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Abstract. We present a modelization of the heat and mass transfers within a porous
medium, which takes into account phase transitions. Classical equations are derived
for the mass conservation equation, whereas the equation of energy relies on an
entropy balance adapted to the case of a rigid porous medium. The approximation of
the solution is obtained using a finite volume scheme coupled with the management
of phase transitions. This model is shown to apply in the case of an experiment of
heat generation in a porous medium. The vapor phase appearance is well reproduced
by the simulations, and the size of the two-phase region is correctly predicted. A
result of this study is the evidence of the discrepancy between the air - water capillary

and relative permeability curves and the water - water vapor ones.

Keywords: two-phase flow in porous media, phase transition, finite volume method,

water - water vapor capillary curve.
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Aij Measure of interface between grid blocks i and j, m?

B Equation and inequality associated with the thermodynamic state
Cp Mass heat capacity of phase p, J.kg . K~!

D Discrete system of equations

dij Distance between centers of control volumes i and j, m

E Internal energy per volume unit, J.m ™3

Fy Mass flux of water, kg.s'

Fy, Heat flux, W

p Gibbs potential of phase p per mass unit, J.kg™'

hp Enthalpy of phase p per mass unit, J.kg™'

K Absolute permeability, m?

krp Relative permeability of phase p

my Mass of phase p per porous volume unit, kg.m=>
M, Molar weight of water, kg.mole™*
Ney Number of control volumes
P, Pressure of phase p, Pa
P, Capillary pressure, Pa
q Conductive thermal flux, W.m >
Q Heat source term, W.m 2
Q; Heat source term, W
Liquid saturation
T Temperature, K
t Time, s
u Discrete unknowns
Vi Measure of grid blocks i, m?
Vp Volumic flux of phase p, m>.s™"
Vp Specific flux of phase p, m.s *

x,y,z Space coordinates, m
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Boiling in porous media. Model and simulations. 3

Greek symbols

n Entropy per mass unit, J.K ' .kg™!
n Entropy per volume unit, J.K ~'.m™3
A Thermal conductivity, W.m ™' K~!

Awet Thermal conductivity of the saturated porous
medium, Wom ™' K ™!
Adry  Thermal conductivity of the dry porous medium,

Wm LKt

Ip Dynamic viscosity of phase p, Pa.s

Pp Bulk density of phase p, kg.m >

Y, Mass rate of water transfer from phase [ to phase

v per volume unit, kg.m .57 !

¢ Porosity

%) Dissipations

X Indicator of thermodynamic state of grid block ¢
(x=1,2,3)

Subscripts and superscripts

c Capillarity
h Heat

l Liquid

P Phase

s Solid

v Vapor

w Water

w —a Relative to the couple water and air

w—v Relative to the couple water and water vapor
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4 Johann Bénard et al.

1. Introduction

Heat transfer and fluid flow with liquid-vapor phase transition in porous
media arise in a number of scientific and engineering disciplines. Im-
portant technological applications can be found in various domain.
The mechanical behavior of drying porous materials must be known
in civil engineering applications (Whitaker, 1998; Coussy et al, 1998).
In petroleum engineering, multiple flowing phases are present in natural
oil reservoirs and various enhanced multi-phase exploitation techniques,
such as water and vapor flooding, are employed (Woods, 1999). For
the purpose of the nuclear reactor safety analysis, the understanding
of flow and transport mechanism of vapor through the concrete en-
closure is essential (Medhekar et al, 1991). The study of the storage
or disposal of nuclear waste strongly involves the prediction of the
long-term heating of porous media due to the residual radioactivity.
Since, in this last technical area, it is particularly difficult to manage
accurate experiments for long-term storage, it has been undertaken to
establish the main physical and chemical mechanisms that govern the
behavior of waste packages disposals (Toulhoat, 2002). The prediction
of thresholds for acceptable heating, in nominal or accidental operat-
ing conditions, depends on models validated under the actual disposal
conditions (Castelier, 2001).

Here, we study some features of this problem, focusing on the mod-
elization and the numerical simulation of heat and mass transfers in
initially saturated porous media, taking into account phase transition

phenomena.
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In this paper, our approach for treating this problem consists in
considering the various liquid phases as distinct fluids with individ-
ual thermodynamic and transport properties and with different phase
specific fluxes. The transport phenomena are then mathematically de-
scribed by the basic balance equations for each phase separately. In
this direction, (Ramseh et al, 1993) propose a model where interfaces
separating single from two phase regions are tracked, whereas (Daurelle
et al, 1998) propose a model where the liquid and the gaseous phases
coexist in any point. The model that we present here includes the
determination of the thermodynamic equilibrium state at each point
of the porous medium, and the appearance or the disappearance of
phases. This model, which is an extension of (Wang et al, 1993; Ghafir,
2000; Najjari et al, 2002) to cases where the energy equation cannot be
written as an enthalpy balance, can be described by a set of equations,
coupled with inequalities.

The outline of the article is as follows. In Section 2, we describe
the continuous equations of the model and the management of the
phase transition. Then, in Section 3, we outline the numerical methods
used to find an approximate solution to the system of equations (in an
appendix, a comparison between numerical and analytical solutions,
in some simplified cases, provides a validation of these methods). In
Section 4, we proceed to comparison between experimental results and
computational ones. A method of determining the vapor capillary pres-
sure and a parametric study of the water vapor relative permeability
is detailed in Section 5. Some conclusions and future works are then

drawn in Section 6.

art6.tex; 16/08/2004; 10:25; p.5



6 Johann Bénard et al.

2. Description of the model

2.1. MASS CONSERVATION AND ENERGY EQUATIONS

The porous medium is treated as a unique continuous medium re-
sulting from the super-imposition of the skeleton and fluid continua.
The skeleton continuum is rigid and the fluid continuum is composed
by two fluids (liquid water and water vapor), assuming that there is
no dry air. We assume the existence of a representative elementary
volume which is relevant at the macroscopic scale for all the physi-
cal phenomena involved in the intended application. Moreover, at any
point of the continuous medium, the three phases are locally at thermal
equilibrium (Ts = T; = T, = T'). Under these conditions, we use the
following classical equations to model the flows in the porous medium.
The liquid phase conservation as well as the vapor phase conservation

are expressed by:

Ty V) =i
)
PV (o) = 7,
where
mi=¢Sp and my=6(1- ) @)

In the above equations, ¢ is the porosity of porous medium supposed
to be a constant, S is the liquid saturation, p,(P,,T) is the density
of phase p = [, v, state function of the pressure P, of phase p and

of the temperature 7. We denote by vj the specific flux of the phase
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Boiling in porous media. Model and simulations. 7

p = lor v. The term 7/, represents the mass rate per volume unit
transfered from the liquid to the vapor phase.

Following Coussy (1995, 2004) for the formulation of the energy equa-
tion in the case of an open volume unit of a rigid porous medium, under
quasi statics evolutions assumptions, the first law of thermodynamics

produces

oF _

E:_v'thPpVP_V‘Q"'g‘ZPpr"'Qa (3)
p:l,’U p:l,v

where E, h,(P,,T), q, g and Q are respectively the internal energy per

volume unit, the enthalpy per mass unit of phase p, the conductive heat

flux, the gravity acceleration and the heat source terms. The second law

of thermodynamics can be expressed by

Q
Ta (4)

p=lv

07 q
EZ—V' (Z npppvp“‘f) +

with

1= ¢Sprm + (1 — S)pyny + (1 — ¢)ps ns-

In the above relations, we denote by 7,(P,,T) the entropy per mass
unit of the liquid and vapor phases (p = landv) and we denote by
ns(T) = Cslog(T/Ty) the entropy per mass unit of the solid phase. We
suppose that p, is constant. The expression of —V - q + Q, obtained
from (3), is introduced in (4) multiplied by T'. Thanks to the expression
Gp(Pp,T) = hy(Py, T)—Tny,(P,,T) of the Gibbs potential per mass unit

of phase p = [, v, we get

©int + Plow + Ptherm > 0, (5)
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8 Johann Bénard et al.

where the term i ¢, representing the intrinsic dissipation, is given by
it =T—— — — V- (ppv
Pint ot ot p;v 9V -+ (PpVp),

the term g4, representing the dissipation due to the mass transfer,

is given by

Pow = — > ppVp - (Vop +mpVT —8) == > ppvp - VPp - 8),
p=lv p=lw

and the term @inerm, representing the dissipation due to the heat trans-
fer, is given by
q
Ptherm = _? - VT.

Since the porous medium is assumed to be rigid, the intrinsic dissipa-

tion @iy 18 equal to zero. This gives, thanks to Equation (3)

on _
8;7 Z gp V-ppvp = —V- (Z hy ppvp + Q> +g: Z ppvp+Q (6)

p=lv p=Ilv p=lw

Using mass conservation Equations (1), we get

"' > gp +7’Hv(9l —g)= =V hyppvp+4q
p= lv p:l,v

+9- Y ppvp + Q.

p=lw

Assuming that there is no dissipation due to the phase transition, i.e.

7%0(91 — g0) =0, (7)
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Boiling in porous media. Model and simulations. 9

and neglecting the mechanical energy due to the volumic weight forces,

we get:

dn dm -
Td—ZJr > gpd—t”z—v- (Z h,,p,,vp> -V-q+Q. (8

p=l,v p=l,v

We satisfy the condition @iperm > 0, assuming that the conduc-
tive heat flux is given by Fourier’s law, in which we use an effec-
tive conductivity taking into account the water content of the porous
medium:

q=—A(S)VT. (9)

Different expressions of A(S) are available in the literature (see for
example (De Vries, 1964; Kelly et al, 1983)). Note that the influence
of a given law is essentially governed by the values A(0) = Aqry and
A(1) = Awes, since for 0 < S < 1, the temperature is determined by the
equilibrium between water and water vapor, leading to small gradient in
the two-phase zone. Nevertheless, following (Wang et al, 1993), we use
a linear effective thermal conductivity law A(S) = S Awetr + (1 —5) Adry-

Finally, we satisfy the condition @qoy > 0, assuming that the veloc-

ity of phase p is given by Darcy’s law:

kK

Vv
p
Hop

(=VP, + ppg), (10)

where K is the absolute permeability of the porous medium (assumed
here to be constant), k,,(S), the relative permeability of phase p, is
a function of the liquid saturation (k./(S) is an increasing function
such that k,;(0) = 0 and ky,(S) is a decreasing function such that

kry(1) = 0) and p,(T) is the dynamic viscosity of phase p, assumed
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10 Johann Bénard et al.

to only depend on the temperature. Using Equations (1), (2) and (10),

the mass conservation equation writes:

p B (=Y P + pig)

+pv k:fUK (—VPU + Pvg)

TSt b(1-S)p) + V- —0. (11)

Using Equations (1), (2), (8), (9) and (10), the energy equation is

expressed by

T5(bS pim + ¢ (1= 5) pony) hup = (=V P + pig)
a5 (b S o) + 908 (¢ (1= S) po) ~Owet 8 + Ay (1 — 8))VT
— Q.

(12)
The vapor pressure P, is related to the liquid pressure using the capil-

lary pressure, which is a decreasing function of the liquid saturation:

P(S) =P, — . (13)

Equation (7) is not sufficient to close system (11), (12), (13) with
respect to (P, P,, S, T'). We therefore give in the next section suffi-
cient conditions, which ensure (7), and which enable to calculate the

thermodynamic state at each point.

2.2. CONDITIONS FOR THE PHASE TRANSITION
The equilibrium thermodynamic state of the water (one phase liquid,

one phase vapor, or two-phase) can be determined for given liquid and

gaseous pressures and temperature conditions, using the computation
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Boiling in porous media. Model and simulations. 11

of the Gibbs potential for each phase. When Gibbs potentials are
equal, both phases are in equilibrium; otherwise, the phase with the
maximum Gibbs potential disappears to the benefit of the phase with
the minimum Gibbs potential. Therefore, three equilibrium states are

possible:

State 1 : no vapor phase, S = land g;(P,,T) < gy(Py,T)
State 2 : liquid-vapor equilibrium, g;(P;, T') = g,(P,, T) (14)
and0 < S <1

State 3 : no liquid phase, S = Oand g;(P;, T) > gy(Py,T)

Note that, in State 1, we get m, = 0 and vy = 0, which delivers, using
(1), 7, = 0. In State 3, we then have m; = 0 and v; = 0, and the
same conclusion holds. Therefore, equation (7) is satisfied.

System (11), (13), (8) and (14) is now closed, with respect to the

four unknowns P, P,, S and T.

2.3. STATE FUNCTIONS FOR THE LIQUID AND VAPOR WATER PHASES

In this model, we need the expressions of the density, the dynamic
viscosity, the enthalpy and the entropy of each water phase p = [,v
as explicit state functions of the pressure of the phase and of the
common temperature. We assume that for p = [,v, the mass heat
capacity %(Pp, T) does not depend on the pressure P,, and therefore
verifies %(PP,T) = Cp(T). By integration, introducing a reference
state (specified below) defined by the pressure Py and the temperature

Ty, and a constant hy,g, we get the existence of a function {(P,) =

art6.tex; 16/08/2004; 10:25; p.11



12 Johann Bénard et al.

g—E(Pp, T') such that

T P,
hy(Pp,T) = hyo + | Co(r)dr + | = &(m)dr. (15)
Ty Py

Since we have

1
dhy(Pp,mp) = Tdnp + p—de,
P

we get that

C,
dﬂp(PpaT) = #dﬂﬂ - % (p_lp - f(Pp)> dp,.

This implies using Maxwell relations that:

We thus deduce the following expression for the density of the phase:

1

D) = i) + By 1o

We then obtain that

dﬂp(PpaT) = @dﬂﬂ - ((Pp)dP,

and therefore, there exists an integration constant n,o such that

T P,
(P, T) :np0+/T @df— i ((m)dr. (17)

art6.tex; 16/08/2004; 10:25; p.12



Boiling in porous media. Model and simulations. 13

Relations (15-17) then provide consistent thermodynamic functions for
the class of materials whose mass heat capacity only depends on the
temperature. For the sake of simplicity, we consider a constant density
for the liquid water. This corresponds to the choice (;(P;) = 0 and
&(P) = 1/pyp, with pjg = 957.9 kg.m ™3, and we set C)(T) = Cjg =
4196 J.kg '.K!. Note that it is possible to increase the accurateness
of these functions, setting (;(P;) = a/pjo and &(P) = (1 — b(P, —
Py) — aTy)/pio- It then suffices to select a and b with respect to the
compressibility and the dilatability of liquid water in the considered
range of temperature and pressure.

Assuming the water vapor to be an ideal gas, we write (,(P,) =
g, with R = 8.315 JK~".mole™" and M,, = 18 10~*kg.mole™",
& (P,) =0, and we set Cy(T) = Cypo = 1870 J.kg L. K L.

The four constants hjy, 70, hyo and 7,9 cannot be chosen inde-
pendently. Indeed, considering the reference equilibrium state at the
atmospheric pressure Py = 1.01325 10° Pa, Ty = 373 K, we must
ensure g,(P,To) = gi(FPo,To) and n,(Po, To) — m(Po,To) = Lo/To,
where the latent heat Ly at this reference state is equal to Ly =
2257 103 J.kg~'. We can therefore take hjy = 0, m9 = 0, hyo = Lo,
w0 = Lo/To. Gathering the previous expressions, we obtain the table I.
Using the expressions given by table I, it can be verified that the equi-
librium pressure function P(7T) such that g,(P(T),T) = ¢,(P(T),T)
and the equilibrium latent heat L(T) = T'(n,(P(T),T) — m(P(T),T))
are close to that which can be found in the literature (Rohsenow et al,
1998) in the concerned range of temperatures and pressures (see figure
1). We remark that the above expressions of the phase densities are

sufficient to ensure Kelvin’s law, that is, for two equilibrium states P,

art6.tex; 16/08/2004; 10:25; p.13
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Table I. Thermo-physical properties of water

notation value units
Reference pressure Py 1.01325 10° Pa
Reference temperature To 373 K
Liquid heat capacity Cho 4196 Jkg L K!
Vapor heat capacity Cho 1870 J.Icg*l.K*1
Latent heat at Tp, Po Lo 2257 102 Jkg™!
Gas constant for water vapor R 8.315 J K 'mole™!
Molar weight of water My, 18 1073 kg.mole™"
Liquid bulk density pi(P,T)  pio=957.9 kg.m™3

1072 exp(420210° _ 9471

Liquid vi it T T Pa.

VTG VISCOsTY w(T) +4.5271072T — 3.376 10~°T?) s
Liquid enthalpy h(P,T)  Cio (T —To) + 5=(P — Po) Jkg™?
Liquid entropy m(P,T)  Cio log(T/To) Jkg LK™t
Liquid Gibbs potential g(P,T) h(P,T)—Tmy(P,T) Jkg™?
Vapor bulk density pv(Py,T) RT/M,P, lcg.mf3
Vapor viscosity 7. 1.27 107° Pa.s
Vapor enthalpy hyo(Py,T) Lo+ Cyo (T —To) Jkg™!

Lo/To + Cyo log(T/To) 1 1
Vapor entro w(Py, T Jkg™ K~
p Py M ( ) — % log(P,/ Py) g
Vapor Gibbs potential 9o (Py, T)  hy(Py,T)—Tny(Py,T) J.Icgf1
P, T and P, P,, T,
P, M, _
log =~ = (P, —B).
Pv plURT

Indeed, the above equation is immediately obtained by subtracting the

two equations ¢;(P;,T) = g,(P,,T) and gl(Pl,T) =gy (PU,T).

3. Numerical techniques

It is now necessary, in order to validate this model, to obtain a nu-

merical approximation of the solution. This is completed using a finite

art6.tex; 16/08/2004; 10:25; p.14
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volume method, which consists in a set of nonlinear discrete balance
equations in grid blocks, coupled with the set of equations and inequal-
ities resulting from the phase transition determination. This system is
solved using Newton’s method, the thermodynamic state of each grid
block being updated at each iteration of the method. The advantage
in this case of a finite volume method over other methods is that there
is no need to assume a minimum value for the gas phase saturation
(for example, some finite element methods require that both phases are
mobile everywhere in order to ensure the invertibility of the rigidity ma-
trix (Schrefler et al, 1993)). Thus, it is neither necessary to assume the
presence of both phases everywhere nor to track the interface between
the liquid one-phase region and the two-phase one. We consider a finite
volume mesh of the domain, consisting of N, grid blocks indexed by ¢
(i=1,...,Ng). We denote by V; the volume of the cell i, the subscript
j stands for any cell having a common interface i|j with the cell 4, A;;
is the measure of interface i|j, d;; is the distance between the centers
of grid blocks 7 and j.

Equations (11) and (8) give, after time discretization and finite

volume discretization, a set of coupled nonlinear equations (Eymard

et al, 2000):
mn+1 'LU'L n
1 _
Vi tUTILZJrl + Z FUIZJ -
i n my; = my;

. n+1 hz hz n+1 p? n+1 An—+1

Vi Tl tn+1 _ + Zl tn+1 n + |Z Fhl] QZ
p=lv il

(18)
In the above set of equations, we denote by m,, = m; + m, the water

mass and by Q?H the heat source term in grid block 7. The water flux

art6.tex; 16/08/2004; 10:25; p.15



16 Johann Bénard et al.

Fn+1

wij and the energy flux F,’;”Jl across the interface i|j are evaluated

using the following implicit finite difference scheme with respect to the
pressures, the saturations and the temperatures of grid blocks 7 and j:

Fn+1

wij ’Oll+1 ‘/anrl + p’U’LJI VVUT;TI (19)

F}?z-;l — (pl h )n—l—l Vl:z]—i—l (Pv h )n+1V£]+1
)\n—l—l )\n-l—l Tn-l—l Tn+1 (20)
i ¥ i j

ii
J )\?Jrl + )\;}Jrl dij

with (for p =1, v)

it Kkrp(sgljl) P;;-+1 _ PIZ_+1 + png( n+1 Z;L+1)
szg - ‘Aij (21)
Hop dij

eliminating the vapor pressure using P”"r1 PT.H'1 + PC(ST"H), and
setting AP = Ayer ST+ Ay (1 — SPHY). In (19, 20, 21) the density
pij and the liquid saturation Sp;; at interface are estimated thanks to
a phase by phase upwind scheme:
n+1 : n+1 n+1 n—|—1 n+1
gt _ ) S BT = By opig(2 - 27) 20 (22)
7,
" S+ if not.
Setting, for each cell 7, XZH the thermodynamic state of the cell
i (1 for pure liquid, 2 for liquid-vapor equilibrium, 3 for pure vapor),
UMt = (pptt 8P T the triplet of unknowns of the cell ¢ (liquid

pressure, liquid saturation, temperature) and

B(uin—i—la]-)zs_l
B(uz?l+172) = gl(PlvT) - gv(PvaT)
BUM!,3) =8,

art6.tex; 16/08/2004; 10:25; p.16
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the numerical implementation of the equilibrium equations and inequal-

ities (14) given in Subsection 2.2 is the following:

If X't =1, then B, 1) =0, and B(U,2) <0
BU™, 1) <o,

If "' =2, then BU'™,2) =0, and “ ) (23)
BUM',3) >0

If x"*' =3, then BU'™,3) =0, and BU*",2) >0

For each time step, we apply an adapted Newton method to find

an approximate value of U = (UZLH)z’:l,...Nw and xy = (X?H)i:l,me,

solution of the whole system of equations including the discrete balance
equations (18-22) and the equations BU™, x**') = 0. We denote this
system of equations by D(U, x) = 0. Let U, x(O) be an initialization
of the unknowns (practically, we use the values obtained from the
preceding time step Y0 = (U)i=1,..N., and X0 = (XT)i=1,...Nop -

At iteration m of this adapted Newton’s method, let 24(™) x("™) be

(m+1)

given. We first compute U from the resolution of the following

linear system (for the sake of simplicity, we use in our prototype the

method of band matrix Gauss elimination):
%D(u(m)ax(m)) . (u(m+1) - u(m)) = _D(u(m)ax(m))a (24)

in which 9y D(U, x) denotes the Jacobian matrix with respect to x of

(m-i—l)

the function D (U, x). Then we define the state x , for every grid

block 7, by the relations:
If x\™ =1 and if BU™,2) > 0, then ™V = 2;

i

1f ™ = 2 and if BU™, 1) > 0, then ™+ = 1;

i i

(M) — 2 and if BU™,3) <0, then ™+ = 3;

[ [ [

If x

art6.tex; 16/08/2004; 10:25; p.17



18 Johann Bénard et al.

1f ™ = 3 and if BU™™,2) <0, then ™) = 2.

i i

Otherwise we set XEmH) = Xz(m).

This method, classically used in the oil reservoir simulation setting,
appears to be very stable and efficient (the number of iterations needed
does not exceed 2 or 3 for most of the time steps), using after conver-
gence a predictor-corrector strategy for the determination of ¢"+2 —¢"+1.
One can reinforce the convergence properties by under-relaxing any
iteration step U™+ —14(™) such that ||/ —24(™)|| is greater than

a desired variation; then the last iterations until convergence do not

need to be under-relaxed.

4. Comparisons between experimental and numerical results

4.1. THE MASCILIA EXPERIMENT

We now use the numerical implementation of this model for reproduc-
ing experimental results. For that purpose, the “Mascilia” experiment
(Castelier, 2001), done at the French establishment for atomic energy
(CEA), enables to study the phenomenon of phase transition (water
- water vapor) in an initially saturated porous medium: a tank repre-
sented by the domain [—1.5,1.5] x [—-1,1] x [0,2] (lengths in m) whose
walls are isothermal (typically 7, = 350 K), is filled with sand and
initially saturated with water (see figure 2). In the middle of the tank
(at the point z = y = 0, z = 1) a heating bar (a cylinder with diameter
equal to 0.1m and height equal to 0.2m), whose power varies from

0 to 1450W, enables to carry water to boiling. Four hundred thermo-
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Table II. Parameters used for the simulation.

19

notation value units
Domain [0,1.5] x [0,1] x [0,2] m
Mesh 15 x 12 x 23 -
Source term Q 500 (runl); 900 (run2) W
(punctual source located at (0,0, 1)) -
Porosity 1) 0.35 -
Permeability K 2.5 x 10712 m?
Bulk density of sand Ps 2400 kg.m™3
Heat capacity of sand Cs 800 Jkg LKT!
Thermal conductivity of wet sand Awet 3 W ' K~!
Thermal conductivity of dry sand Adry 0.3 Wm LK!

couples allow to precisely follow the space and time evolution of the

temperature.

In this experiment, three phases are in presence: sand, water and

water vapor. In-situ measurements of the properties of the porous

medium (porosity, permeability, thermal conductivity, bulk density and

heat capacity) have been done by different French laboratories (see

table IT). Note that measurements of air - water (and not water - water

vapor) capillary pressure (P y—,) and relative permeabilities (kpjp—q

and kyq—q) have also been done by another laboratory. However, as

we see in section 5, these water - air curves cannot be used without

modifications in order to reproduce the Mascilia experiments.

4.2. RESULTS AND DISCUSSION

The data used for the simulation are given in tables II and III. In

figure 2, the domain and the boundary conditions are described. The

comparisons between experimental and numerical results are essentially
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Table III. Capillary and relative permeabilities curves used for the simulation.

notation value
1.70 x 103(S™37 — 1)°37if § > 0.005
Capill P.(S
apriary pressure (%) { P.(0.005)if 0 < S < 0.005.
relative permeability of liquid water  k,;(S) A;tanha; (S — bi)] + B
relative permeability of water vapor k. (S) 5 x A, tanh[a, (b, — S)] + By

A; = 1/[tanh(a;b;) + tanh(a; (1 — b;))] and A, = 1/[tanh(avb,) + tanh(a, (1 — by))]
a=924 b =054 a,=777 b,=037

based on the temperature measurements at various points in the tank.
The temperatures are continuously recorded with respect to the time.
Figures 4 and 5 present the value of the temperature as a function of the
x coordinate along the median line at (y = 0,z = 1) and as a function
of the z coordinate (1 < z < 2) along the vertical line z = 0 and
y = 0 above the heating bar, at times ¢ = 5000s and ¢ = 25000 s.
The circles represent experimental curves. These figures show that
two areas in the tank can be observed when the imposed power is
Qo = 500 W: a two-phase area, quasi isothermal (375K), included in
[0,0.19] x [0,0.18] x [0.85,1.43] and an area saturated by the liquid in
the rest of the tank. We note that there is a good agreement between
the experimental and numerical results: the temperature variation in
the tank, the temperature level and the extension of the two-phase area
are well evaluated by the simulation whatever the time considered. We
observe in figures 6 and 7 which show the liquid saturation field and
the temperature field in the plane y = 0, at time ¢ = 25000 s, that an
asymmetry is observed between the values z € [1,2] and z € [0, 1]. The

size of the two-phase area is equal to 0.15m below the heating source,

art6.tex; 16/08/2004; 10:25; p.20



Boiling in porous media. Model and simulations. 21

and to 0.43 m above, as mentioned before.

A similar agreement between experimental and numerical results is
again observed as Qo = 900 W. Figures 8 and 9 present the value of the
temperature as a function of the x coordinate along the median line at
(y =0,z =1) and as a function of the z coordinate along the vertical
line above the heating bar at time ¢ = 5000s and ¢ = 25000 s. The
circles represent experimental curves. These figures show that there

are three areas in the tank when the imposed power is 900 W:

1. a small dry vapor zone around the heating bar characterized by a

brutal increase in the temperature;

2. a two-phase area, quasi isothermal (375K) whose size is 0.24m in z

direction and 0.56 m in z direction (1 < z < 2) at time ¢ = 25000 s;
3. an area saturated by the liquid in the rest of the tank.

On figure 9, one notes that in z direction, at time ¢t = 5000 s, the exis-
tence of a dry vapor area is not reproduced by the computational results
and the 'numerical’ two-phase area is larger than the experimental one.
However, the agreement remains acceptable.

Figures 10 and 11 present liquid and water vapor velocity distribu-
tions in the plane (z,z) at y = 0 and at ¢ = 25000 s. The imposed
power is QQ = 900W. In these figures, the interface between the two-
phase zone and the saturated zone is plotted as a solid line. The liquid
velocity vectors indicate a liquid flow near the condensation front and
in the two-phase region. Far away, the liquid movement is very weak.

The vapor velocity vectors show a primarily upward movement upon
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the heating bar because of its much lower density. Due to the stronger
upward vapor flow, the capillary forces are predominant in the area
below the heating bar. The liquid is drawn up by the capillary forces
and evaporates completely as it reaches the bottom edge of the heating
bar. Upon the heating bar, at the two-phase interface, liquid is formed
as the vapor condenses. Part of this liquid flows downward, driven by
gravity and capillarity in an attempt to fill again the drying out part
of the porous medium. The rest crosses the sub-cooled zone. The same
phenomena are observed by (Stubos et al, 1997). The co-current and
counter-current flow in the two-phase region lead to a recirculating flow
of water (liquid + water vapor) as displayed in figure 12.

We show in this section that we are able to accurately reproduce
the extension of the two-phase zone and the temperature evolution
at different locations of the tank with respect to the space and time

variables.

5. Determination of vapor capillary pressure and relative

permeabilities

In this section, we present a method, using the temperature measure-
ments of the “Mascilia” experiment, to fit the capillary pressure curve
between water and water vapor, even though there has been neither
measurements of pressures nor saturations. Moreover, we present a
parametric study to show the influence of the relative permeabilities

curves on the length of the two-phase zone.
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Table IV. Capillary pressure and relative permeabilities curves measured with the
couple water and air.

notation value

Capillary pressure Pow—a(S)  6.81 x 103(S~ 137 —1)0-37
S) A tanh[al (S — bl)] + B;
S) A, tanh[a, (by — S)] + B,

relative permeability of liquid water ki p—q

—_~ T

relative permeability of air kraw—a

A; = 1/[tanh(a;b;) + tanh(a; (1 — b;))] and A, = 1/[tanh(ayb,) + tanh(a, (1 — by))]
ar=924 b =054 a,=777 b,=0.37

In “Mascilia” experiment, as mentioned before, the capillary pres-
sure and relative permeabilities data have been measured with the
couple water - air at ambient temperature instead of the couple water
- water vapor at 100°C.

The use of water - air curves instead of water - water vapor curves
does not permit to meet the experimental results. Indeed, figure 13
presents the value of the temperature as a function of the z coordinate
(1 <z <2)at time t = 5000 s and ¢ = 25000 s, using the water - air
function (represented on the figure by squares), whereas the imposed

heating power is 500W . In this figure, we observe that:

1. The computed temperature level reached in the two-phase area
(378K) is higher than the measured one, 375.6 K, which implies a

higher simulated temperature gradient in the two-phase area;

2. The simulated length of this area is under evaluated. It is 0.10m
shorter than the experimental one. Moreover, the anisotropy of the
two-phase area is also under evaluated as it is shown by the dashed

line in figure 6.
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To get results closer to the experiments, we have been driven to call
the water - air capillary pressure and relative permeability curves into
question.

So, we propose a method using the experimental measurements of
the temperature to estimate and to fit the water - water vapor capillary
pressure. Indeed, the numerical results show that in the two-phase area,
the pressure of the liquid phase is approximately constant (figure 14
show that P, ~ Py = 1.1 x 10°Pa when the liquid saturation S is
between 0.3 and 1 in this region). In this two-phase area, the tempera-
ture is then an implicit function of the vapor pressure P, thanks to the
equation g;(Py,T) = gy(P,,T). Drawing this function (see figure 15),
we can then identify P, ~ 1.117 x 10°Pa as well as the magnitude of
P mean(S) = P, — Py = 1700 Pa for the recorded equilibrium temper-
ature Tean = 375.6 K (Tpean is an average value of the experimental
temperature in the two-phase zone). Thus, we deduce a mean value of
the numerical liquid saturation in the two-phase region: Sycan =~ 0.65.
We then search P.(0.65) ~ 1700 and we have obtained the following
function

P.(S) = 25 X Ppyy—o(S) if S >0.005 (25)

25 X Peyy—6(0.005) if 0 < .S < 0.005.
A comparison between the two laws P, _q(S) and P.(S) is presented
on figure 16. Note that the condition P.(0) < +oo is necessary to
reproduce the appearance of a dry vapor zone around the heating bar.
Since the extension of this area is relatively small, it cannot be precisely
identified from the temperature measurements, and therefore we did

not try to accurately fit the maximum threshold of capillary pressure.
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We have then fitted the vapor relative permeability, in order to
meet the actual size of the two-phase zone. To that purpose, we have
simulated the cases kyy(S) = Bkraw—a(S), with 8 = 2,8 = 5 and
B = 10. We have thus obtained the results presented in Figures 17 and

18. We have finally kept the following curves:

kry(S) =5 X krgw—a(S) and ki (S) = krpw—a(S) (26)

6. Future research directions

We present here a physical model for handling the two-phase flows with
phase transition in an initially saturated porous medium. This model
has been successfully approximated using a finite volume numerical
method, which can handle the phenomenon of phase appearance / dis-
appearance, in order to reproduce experimental results. We also pro-
pose an original method to approximate the capillary pressure curve
from the experimental temperature measurements.

This opens new research directions. The main one is to extend the
model to thermo-poro-elastic porous media, in order to handle problems
of storage in deep sites. This seems to be possible, following Coussy
(Coussy, 2004). The numerical approximation of the resulting model
must then account for the coupling between mechanics and unsaturated
flows in porous media. An on-going research project concerns the use of
a finite element method for the stress and strain computation, coupled

with the finite volume method presented here.
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Anyway, some experimental work has to be completed in order to
obtain a better knowledge of the capillary pressure and the relative

permeability in the case of two-phase water - water vapor flow.
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Appendix

A. Comparisons between analytical and numerical results

Mathematical results on finite volume schemes have shown the good
numerical properties of the numerical scheme presented in Section 3.
In particular, the convergence of this method applied to two phase flow
in porous media has been extensively studied (see for example (Eymard
et al, 2000; Eymard et al, 2003)), and its convergence to the solution
of the Stefan problem has also been proven (Eymard et al, 1998). Note
that these properties are relevant in the case of Model ((11), (12),
(13), (14)), which includes both physical features. We propose in this
appendix a comparison of numerical results and analytical ones for this
model, under the assumptions given in Table V. Equation (11) gives in
this case

V- (=VP +psg) =0. (27)

Thus, Equation (27) is now decoupled from the other equations, and
we then set vg = % (—=VP, + psg). Since we assume that P.(S) = 0
holds, there is no need to further consider Equation (13). We now
consider that the problem holds in the horizontal 1D domain [0, D],

and that a constant pressure P, is imposed at x = 0, and a con-

stant pressure P; is imposed at z = D; in this case, v¢ reduces to

K Ph—P

u, D and the fluid pressure is given by

the scalar constant vy =
Pz, t) = Py + @x. Consequently, due to the linear interpolation

of the pressure, the numerical scheme (presented in Section 3) exactly
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Table V. Physical assumptions for the analytical solution

29

notation assumptions
Liquid heat capacity Cio constant Cfy
Liquid bulk density pi(P,T)  constant ps
Liquid viscosity i (T) constant pf
Liquid enthalpy h(P,T Cy (T —To)
Liquid entropy m(P,T Cy log(T/Ty)
Liquid Gibbs potential q(P,T) h(P,T)—Tmy(P,T)
Vapor heat capacity Chro constant Cy
Vapor bulk density po(Py,T) constant ps
Vapor viscosity e constant f ¢
Latent heat at To Lo constant
Vapor enthalpy hy(Py,T) Lo+ Cy (T —To)
Vapor entropy o (Py, T Lo/To + Cy log(T/To)
Vapor Gibbs potential go(Py,T)  hy(Py, T) = Tny(Py,T)
Porosity 10) constant
Permeability K constant
Heat capacity of sand Cs constant 0
Thermal conductivity of wet sand Awet constant A
Thermal conductivity of dry sand Adry constant A
Heat source term Q constant 0
Capillary pressure P.(S) constant 0
Relative permeability of liquid water  k,;(S) S
Relative permeability of water vapor  kyy(S) 1-8

reproduces the analytical solution for the common pressure of both
fluids and for the fluid velocity.
Thanks to the assumptions, we now write the problem in an adimen-
. _ A 7
sional form. To that purpose, we define v = 397CD the Péclet number
Pzﬁ,andwesetg_cz fz%,Lz%,

z T(z,1) = £T(Dz, ),
S(z,%) = S(Dz, 2%), and H(T,S) = T+ L(1 — S). Equation (12) leads

to
OH 0°T

ot T 9z 012

= 0. 2
ot 0z 0 (28)
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Moreover, Equations and Inequations (14) give

state 1 : no vapor phase, S = landT < 1
state 2 : liquid-vapor equilibrium,7” =1 and 0 < S < 1 (29)

state 3 : no liquid phase, S = 0and T > 1.

System (28)-(29) is in fact, in this particular case, the so-called “en-
thalpy formulation” of the Stefan problem, which is also used in (Wang
et al, 1993) in the general case. Indeed, thanks to (29), it is possible to
express the temperature T as a function with respect to H. For that
purpose, we set ¢(H) = H for H < 1 (it corresponds to S = 1 and
T <1),p(H)=1for 1 < H <1+ L (it corresponds to 0 < S < 1 and
T =1),and p(H) = H— L for 1 + L < H (it corresponds to S = 0
and T > 1). The equation to be solved is therefore
_ _ Yy =
TP

=0. (30)

The saturation is then obtained from H by the relation S = ¢(H) =
1= (H = p(H)/L.

Then a function H(Z,%) is a weak solution of the equation (30) if
this equation is strongly verified in the space-time domain where H
is a regular function, if the temperature T = ((H) is a continuous
function of the space and time variables, and if the Rankine Hugo-
niot jump relation, expressed by X (£)(H(X(1),)~ — H(X(#),D)*1) =
P (H(X(0),1)” — H(X(B),57) - (P42 (X (D), 1)~ - 25X (1), D)), is
satisfied along the discontinuities lines Z = X (£) of H. We set 1 = P+1,

and we consider for any value A such that 0 < A < 1, the function H
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given by
H(z,t) = (1+ L — A)exp(vf — z) + A, for 0 < z < vt,

_ (31)
H(z,t) = (1 — A)exp(vt — ) + A, for vt < T.

Z

We have to verify that the function H given by (31) is indeed a weak
solution to (30). In both domains 0 < Z < ot and ot < T where
the function H is regular, the left hand side of (30) is proportional
to v — P —1 = 0, thanks to the definition of v. This proves that
the equation is strongly satisfied in these domains. The temperature
field defined by T'(z,%) = (H(z,t)) is continuous with respect to the
time and space variables, since the only discontinuity on H (%, ) occurs
with T = 1. The Rankine-Hugoniot relation at the discontinuity line
X (f) = ¥t is expressed in this case by 9L = PL+ (1+L— A) — (1 — A),
which holds. Therefore the criteria for a weak solution are all satisfied
by the function H given by (31). We can then express the saturation
and the temperature in both domains, by the relations S(z,%) = 0 and
T(z,t) = (1+L— A) exp(vf —7) — L+ A for all z such that 0 < z < vf,
S(z,t) = 1 and T(z,t) = (1 — A)exp(dt — z) + A for all Z such that
ot < Z. Note that the function S(z,%) is discontinuous for ot = Z,
which is possible because we have assumed that there were no capillary
pressure.

To compare analytical and computational results, we will consider
two cases: A =0 and A = 1. Let us first consider the case A = 0 and
the data given in table VI. The analytical solution is for 0 < 7 < vt,
T(z,t) = 2exp(vt — Z) — 1 and S(z,t) = 0 and for z > ot, T(z,t) =

exp(vt — z) and S(z,f) = 1. In this case, the length of the domain

art6.tex; 16/08/2004; 10:25; p.31



32 Johann Bénard et al.

Table VI. Data for the comparison between analytical and computational solution

AL o S@0) S00 S1LH T@0) T T(1,5)
0 1 15 1 0 1 exp(—X) 2exp(¥t) —1 exp(¥t—1)
1 15 1 0 1 1 exp(¥) 1

such that T(z,f) = 1 is reduced to 0 (this is a classical property of
the Stefan Problem). Using the numerical scheme presented in Section
3, we obtain the curves given in Figures 19 and 20 (in adimensional
time, space and variables). We first remark that the curves obtained
for 100 grid blocks cannot be distinguished from the analytical solution.
Secondly, we notice that, even in the case of a coarse discretization with
20 grid blocks, the calculation gives acceptable results.

Let us now consider the case A = 1. The data for this case are
given in table VI. The analytical solution is for 0 < z < ot, T(Z,t) =
exp(vt — z) and S(z,%) = 0 and for z > of, T(z,) = 1 and S(z,7) = 1.
In this case, the domain such that T(z,0) = 1 is the whole domain.
Classically, this domain progressively vanishes as times goes on. We find
again in Figures 21 and 22 that the comparison in this case between
the numerical (100 grid blocks and 20 grid blocks) and the analytical

results is very good.
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Figure 1. Pressure of saturated water and latent heat of water as a function
of the temperature. The circles and the squares result from the experimental
data (Rohsenow et al, 1998). The solid and the dashed lines results from the
computational g, (P(T),T) = g:(P(T),T).
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1m |
l Bl Heating bar
< !
| Symmetry conditions
3 Permeable wall at uniform temperature: 77°C
f 3 Impermeable wall at uniform temperature: 79°C
z LA y
y @ Impermeable wall at uniform temperature: 77°
1
X
1.5m

Figure 2. Field of study and boundary condition description. Since the device is
symmetric with respect to the planes of equations x = 0 and y = 0 we can only
consider a quarter of the domain, introducing zero mass and energy fluxes conditions
at the symmetry planes. Note that wall 2 is permeable: the imposed liquid saturation
is 1 and the imposed pressure is hydrostatic. The initial conditions are: S = 1,
T = 350K under a hydrostatic pressure.

art6.tex; 16/08/2004; 10:25; p.34



Boiling in porous media. Model and simulations. 35

09 F
08 F
07F
06
E osfE
> 04f
03k
02
01f
SR M L T M | 1 L L
0.25 05 075 1 1.25
X (m)
18 1.8 |
1.6 H 1.6 H
14H 14E
12H 12
[ i — -
\E/ 1 é 1
N = N s
0sH 0.8 H
0.6 06
0.4H =
0.2 0.2 :
L 05 i TS I N T T T A I A
X m) 02 04 06 08

Figure 8. Mesh description.

Y (m)

art6.tex; 16/08/2004; 10:25; p.35



36

Johann Bénard et al.

T | T T | T | T
375 \<'b o--o exp (5000 s)
| \ o--onum, (5000 s)
‘“ e—e exp (25000 s)
370 . e—enum (25000 s
< {
o I 't
"§ 365_ d?‘\‘
S !
o,
;
— 360 o —
9
n b .
355 —
oog _________
I ! | ! | | ! | ! | ! | ! | |
0,2 0,4 0,6 0,8 1 1,2 1,4
X (m)

Figure 4. Temperature profiles along axis  at (y, ) = (0,1) and at times ¢ = 5000 s
and ¢t = 25000 s. Imposed power Qo = 500 W.
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Figure 5. Temperature profiles along axis z (Im < z < 2m) at (z,y) = (0,0) and
at times ¢ = 5000 s and ¢t = 25000 s. Imposed power Qo = 500 W.
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0

0.5 1
X (m)

Figure 6. Liquid saturation field in the plane (z,z) at y = 0, at time ¢ = 25000 s.
Imposed power Qo = 500 W. The three solid lines represent particular isovalues of
liquid saturation (S = 0.4,0.6,1). The dashed line represents the saturation isovalue
S =1 computed in the same conditions as above, but with the experimental capillary

pressure P .,—, and the experimental vapor permeability kv w—a-
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Figure 7. Temperature field in the plane (z, 2) at y = 0 at time ¢ = 25000 s. Imposed
power Qo = 500 W. The solid lines represent isotherms in degrees Celsius.
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Figure 8. Temperature profiles along axis  at (y, ) = (0,1) and at times ¢ = 5000 s
and ¢ = 25000 s. Imposed power Qo = 900 .
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Figure 9. Temperature profiles along axis z (Im < z < 2m) at (z,y) = (0,0) and
at times ¢ = 5000 s and ¢t = 25000 s. Imposed power Qo = 900 W.
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Figure 10. Distribution of liquid velocities in the plane (z,z), at y = 0, at time
t = 25000 s. The velocity vector are represented by arrows centered on the com-
putational points. Imposed power Qo = 900 W. The solid line represents isovalue
S =1 of liquid saturation.
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Figure 11. Distribution of water vapor velocities in the plane (z,z), at y = 0, at
time ¢t = 25000 s. The velocity vector are represented by arrows centered on the
computational points. Imposed power Qo = 900 W. The solid line represents isovalue
S =1 of liquid saturation.
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Figure 12. Distribution of water velocities in the plane (z,z), at y = 0, at time
t = 25000 s. The velocity vector are represented by arrows centered on the com-
putational points. Imposed power Qo = 900 W. The solid line represents isovalue
S =1 of liquid saturation.
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Figure 13. Temperature profiles along axis z (1m < z < 2m) at (z,y) = (0,0) and

at times ¢ = 5000 s and ¢ = 20000 s. Imposed power Qo = 500 W. The diamonds

represent numerical results obtained with P.(S) and k;,(S). The squares represent
numerical results obtained with Pe ,—q(S) and kry,w—a(S).
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Figure 14. Liquid and vapor pressure and liquid saturation versus z at £ = 25000s.
Imposed power: Qo = 500 W.
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Figure 15. Temperature versus
91(Pio, T) = go(P»,T).

vapor pressure when resolving
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Figure 16. Comparison between the experimentally measured and numerically
adapted capillary pressure laws. The circle represents Pe. ,—o(S) and the solid line
represent P.(S) used in the study.
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Figure 17. Temperature profiles along axis = at (y,z) = (0,1) at t = 25000 s.
Imposed power Qo = 500 W. Influence of the vapor permeability.
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Figure 18. Temperature profiles along axis z at (r,y) = (0,0) at t = 25000 s.
Imposed power Qo = 500 W. Influence of the vapor permeability.
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Figure 19. Comparison of the numerical and analytical saturation. A=0.
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Figure 20. Comparison of the numerical and analytical temperature. A=0.
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Figure 21. Comparison of the numerical and analytical saturation. A=1.
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Figure 22. Comparison of the numerical and analytical temperature. A=1.
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