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Boiling in porous media. Model and simulations.Johann B�enard, Robert Eymard and Xavier NiolasLaboratoire d' �Etude des Transferts d' �Energie et de Mati�ereUniversit�e de Marne la Vall�ee - Bât. Lavoisier - 77454 Champs sur Marne - FraneCl�ement ChavantEDF R&D, D�epartement Analyses M�eaniques et Aoustiques1, av du G�en�eral de Gaulle - 92141 Clamart Cedex - FraneApril 2, 2004Abstrat. We present a modelization of the heat and mass transfers within a porousmedium, whih takes into aount phase transitions. Classial equations are derivedfor the mass onservation equation, whereas the equation of energy relies on anentropy balane adapted to the ase of a rigid porous medium. The approximation ofthe solution is obtained using a �nite volume sheme oupled with the managementof phase transitions. This model is shown to apply in the ase of an experiment ofheat generation in a porous medium. The vapor phase appearane is well reproduedby the simulations, and the size of the two-phase region is orretly predited. Aresult of this study is the evidene of the disrepany between the air - water apillaryand relative permeability urves and the water - water vapor ones.Keywords: two-phase ow in porous media, phase transition, �nite volume method,water - water vapor apillary urve.Nomenlature:
 2004 Kluwer Aademi Publishers. Printed in the Netherlands.
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2Aij Measure of interfae between grid bloks i and j, m2B Equation and inequality assoiated with the thermodynami stateCp Mass heat apaity of phase p, J:kg�1:K�1D Disrete system of equationsdij Distane between enters of ontrol volumes i and j, mE Internal energy per volume unit, J:m�3Fw Mass ux of water, kg:s1Fh Heat ux, Wgp Gibbs potential of phase p per mass unit, J:kg�1hp Enthalpy of phase p per mass unit, J:kg�1K Absolute permeability, m2krp Relative permeability of phase pmp Mass of phase p per porous volume unit, kg:m�3Mw Molar weight of water, kg:mole�1Nv Number of ontrol volumesPp Pressure of phase p, PaP Capillary pressure, Paq Condutive thermal ux, W:m�2�Q Heat soure term, W:m�3�Qi Heat soure term, WS Liquid saturationT Temperature, Kt Time, sU Disrete unknownsVi Measure of grid bloks i, m3Vp Volumi ux of phase p, m3:s�1vp Spei� ux of phase p, m:s�1x; y; z Spae oordinates, m
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Boiling in porous media. Model and simulations. 3Greek symbols� Entropy per mass unit, J:K�1:kg�1~� Entropy per volume unit, J:K�1:m�3� Thermal ondutivity, W:m�1:K�1�wet Thermal ondutivity of the saturated porousmedium, W:m�1:K�1�dry Thermal ondutivity of the dry porous medium,W:m�1:K�1�p Dynami visosity of phase p, Pa:s�p Bulk density of phase p, kg:m�3�wl!v Mass rate of water transfer from phase l to phasev per volume unit, kg:m�3:s�1� Porosity' Dissipations� Indiator of thermodynami state of grid blok i(� = 1; 2; 3)Subsripts and supersripts Capillarityh Heatl Liquidp Phases Solidv Vaporw Waterw � a Relative to the ouple water and airw � v Relative to the ouple water and water vapor
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4 Johann B�enard et al.1. Introdution
Heat transfer and uid ow with liquid-vapor phase transition in porousmedia arise in a number of sienti� and engineering disiplines. Im-portant tehnologial appliations an be found in various domain.The mehanial behavior of drying porous materials must be knownin ivil engineering appliations (Whitaker, 1998; Coussy et al, 1998).In petroleum engineering, multiple owing phases are present in naturaloil reservoirs and various enhaned multi-phase exploitation tehniques,suh as water and vapor ooding, are employed (Woods, 1999). Forthe purpose of the nulear reator safety analysis, the understandingof ow and transport mehanism of vapor through the onrete en-losure is essential (Medhekar et al, 1991). The study of the storageor disposal of nulear waste strongly involves the predition of thelong-term heating of porous media due to the residual radioativity.Sine, in this last tehnial area, it is partiularly diÆult to manageaurate experiments for long-term storage, it has been undertaken toestablish the main physial and hemial mehanisms that govern thebehavior of waste pakages disposals (Toulhoat, 2002). The preditionof thresholds for aeptable heating, in nominal or aidental operat-ing onditions, depends on models validated under the atual disposalonditions (Castelier, 2001).Here, we study some features of this problem, fousing on the mod-elization and the numerial simulation of heat and mass transfers ininitially saturated porous media, taking into aount phase transitionphenomena.
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Boiling in porous media. Model and simulations. 5In this paper, our approah for treating this problem onsists inonsidering the various liquid phases as distint uids with individ-ual thermodynami and transport properties and with di�erent phasespei� uxes. The transport phenomena are then mathematially de-sribed by the basi balane equations for eah phase separately. Inthis diretion, (Ramseh et al, 1993) propose a model where interfaesseparating single from two phase regions are traked, whereas (Daurelleet al, 1998) propose a model where the liquid and the gaseous phasesoexist in any point. The model that we present here inludes thedetermination of the thermodynami equilibrium state at eah pointof the porous medium, and the appearane or the disappearane ofphases. This model, whih is an extension of (Wang et al, 1993; Gha�r,2000; Najjari et al, 2002) to ases where the energy equation annot bewritten as an enthalpy balane, an be desribed by a set of equations,oupled with inequalities.The outline of the artile is as follows. In Setion 2, we desribethe ontinuous equations of the model and the management of thephase transition. Then, in Setion 3, we outline the numerial methodsused to �nd an approximate solution to the system of equations (in anappendix, a omparison between numerial and analytial solutions,in some simpli�ed ases, provides a validation of these methods). InSetion 4, we proeed to omparison between experimental results andomputational ones. A method of determining the vapor apillary pres-sure and a parametri study of the water vapor relative permeabilityis detailed in Setion 5. Some onlusions and future works are thendrawn in Setion 6.
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6 Johann B�enard et al.2. Desription of the model2.1. Mass onservation and energy equationsThe porous medium is treated as a unique ontinuous medium re-sulting from the super-imposition of the skeleton and uid ontinua.The skeleton ontinuum is rigid and the uid ontinuum is omposedby two uids (liquid water and water vapor), assuming that there isno dry air. We assume the existene of a representative elementaryvolume whih is relevant at the marosopi sale for all the physi-al phenomena involved in the intended appliation. Moreover, at anypoint of the ontinuous medium, the three phases are loally at thermalequilibrium (Ts = Tl = Tv = T ). Under these onditions, we use thefollowing lassial equations to model the ows in the porous medium.The liquid phase onservation as well as the vapor phase onservationare expressed by: 8>>>>><>>>>>: �ml�t + r � (�lvl) = � �wl!v�mv�t + r � (�vvv) = + �wl!v (1)where ml = �S �l and mv = � (1 � S) �v: (2)In the above equations, � is the porosity of porous medium supposedto be a onstant, S is the liquid saturation, �p(Pp; T ) is the densityof phase p = l; v, state funtion of the pressure Pp of phase p andof the temperature T . We denote by vp the spei� ux of the phase
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Boiling in porous media. Model and simulations. 7p = l or v. The term �wl!v represents the mass rate per volume unittransfered from the liquid to the vapor phase.Following Coussy (1995, 2004) for the formulation of the energy equa-tion in the ase of an open volume unit of a rigid porous medium, underquasi statis evolutions assumptions, the �rst law of thermodynamisprodues�E�t = �r � Xp=l;v hp �pvp �r � q+ g � Xp=l;v �pvp + �Q; (3)where E, hp(Pp; T ), q, g and �Q are respetively the internal energy pervolume unit, the enthalpy per mass unit of phase p, the ondutive heatux, the gravity aeleration and the heat soure terms. The seond lawof thermodynamis an be expressed by�~��t � �r �0�Xp=l;v �p �pvp + qT 1A+ �QT ; (4)with ~� = �S�l �l + �(1� S)�v �v + (1� �)�s �s:In the above relations, we denote by �p(Pp; T ) the entropy per massunit of the liquid and vapor phases (p = l and v) and we denote by�s(T ) = Cs log(T=T0) the entropy per mass unit of the solid phase. Wesuppose that �s is onstant. The expression of �r � q + �Q, obtainedfrom (3), is introdued in (4) multiplied by T . Thanks to the expressiongp(Pp; T ) = hp(Pp; T )�T�p(Pp; T ) of the Gibbs potential per mass unitof phase p = l; v, we get'int + 'ow + 'therm � 0; (5)
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8 Johann B�enard et al.where the term 'int, representing the intrinsi dissipation, is given by'int = T �~��t � �E�t � Xp=l;v gpr � (�pvp);the term 'ow, representing the dissipation due to the mass transfer,is given by'ow = � Xp=l;v �pvp � (rgp + �prT � g) = � Xp=l;v �pvp � ( 1�prPp � g);and the term 'therm, representing the dissipation due to the heat trans-fer, is given by 'therm = �qT � rT:Sine the porous medium is assumed to be rigid, the intrinsi dissipa-tion 'int is equal to zero. This gives, thanks to Equation (3)T �~��t�Xp=l;v gpr��pvp = �r�0�Xp=l;v hp �pvp + q1A+g�Xp=l;v �pvp+ �Q (6)Using mass onservation Equations (1), we getT �~��t + Xp=l;v gp�mp�t + �wl!v(gl � gv) = �r � Xp=l;v hp �pvp + q+g � Xp=l;v �pvp + �Q:Assuming that there is no dissipation due to the phase transition, i.e.�wl!v(gl � gv) = 0; (7)

art6.tex; 16/08/2004; 10:25; p.8



Boiling in porous media. Model and simulations. 9and negleting the mehanial energy due to the volumi weight fores,we get:T d~�dt + Xp=l;v gpdmpdt = �r �0�Xp=l;v hp �pvp1A�r � q+ �Q: (8)We satisfy the ondition 'therm � 0, assuming that the ondu-tive heat ux is given by Fourier's law, in whih we use an e�e-tive ondutivity taking into aount the water ontent of the porousmedium: q = ��(S)rT: (9)Di�erent expressions of �(S) are available in the literature (see forexample (De Vries, 1964; Kelly et al, 1983)). Note that the inueneof a given law is essentially governed by the values �(0) = �dry and�(1) = �wet, sine for 0 < S < 1, the temperature is determined by theequilibriumbetween water and water vapor, leading to small gradient inthe two-phase zone. Nevertheless, following (Wang et al, 1993), we usea linear e�etive thermal ondutivity law �(S) = S �wet+(1�S)�dry.Finally, we satisfy the ondition 'ow � 0, assuming that the velo-ity of phase p is given by Dary's law:vp = krpK�p (�rPp + �pg) ; (10)where K is the absolute permeability of the porous medium (assumedhere to be onstant), krp(S), the relative permeability of phase p, isa funtion of the liquid saturation (krl(S) is an inreasing funtionsuh that krl(0) = 0 and krv(S) is a dereasing funtion suh thatkrv(1) = 0) and �p(T ) is the dynami visosity of phase p, assumed
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10 Johann B�enard et al.to only depend on the temperature. Using Equations (1), (2) and (10),the mass onservation equation writes:��t(�S �l + � (1� S) �v) +r � 264 �l krlK�l (�rPl + �lg)+�v krvK�v (�rPv + �vg) 375 = 0: (11)Using Equations (1), (2), (8), (9) and (10), the energy equation isexpressed by266664 T ��t (�S �l �l + � (1 � S) �v �v)+T ��t ((1� �) �s �s)+gl ��t (�S �l) + gv ��t (� (1� S) �v) 377775+r � 266664 hl�l krlK�l (�rPl + �lg)+hv�v krvK�v (�rPv + �vg)�(�wet S + �dry (1� S))rT 377775= �Q: (12)The vapor pressure Pv is related to the liquid pressure using the apil-lary pressure, whih is a dereasing funtion of the liquid saturation:P(S) = Pv � Pl: (13)Equation (7) is not suÆient to lose system (11), (12), (13) withrespet to (Pl; Pv ; S; T ). We therefore give in the next setion suÆ-ient onditions, whih ensure (7), and whih enable to alulate thethermodynami state at eah point.2.2. Conditions for the phase transitionThe equilibrium thermodynami state of the water (one phase liquid,one phase vapor, or two-phase) an be determined for given liquid andgaseous pressures and temperature onditions, using the omputation
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Boiling in porous media. Model and simulations. 11of the Gibbs potential for eah phase. When Gibbs potentials areequal, both phases are in equilibrium; otherwise, the phase with themaximum Gibbs potential disappears to the bene�t of the phase withthe minimum Gibbs potential. Therefore, three equilibrium states arepossible:State 1 : no vapor phase; S = 1and gl(Pl; T ) < gv(Pv ; T )State 2 : liquid-vapor equilibrium; gl(Pl; T ) = gv(Pv ; T )and 0 < S < 1State 3 : no liquid phase; S = 0and gl(Pl; T ) > gv(Pv ; T ) (14)
Note that, in State 1, we get mv = 0 and vv = 0, whih delivers, using(1), �wl!v = 0. In State 3, we then have ml = 0 and vl = 0, and thesame onlusion holds. Therefore, equation (7) is satis�ed.System (11), (13), (8) and (14) is now losed, with respet to thefour unknowns Pl, Pv, S and T .2.3. State funtions for the liquid and vapor water phasesIn this model, we need the expressions of the density, the dynamivisosity, the enthalpy and the entropy of eah water phase p = l; vas expliit state funtions of the pressure of the phase and of theommon temperature. We assume that for p = l; v, the mass heatapaity �hp�T (Pp; T ) does not depend on the pressure Pp, and thereforeveri�es �hp�T (Pp; T ) = Cp(T ). By integration, introduing a referenestate (spei�ed below) de�ned by the pressure P0 and the temperatureT0, and a onstant hp0, we get the existene of a funtion �(Pp) =

art6.tex; 16/08/2004; 10:25; p.11



12 Johann B�enard et al.�hp�Pp (Pp; T ) suh thathp(Pp; T ) = hp0 + Z TT0 Cp(�)d� + Z PpP0 �(�)d�: (15)Sine we have dhp(Pp; �p) = Td�p + 1�pdPp;we get thatd�p(Pp; T ) = Cp(T )T dT � 1T  1�p � �(Pp)! dPp:This implies using Maxwell relations that:��T 1�p � �(Pp)T = 0;whih gives the existene of a funtion �(Pp) suh that1�p � �(Pp)T = �(Pp):We thus dedue the following expression for the density of the phase:�p(Pp; T ) = 1T�(Pp) + �(Pp) : (16)We then obtain thatd�p(Pp; T ) = Cp(T )T dT � �(Pp)dP;and therefore, there exists an integration onstant �p0 suh that�p(Pp; T ) = �p0 + Z TT0 Cp(�)� d� � Z PpP0 �(�)d�: (17)
art6.tex; 16/08/2004; 10:25; p.12



Boiling in porous media. Model and simulations. 13Relations (15-17) then provide onsistent thermodynami funtions forthe lass of materials whose mass heat apaity only depends on thetemperature. For the sake of simpliity, we onsider a onstant densityfor the liquid water. This orresponds to the hoie �l(Pl) = 0 and�l(Pl) = 1=�l0, with �l0 = 957:9 kg:m�3, and we set Cl(T ) = Cl0 =4196 J:kg�1:K�1. Note that it is possible to inrease the auratenessof these funtions, setting �l(Pl) = a=�l0 and �l(Pl) = (1 � b(Pl �P0) � aT0)=�l0. It then suÆes to selet a and b with respet to theompressibility and the dilatability of liquid water in the onsideredrange of temperature and pressure.Assuming the water vapor to be an ideal gas, we write �v(Pv) =RMwPv , with R = 8:315 J:K�1:mole�1 and Mw = 18 10�3kg:mole�1,�v(Pv) = 0, and we set Cv(T ) = Cv0 = 1870 J:kg�1:K�1.The four onstants hl0, �l0, hv0 and �v0 annot be hosen inde-pendently. Indeed, onsidering the referene equilibrium state at theatmospheri pressure P0 = 1:01325 105 Pa, T0 = 373 K, we mustensure gv(P0; T0) = gl(P0; T0) and �v(P0; T0) � �l(P0; T0) = L0=T0,where the latent heat L0 at this referene state is equal to L0 =2257 103 J:kg�1. We an therefore take hl0 = 0, �l0 = 0, hv0 = L0,�v0 = L0=T0. Gathering the previous expressions, we obtain the table I.Using the expressions given by table I, it an be veri�ed that the equi-librium pressure funtion P (T ) suh that gv(P (T ); T ) = gl(P (T ); T )and the equilibrium latent heat L(T ) = T (�v(P (T ); T ) � �l(P (T ); T ))are lose to that whih an be found in the literature (Rohsenow et al,1998) in the onerned range of temperatures and pressures (see �gure1). We remark that the above expressions of the phase densities aresuÆient to ensure Kelvin's law, that is, for two equilibrium states Pl,
art6.tex; 16/08/2004; 10:25; p.13



14 Johann B�enard et al.Table I. Thermo-physial properties of waternotation value unitsReferene pressure P0 1:01325 105 PaReferene temperature T0 373 KLiquid heat apaity Cl0 4196 J:kg�1:K�1Vapor heat apaity Cv0 1870 J:kg�1:K�1Latent heat at T0; P0 L0 2257 103 J:kg�1Gas onstant for water vapor R 8:315 J:K�1:mole�1Molar weight of water Mw 18 10�3 kg:mole�1Liquid bulk density �l(Pl; T ) �l0 = 957:9 kg:m�3Liquid visosity �l(T ) " 10�3 exp( 4:209 103T � 24:71+4:52710�2T � 3:376 10�5T 2) # Pa:sLiquid enthalpy hl(Pl; T ) Cl0 (T � T0) + 1�l0 (Pl � P0) J:kg�1Liquid entropy �l(Pl; T ) Cl0 log(T=T0) J:kg�1:K�1Liquid Gibbs potential gl(Pl; T ) hl(Pl; T )� T�l(Pl; T ) J:kg�1Vapor bulk density �v(Pv; T ) RT=MwPv kg:m�3Vapor visosity �v 1:27 10�5 Pa:sVapor enthalpy hv(Pv; T ) L0 + Cv0 (T � T0) J:kg�1Vapor entropy �v(Pv; T ) � L0=T0 + Cv0 log(T=T0)� RMw log(Pv=P0) � J:kg�1:K�1Vapor Gibbs potential gv(Pv; T ) hv(Pv; T )� T�v(Pv; T ) J:kg�1Pv, T and �Pl, �Pv, T , log Pv�Pv = Mw�l0RT (Pl � �Pl):Indeed, the above equation is immediately obtained by subtrating thetwo equations gl(Pl; T ) = gv(Pv ; T ) and gl( �Pl; T ) = gv( �Pv; T ).3. Numerial tehniquesIt is now neessary, in order to validate this model, to obtain a nu-merial approximation of the solution. This is ompleted using a �nite
art6.tex; 16/08/2004; 10:25; p.14



Boiling in porous media. Model and simulations. 15volume method, whih onsists in a set of nonlinear disrete balaneequations in grid bloks, oupled with the set of equations and inequal-ities resulting from the phase transition determination. This system issolved using Newton's method, the thermodynami state of eah gridblok being updated at eah iteration of the method. The advantagein this ase of a �nite volume method over other methods is that thereis no need to assume a minimum value for the gas phase saturation(for example, some �nite element methods require that both phases aremobile everywhere in order to ensure the invertibility of the rigidity ma-trix (Shreer et al, 1993)). Thus, it is neither neessary to assume thepresene of both phases everywhere nor to trak the interfae betweenthe liquid one-phase region and the two-phase one. We onsider a �nitevolume mesh of the domain, onsisting of Nv grid bloks indexed by i(i = 1; : : : ; Nv). We denote by Vi the volume of the ell i, the subsriptj stands for any ell having a ommon interfae ijj with the ell i, Aijis the measure of interfae ijj, dij is the distane between the entersof grid bloks i and j.Equations (11) and (8) give, after time disretization and �nitevolume disretization, a set of oupled nonlinear equations (Eymardet al, 2000):8>>>>><>>>>>: Vimn+1wi �mnwitn+1 � tn +Xijj F n+1wij = 0Vi 24T n+1i ~�n+1hi � ~�nhitn+1 � tn + Xp=l;v gn+1pi mn+1pi �mnpitn+1 � tn 35+Xijj F n+1hij = �Qn+1i(18)In the above set of equations, we denote by mw = ml +mv the watermass and by �Qn+1i the heat soure term in grid blok i. The water ux
art6.tex; 16/08/2004; 10:25; p.15



16 Johann B�enard et al.F n+1wij and the energy ux F n+1hij aross the interfae ijj are evaluatedusing the following impliit �nite di�erene sheme with respet to thepressures, the saturations and the temperatures of grid bloks i and j:F n+1wij = �n+1lij V n+1lij + �n+1vij V n+1vij (19)F n+1hij = (�l hl)n+1ij V n+1lij + (�v hv)n+1ij V n+1vij�Aij 2�n+1i �n+1j�n+1i + �n+1j T n+1i � T n+1jdij (20)with (for p = l; v)V n+1pij = Aij Kkrp(Sn+1pij )�p "P n+1pi � P n+1pj + �npig(zn+1i � zn+1j )dij #(21)eliminating the vapor pressure using P n+1vi = P n+1li + P(Sn+1i ), andsetting �n+1i = �wet Sn+1i + �dry (1� Sn+1i ). In (19, 20, 21) the density�ij and the liquid saturation Spij at interfae are estimated thanks toa phase by phase upwind sheme:Sn+1pij = 8><>: Sn+1j if P n+1pi � P n+1pj + �npig(zn+1i � zn+1j ) � 0Sn+1i if not. (22)Setting, for eah ell i, �n+1i the thermodynami state of the elli (1 for pure liquid, 2 for liquid-vapor equilibrium, 3 for pure vapor),Un+1i = (P n+1li ; Sn+1i ; T n+1i ) the triplet of unknowns of the ell i (liquidpressure, liquid saturation, temperature) andB(Un+1i ; 1) = S � 1B(Un+1i ; 2) = gl(Pl; T )� gv(Pv ; T )B(Un+1i ; 3) = S;
art6.tex; 16/08/2004; 10:25; p.16



Boiling in porous media. Model and simulations. 17the numerial implementation of the equilibrium equations and inequal-ities (14) given in Subsetion 2.2 is the following:If �n+1i = 1; then B(Un+1i ; 1) = 0; and B(Un+1i ; 2) < 0If �n+1i = 2; then B(Un+1i ; 2) = 0; and 8><>: B(Un+1i ; 1) < 0;B(Un+1i ; 3) > 0If �n+1i = 3; then B(Un+1i ; 3) = 0; and B(Un+1i ; 2) > 0 (23)
For eah time step, we apply an adapted Newton method to �ndan approximate value of U = (Un+1i )i=1;:::Nv and � = (�n+1i )i=1;:::Nv ,solution of the whole system of equations inluding the disrete balaneequations (18-22) and the equations B(Un+1i ; �n+1i ) = 0. We denote thissystem of equations by D(U ; �) = 0. Let U (0), �(0) be an initializationof the unknowns (pratially, we use the values obtained from thepreeding time step U (0) = (Uni )i=1;:::Nv and �(0) = (�ni )i=1;:::Nv .At iteration m of this adapted Newton's method, let U (m), �(m) begiven. We �rst ompute U (m+1) from the resolution of the followinglinear system (for the sake of simpliity, we use in our prototype themethod of band matrix Gauss elimination):�UD(U (m); �(m)) � (U (m+1) � U (m)) = �D(U (m); �(m)); (24)in whih �UD(U ; �) denotes the Jaobian matrix with respet to x ofthe funtion D(U ; �). Then we de�ne the state �(m+1)i , for every gridblok i, by the relations:If �(m)i = 1 and if B(U (m+1)i ; 2) > 0, then �(m+1)i = 2;If �(m)i = 2 and if B(U (m+1)i ; 1) > 0, then �(m+1)i = 1;If �(m)i = 2 and if B(U (m+1)i ; 3) < 0, then �(m+1)i = 3;
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18 Johann B�enard et al.If �(m)i = 3 and if B(U (m+1)i ; 2) < 0, then �(m+1)i = 2.Otherwise we set �(m+1)i = �(m)i .This method, lassially used in the oil reservoir simulation setting,appears to be very stable and eÆient (the number of iterations neededdoes not exeed 2 or 3 for most of the time steps), using after onver-gene a preditor-orretor strategy for the determination of tn+2�tn+1.One an reinfore the onvergene properties by under-relaxing anyiteration step U (m+1)�U (m) suh that kU (m+1)�U (m)k is greater thana desired variation; then the last iterations until onvergene do notneed to be under-relaxed.
4. Comparisons between experimental and numerial results4.1. The Masilia experimentWe now use the numerial implementation of this model for reprodu-ing experimental results. For that purpose, the \Masilia" experiment(Castelier, 2001), done at the Frenh establishment for atomi energy(CEA), enables to study the phenomenon of phase transition (water- water vapor) in an initially saturated porous medium: a tank repre-sented by the domain [�1:5; 1:5℄� [�1; 1℄� [0; 2℄ (lengths in m) whosewalls are isothermal (typially Tp = 350K), is �lled with sand andinitially saturated with water (see �gure 2). In the middle of the tank(at the point x = y = 0, z = 1) a heating bar (a ylinder with diameterequal to 0:1m and height equal to 0:2m), whose power varies from0 to 1450W , enables to arry water to boiling. Four hundred thermo-
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Boiling in porous media. Model and simulations. 19Table II. Parameters used for the simulation.notation value unitsDomain [0; 1:5℄ � [0; 1℄� [0; 2℄ mMesh 15 � 12� 23 -Soure term �Q 500 (run1); 900 (run2) W(puntual soure loated at (0; 0; 1)) -Porosity � 0:35 -Permeability K 2:5� 10�12 m2Bulk density of sand �s 2400 kg:m�3Heat apaity of sand Cs 800 J:kg�1:K�1Thermal ondutivity of wet sand �wet 3 W:m�1:K�1Thermal ondutivity of dry sand �dry 0:3 W:m�1:K�1ouples allow to preisely follow the spae and time evolution of thetemperature.In this experiment, three phases are in presene: sand, water andwater vapor. In-situ measurements of the properties of the porousmedium (porosity, permeability, thermal ondutivity, bulk density andheat apaity) have been done by di�erent Frenh laboratories (seetable II). Note that measurements of air - water (and not water - watervapor) apillary pressure (P;w�a) and relative permeabilities (krl;w�aand kra;w�a) have also been done by another laboratory. However, aswe see in setion 5, these water - air urves annot be used withoutmodi�ations in order to reprodue the Masilia experiments.4.2. Results and disussionThe data used for the simulation are given in tables II and III. In�gure 2, the domain and the boundary onditions are desribed. Theomparisons between experimental and numerial results are essentially
art6.tex; 16/08/2004; 10:25; p.19



20 Johann B�enard et al.Table III. Capillary and relative permeabilities urves used for the simulation.notation valueCapillary pressure P(S) � 1:70 � 103(S�1:37 � 1)0:37 if S > 0:005P(0:005) if 0 < S < 0:005:relative permeability of liquid water krl(S) Al tanh[al (S � bl)℄ +Blrelative permeability of water vapor krv(S) 5�Av tanh[av (bv � S)℄ +BvAl = 1=[tanh(albl) + tanh(al (1� bl))℄ and Av = 1=[tanh(avbv) + tanh(av (1� bv))℄al = 9:24 bl = 0:54 av = 7:77 bv = 0:37
based on the temperature measurements at various points in the tank.The temperatures are ontinuously reorded with respet to the time.Figures 4 and 5 present the value of the temperature as a funtion of thex oordinate along the median line at (y = 0; z = 1) and as a funtionof the z oordinate (1 � z � 2) along the vertial line x = 0 andy = 0 above the heating bar, at times t = 5000 s and t = 25000 s.The irles represent experimental urves. These �gures show thattwo areas in the tank an be observed when the imposed power is�Q0 = 500W : a two-phase area, quasi isothermal (375K), inluded in[0; 0:19℄ � [0; 0:18℄ � [0:85; 1:43℄ and an area saturated by the liquid inthe rest of the tank. We note that there is a good agreement betweenthe experimental and numerial results: the temperature variation inthe tank, the temperature level and the extension of the two-phase areaare well evaluated by the simulation whatever the time onsidered. Weobserve in �gures 6 and 7 whih show the liquid saturation �eld andthe temperature �eld in the plane y = 0, at time t = 25000 s, that anasymmetry is observed between the values z 2 [1; 2℄ and z 2 [0; 1℄. Thesize of the two-phase area is equal to 0:15m below the heating soure,
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Boiling in porous media. Model and simulations. 21and to 0:43m above, as mentioned before.A similar agreement between experimental and numerial results isagain observed as �Q0 = 900W . Figures 8 and 9 present the value of thetemperature as a funtion of the x oordinate along the median line at(y = 0; z = 1) and as a funtion of the z oordinate along the vertialline above the heating bar at time t = 5000 s and t = 25000 s. Theirles represent experimental urves. These �gures show that thereare three areas in the tank when the imposed power is 900W :1. a small dry vapor zone around the heating bar haraterized by abrutal inrease in the temperature;2. a two-phase area, quasi isothermal (375K) whose size is 0:24m in xdiretion and 0:56m in z diretion (1 � z � 2) at time t = 25000 s;3. an area saturated by the liquid in the rest of the tank.On �gure 9, one notes that in z diretion, at time t = 5000 s, the exis-tene of a dry vapor area is not reprodued by the omputational resultsand the 'numerial' two-phase area is larger than the experimental one.However, the agreement remains aeptable.Figures 10 and 11 present liquid and water vapor veloity distribu-tions in the plane (x; z) at y = 0 and at t = 25000 s. The imposedpower is �Q = 900W . In these �gures, the interfae between the two-phase zone and the saturated zone is plotted as a solid line. The liquidveloity vetors indiate a liquid ow near the ondensation front andin the two-phase region. Far away, the liquid movement is very weak.The vapor veloity vetors show a primarily upward movement upon
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22 Johann B�enard et al.the heating bar beause of its muh lower density. Due to the strongerupward vapor ow, the apillary fores are predominant in the areabelow the heating bar. The liquid is drawn up by the apillary foresand evaporates ompletely as it reahes the bottom edge of the heatingbar. Upon the heating bar, at the two-phase interfae, liquid is formedas the vapor ondenses. Part of this liquid ows downward, driven bygravity and apillarity in an attempt to �ll again the drying out partof the porous medium. The rest rosses the sub-ooled zone. The samephenomena are observed by (Stubos et al, 1997). The o-urrent andounter-urrent ow in the two-phase region lead to a reirulating owof water (liquid + water vapor) as displayed in �gure 12.We show in this setion that we are able to aurately reproduethe extension of the two-phase zone and the temperature evolutionat di�erent loations of the tank with respet to the spae and timevariables.
5. Determination of vapor apillary pressure and relativepermeabilitiesIn this setion, we present a method, using the temperature measure-ments of the \Masilia" experiment, to �t the apillary pressure urvebetween water and water vapor, even though there has been neithermeasurements of pressures nor saturations. Moreover, we present aparametri study to show the inuene of the relative permeabilitiesurves on the length of the two-phase zone.
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Boiling in porous media. Model and simulations. 23Table IV. Capillary pressure and relative permeabilities urves measured with theouple water and air. notation valueCapillary pressure P;w�a(S) 6:81 � 103(S�1:37 � 1)0:37relative permeability of liquid water krl;w�a(S) Al tanh[al (S � bl)℄ +Blrelative permeability of air kra;w�a(S) Av tanh[av (bv � S)℄ +BvAl = 1=[tanh(albl) + tanh(al (1� bl))℄ and Av = 1=[tanh(avbv) + tanh(av (1� bv))℄al = 9:24 bl = 0:54 av = 7:77 bv = 0:37In \Masilia" experiment, as mentioned before, the apillary pres-sure and relative permeabilities data have been measured with theouple water - air at ambient temperature instead of the ouple water- water vapor at 100oC.The use of water - air urves instead of water - water vapor urvesdoes not permit to meet the experimental results. Indeed, �gure 13presents the value of the temperature as a funtion of the z oordinate(1 � z � 2) at time t = 5000 s and t = 25000 s, using the water - airfuntion (represented on the �gure by squares), whereas the imposedheating power is 500W . In this �gure, we observe that:1. The omputed temperature level reahed in the two-phase area(378K) is higher than the measured one, 375:6K, whih implies ahigher simulated temperature gradient in the two-phase area;2. The simulated length of this area is under evaluated. It is 0:10mshorter than the experimental one. Moreover, the anisotropy of thetwo-phase area is also under evaluated as it is shown by the dashedline in �gure 6.
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24 Johann B�enard et al.To get results loser to the experiments, we have been driven to allthe water - air apillary pressure and relative permeability urves intoquestion.So, we propose a method using the experimental measurements ofthe temperature to estimate and to �t the water - water vapor apillarypressure. Indeed, the numerial results show that in the two-phase area,the pressure of the liquid phase is approximately onstant (�gure 14show that Pl � Pl0 = 1:1 � 105Pa when the liquid saturation S isbetween 0:3 and 1 in this region). In this two-phase area, the tempera-ture is then an impliit funtion of the vapor pressure Pv thanks to theequation gl(Pl0; T ) = gv(Pv; T ). Drawing this funtion (see �gure 15),we an then identify Pv � 1:117 � 105Pa as well as the magnitude ofP;mean(S) � Pv � Pl0 = 1700Pa for the reorded equilibrium temper-ature Tmean � 375:6K (Tmean is an average value of the experimentaltemperature in the two-phase zone). Thus, we dedue a mean value ofthe numerial liquid saturation in the two-phase region: Smean � 0:65.We then searh P(0:65) � 1700 and we have obtained the followingfuntion P(S) = 8><>: :25� P;w�a(S) if S � 0:005:25 � P;w�a(0:005) if 0 < S < 0:005: (25)A omparison between the two laws P;w�a(S) and P(S) is presentedon �gure 16. Note that the ondition P(0) < +1 is neessary toreprodue the appearane of a dry vapor zone around the heating bar.Sine the extension of this area is relatively small, it annot be preiselyidenti�ed from the temperature measurements, and therefore we didnot try to aurately �t the maximum threshold of apillary pressure.
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Boiling in porous media. Model and simulations. 25We have then �tted the vapor relative permeability, in order tomeet the atual size of the two-phase zone. To that purpose, we havesimulated the ases krv(S) = � kra;w�a(S), with � = 2; � = 5 and� = 10. We have thus obtained the results presented in Figures 17 and18. We have �nally kept the following urves:krv(S) = 5� kra;w�a(S) and krl(S) = krl;w�a(S) (26)
6. Future researh diretionsWe present here a physial model for handling the two-phase ows withphase transition in an initially saturated porous medium. This modelhas been suessfully approximated using a �nite volume numerialmethod, whih an handle the phenomenon of phase appearane / dis-appearane, in order to reprodue experimental results. We also pro-pose an original method to approximate the apillary pressure urvefrom the experimental temperature measurements.This opens new researh diretions. The main one is to extend themodel to thermo-poro-elasti porous media, in order to handle problemsof storage in deep sites. This seems to be possible, following Coussy(Coussy, 2004). The numerial approximation of the resulting modelmust then aount for the oupling between mehanis and unsaturatedows in porous media. An on-going researh projet onerns the use ofa �nite element method for the stress and strain omputation, oupledwith the �nite volume method presented here.
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26 Johann B�enard et al.Anyway, some experimental work has to be ompleted in order toobtain a better knowledge of the apillary pressure and the relativepermeability in the ase of two-phase water - water vapor ow.
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28 Johann B�enard et al.AppendixA. Comparisons between analytial and numerial resultsMathematial results on �nite volume shemes have shown the goodnumerial properties of the numerial sheme presented in Setion 3.In partiular, the onvergene of this method applied to two phase owin porous media has been extensively studied (see for example (Eymardet al, 2000; Eymard et al, 2003)), and its onvergene to the solutionof the Stefan problem has also been proven (Eymard et al, 1998). Notethat these properties are relevant in the ase of Model ((11), (12),(13), (14)), whih inludes both physial features. We propose in thisappendix a omparison of numerial results and analytial ones for thismodel, under the assumptions given in Table V. Equation (11) gives inthis ase r � (�rPl + �fg) = 0: (27)Thus, Equation (27) is now deoupled from the other equations, andwe then set vf = K�f (�rPl + �fg). Sine we assume that P(S) = 0holds, there is no need to further onsider Equation (13). We nowonsider that the problem holds in the horizontal 1D domain [0;D℄,and that a onstant pressure P0 is imposed at x = 0, and a on-stant pressure P1 is imposed at x = D; in this ase, vf redues tothe salar onstant vf = K�f P0�P1D , and the uid pressure is given byPl(x; t) = P0 + P1�P0D x. Consequently, due to the linear interpolationof the pressure, the numerial sheme (presented in Setion 3) exatly
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Boiling in porous media. Model and simulations. 29Table V. Physial assumptions for the analytial solutionnotation assumptionsLiquid heat apaity Cl0 onstant CfLiquid bulk density �l(Pl; T ) onstant �fLiquid visosity �l(T ) onstant �fLiquid enthalpy hl(Pl; T ) Cf (T � T0)Liquid entropy �l(Pl; T ) Cf log(T=T0)Liquid Gibbs potential gl(Pl; T ) hl(Pl; T )� T�l(Pl; T )Vapor heat apaity Cv0 onstant CfVapor bulk density �v(Pv; T ) onstant �fVapor visosity �v onstant �fLatent heat at T0 L0 onstantVapor enthalpy hv(Pv; T ) L0 + Cf (T � T0)Vapor entropy �v(Pv; T ) L0=T0 + Cf log(T=T0)Vapor Gibbs potential gv(Pv; T ) hv(Pv; T )� T�v(Pv; T )Porosity � onstantPermeability K onstantHeat apaity of sand Cs onstant 0Thermal ondutivity of wet sand �wet onstant �Thermal ondutivity of dry sand �dry onstant �Heat soure term �Q onstant 0Capillary pressure P(S) onstant 0Relative permeability of liquid water krl(S) SRelative permeability of water vapor krv(S) 1� S
reprodues the analytial solution for the ommon pressure of bothuids and for the uid veloity.Thanks to the assumptions, we now write the problem in an adimen-sional form. To that purpose, we de�ne v = ���fCfD , the P�elet numberP = vf�v , and we set �x = xD , �t = vtD , �L = L0CfT0 , �T (�x; �t) = 1T0T (D�x; D�tv ),�S(�x; �t) = S(D�x; D�tv ), and �H( �T ; �S) = �T + �L(1� �S). Equation (12) leadsto � �H��t + P � �H��x � �2 �T��x2 = 0: (28)
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30 Johann B�enard et al.Moreover, Equations and Inequations (14) givestate 1 : no vapor phase; �S = 1and �T < 1state 2 : liquid-vapor equilibrium; �T = 1 and 0 < �S < 1state 3 : no liquid phase; �S = 0and �T > 1: (29)System (28)-(29) is in fat, in this partiular ase, the so-alled \en-thalpy formulation" of the Stefan problem, whih is also used in (Wanget al, 1993) in the general ase. Indeed, thanks to (29), it is possible toexpress the temperature �T as a funtion with respet to �H. For thatpurpose, we set '( �H) = �H for �H � 1 (it orresponds to �S = 1 and�T < 1), '( �H) = 1 for 1 � �H � 1 + �L (it orresponds to 0 < �S < 1 and�T = 1), and '( �H) = �H � �L for 1 + �L � �H (it orresponds to �S = 0and �T > 1). The equation to be solved is therefore� �H��t + P � �H��x � �2'( �H)��x2 = 0: (30)The saturation is then obtained from �H by the relation �S =  ( �H) =1� ( �H � '( �H))=�L.Then a funtion �H(�x; �t) is a weak solution of the equation (30) ifthis equation is strongly veri�ed in the spae-time domain where �His a regular funtion, if the temperature �T = '( �H) is a ontinuousfuntion of the spae and time variables, and if the Rankine Hugo-niot jump relation, expressed by _X(�t)( �H(X(�t); �t)� � �H(X(�t); �t)+) =P ( �H(X(�t); �t)�� �H(X(�t); �t)+)�(�'( �H)��x (X(�t); �t)�� �'( �H)��x (X(�t); �t)+), issatis�ed along the disontinuities lines �x = X(�t) of �H. We set �v = P+1,and we onsider for any value A suh that 0 � A � 1, the funtion �H
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Boiling in porous media. Model and simulations. 31given by�H(�x; �t) = (1 + �L�A) exp(�v�t� �x) +A; for 0 � �x < �v�t;�H(�x; �t) = (1�A) exp(�v�t� �x) +A; for �v�t < �x: (31)We have to verify that the funtion �H given by (31) is indeed a weaksolution to (30). In both domains 0 � �x < �v�t and �v�t < �x wherethe funtion �H is regular, the left hand side of (30) is proportionalto �v � P � 1 = 0, thanks to the de�nition of �v. This proves thatthe equation is strongly satis�ed in these domains. The temperature�eld de�ned by �T (�x; �t) = '( �H(�x; �t)) is ontinuous with respet to thetime and spae variables, sine the only disontinuity on �H(�x; �t) ourswith �T = 1. The Rankine-Hugoniot relation at the disontinuity lineX(�t) = �v�t is expressed in this ase by �v �L = P �L+(1+ �L�A)� (1�A),whih holds. Therefore the riteria for a weak solution are all satis�edby the funtion �H given by (31). We an then express the saturationand the temperature in both domains, by the relations �S(�x; �t) = 0 and�T (�x; �t) = (1+ �L�A) exp(�v�t� �x)� �L+A for all �x suh that 0 � �x < �v�t,�S(�x; �t) = 1 and �T (�x; �t) = (1 � A) exp(�v�t � �x) + A for all �x suh that�v�t < �x. Note that the funtion �S(�x; �t) is disontinuous for �v�t = �x,whih is possible beause we have assumed that there were no apillarypressure.To ompare analytial and omputational results, we will onsidertwo ases: A = 0 and A = 1. Let us �rst onsider the ase A = 0 andthe data given in table VI. The analytial solution is for 0 < �x < �v�t,�T (�x; �t) = 2 exp(�v�t � �x) � 1 and �S(�x; �t) = 0 and for �x > �v�t, �T (�x; �t) =exp(�v�t � �x) and �S(�x; �t) = 1. In this ase, the length of the domain
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32 Johann B�enard et al.Table VI. Data for the omparison between analytial and omputational solutionA �L �v �S(�x; 0) �S(0; �t) �S(1; �t) �T (�x; 0) �T (0; �t) �T (1; �t)0 1 1:5 1 0 1 exp(��x) 2 exp(�v�t)� 1 exp(�v�t� 1)1 1 1:5 1 0 1 1 exp(�v�t) 1suh that �T (�x; �t) = 1 is redued to 0 (this is a lassial property ofthe Stefan Problem). Using the numerial sheme presented in Setion3, we obtain the urves given in Figures 19 and 20 (in adimensionaltime, spae and variables). We �rst remark that the urves obtainedfor 100 grid bloks annot be distinguished from the analytial solution.Seondly, we notie that, even in the ase of a oarse disretization with20 grid bloks, the alulation gives aeptable results.Let us now onsider the ase A = 1. The data for this ase aregiven in table VI. The analytial solution is for 0 < �x < �v�t, �T (�x; �t) =exp(�v�t� �x) and �S(�x; �t) = 0 and for �x > �v�t, �T (�x; �t) = 1 and �S(�x; �t) = 1.In this ase, the domain suh that �T (�x; 0) = 1 is the whole domain.Classially, this domain progressively vanishes as times goes on. We �ndagain in Figures 21 and 22 that the omparison in this ase betweenthe numerial (100 grid bloks and 20 grid bloks) and the analytialresults is very good.
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Figure 1. Pressure of saturated water and latent heat of water as a funtionof the temperature. The irles and the squares result from the experimentaldata (Rohsenow et al, 1998). The solid and the dashed lines results from theomputational gv(P (T ); T ) = gl(P (T ); T ).
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Figure 3. Mesh desription.
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Figure 4. Temperature pro�les along axis x at (y; z) = (0; 1) and at times t = 5000 sand t = 25000 s. Imposed power �Q0 = 500W .
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Figure 5. Temperature pro�les along axis z (1m � z � 2m) at (x; y) = (0; 0) andat times t = 5000 s and t = 25000 s. Imposed power �Q0 = 500W .
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Figure 6. Liquid saturation �eld in the plane (x; z) at y = 0, at time t = 25000 s.Imposed power �Q0 = 500W . The three solid lines represent partiular isovalues ofliquid saturation (S = 0:4; 0:6; 1). The dashed line represents the saturation isovalueS = 1 omputed in the same onditions as above, but with the experimental apillarypressure P;w�a and the experimental vapor permeability krv;w�a.
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Figure 7. Temperature �eld in the plane (x; z) at y = 0 at time t = 25000 s. Imposedpower �Q0 = 500W . The solid lines represent isotherms in degrees Celsius.

art6.tex; 16/08/2004; 10:25; p.39



40 Johann B�enard et al.

0,2 0,4 0,6 0,8 1 1,2 1,4
x (m)

350

355

360

365

370

375

T
em

pe
ra

tu
re

 (
K

)

exp (5000 s)
num 

 (w-v) 
(5000 s)

exp (25000 s)
num

 (w-v) 
 (25000 s)

Figure 8. Temperature pro�les along axis x at (y; z) = (0; 1) and at times t = 5000 sand t = 25000 s. Imposed power �Q0 = 900W .
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Figure 9. Temperature pro�les along axis z (1m � z � 2m) at (x; y) = (0; 0) andat times t = 5000 s and t = 25000 s. Imposed power �Q0 = 900W .
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Figure 10. Distribution of liquid veloities in the plane (x; z), at y = 0, at timet = 25000 s. The veloity vetor are represented by arrows entered on the om-putational points. Imposed power �Q0 = 900W . The solid line represents isovalueS = 1 of liquid saturation.
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Figure 11. Distribution of water vapor veloities in the plane (x; z), at y = 0, attime t = 25000 s. The veloity vetor are represented by arrows entered on theomputational points. Imposed power �Q0 = 900W . The solid line represents isovalueS = 1 of liquid saturation.
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Figure 12. Distribution of water veloities in the plane (x; z), at y = 0, at timet = 25000 s. The veloity vetor are represented by arrows entered on the om-putational points. Imposed power �Q0 = 900W . The solid line represents isovalueS = 1 of liquid saturation.
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Figure 13. Temperature pro�les along axis z (1m < z < 2m) at (x; y) = (0; 0) andat times t = 5000 s and t = 20000 s. Imposed power �Q0 = 500W . The diamondsrepresent numerial results obtained with P(S) and krv(S). The squares representnumerial results obtained with P;w�a(S) and krv;w�a(S).
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Figure 14. Liquid and vapor pressure and liquid saturation versus x at t = 25000s.Imposed power: �Q0 = 500W .
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Figure 15. Temperature versus vapor pressure when resolvinggl(Pl0; T ) = gv(Pv; T ).
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Figure 16. Comparison between the experimentally measured and numeriallyadapted apillary pressure laws. The irle represents P;w�a(S) and the solid linerepresent P(S) used in the study.
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Figure 17. Temperature pro�les along axis x at (y; z) = (0; 1) at t = 25000 s.Imposed power �Q0 = 500W . Inuene of the vapor permeability.

art6.tex; 16/08/2004; 10:25; p.49



50 Johann B�enard et al.

1,2 1,3 1,4 1,5 1,6 1,7
z (m)

345

350

355

360

365

370

375

380

T
em

pe
ra

tu
re

 (
K

)

exp
k

ra,w-a
(S)*2 and P

c
(S)

k
ra,w-a

(S)*5 and P
c
(S)

k
ra,w-a

(S)*10 and P
c
(S)

Figure 18. Temperature pro�les along axis z at (x; y) = (0; 0) at t = 25000 s.Imposed power �Q0 = 500W . Inuene of the vapor permeability.
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Figure 19. Comparison of the numerial and analytial saturation. A=0.
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Figure 20. Comparison of the numerial and analytial temperature. A=0.
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Figure 21. Comparison of the numerial and analytial saturation. A=1.
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Figure 22. Comparison of the numerial and analytial temperature. A=1.
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