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Boiling in porous media. Model and simulations.Johann B�enard, Robert Eymard and Xavier Ni
olasLaboratoire d' �Etude des Transferts d' �Energie et de Mati�ereUniversit�e de Marne la Vall�ee - Bât. Lavoisier - 77454 Champs sur Marne - Fran
eCl�ement ChavantEDF R&D, D�epartement Analyses M�e
aniques et A
oustiques1, av du G�en�eral de Gaulle - 92141 Clamart Cedex - Fran
eApril 2, 2004Abstra
t. We present a modelization of the heat and mass transfers within a porousmedium, whi
h takes into a

ount phase transitions. Classi
al equations are derivedfor the mass 
onservation equation, whereas the equation of energy relies on anentropy balan
e adapted to the 
ase of a rigid porous medium. The approximation ofthe solution is obtained using a �nite volume s
heme 
oupled with the managementof phase transitions. This model is shown to apply in the 
ase of an experiment ofheat generation in a porous medium. The vapor phase appearan
e is well reprodu
edby the simulations, and the size of the two-phase region is 
orre
tly predi
ted. Aresult of this study is the eviden
e of the dis
repan
y between the air - water 
apillaryand relative permeability 
urves and the water - water vapor ones.Keywords: two-phase 
ow in porous media, phase transition, �nite volume method,water - water vapor 
apillary 
urve.Nomen
lature:


 2004 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
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2Aij Measure of interfa
e between grid blo
ks i and j, m2B Equation and inequality asso
iated with the thermodynami
 stateCp Mass heat 
apa
ity of phase p, J:kg�1:K�1D Dis
rete system of equationsdij Distan
e between 
enters of 
ontrol volumes i and j, mE Internal energy per volume unit, J:m�3Fw Mass 
ux of water, kg:s1Fh Heat 
ux, Wgp Gibbs potential of phase p per mass unit, J:kg�1hp Enthalpy of phase p per mass unit, J:kg�1K Absolute permeability, m2krp Relative permeability of phase pmp Mass of phase p per porous volume unit, kg:m�3Mw Molar weight of water, kg:mole�1N
v Number of 
ontrol volumesPp Pressure of phase p, PaP
 Capillary pressure, Paq Condu
tive thermal 
ux, W:m�2�Q Heat sour
e term, W:m�3�Qi Heat sour
e term, WS Liquid saturationT Temperature, Kt Time, sU Dis
rete unknownsVi Measure of grid blo
ks i, m3Vp Volumi
 
ux of phase p, m3:s�1vp Spe
i�
 
ux of phase p, m:s�1x; y; z Spa
e 
oordinates, m
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Boiling in porous media. Model and simulations. 3Greek symbols� Entropy per mass unit, J:K�1:kg�1~� Entropy per volume unit, J:K�1:m�3� Thermal 
ondu
tivity, W:m�1:K�1�wet Thermal 
ondu
tivity of the saturated porousmedium, W:m�1:K�1�dry Thermal 
ondu
tivity of the dry porous medium,W:m�1:K�1�p Dynami
 vis
osity of phase p, Pa:s�p Bulk density of phase p, kg:m�3�wl!v Mass rate of water transfer from phase l to phasev per volume unit, kg:m�3:s�1� Porosity' Dissipations� Indi
ator of thermodynami
 state of grid blo
k i(� = 1; 2; 3)Subs
ripts and supers
ripts
 Capillarityh Heatl Liquidp Phases Solidv Vaporw Waterw � a Relative to the 
ouple water and airw � v Relative to the 
ouple water and water vapor
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4 Johann B�enard et al.1. Introdu
tion
Heat transfer and 
uid 
ow with liquid-vapor phase transition in porousmedia arise in a number of s
ienti�
 and engineering dis
iplines. Im-portant te
hnologi
al appli
ations 
an be found in various domain.The me
hani
al behavior of drying porous materials must be knownin 
ivil engineering appli
ations (Whitaker, 1998; Coussy et al, 1998).In petroleum engineering, multiple 
owing phases are present in naturaloil reservoirs and various enhan
ed multi-phase exploitation te
hniques,su
h as water and vapor 
ooding, are employed (Woods, 1999). Forthe purpose of the nu
lear rea
tor safety analysis, the understandingof 
ow and transport me
hanism of vapor through the 
on
rete en-
losure is essential (Medhekar et al, 1991). The study of the storageor disposal of nu
lear waste strongly involves the predi
tion of thelong-term heating of porous media due to the residual radioa
tivity.Sin
e, in this last te
hni
al area, it is parti
ularly diÆ
ult to managea

urate experiments for long-term storage, it has been undertaken toestablish the main physi
al and 
hemi
al me
hanisms that govern thebehavior of waste pa
kages disposals (Toulhoat, 2002). The predi
tionof thresholds for a

eptable heating, in nominal or a

idental operat-ing 
onditions, depends on models validated under the a
tual disposal
onditions (Castelier, 2001).Here, we study some features of this problem, fo
using on the mod-elization and the numeri
al simulation of heat and mass transfers ininitially saturated porous media, taking into a

ount phase transitionphenomena.
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Boiling in porous media. Model and simulations. 5In this paper, our approa
h for treating this problem 
onsists in
onsidering the various liquid phases as distin
t 
uids with individ-ual thermodynami
 and transport properties and with di�erent phasespe
i�
 
uxes. The transport phenomena are then mathemati
ally de-s
ribed by the basi
 balan
e equations for ea
h phase separately. Inthis dire
tion, (Ramseh et al, 1993) propose a model where interfa
esseparating single from two phase regions are tra
ked, whereas (Daurelleet al, 1998) propose a model where the liquid and the gaseous phases
oexist in any point. The model that we present here in
ludes thedetermination of the thermodynami
 equilibrium state at ea
h pointof the porous medium, and the appearan
e or the disappearan
e ofphases. This model, whi
h is an extension of (Wang et al, 1993; Gha�r,2000; Najjari et al, 2002) to 
ases where the energy equation 
annot bewritten as an enthalpy balan
e, 
an be des
ribed by a set of equations,
oupled with inequalities.The outline of the arti
le is as follows. In Se
tion 2, we des
ribethe 
ontinuous equations of the model and the management of thephase transition. Then, in Se
tion 3, we outline the numeri
al methodsused to �nd an approximate solution to the system of equations (in anappendix, a 
omparison between numeri
al and analyti
al solutions,in some simpli�ed 
ases, provides a validation of these methods). InSe
tion 4, we pro
eed to 
omparison between experimental results and
omputational ones. A method of determining the vapor 
apillary pres-sure and a parametri
 study of the water vapor relative permeabilityis detailed in Se
tion 5. Some 
on
lusions and future works are thendrawn in Se
tion 6.
art6.tex; 16/08/2004; 10:25; p.5



6 Johann B�enard et al.2. Des
ription of the model2.1. Mass 
onservation and energy equationsThe porous medium is treated as a unique 
ontinuous medium re-sulting from the super-imposition of the skeleton and 
uid 
ontinua.The skeleton 
ontinuum is rigid and the 
uid 
ontinuum is 
omposedby two 
uids (liquid water and water vapor), assuming that there isno dry air. We assume the existen
e of a representative elementaryvolume whi
h is relevant at the ma
ros
opi
 s
ale for all the physi-
al phenomena involved in the intended appli
ation. Moreover, at anypoint of the 
ontinuous medium, the three phases are lo
ally at thermalequilibrium (Ts = Tl = Tv = T ). Under these 
onditions, we use thefollowing 
lassi
al equations to model the 
ows in the porous medium.The liquid phase 
onservation as well as the vapor phase 
onservationare expressed by: 8>>>>><>>>>>: �ml�t + r � (�lvl) = � �wl!v�mv�t + r � (�vvv) = + �wl!v (1)where ml = �S �l and mv = � (1 � S) �v: (2)In the above equations, � is the porosity of porous medium supposedto be a 
onstant, S is the liquid saturation, �p(Pp; T ) is the densityof phase p = l; v, state fun
tion of the pressure Pp of phase p andof the temperature T . We denote by vp the spe
i�
 
ux of the phase
art6.tex; 16/08/2004; 10:25; p.6



Boiling in porous media. Model and simulations. 7p = l or v. The term �wl!v represents the mass rate per volume unittransfered from the liquid to the vapor phase.Following Coussy (1995, 2004) for the formulation of the energy equa-tion in the 
ase of an open volume unit of a rigid porous medium, underquasi stati
s evolutions assumptions, the �rst law of thermodynami
sprodu
es�E�t = �r � Xp=l;v hp �pvp �r � q+ g � Xp=l;v �pvp + �Q; (3)where E, hp(Pp; T ), q, g and �Q are respe
tively the internal energy pervolume unit, the enthalpy per mass unit of phase p, the 
ondu
tive heat
ux, the gravity a

eleration and the heat sour
e terms. The se
ond lawof thermodynami
s 
an be expressed by�~��t � �r �0�Xp=l;v �p �pvp + qT 1A+ �QT ; (4)with ~� = �S�l �l + �(1� S)�v �v + (1� �)�s �s:In the above relations, we denote by �p(Pp; T ) the entropy per massunit of the liquid and vapor phases (p = l and v) and we denote by�s(T ) = Cs log(T=T0) the entropy per mass unit of the solid phase. Wesuppose that �s is 
onstant. The expression of �r � q + �Q, obtainedfrom (3), is introdu
ed in (4) multiplied by T . Thanks to the expressiongp(Pp; T ) = hp(Pp; T )�T�p(Pp; T ) of the Gibbs potential per mass unitof phase p = l; v, we get'int + '
ow + 'therm � 0; (5)
art6.tex; 16/08/2004; 10:25; p.7



8 Johann B�enard et al.where the term 'int, representing the intrinsi
 dissipation, is given by'int = T �~��t � �E�t � Xp=l;v gpr � (�pvp);the term '
ow, representing the dissipation due to the mass transfer,is given by'
ow = � Xp=l;v �pvp � (rgp + �prT � g) = � Xp=l;v �pvp � ( 1�prPp � g);and the term 'therm, representing the dissipation due to the heat trans-fer, is given by 'therm = �qT � rT:Sin
e the porous medium is assumed to be rigid, the intrinsi
 dissipa-tion 'int is equal to zero. This gives, thanks to Equation (3)T �~��t�Xp=l;v gpr��pvp = �r�0�Xp=l;v hp �pvp + q1A+g�Xp=l;v �pvp+ �Q (6)Using mass 
onservation Equations (1), we getT �~��t + Xp=l;v gp�mp�t + �wl!v(gl � gv) = �r � Xp=l;v hp �pvp + q+g � Xp=l;v �pvp + �Q:Assuming that there is no dissipation due to the phase transition, i.e.�wl!v(gl � gv) = 0; (7)
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Boiling in porous media. Model and simulations. 9and negle
ting the me
hani
al energy due to the volumi
 weight for
es,we get:T d~�dt + Xp=l;v gpdmpdt = �r �0�Xp=l;v hp �pvp1A�r � q+ �Q: (8)We satisfy the 
ondition 'therm � 0, assuming that the 
ondu
-tive heat 
ux is given by Fourier's law, in whi
h we use an e�e
-tive 
ondu
tivity taking into a

ount the water 
ontent of the porousmedium: q = ��(S)rT: (9)Di�erent expressions of �(S) are available in the literature (see forexample (De Vries, 1964; Kelly et al, 1983)). Note that the in
uen
eof a given law is essentially governed by the values �(0) = �dry and�(1) = �wet, sin
e for 0 < S < 1, the temperature is determined by theequilibriumbetween water and water vapor, leading to small gradient inthe two-phase zone. Nevertheless, following (Wang et al, 1993), we usea linear e�e
tive thermal 
ondu
tivity law �(S) = S �wet+(1�S)�dry.Finally, we satisfy the 
ondition '
ow � 0, assuming that the velo
-ity of phase p is given by Dar
y's law:vp = krpK�p (�rPp + �pg) ; (10)where K is the absolute permeability of the porous medium (assumedhere to be 
onstant), krp(S), the relative permeability of phase p, isa fun
tion of the liquid saturation (krl(S) is an in
reasing fun
tionsu
h that krl(0) = 0 and krv(S) is a de
reasing fun
tion su
h thatkrv(1) = 0) and �p(T ) is the dynami
 vis
osity of phase p, assumed
art6.tex; 16/08/2004; 10:25; p.9



10 Johann B�enard et al.to only depend on the temperature. Using Equations (1), (2) and (10),the mass 
onservation equation writes:��t(�S �l + � (1� S) �v) +r � 264 �l krlK�l (�rPl + �lg)+�v krvK�v (�rPv + �vg) 375 = 0: (11)Using Equations (1), (2), (8), (9) and (10), the energy equation isexpressed by266664 T ��t (�S �l �l + � (1 � S) �v �v)+T ��t ((1� �) �s �s)+gl ��t (�S �l) + gv ��t (� (1� S) �v) 377775+r � 266664 hl�l krlK�l (�rPl + �lg)+hv�v krvK�v (�rPv + �vg)�(�wet S + �dry (1� S))rT 377775= �Q: (12)The vapor pressure Pv is related to the liquid pressure using the 
apil-lary pressure, whi
h is a de
reasing fun
tion of the liquid saturation:P
(S) = Pv � Pl: (13)Equation (7) is not suÆ
ient to 
lose system (11), (12), (13) withrespe
t to (Pl; Pv ; S; T ). We therefore give in the next se
tion suÆ-
ient 
onditions, whi
h ensure (7), and whi
h enable to 
al
ulate thethermodynami
 state at ea
h point.2.2. Conditions for the phase transitionThe equilibrium thermodynami
 state of the water (one phase liquid,one phase vapor, or two-phase) 
an be determined for given liquid andgaseous pressures and temperature 
onditions, using the 
omputation
art6.tex; 16/08/2004; 10:25; p.10



Boiling in porous media. Model and simulations. 11of the Gibbs potential for ea
h phase. When Gibbs potentials areequal, both phases are in equilibrium; otherwise, the phase with themaximum Gibbs potential disappears to the bene�t of the phase withthe minimum Gibbs potential. Therefore, three equilibrium states arepossible:State 1 : no vapor phase; S = 1and gl(Pl; T ) < gv(Pv ; T )State 2 : liquid-vapor equilibrium; gl(Pl; T ) = gv(Pv ; T )and 0 < S < 1State 3 : no liquid phase; S = 0and gl(Pl; T ) > gv(Pv ; T ) (14)
Note that, in State 1, we get mv = 0 and vv = 0, whi
h delivers, using(1), �wl!v = 0. In State 3, we then have ml = 0 and vl = 0, and thesame 
on
lusion holds. Therefore, equation (7) is satis�ed.System (11), (13), (8) and (14) is now 
losed, with respe
t to thefour unknowns Pl, Pv, S and T .2.3. State fun
tions for the liquid and vapor water phasesIn this model, we need the expressions of the density, the dynami
vis
osity, the enthalpy and the entropy of ea
h water phase p = l; vas expli
it state fun
tions of the pressure of the phase and of the
ommon temperature. We assume that for p = l; v, the mass heat
apa
ity �hp�T (Pp; T ) does not depend on the pressure Pp, and thereforeveri�es �hp�T (Pp; T ) = Cp(T ). By integration, introdu
ing a referen
estate (spe
i�ed below) de�ned by the pressure P0 and the temperatureT0, and a 
onstant hp0, we get the existen
e of a fun
tion �(Pp) =

art6.tex; 16/08/2004; 10:25; p.11



12 Johann B�enard et al.�hp�Pp (Pp; T ) su
h thathp(Pp; T ) = hp0 + Z TT0 Cp(�)d� + Z PpP0 �(�)d�: (15)Sin
e we have dhp(Pp; �p) = Td�p + 1�pdPp;we get thatd�p(Pp; T ) = Cp(T )T dT � 1T  1�p � �(Pp)! dPp:This implies using Maxwell relations that:��T 1�p � �(Pp)T = 0;whi
h gives the existen
e of a fun
tion �(Pp) su
h that1�p � �(Pp)T = �(Pp):We thus dedu
e the following expression for the density of the phase:�p(Pp; T ) = 1T�(Pp) + �(Pp) : (16)We then obtain thatd�p(Pp; T ) = Cp(T )T dT � �(Pp)dP;and therefore, there exists an integration 
onstant �p0 su
h that�p(Pp; T ) = �p0 + Z TT0 Cp(�)� d� � Z PpP0 �(�)d�: (17)
art6.tex; 16/08/2004; 10:25; p.12



Boiling in porous media. Model and simulations. 13Relations (15-17) then provide 
onsistent thermodynami
 fun
tions forthe 
lass of materials whose mass heat 
apa
ity only depends on thetemperature. For the sake of simpli
ity, we 
onsider a 
onstant densityfor the liquid water. This 
orresponds to the 
hoi
e �l(Pl) = 0 and�l(Pl) = 1=�l0, with �l0 = 957:9 kg:m�3, and we set Cl(T ) = Cl0 =4196 J:kg�1:K�1. Note that it is possible to in
rease the a

uratenessof these fun
tions, setting �l(Pl) = a=�l0 and �l(Pl) = (1 � b(Pl �P0) � aT0)=�l0. It then suÆ
es to sele
t a and b with respe
t to the
ompressibility and the dilatability of liquid water in the 
onsideredrange of temperature and pressure.Assuming the water vapor to be an ideal gas, we write �v(Pv) =RMwPv , with R = 8:315 J:K�1:mole�1 and Mw = 18 10�3kg:mole�1,�v(Pv) = 0, and we set Cv(T ) = Cv0 = 1870 J:kg�1:K�1.The four 
onstants hl0, �l0, hv0 and �v0 
annot be 
hosen inde-pendently. Indeed, 
onsidering the referen
e equilibrium state at theatmospheri
 pressure P0 = 1:01325 105 Pa, T0 = 373 K, we mustensure gv(P0; T0) = gl(P0; T0) and �v(P0; T0) � �l(P0; T0) = L0=T0,where the latent heat L0 at this referen
e state is equal to L0 =2257 103 J:kg�1. We 
an therefore take hl0 = 0, �l0 = 0, hv0 = L0,�v0 = L0=T0. Gathering the previous expressions, we obtain the table I.Using the expressions given by table I, it 
an be veri�ed that the equi-librium pressure fun
tion P (T ) su
h that gv(P (T ); T ) = gl(P (T ); T )and the equilibrium latent heat L(T ) = T (�v(P (T ); T ) � �l(P (T ); T ))are 
lose to that whi
h 
an be found in the literature (Rohsenow et al,1998) in the 
on
erned range of temperatures and pressures (see �gure1). We remark that the above expressions of the phase densities aresuÆ
ient to ensure Kelvin's law, that is, for two equilibrium states Pl,
art6.tex; 16/08/2004; 10:25; p.13



14 Johann B�enard et al.Table I. Thermo-physi
al properties of waternotation value unitsReferen
e pressure P0 1:01325 105 PaReferen
e temperature T0 373 KLiquid heat 
apa
ity Cl0 4196 J:kg�1:K�1Vapor heat 
apa
ity Cv0 1870 J:kg�1:K�1Latent heat at T0; P0 L0 2257 103 J:kg�1Gas 
onstant for water vapor R 8:315 J:K�1:mole�1Molar weight of water Mw 18 10�3 kg:mole�1Liquid bulk density �l(Pl; T ) �l0 = 957:9 kg:m�3Liquid vis
osity �l(T ) " 10�3 exp( 4:209 103T � 24:71+4:52710�2T � 3:376 10�5T 2) # Pa:sLiquid enthalpy hl(Pl; T ) Cl0 (T � T0) + 1�l0 (Pl � P0) J:kg�1Liquid entropy �l(Pl; T ) Cl0 log(T=T0) J:kg�1:K�1Liquid Gibbs potential gl(Pl; T ) hl(Pl; T )� T�l(Pl; T ) J:kg�1Vapor bulk density �v(Pv; T ) RT=MwPv kg:m�3Vapor vis
osity �v 1:27 10�5 Pa:sVapor enthalpy hv(Pv; T ) L0 + Cv0 (T � T0) J:kg�1Vapor entropy �v(Pv; T ) � L0=T0 + Cv0 log(T=T0)� RMw log(Pv=P0) � J:kg�1:K�1Vapor Gibbs potential gv(Pv; T ) hv(Pv; T )� T�v(Pv; T ) J:kg�1Pv, T and �Pl, �Pv, T , log Pv�Pv = Mw�l0RT (Pl � �Pl):Indeed, the above equation is immediately obtained by subtra
ting thetwo equations gl(Pl; T ) = gv(Pv ; T ) and gl( �Pl; T ) = gv( �Pv; T ).3. Numeri
al te
hniquesIt is now ne
essary, in order to validate this model, to obtain a nu-meri
al approximation of the solution. This is 
ompleted using a �nite
art6.tex; 16/08/2004; 10:25; p.14



Boiling in porous media. Model and simulations. 15volume method, whi
h 
onsists in a set of nonlinear dis
rete balan
eequations in grid blo
ks, 
oupled with the set of equations and inequal-ities resulting from the phase transition determination. This system issolved using Newton's method, the thermodynami
 state of ea
h gridblo
k being updated at ea
h iteration of the method. The advantagein this 
ase of a �nite volume method over other methods is that thereis no need to assume a minimum value for the gas phase saturation(for example, some �nite element methods require that both phases aremobile everywhere in order to ensure the invertibility of the rigidity ma-trix (S
hre
er et al, 1993)). Thus, it is neither ne
essary to assume thepresen
e of both phases everywhere nor to tra
k the interfa
e betweenthe liquid one-phase region and the two-phase one. We 
onsider a �nitevolume mesh of the domain, 
onsisting of N
v grid blo
ks indexed by i(i = 1; : : : ; N
v). We denote by Vi the volume of the 
ell i, the subs
riptj stands for any 
ell having a 
ommon interfa
e ijj with the 
ell i, Aijis the measure of interfa
e ijj, dij is the distan
e between the 
entersof grid blo
ks i and j.Equations (11) and (8) give, after time dis
retization and �nitevolume dis
retization, a set of 
oupled nonlinear equations (Eymardet al, 2000):8>>>>><>>>>>: Vimn+1wi �mnwitn+1 � tn +Xijj F n+1wij = 0Vi 24T n+1i ~�n+1hi � ~�nhitn+1 � tn + Xp=l;v gn+1pi mn+1pi �mnpitn+1 � tn 35+Xijj F n+1hij = �Qn+1i(18)In the above set of equations, we denote by mw = ml +mv the watermass and by �Qn+1i the heat sour
e term in grid blo
k i. The water 
ux
art6.tex; 16/08/2004; 10:25; p.15



16 Johann B�enard et al.F n+1wij and the energy 
ux F n+1hij a
ross the interfa
e ijj are evaluatedusing the following impli
it �nite di�eren
e s
heme with respe
t to thepressures, the saturations and the temperatures of grid blo
ks i and j:F n+1wij = �n+1lij V n+1lij + �n+1vij V n+1vij (19)F n+1hij = (�l hl)n+1ij V n+1lij + (�v hv)n+1ij V n+1vij�Aij 2�n+1i �n+1j�n+1i + �n+1j T n+1i � T n+1jdij (20)with (for p = l; v)V n+1pij = Aij Kkrp(Sn+1pij )�p "P n+1pi � P n+1pj + �npig(zn+1i � zn+1j )dij #(21)eliminating the vapor pressure using P n+1vi = P n+1li + P
(Sn+1i ), andsetting �n+1i = �wet Sn+1i + �dry (1� Sn+1i ). In (19, 20, 21) the density�ij and the liquid saturation Spij at interfa
e are estimated thanks toa phase by phase upwind s
heme:Sn+1pij = 8><>: Sn+1j if P n+1pi � P n+1pj + �npig(zn+1i � zn+1j ) � 0Sn+1i if not. (22)Setting, for ea
h 
ell i, �n+1i the thermodynami
 state of the 
elli (1 for pure liquid, 2 for liquid-vapor equilibrium, 3 for pure vapor),Un+1i = (P n+1li ; Sn+1i ; T n+1i ) the triplet of unknowns of the 
ell i (liquidpressure, liquid saturation, temperature) andB(Un+1i ; 1) = S � 1B(Un+1i ; 2) = gl(Pl; T )� gv(Pv ; T )B(Un+1i ; 3) = S;
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Boiling in porous media. Model and simulations. 17the numeri
al implementation of the equilibrium equations and inequal-ities (14) given in Subse
tion 2.2 is the following:If �n+1i = 1; then B(Un+1i ; 1) = 0; and B(Un+1i ; 2) < 0If �n+1i = 2; then B(Un+1i ; 2) = 0; and 8><>: B(Un+1i ; 1) < 0;B(Un+1i ; 3) > 0If �n+1i = 3; then B(Un+1i ; 3) = 0; and B(Un+1i ; 2) > 0 (23)
For ea
h time step, we apply an adapted Newton method to �ndan approximate value of U = (Un+1i )i=1;:::N
v and � = (�n+1i )i=1;:::N
v ,solution of the whole system of equations in
luding the dis
rete balan
eequations (18-22) and the equations B(Un+1i ; �n+1i ) = 0. We denote thissystem of equations by D(U ; �) = 0. Let U (0), �(0) be an initializationof the unknowns (pra
ti
ally, we use the values obtained from thepre
eding time step U (0) = (Uni )i=1;:::N
v and �(0) = (�ni )i=1;:::N
v .At iteration m of this adapted Newton's method, let U (m), �(m) begiven. We �rst 
ompute U (m+1) from the resolution of the followinglinear system (for the sake of simpli
ity, we use in our prototype themethod of band matrix Gauss elimination):�UD(U (m); �(m)) � (U (m+1) � U (m)) = �D(U (m); �(m)); (24)in whi
h �UD(U ; �) denotes the Ja
obian matrix with respe
t to x ofthe fun
tion D(U ; �). Then we de�ne the state �(m+1)i , for every gridblo
k i, by the relations:If �(m)i = 1 and if B(U (m+1)i ; 2) > 0, then �(m+1)i = 2;If �(m)i = 2 and if B(U (m+1)i ; 1) > 0, then �(m+1)i = 1;If �(m)i = 2 and if B(U (m+1)i ; 3) < 0, then �(m+1)i = 3;
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18 Johann B�enard et al.If �(m)i = 3 and if B(U (m+1)i ; 2) < 0, then �(m+1)i = 2.Otherwise we set �(m+1)i = �(m)i .This method, 
lassi
ally used in the oil reservoir simulation setting,appears to be very stable and eÆ
ient (the number of iterations neededdoes not ex
eed 2 or 3 for most of the time steps), using after 
onver-gen
e a predi
tor-
orre
tor strategy for the determination of tn+2�tn+1.One 
an reinfor
e the 
onvergen
e properties by under-relaxing anyiteration step U (m+1)�U (m) su
h that kU (m+1)�U (m)k is greater thana desired variation; then the last iterations until 
onvergen
e do notneed to be under-relaxed.
4. Comparisons between experimental and numeri
al results4.1. The Mas
ilia experimentWe now use the numeri
al implementation of this model for reprodu
-ing experimental results. For that purpose, the \Mas
ilia" experiment(Castelier, 2001), done at the Fren
h establishment for atomi
 energy(CEA), enables to study the phenomenon of phase transition (water- water vapor) in an initially saturated porous medium: a tank repre-sented by the domain [�1:5; 1:5℄� [�1; 1℄� [0; 2℄ (lengths in m) whosewalls are isothermal (typi
ally Tp = 350K), is �lled with sand andinitially saturated with water (see �gure 2). In the middle of the tank(at the point x = y = 0, z = 1) a heating bar (a 
ylinder with diameterequal to 0:1m and height equal to 0:2m), whose power varies from0 to 1450W , enables to 
arry water to boiling. Four hundred thermo-
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Boiling in porous media. Model and simulations. 19Table II. Parameters used for the simulation.notation value unitsDomain [0; 1:5℄ � [0; 1℄� [0; 2℄ mMesh 15 � 12� 23 -Sour
e term �Q 500 (run1); 900 (run2) W(pun
tual sour
e lo
ated at (0; 0; 1)) -Porosity � 0:35 -Permeability K 2:5� 10�12 m2Bulk density of sand �s 2400 kg:m�3Heat 
apa
ity of sand Cs 800 J:kg�1:K�1Thermal 
ondu
tivity of wet sand �wet 3 W:m�1:K�1Thermal 
ondu
tivity of dry sand �dry 0:3 W:m�1:K�1
ouples allow to pre
isely follow the spa
e and time evolution of thetemperature.In this experiment, three phases are in presen
e: sand, water andwater vapor. In-situ measurements of the properties of the porousmedium (porosity, permeability, thermal 
ondu
tivity, bulk density andheat 
apa
ity) have been done by di�erent Fren
h laboratories (seetable II). Note that measurements of air - water (and not water - watervapor) 
apillary pressure (P
;w�a) and relative permeabilities (krl;w�aand kra;w�a) have also been done by another laboratory. However, aswe see in se
tion 5, these water - air 
urves 
annot be used withoutmodi�
ations in order to reprodu
e the Mas
ilia experiments.4.2. Results and dis
ussionThe data used for the simulation are given in tables II and III. In�gure 2, the domain and the boundary 
onditions are des
ribed. The
omparisons between experimental and numeri
al results are essentially
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20 Johann B�enard et al.Table III. Capillary and relative permeabilities 
urves used for the simulation.notation valueCapillary pressure P
(S) � 1:70 � 103(S�1:37 � 1)0:37 if S > 0:005P
(0:005) if 0 < S < 0:005:relative permeability of liquid water krl(S) Al tanh[al (S � bl)℄ +Blrelative permeability of water vapor krv(S) 5�Av tanh[av (bv � S)℄ +BvAl = 1=[tanh(albl) + tanh(al (1� bl))℄ and Av = 1=[tanh(avbv) + tanh(av (1� bv))℄al = 9:24 bl = 0:54 av = 7:77 bv = 0:37
based on the temperature measurements at various points in the tank.The temperatures are 
ontinuously re
orded with respe
t to the time.Figures 4 and 5 present the value of the temperature as a fun
tion of thex 
oordinate along the median line at (y = 0; z = 1) and as a fun
tionof the z 
oordinate (1 � z � 2) along the verti
al line x = 0 andy = 0 above the heating bar, at times t = 5000 s and t = 25000 s.The 
ir
les represent experimental 
urves. These �gures show thattwo areas in the tank 
an be observed when the imposed power is�Q0 = 500W : a two-phase area, quasi isothermal (375K), in
luded in[0; 0:19℄ � [0; 0:18℄ � [0:85; 1:43℄ and an area saturated by the liquid inthe rest of the tank. We note that there is a good agreement betweenthe experimental and numeri
al results: the temperature variation inthe tank, the temperature level and the extension of the two-phase areaare well evaluated by the simulation whatever the time 
onsidered. Weobserve in �gures 6 and 7 whi
h show the liquid saturation �eld andthe temperature �eld in the plane y = 0, at time t = 25000 s, that anasymmetry is observed between the values z 2 [1; 2℄ and z 2 [0; 1℄. Thesize of the two-phase area is equal to 0:15m below the heating sour
e,
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Boiling in porous media. Model and simulations. 21and to 0:43m above, as mentioned before.A similar agreement between experimental and numeri
al results isagain observed as �Q0 = 900W . Figures 8 and 9 present the value of thetemperature as a fun
tion of the x 
oordinate along the median line at(y = 0; z = 1) and as a fun
tion of the z 
oordinate along the verti
alline above the heating bar at time t = 5000 s and t = 25000 s. The
ir
les represent experimental 
urves. These �gures show that thereare three areas in the tank when the imposed power is 900W :1. a small dry vapor zone around the heating bar 
hara
terized by abrutal in
rease in the temperature;2. a two-phase area, quasi isothermal (375K) whose size is 0:24m in xdire
tion and 0:56m in z dire
tion (1 � z � 2) at time t = 25000 s;3. an area saturated by the liquid in the rest of the tank.On �gure 9, one notes that in z dire
tion, at time t = 5000 s, the exis-ten
e of a dry vapor area is not reprodu
ed by the 
omputational resultsand the 'numeri
al' two-phase area is larger than the experimental one.However, the agreement remains a

eptable.Figures 10 and 11 present liquid and water vapor velo
ity distribu-tions in the plane (x; z) at y = 0 and at t = 25000 s. The imposedpower is �Q = 900W . In these �gures, the interfa
e between the two-phase zone and the saturated zone is plotted as a solid line. The liquidvelo
ity ve
tors indi
ate a liquid 
ow near the 
ondensation front andin the two-phase region. Far away, the liquid movement is very weak.The vapor velo
ity ve
tors show a primarily upward movement upon
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22 Johann B�enard et al.the heating bar be
ause of its mu
h lower density. Due to the strongerupward vapor 
ow, the 
apillary for
es are predominant in the areabelow the heating bar. The liquid is drawn up by the 
apillary for
esand evaporates 
ompletely as it rea
hes the bottom edge of the heatingbar. Upon the heating bar, at the two-phase interfa
e, liquid is formedas the vapor 
ondenses. Part of this liquid 
ows downward, driven bygravity and 
apillarity in an attempt to �ll again the drying out partof the porous medium. The rest 
rosses the sub-
ooled zone. The samephenomena are observed by (Stubos et al, 1997). The 
o-
urrent and
ounter-
urrent 
ow in the two-phase region lead to a re
ir
ulating 
owof water (liquid + water vapor) as displayed in �gure 12.We show in this se
tion that we are able to a

urately reprodu
ethe extension of the two-phase zone and the temperature evolutionat di�erent lo
ations of the tank with respe
t to the spa
e and timevariables.
5. Determination of vapor 
apillary pressure and relativepermeabilitiesIn this se
tion, we present a method, using the temperature measure-ments of the \Mas
ilia" experiment, to �t the 
apillary pressure 
urvebetween water and water vapor, even though there has been neithermeasurements of pressures nor saturations. Moreover, we present aparametri
 study to show the in
uen
e of the relative permeabilities
urves on the length of the two-phase zone.
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Boiling in porous media. Model and simulations. 23Table IV. Capillary pressure and relative permeabilities 
urves measured with the
ouple water and air. notation valueCapillary pressure P
;w�a(S) 6:81 � 103(S�1:37 � 1)0:37relative permeability of liquid water krl;w�a(S) Al tanh[al (S � bl)℄ +Blrelative permeability of air kra;w�a(S) Av tanh[av (bv � S)℄ +BvAl = 1=[tanh(albl) + tanh(al (1� bl))℄ and Av = 1=[tanh(avbv) + tanh(av (1� bv))℄al = 9:24 bl = 0:54 av = 7:77 bv = 0:37In \Mas
ilia" experiment, as mentioned before, the 
apillary pres-sure and relative permeabilities data have been measured with the
ouple water - air at ambient temperature instead of the 
ouple water- water vapor at 100oC.The use of water - air 
urves instead of water - water vapor 
urvesdoes not permit to meet the experimental results. Indeed, �gure 13presents the value of the temperature as a fun
tion of the z 
oordinate(1 � z � 2) at time t = 5000 s and t = 25000 s, using the water - airfun
tion (represented on the �gure by squares), whereas the imposedheating power is 500W . In this �gure, we observe that:1. The 
omputed temperature level rea
hed in the two-phase area(378K) is higher than the measured one, 375:6K, whi
h implies ahigher simulated temperature gradient in the two-phase area;2. The simulated length of this area is under evaluated. It is 0:10mshorter than the experimental one. Moreover, the anisotropy of thetwo-phase area is also under evaluated as it is shown by the dashedline in �gure 6.
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24 Johann B�enard et al.To get results 
loser to the experiments, we have been driven to 
allthe water - air 
apillary pressure and relative permeability 
urves intoquestion.So, we propose a method using the experimental measurements ofthe temperature to estimate and to �t the water - water vapor 
apillarypressure. Indeed, the numeri
al results show that in the two-phase area,the pressure of the liquid phase is approximately 
onstant (�gure 14show that Pl � Pl0 = 1:1 � 105Pa when the liquid saturation S isbetween 0:3 and 1 in this region). In this two-phase area, the tempera-ture is then an impli
it fun
tion of the vapor pressure Pv thanks to theequation gl(Pl0; T ) = gv(Pv; T ). Drawing this fun
tion (see �gure 15),we 
an then identify Pv � 1:117 � 105Pa as well as the magnitude ofP
;mean(S) � Pv � Pl0 = 1700Pa for the re
orded equilibrium temper-ature Tmean � 375:6K (Tmean is an average value of the experimentaltemperature in the two-phase zone). Thus, we dedu
e a mean value ofthe numeri
al liquid saturation in the two-phase region: Smean � 0:65.We then sear
h P
(0:65) � 1700 and we have obtained the followingfun
tion P
(S) = 8><>: :25� P
;w�a(S) if S � 0:005:25 � P
;w�a(0:005) if 0 < S < 0:005: (25)A 
omparison between the two laws P
;w�a(S) and P
(S) is presentedon �gure 16. Note that the 
ondition P
(0) < +1 is ne
essary toreprodu
e the appearan
e of a dry vapor zone around the heating bar.Sin
e the extension of this area is relatively small, it 
annot be pre
iselyidenti�ed from the temperature measurements, and therefore we didnot try to a

urately �t the maximum threshold of 
apillary pressure.
art6.tex; 16/08/2004; 10:25; p.24



Boiling in porous media. Model and simulations. 25We have then �tted the vapor relative permeability, in order tomeet the a
tual size of the two-phase zone. To that purpose, we havesimulated the 
ases krv(S) = � kra;w�a(S), with � = 2; � = 5 and� = 10. We have thus obtained the results presented in Figures 17 and18. We have �nally kept the following 
urves:krv(S) = 5� kra;w�a(S) and krl(S) = krl;w�a(S) (26)
6. Future resear
h dire
tionsWe present here a physi
al model for handling the two-phase 
ows withphase transition in an initially saturated porous medium. This modelhas been su

essfully approximated using a �nite volume numeri
almethod, whi
h 
an handle the phenomenon of phase appearan
e / dis-appearan
e, in order to reprodu
e experimental results. We also pro-pose an original method to approximate the 
apillary pressure 
urvefrom the experimental temperature measurements.This opens new resear
h dire
tions. The main one is to extend themodel to thermo-poro-elasti
 porous media, in order to handle problemsof storage in deep sites. This seems to be possible, following Coussy(Coussy, 2004). The numeri
al approximation of the resulting modelmust then a

ount for the 
oupling between me
hani
s and unsaturated
ows in porous media. An on-going resear
h proje
t 
on
erns the use ofa �nite element method for the stress and strain 
omputation, 
oupledwith the �nite volume method presented here.

art6.tex; 16/08/2004; 10:25; p.25



26 Johann B�enard et al.Anyway, some experimental work has to be 
ompleted in order toobtain a better knowledge of the 
apillary pressure and the relativepermeability in the 
ase of two-phase water - water vapor 
ow.
A
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28 Johann B�enard et al.AppendixA. Comparisons between analyti
al and numeri
al resultsMathemati
al results on �nite volume s
hemes have shown the goodnumeri
al properties of the numeri
al s
heme presented in Se
tion 3.In parti
ular, the 
onvergen
e of this method applied to two phase 
owin porous media has been extensively studied (see for example (Eymardet al, 2000; Eymard et al, 2003)), and its 
onvergen
e to the solutionof the Stefan problem has also been proven (Eymard et al, 1998). Notethat these properties are relevant in the 
ase of Model ((11), (12),(13), (14)), whi
h in
ludes both physi
al features. We propose in thisappendix a 
omparison of numeri
al results and analyti
al ones for thismodel, under the assumptions given in Table V. Equation (11) gives inthis 
ase r � (�rPl + �fg) = 0: (27)Thus, Equation (27) is now de
oupled from the other equations, andwe then set vf = K�f (�rPl + �fg). Sin
e we assume that P
(S) = 0holds, there is no need to further 
onsider Equation (13). We now
onsider that the problem holds in the horizontal 1D domain [0;D℄,and that a 
onstant pressure P0 is imposed at x = 0, and a 
on-stant pressure P1 is imposed at x = D; in this 
ase, vf redu
es tothe s
alar 
onstant vf = K�f P0�P1D , and the 
uid pressure is given byPl(x; t) = P0 + P1�P0D x. Consequently, due to the linear interpolationof the pressure, the numeri
al s
heme (presented in Se
tion 3) exa
tly
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Boiling in porous media. Model and simulations. 29Table V. Physi
al assumptions for the analyti
al solutionnotation assumptionsLiquid heat 
apa
ity Cl0 
onstant CfLiquid bulk density �l(Pl; T ) 
onstant �fLiquid vis
osity �l(T ) 
onstant �fLiquid enthalpy hl(Pl; T ) Cf (T � T0)Liquid entropy �l(Pl; T ) Cf log(T=T0)Liquid Gibbs potential gl(Pl; T ) hl(Pl; T )� T�l(Pl; T )Vapor heat 
apa
ity Cv0 
onstant CfVapor bulk density �v(Pv; T ) 
onstant �fVapor vis
osity �v 
onstant �fLatent heat at T0 L0 
onstantVapor enthalpy hv(Pv; T ) L0 + Cf (T � T0)Vapor entropy �v(Pv; T ) L0=T0 + Cf log(T=T0)Vapor Gibbs potential gv(Pv; T ) hv(Pv; T )� T�v(Pv; T )Porosity � 
onstantPermeability K 
onstantHeat 
apa
ity of sand Cs 
onstant 0Thermal 
ondu
tivity of wet sand �wet 
onstant �Thermal 
ondu
tivity of dry sand �dry 
onstant �Heat sour
e term �Q 
onstant 0Capillary pressure P
(S) 
onstant 0Relative permeability of liquid water krl(S) SRelative permeability of water vapor krv(S) 1� S
reprodu
es the analyti
al solution for the 
ommon pressure of both
uids and for the 
uid velo
ity.Thanks to the assumptions, we now write the problem in an adimen-sional form. To that purpose, we de�ne v = ���fCfD , the P�e
let numberP = vf�v , and we set �x = xD , �t = vtD , �L = L0CfT0 , �T (�x; �t) = 1T0T (D�x; D�tv ),�S(�x; �t) = S(D�x; D�tv ), and �H( �T ; �S) = �T + �L(1� �S). Equation (12) leadsto � �H��t + P � �H��x � �2 �T��x2 = 0: (28)
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30 Johann B�enard et al.Moreover, Equations and Inequations (14) givestate 1 : no vapor phase; �S = 1and �T < 1state 2 : liquid-vapor equilibrium; �T = 1 and 0 < �S < 1state 3 : no liquid phase; �S = 0and �T > 1: (29)System (28)-(29) is in fa
t, in this parti
ular 
ase, the so-
alled \en-thalpy formulation" of the Stefan problem, whi
h is also used in (Wanget al, 1993) in the general 
ase. Indeed, thanks to (29), it is possible toexpress the temperature �T as a fun
tion with respe
t to �H. For thatpurpose, we set '( �H) = �H for �H � 1 (it 
orresponds to �S = 1 and�T < 1), '( �H) = 1 for 1 � �H � 1 + �L (it 
orresponds to 0 < �S < 1 and�T = 1), and '( �H) = �H � �L for 1 + �L � �H (it 
orresponds to �S = 0and �T > 1). The equation to be solved is therefore� �H��t + P � �H��x � �2'( �H)��x2 = 0: (30)The saturation is then obtained from �H by the relation �S =  ( �H) =1� ( �H � '( �H))=�L.Then a fun
tion �H(�x; �t) is a weak solution of the equation (30) ifthis equation is strongly veri�ed in the spa
e-time domain where �His a regular fun
tion, if the temperature �T = '( �H) is a 
ontinuousfun
tion of the spa
e and time variables, and if the Rankine Hugo-niot jump relation, expressed by _X(�t)( �H(X(�t); �t)� � �H(X(�t); �t)+) =P ( �H(X(�t); �t)�� �H(X(�t); �t)+)�(�'( �H)��x (X(�t); �t)�� �'( �H)��x (X(�t); �t)+), issatis�ed along the dis
ontinuities lines �x = X(�t) of �H. We set �v = P+1,and we 
onsider for any value A su
h that 0 � A � 1, the fun
tion �H
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Boiling in porous media. Model and simulations. 31given by�H(�x; �t) = (1 + �L�A) exp(�v�t� �x) +A; for 0 � �x < �v�t;�H(�x; �t) = (1�A) exp(�v�t� �x) +A; for �v�t < �x: (31)We have to verify that the fun
tion �H given by (31) is indeed a weaksolution to (30). In both domains 0 � �x < �v�t and �v�t < �x wherethe fun
tion �H is regular, the left hand side of (30) is proportionalto �v � P � 1 = 0, thanks to the de�nition of �v. This proves thatthe equation is strongly satis�ed in these domains. The temperature�eld de�ned by �T (�x; �t) = '( �H(�x; �t)) is 
ontinuous with respe
t to thetime and spa
e variables, sin
e the only dis
ontinuity on �H(�x; �t) o

urswith �T = 1. The Rankine-Hugoniot relation at the dis
ontinuity lineX(�t) = �v�t is expressed in this 
ase by �v �L = P �L+(1+ �L�A)� (1�A),whi
h holds. Therefore the 
riteria for a weak solution are all satis�edby the fun
tion �H given by (31). We 
an then express the saturationand the temperature in both domains, by the relations �S(�x; �t) = 0 and�T (�x; �t) = (1+ �L�A) exp(�v�t� �x)� �L+A for all �x su
h that 0 � �x < �v�t,�S(�x; �t) = 1 and �T (�x; �t) = (1 � A) exp(�v�t � �x) + A for all �x su
h that�v�t < �x. Note that the fun
tion �S(�x; �t) is dis
ontinuous for �v�t = �x,whi
h is possible be
ause we have assumed that there were no 
apillarypressure.To 
ompare analyti
al and 
omputational results, we will 
onsidertwo 
ases: A = 0 and A = 1. Let us �rst 
onsider the 
ase A = 0 andthe data given in table VI. The analyti
al solution is for 0 < �x < �v�t,�T (�x; �t) = 2 exp(�v�t � �x) � 1 and �S(�x; �t) = 0 and for �x > �v�t, �T (�x; �t) =exp(�v�t � �x) and �S(�x; �t) = 1. In this 
ase, the length of the domain
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32 Johann B�enard et al.Table VI. Data for the 
omparison between analyti
al and 
omputational solutionA �L �v �S(�x; 0) �S(0; �t) �S(1; �t) �T (�x; 0) �T (0; �t) �T (1; �t)0 1 1:5 1 0 1 exp(��x) 2 exp(�v�t)� 1 exp(�v�t� 1)1 1 1:5 1 0 1 1 exp(�v�t) 1su
h that �T (�x; �t) = 1 is redu
ed to 0 (this is a 
lassi
al property ofthe Stefan Problem). Using the numeri
al s
heme presented in Se
tion3, we obtain the 
urves given in Figures 19 and 20 (in adimensionaltime, spa
e and variables). We �rst remark that the 
urves obtainedfor 100 grid blo
ks 
annot be distinguished from the analyti
al solution.Se
ondly, we noti
e that, even in the 
ase of a 
oarse dis
retization with20 grid blo
ks, the 
al
ulation gives a

eptable results.Let us now 
onsider the 
ase A = 1. The data for this 
ase aregiven in table VI. The analyti
al solution is for 0 < �x < �v�t, �T (�x; �t) =exp(�v�t� �x) and �S(�x; �t) = 0 and for �x > �v�t, �T (�x; �t) = 1 and �S(�x; �t) = 1.In this 
ase, the domain su
h that �T (�x; 0) = 1 is the whole domain.Classi
ally, this domain progressively vanishes as times goes on. We �ndagain in Figures 21 and 22 that the 
omparison in this 
ase betweenthe numeri
al (100 grid blo
ks and 20 grid blo
ks) and the analyti
alresults is very good.
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Figure 1. Pressure of saturated water and latent heat of water as a fun
tionof the temperature. The 
ir
les and the squares result from the experimentaldata (Rohsenow et al, 1998). The solid and the dashed lines results from the
omputational gv(P (T ); T ) = gl(P (T ); T ).
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Impermeable wall at uniform temperature: 79°C

Impermeable wall at uniform temperature: 77°CFigure 2. Field of study and boundary 
ondition des
ription. Sin
e the devi
e issymmetri
 with respe
t to the planes of equations x = 0 and y = 0 we 
an only
onsider a quarter of the domain, introdu
ing zero mass and energy 
uxes 
onditionsat the symmetry planes. Note that wall 2 is permeable: the imposed liquid saturationis 1 and the imposed pressure is hydrostati
. The initial 
onditions are: S = 1,T = 350K under a hydrostati
 pressure.
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Figure 3. Mesh des
ription.
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Figure 4. Temperature pro�les along axis x at (y; z) = (0; 1) and at times t = 5000 sand t = 25000 s. Imposed power �Q0 = 500W .
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Figure 5. Temperature pro�les along axis z (1m � z � 2m) at (x; y) = (0; 0) andat times t = 5000 s and t = 25000 s. Imposed power �Q0 = 500W .
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Figure 6. Liquid saturation �eld in the plane (x; z) at y = 0, at time t = 25000 s.Imposed power �Q0 = 500W . The three solid lines represent parti
ular isovalues ofliquid saturation (S = 0:4; 0:6; 1). The dashed line represents the saturation isovalueS = 1 
omputed in the same 
onditions as above, but with the experimental 
apillarypressure P
;w�a and the experimental vapor permeability krv;w�a.
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Figure 7. Temperature �eld in the plane (x; z) at y = 0 at time t = 25000 s. Imposedpower �Q0 = 500W . The solid lines represent isotherms in degrees Celsius.
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Figure 8. Temperature pro�les along axis x at (y; z) = (0; 1) and at times t = 5000 sand t = 25000 s. Imposed power �Q0 = 900W .
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Figure 9. Temperature pro�les along axis z (1m � z � 2m) at (x; y) = (0; 0) andat times t = 5000 s and t = 25000 s. Imposed power �Q0 = 900W .
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Figure 10. Distribution of liquid velo
ities in the plane (x; z), at y = 0, at timet = 25000 s. The velo
ity ve
tor are represented by arrows 
entered on the 
om-putational points. Imposed power �Q0 = 900W . The solid line represents isovalueS = 1 of liquid saturation.
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Figure 11. Distribution of water vapor velo
ities in the plane (x; z), at y = 0, attime t = 25000 s. The velo
ity ve
tor are represented by arrows 
entered on the
omputational points. Imposed power �Q0 = 900W . The solid line represents isovalueS = 1 of liquid saturation.
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Figure 12. Distribution of water velo
ities in the plane (x; z), at y = 0, at timet = 25000 s. The velo
ity ve
tor are represented by arrows 
entered on the 
om-putational points. Imposed power �Q0 = 900W . The solid line represents isovalueS = 1 of liquid saturation.
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Figure 13. Temperature pro�les along axis z (1m < z < 2m) at (x; y) = (0; 0) andat times t = 5000 s and t = 20000 s. Imposed power �Q0 = 500W . The diamondsrepresent numeri
al results obtained with P
(S) and krv(S). The squares representnumeri
al results obtained with P
;w�a(S) and krv;w�a(S).
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Figure 14. Liquid and vapor pressure and liquid saturation versus x at t = 25000s.Imposed power: �Q0 = 500W .
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Figure 15. Temperature versus vapor pressure when resolvinggl(Pl0; T ) = gv(Pv; T ).
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Figure 16. Comparison between the experimentally measured and numeri
allyadapted 
apillary pressure laws. The 
ir
le represents P
;w�a(S) and the solid linerepresent P
(S) used in the study.
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Figure 17. Temperature pro�les along axis x at (y; z) = (0; 1) at t = 25000 s.Imposed power �Q0 = 500W . In
uen
e of the vapor permeability.
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Figure 18. Temperature pro�les along axis z at (x; y) = (0; 0) at t = 25000 s.Imposed power �Q0 = 500W . In
uen
e of the vapor permeability.
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Figure 19. Comparison of the numeri
al and analyti
al saturation. A=0.
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Figure 20. Comparison of the numeri
al and analyti
al temperature. A=0.
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Figure 21. Comparison of the numeri
al and analyti
al saturation. A=1.
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Figure 22. Comparison of the numeri
al and analyti
al temperature. A=1.
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