking subsequent transitions. In the map,

goals are represented by rewarding transitions (e.g. arriving

at a food or water source etc.). Also, each received reward

(e.g. food) has an associated drive (e.g. hunger) controlling

the tendency of the robot to look for that reward. The reward

signal satisfying a particular drive triggers the association in

the cognitive map between this drive and the last transition

performed. The drive activity can then be propagated through

the map (with synaptic weights < 1) using a max operator

(in a fashion similar to the Bellman-Ford algorithm). The

gradient of activity in the map gives information about the

distance to rewarding transitions.

Another pathway associates transition activity with sat-

isfaction signals (fig. 3). The predictions emitted by these

neurons correspond to actions which should lead to a satis-

fying state. The equations for the learning of the association

(4) and the satisfaction prediction activity (5) are:

dW T P
i j (t)

dt
= α · (1−W T P

i j (t)) ·XT
j (t) ·X

S
j (t)− γ ·XT

j (t) (4)

XP
i (t) = ∑

k

W T S
ik (t) ·XT

k (t)−θ (5)
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α is a learning rate, γ a decay rate and θ an activity threshold.

The system also detects when a predicted drive satisfaction

does not occur and consequently inhibits the corresponding

drive. This will modify the behavior of the robot which will

attend to other objectives (i.e. seek to satisfy other active

drives or explore its environment). By inhibiting the drive

we tell the robot that it can currently not be satisfied. By

doing so we allow the robot to resume its movement, even in

the absence of any explicit stimulus terminating the waiting

period. If no drive is active then there is no activity in

the cognitive map and no particular transition is selected.

As a result, the transition architecture does not select any

particular action to perform. A small amount of noise in the

action selection system will lead to the selection of a random

direction. The robot will thus start a random exploration

behavior. Inhibiting the different drives is a way to modulate

the behavior toward different goals and to start exploring

the environment if all those goals have been fulfilled or

are not reachable at this time. Drives build up over time

(with a speed regulated by the ε parameter). This controls

the frequency with which the robot needs to fulfill each

objective. The complete model is shown in fig. 4.

III. ROBOTIC EXPERIMENTS

A. Place preference task

Experiments are conducted on a Robosoft robulab 10 mo-

bile robot1 in an enclosed environment of 5x5m. A colored

zone of 1x0.5m marks the goal location. A color detector

placed under the robot allows the detection of the goal.

Ultrasound sensors act as proximity detectors to provide low-

level obstacle avoidance. In a preliminary phase, the robot is

allowed to explore the environment for 40 minutes. A camera

mounted on a pan-tilt system allows the autonomous learning

and recognition of visual landmarks from the log-polar trans-

form of 2D local views centered on the maxima of a DOG

(Difference of Gaussians) filtering performed on the gradient

of the image [10]. New visual place cells, represented by a

constellation of visual landmarks, are autonomously learned

based on a minimum activity threshold. Sensory events are

characterized by changes in spatial places (based on visual

information), detection of a colored zone or perception of

a simulated sound representing a reward. Through random

exploration, the cognitive map linking the different states is

learned (fig. 5). The robot learns a topological representation

of its environment and how to reach any state using the

shortest path possible. The robot is controlled by the system

in terms of linear and angular velocity.

The second step is to teach the robot how to perform

the place preference task. The training of the robot can be

facilitated by an intuitive and natural interaction with the

human. In order to train the robot to wait for the sound

we first need it to go to the goal location. Even though we

could just wait for the robot to reach the goal by random

exploration, we use a leash strapped to an artificial neck to

guide the robot. This system provides an easy way for a

human to interact with the robot and guide it to a location

of interest. For the experiment, we set a 7s delay during

which the robot has to stay in the colored zone to hear a

simulated sound signaling the delivery of a food reward. The

length of the delay is chosen to be significantly longer than

the time it takes for the robot to cross the goal zone at its

default speed. On its own, the robot cannot learn that being

on the goal location could lead to receiving a reward since

its default behavior (i.e. to move) does not permit it to stay

long enough in the colored zone. After having guided the

robot to the colored zone, we then use the low-level obstacle

avoidance to make the robot stop, by placing ourselves in

front of its ultra-sound sensors. Once again, this provides

a natural way to interact with the robot and make it stop

moving. Extra human-robot communication devices are not

needed. The robot will eventually hear the sound after 7s

of waiting. Proprioception about its current speed (i.e. no

movement) is associated with the prediction of the sound.

In the original experiment with the rats, finding the food

pellet is the actual reward and waiting at the goal location

1Neural network simulations are run on an on-board computer with
an Intel Core2Duo T7500 processor running at 2.2Ghz and 2GB RAM
communicating via wifi with a workstation powered by an Intel Core2Quad
Q6600 running at 2.4Ghz and 4GB RAM.



a)
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Fig. 5. a) Cognitive map of the environment learned during the exploration
phase. The circles represent the center of the place cells and the lines
transitions between places. b) Trajectories taken by the robot while planning
its path to the goal using the cognitive map. Starting points are indicated
by crosses and the goal by a red rectangle. The paths are not optimal
(i.e. straight lines) because the algorithm selects transitions based on their
distance to the goal in terms of number of nodes in the graph, which
can lead to some sub-optimal decisions in the Cartesian space. Since the
competition only selects one transition, the robot follows the edges of the
transition graph. Smoother trajectories could be obtained by increasing the
number of place cells, at the expense of memory, computational power
and an increased learning time. Another solution could be to have a soft
competition between transitions to select some average direction predicted
by several good transitions.

is just a necessary step to obtain it. However after repeated

trials, the sound of the food pellet being releasing after the

delay must become associated with the delivery of the food.

In this robotic experiment, we assume that this conditioning

has already happened and that hearing the sound represents

by itself a goal that needs to be satisfied. Whereas the reward

should be the actual food pellet, we consider that hearing

the sound is a goal in itself and has a corresponding drive

that needs to be satisfied. Upon perception of the sound,

the corresponding drive is inhibited and the robot starts to

explore. The drive level then builds up over time until it

reaches a value high enough to direct the robot toward the

goal again. The time needed by the drive to reach that value

simulates the time needed by the rat to find the food. The

robot needs to find its way back to the goal autonomously,

using the cognitive map (trajectories in fig. 5). The arrival

on the goal triggers the prediction of the arrival of the sound

and activates the corresponding action (stop moving). Each

success reinforces this behavior.

Fig. 6 shows the speed profiles and sound prediction

activity around and at the goal location for rewarded and

extinction trials. It shows that the model successfully predicts

the perception of the sound and controls the movement of the

robot until then. In extinction trials, the prediction system is
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Non-occurrence
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Fig. 6. Speed profile and sound prediction activity at the goal. a) Rewarded
trials. The prediction has a bell shaped activity with a maximum value
preceding the expected timing of the satisfying stimulus. Once the sound is
heard, the prediction stops and other transition cells start predicting the next
stimuli. b) Extinction trials. The reward is not given, so no sensory stimulus
signals the end of the 7s delay. Shortly after the prediction has peaked,
the non-occurrence neurons are activated and start inhibiting the drive
controlling the goal-oriented behavior and the robot switches to random
exploration. The system has a little tolerance to delays in the occurrence of
a predicted event and waits for a few seconds more after the end of the 7s
waiting period before the movement of the robot is resumed. Without the
non-occurrence system, the robot would wait indefinitely for the sound.

necessary for the robot to resume its movement after the end

of the 7s delay. Without it the robot would wait forever for

the sound, without any clue as to when it should be expecting

it, and when it can consider that it will not be delivered.

Additionally, the reward timing can later be modified to

longer or shorter delays and the system will learn to adapt

the timing of its predictions.

B. Automated security patrol

Our model is able to perform the place preference task

and gives good explanatory and predictive information about

how this task is solved by rodents. However its performances

are not limited to this task and they can be generalized to

any navigation task involving sequences of sensory-motor

behaviors with temporal constraints. One application where

this type of behavior could be needed is automated security

patrols. In this case the robot needs to navigate toward a

sequence of checkpoints. It may have to stop at some of the

checkpoints and perform some kind of behavior like looking

around for intruders, for a precise amount of time, before

proceeding to the next checkpoint.

Using the same neural architecture as in the place pref-

erence task, we now teach our robot to follow a given

trajectory. During the first phase of the learning, the robot has

absolutely no knowledge of its environment and is guided by

a human using the leash. The trajectory forms a loop that the

robot must complete. Place cells are autonomously learned

based on a minimum activity threshold and the actions to

move from one place to the next are associated to the

transition between these places. When the loop is completed

and the robot is back at its starting point, the leash is dropped

and we let the robot reproduce the trajectory to verify that

the loop was correctly learned. Because no checkpoint has

been learned yet, no drive is active in the cognitive map.

However the robot only knows one path and will select the
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Fig. 7. a) Places and transitions learned for the patrol. Place field centers
are signaled by black disks. Black squares represent the association between
places and proprioceptive events. They point out the 3 checkpoints. b)

Trajectories of the robot during the task. The dark trajectory corresponds to
the learned path, when guided by the human. The light trajectories are the
autonomous reproduction. Due to the size of place fields, the reproduced
loop can be shifted compared to the original learned trajectory. This is a
consequence of the prediction system that begins to predict the movement
to reach the next place once it enters a new place. Since place cells can
have broad place fields, this prediction can occur before the robot reaches
the center of the field, which is where the robot was originally guided. The
architecture offers a trade-off between the computational power required
and the precision of the reproduction in the number of place cells learned
on the trajectory. Indeed only movements between place cells are learned,
so too few place cells will lead to a very coarse reproduction of the learned
trajectory, whereas a fine reproduction can be achieve with many place cells
but will lead to a longer learning phase and a memory and computationnally
expensive system.

only available transition in each place (the noise on the action

selection system has been set to a minimal level for this task).

During the second reproduction of the patrol, the human

places himself in front of the robot to make it stop. The

operation is repeated at 3 different locations. The robot

associates these checkpoints with the nearest place cell. The

spatial accuracy of the checkpoints depends on the distance

between learned place cells. The human then removes him-

self from the front of the robot and lets it resume the patrol.

Since no visual or auditory stimulus marks the end of the

waiting delay, our system needs additional information to

characterize its state during and after the waiting period. We

add proprioceptive information coming from odometry to the

multi-modal state integration. A sensori event is triggered

each time the robot resumes its movement. So in addition

to transitions predicting the next place from the current

checkpoint place, the robot can predict a perceptive event

signaling a change from immobile to mobile. Since the

robot has been immobile for the duration of the transition,

the action associated is to wait without moving. The dura-

tion of the pause is learned by the system as a temporal

prediction. Each checkpoint is associated with a particular

drive (representing the need of the robot to inspect each

checkpoint) that increases over time. When the robot arrives

on a checkpoint place, if the corresponding drive is strong

enough, the cognitive map will bias the selection of the

waiting transition rather than the transition to the next place

and the motion will stop. Once the prediction has peaked,

the drive is inhibited by the non-occurrence system and the

transition to the next place will win the competition and

trigger its associated action: to move to the next place. The

robot thus proceeds to the next phases of the patrol.

Fig. 7 shows the learned cognitive map and the trajectories

for the patrol during learning and reproduction phases. In

addition to the results in the previous experiment showing

that a robot can learn to efficiently reach a goal by planning

its path, we see here that the cognitive map can be used with

good performances for the fast learning and reproduction

of a trajectory. Here the learned cognitive map is rather

incomplete, the robot only knows the path it has been taught.

If the robot is kidnapped, by taking it and placing it far from

the patrol, it will be lost. It can however be taught with the

leash how to return to the patrol path and will remember

it. Kidnapping the robot by placing it somewhere else on

the patrol path will lead to the robot resuming the patrol

and heading toward the nearest checkpoint with a high drive

value. If we let the robot explore the whole environment

and build a comprehensive map, it can use more direct paths

between each of the checkpoints. No specific order for the

checkpoints is defined in the system. The cognitive map

strategy solely optimizes the paths of the robot to satisfy the

strongest drives. It also takes into account the distance to the

corresponding checkpoints. The frequency with which each

checkpoint is visited could be controlled by adjusting the

speed with which each drive rises after having been satisfied.

Table I shows the duration of the immobility of the robot

at the three checkpoints. The learned duration corresponds

to the time spent by the human in front of the robot.

The reproduction values are calculated over 5 loops. The

robot manages to reproduce the waiting behavior that was

learned at the 3 checkpoints and shows consistency in the

length of the reproduced waiting periods. The robot has

correctly learned to suppress its movement upon entry on a

particular place and resume it after a particular length of time

that can be different from place to place. However another

observation is that the period during which the robot is not

moving can be different during the learning and reproduction

phases. This is due to two reasons:

(i) Our system learns to associate a place with a waiting

TABLE I

DURATION OF IMMOBILITY AT EACH OF THE CHECKPOINTS.

Checkpoint 1 2 3

Learned (s) 24.1 19.1 11.6

Reproduced (mean±sd) 22.3±0.7 19.1±0.3 15.3±0.8



period of a particular duration. The duration learned by the

system is the length of time between the entry on the place

and the resumption of movement. When the training is done

by the human, all the time spent in a place by the robot before

the human stops it is added, for the learning, to the time

spent waiting. To solve this issue, our system could include

an additional state marking the beginning of the immobility.

This would allow the learning of a timed transition between

the entry on a place and the inhibition of the movement. The

robot could then learn not only to wait at a particular place,

but also during any movement between two places.

(ii) The prediction activity has a peak preceding the exact

timing of the expected resumption of movement, learned

during the first loop. However the non-occurrence neurons

are only activated when the prediction activity falls back

to lower values. This period between the peak of activity

representing the learned timing and the drive inhibition

signal, in addition to the time needed by the system and

robot to transmit the motor command to the wheels, delays

the restarting of the robot. Also, our predictions follow the

Weber law [12]: their peak of activity preceding the expected

timing of an event is less and less precise has the learn timing

gets longer, as observed in animals. This explains why the

long timings which are predicted well in advance by the

system tend to lead to shorter reproductions.

The timing system learns continuously, not only during

the first loops. The experimenter can always modify what

the robot has learned. New checkpoints can be added by

humans by placing themselves in front of the robot. The

timings learned for existing checkpoints can be made longer

in the same way. They can also be made shorter by using the

leash to restart the movement of the robot before the end of

the learned delay. The architecture will then learn to adapt

the predicted timings.

IV. CONCLUSIONS AND FUTURE WORKS

We have presented a biologically plausible neural network

capable of learning temporal associations between consec-

utive sensory events. The neural network approach allows

the system to learn and adapt those timings based on task

contingencies. The associations are linked to motor actions,

meaning that the robot learns which actions will allow it

to move from one state to another. At any time the system

provides information about reachable states and about the

expected timing of the arrival in a new state. A complemen-

tary network detects the non-occurrence of expected events

and can modify the behavior of the robot accordingly. The

latter ability forms a kind of novelty detection, allowing the

robot to know when conditions in the tasks or environment

may have changed. The integration of the temporal aspect

of transitions between sensory events, which represents the

novelty of this work, has been done with an architecture that

has been successfully used in several navigation experiments,

using a cognitive map [10] or Q-learning [13]. Several

works have used biologically plausible models of place

cells in robotic navigation and use reinforcement learning

to adapt strategies to changing task contingencies [14], [15],

[16]. However these models fail to take into account the

temporality of action-consequence pairings. In cases where

delayed rewards which are not the immediate consequence of

an action of the robot are delivered, a more complex model

integrating time is required.

The non-occurrence signal really gives an internal negative

feedback about the current actions of the robot. Here it

is used to control the behavior of the robot by acting on

the drive activity to modulate the tendency of the robot

to try to reach particular goals. Yet an alternative could

have been to use the signal to inhibit the currently selected

transition, telling the cognitive map to look for another path

to the goal. It could also be used to suppress the current

navigation strategy altogether, telling the system to switch

from a planning to a sensori-motor strategy. A modulation

of the learning of actions, signaling that the current sensori-

motor association should be suppressed because its outcome

is not the predicted one, would also be an option. With

such a variety of choices, we would need a high-level meta-

controller to appropriately use this negative feedback. The

bases of this meta-controller have already been implemented

using frustration signals which built up over time if the robot

stopped making progress [17]. However the system needed

to be temporally calibrated for the task. With the temporal

predictions, the need for this calibration would disappear.

REFERENCES

[1] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map.
preliminary evidence from unit activity in the freely-moving rat.” Brain

Res, vol. 34, no. 1, pp. 171–175, Nov 1971.

[2] A. Alvernhe, T. V. Cauter, E. Save, and B. Poucet, “Different ca1 and
ca3 representations of novel routes in a shortcut situation.” J Neurosci,
vol. 28, no. 29, pp. 7324–7333, Jul 2008.

[3] V. Hok, P.-P. Lenck-Santini, S. Roux, E. Save, R. U. Muller, and
B. Poucet, “Goal-related activity in hippocampal place cells.” J Neu-

rosci, vol. 27, no. 3, pp. 472–482, Jan 2007.

[4] B. G. Burton, V. Hok, E. Save, and B. Poucet, “Lesion of the ventral
and intermediate hippocampus abolishes anticipatory activity in the
medial prefrontal cortex of the rat.” Behav Brain Res, vol. 199, no. 2,
pp. 222–234, May 2009.

[5] M. M. Quottrup, T. Bak, and R. I. Zamanabadi, “Multi-robot planning
: a timed automata approach,” in Proc. IEEE Int. Conf. Robotics and

Automation ICRA ’04, vol. 5, 2004, pp. 4417–4422.

[6] H. Liu and W. Wan, “Adaptive replanning in hard changing environ-
ments,” in Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS)

Conf, 2010, pp. 5912–5918.

[7] R. Philippsen, S. Kolski, K. Maček, and B. Jensen, “Mobile robot
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