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Abstract: Time-stepping, steady-state solving and continuation methods are
used to investigate the omset and stability of longitudinal rolls of Poiseuille-
Rayleigh-Bénard flows in air-filled chanmels of finite transversal extension. In
a channel of transversal aspect ratio 10, three solution branches of steady longi-
tudinal rolls are discovered. Those with respectively 9 and 10 rolls are linked to
supercritical pitchfork bifurcations of the base flow while that with 11 rolls seems
to be an isolated branch. All three branches of longitudinal rolls are found to
be unstable with respect to wavy oscillatory perturbations and nonlinear studies
show that the coresponding Hopf bifurcations are supercritical.

Key words: linear stability analysis, longitudinal rolls, Poiseuille-Rayleigh-
Bénard flows.

Nomenclature

transversal aspect ratio (= L/H)

constant

channel height

Jacobian

longitudinal wave number

channel width

cut-off degree of Chebyshev polynomials

pressure deviation

pressure perturbation

Prandt] number (= v/x = 0.71)

Rayleigh number (= g8(T;, — To)H?/(vk))

Reynolds number (= UXH/ 1/)

terperature

time

UV, w longitudinal, transversal and vertical velocity components
U, vV, W longitudinal, transversal and vertical velocity perturbations
T eigen-vector of the Jacobian

T,Y, 2 Cartesian coordinsates

“H%g:u'@ Mz QW

Greek symbols

B8 coefficient of volumetric thermal expansion
AT =T,—T, temperature difference

K thermal diffusivity

v kinematic viscosity

0 density

o,w real and imaginary parts of an eigen-value
T constant

e reduced temperature

[ perturbations of reduced temperature

Super and subscripts

0 related to the reference temperature
2d two-dimensional

3d three-dimensional

c critical or cold

e entrance

h hot

m mean

ref reference

t total

1 Introduction

Poiseuille-Rayleigh-Bénard (PRB) flows, mixed convection flows in a horizontal channel
heated from below, enjoy increasing attention of fluid and thermal sciences communities
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because of their applications in chemical vapor deposition (CVD) of solid layers (see
[11, 16] among others for CVD and [19] for a general review of PRB flows). In PRB
problem, the combination of Bénard cells (rolls) with a Poiseuille flow gives rise to, at
relatively low Reynolds and Rayleigh numbers, very complex flow structures ranging
from time-dependent transversal rolls, steady longitudinal rolls to mixed rolls. Time-
dependent transversal rolls (rotating in the vertical plane of two-dimensional Poiseuille
flow) occur at very low Reynolds number and have been extensively studied in the past.
However, in cold wall thermal rectangular reactors at atmospheric pressure, operat-
ing conditions generally result in steady longitudinal rolls which prevent from a uni-
form deposit. Understanding, manipulating and controlling steady longitudinal rolls are
therefore important and there need further numerical and experimental investigations of
steady longitudinal rolls.

As both time-dependent transversal rolls and steady longitudinal rolls can set up from
the well-known simple 2D base flow—Ilinear conduction profile of temperature combined
with streamwise Poiseuille flow—many linear and weakly nonlinear stability analyses of
this simple base flow have been conducted in the past in channels of both infinite and
finite transversal extension [5, 10, 12, 16, 18, 20]. In a channel of infinite transversal
extension, longitudinal rolls set up for Rayleigh number above 1708. Channel lateral
confinement delays the onset of steady longitudinal rolls, ie, critical Rayleigh numbers
increase with decreasing channel transversal extension. At small Reynolds number, time-
dependent transversal rolls will set up below neutral curves of steady longitudinal rolls
and the corresponding critical Rayleigh numbers depend: on both Prandtl number and
the channel transversal extension.

It is interesting to note that, in a laterally confined channel, time-dependent transver-
sal rolls result in three-dimensional time-dependent flows while steady longitudinal rolls,
despite the velocity field of 3 non-trivial components, give rise to steady two-dimensional
flows as there is flow translation in the streamwise direction. This leads naturally to the
conclusion that the stability of steady longitudinal rolls is a stability problem of two-
dimensional base flows with respect to three-dimensional perturbations. Due to the fact
that solutions of steady longitudinal rolls are not analytical, Clever and Busse [9] per-
formed to our knowledge the only linear stability analysis of steady longitudinal rolls
in a channel of infinite transversal extension while Kato and Fujimura [13] the only
linear stability analysis of steady longitudinal rolls in a square channel. They showed
the wavy instability of longitudinal rolls observed in the experiments of Avsec (1] and
Avsec & Luntz [2]. In CVD processes, wavy oscillatory instability of longitudinal rolls
giving rise to time-dependent flows would reult in a more uniform deposit and is of prac-
tical interest. The present work is thus mainly motivated by doing stability analyses
of steady longitudinal rolls—two-dimensional convective PRB flows in chanmels of finite
transversal extension.

In fact, tremendous progress has been made in numerical methods of steady-state
solving and linear stability analysis during the last fifteen years. Steady-state solving
consists in obtaining both stable and unstable numerical solutions satisfying the steady
Navier-Stokes equations. These discrete solutions are then used as base flow to linearize
the unsteady Navier-Stokes equations and their stability is deduced by studying the lin-
earized unsteady Navier-Stokes equations. Amongst the methods available, the method
proposed by Mamun and Tuckerman [17] is very effective and has been applied success-
fully to a differentially heated circular cavity [26] and extended to investigate stability of
a two-dimensional base flow with respect to three-dimensional perturbations [24]. The
method proposed in [17] makes use of a first-order time-stepping scheme of the unsteady
Navier-Stokes equations, computes the steady-state solutions through Newton’s iteration
and avoids explicit construction of the Jacobian by using Stokes preconditioning. Linear
stability analysis can be done by using the same first-order time-stepping scheme and
Arnoldi’s method because this scheme with small time step results in an approximate
exponentiation of the Jacobian. The extension brought in [24] consists of Stokes precon-
ditioning of the eigen-system, continuation method and coupling of steady-state solving
and the eigen-system. More details on the method and its extension can be found in
[17, 24]. Note that for the cases studied previously in [24, 26] the base velocity com-
ponent normal to the two-dimensional plane in which the base flow evolves is equal to
zero. This makes the real and imaginary parts of perturbations independent and allows
to work on only one part of the perturbations. For longitudinal rolls in PRB flows,
however, streamwise component of the base velocity field couples the real and imaginary
parts of perturbations and one has to work on both the real and imaginary parts. The
second motivation of the present work is to extend the methods used in [24, 26] to the
general case in which the base flow has three non-trivial velocity components.

Although linear stability analysis yields interesting results and remains sometimes
difficult to perform, it leads only to partial conclusions: for example after doing linear
stability analysis one knows the threshold of the base flow stability and the type of
bifurcation (pitchfork, transcritical or Hopf) that the base flow will undergo, but one
can not tell whether the bifurcation is supercritical and whether the bifurcated solution
will remain stable. This suggests that both linear stability analysis and nonlinear analysis
should be performed together in order to draw a full conclusion on a bifurcation. In the
present work, whenever is possible, nonlinear time-stepping computations, guided by
results of linear stability analysis, are performed to provide further information.

As PRB flows in channels depend on Reynolds number (Re), Rayleigh number (Ra),
Prandt] number (Pr) and channel width/height aspect ratio (B), we focus, in the present
study, on an air-filled channel of width/height aspect ratio 10. The PRB flows considered
will thus only depend on Reynolds number and Rayleigh number. Furthermore, in order
0 assess the validity of the newly developed code, stability analysis was performed for the



onset of longitudinal rolls and results were compared to those available in the literature.
In next section we present the physical problem of interest, its mathematical formulation
and the numerical procedures used. Numerical results will be discussed before giving
the final concluding remarks.

2 Physical problem, mathematical formulations
and numerical methods

2.1 Physical problem

We consider a rectangular channel of infinite length as illustrated in Figure 1. The
width/height aspect ratio, B, is fixed to 10, the channel is filled with air (Pr = 0.71)

and air flow is driven by a mean pressure gradient normal to y—2 plane in z direction. The
channel] vertical walls are thermally insulated (adiabatic), its bottom wall is heated at a
constant temperature, T3, and its top wall is cooled at another constant temperature, T..
We are interested in air flows resulting from competition between the pressure gradient
and the buoyancy in the channel.

The trivial flow in the channel occurs for small Ra: Poiseuille flow in z direction is
associated with a linear vertical temperature distribution. For Ra larger than a critical
value, Bénard cells will set up. If Bénard cells are in line with y-axis, one observes
transversel cells. This happens only for very small Re and wiil not be considered here.
We only consider the cases in which Bénard cells are parallel to  direction: the resulted
flow in the form of longitudinal rolls is steady and independent of z. Particular attention
is paid to stability analysis of longitudinal rolls.

2.2 Governing equations

Let us consider that air filling the channel is & Newtonian viscous fluid of thermal diffu-
sivity x, kinematic viscosity v and thermal expansion coefficient 5. We are interested in
two dimensional flow solutions in y—z plane and in their stability characteristics with re-
spect to both two dimensional and three dimensional perturbations. We assurne that the
two-dimensional base flow in the channel is governed by the steady Navier-Stokes equa-
tions under Boussinesq approximation which consists of assuming that, in the buoyancy
term, the fluid density is expanded as p(T") = po(T5)[L — B(T — Tp)].

Using the temperature difference AT = T}, — T, Ty = T and the channel height,
H, as reference length, we define Rayleigh number as Ra = gBATH3/(vk) and the
reduced temperature as © = (T'~ Ty)/AT. Although the driving forces of PRB flows—
mean pressure gradient and buoyancy—result in two different velocity scales, it is still
convenient to work with the scale of two-dimensional Poiseuille flow. In z—z plane any

constant pressure gradient in z direction results in a parabolic z-velocity profile and
one can use the mean velocity, U2, as reference velocity and define Reynolds number as
Re = U2 H/v. This leads to a dimensionless velocity distribution of 62(1—z) and a mean
dimensionless pressure gradient of —~12/Re. In the present study, we continue with Uz
as reference velocity, but note that the dimensionless mean velocity, U2%, in a channel of
finite transversal extension is no longer equal to 1: U3 increases with B and converges to
1 for B — 00, for some values of B the relationship between UZ¢ and US? is given in [20].
"The corresponding reference pressure and reference time are therefore Poop = po(U24)?
and tpo = H/ U2, The steady Navier-Stokes equations governing longitudinal rolls read
in dimensionless form:
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The boundary conditions are no-slip for velocity, ©(y,0) = 1, ©(y, 1) = 0 and adiabatic
on the vertical walls, i.e. b—-|y=o, g = 0. Note that in the above equations P does not
take into account the mean pressure gradient in the z direction.

Stability of the base flow (U, V, W, ©) with respect to 3D periodic disturbances is
governed by the following linearized unsteady Navier-Stokes equations :
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Three dimensional perturbations are of the form [u, v, w, p, 6)(y, 2, t) exp(ik &) where & is
the wave number in z direction. Boundary conditions of Equations (2) are homogeneous
and of the same type as for Equations (1).



When k = 0, perturbations are only two dimensional in the sense that they depend
only on y and 2z and their real and imaginary parts are decoupled. It corresponds to the
case of the onset of longitudinal rolls. In this particular case, Equations (1) are reduced
to:

V=W = 0
12 1,8 &
E+E(6_1/2+6_Z2')U = 0 &)
® = 1-=2
and Equations (2) to
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Solutions of Equations (3) possess the four following symmetries: translation sym-
metry in time (¢ — ¢ 7), translation symmetry in z (z — z + C), reflection symmetry
iny (y — B —y) and centro-symmetry ( (y,z) — (B —y,1— z) ), ie,

Translation symmetry in time : (U,V,W,0)(z,y,2,t) = (U, V, W, ©)(z,y, 2,t + T)

Translation symmetry in z : (U, V, W, ©)(z,y, 2,t) = (U,V, W, 0)(z + C, v, 2, t)
Reflection symmetry in y : (U, V, W, 0)(z,y,2,t) = (U, -V, W, 0}z, B — y, z, t)
Centro-symmetry : (U, V, W, ©)(z,y, 2,t) = (U, -V, -W, -0)(z, B —y,1—2,t)

Two-dimensional perturbations governed by Equations (4) will break either the reflection
symmetry in y or the centro-symmetry, ie, given the boundary conditions, Equations (1)
governing longitudinal rolls admit either reflection symmetry in y and translation sym-
metries both in time and in z or centro-symmetry and translation symmetries both in
time and in z. Any wavy instability whose perturbations are governed by Equations (2)
breaks the translation symmetries in time and in z and will beak at the same time the
other symmetry admitted by Equations (1).

Nonlinear behavior of the unstable modes of Equations (3) is governed by Equa-~
tions (1) in unsteady form. While wave instability dynamics is governed by the following
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full three-dimensional unsteady Navier-Stokes equations:
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Periodic conditions are prescribed in the z direction and the domain size in z is deter-
mined by the critical wave number k&, through 27 /k,.

2.3 Numerical methods

Linear stability analysis needs codes doing steady-state solving (base solution), search-
ing eigenvalues through Arnoldi’s method and determining critical points by continua-
tion method. Nonlinear behavior of the unstable modes needs time-stepping codes. A
full understanding of the critical modes in PRB flows demands a complete set of nu-
merical tools: a two-dimensional code for steady-state solving; a two-dimensional code
integrating Equations (4) and doing Arnoldi’s method; & quasi-three-dimensional code
integrating Equations (2) and doing Arnoldi’s method; a code doing continuation to the
2D unstable modes governed by Equations (4); another code doing continuation to the
3D unstable modes governed by Equations (2); a 2D time-stepping code integrating the
unsteady form of Equations (2) and a 3D time-stepping code solving Equations (5). A
brief description of the numerical methods used are given in the following and references
will be provided for more details.
Time-stepping codes

Time-stepping codes are the basis of steady-state solving and linear stability analy-
sis through Arnoldi’s method and continuation method. They combine a second-order
backward differencing discretization BDF2 with a second-order Adams Bashforth ex-
trapolation for the convective terms. This time scheme results in Helmholtz equations
for velocity components and temperature. Spectral Chebyshev collocation methods are
used for spatial discretization in y—z plane and direct Uzawa method ensures fluid
incompressibility (velocity-pressure coupling). Details of spectral methods and Uzawa
method can be found in [3, 4]. For the full 3D equations (5), Fourier Galerkin method is
used for discretization in the z direction. In this case velocity-pressure coupling is dealt
with projection method due to the fact that Uzawa operator has a very large dimension.
The 3D time-stepping code is described in {25].
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In both the 2D and 3D codes, the resulting Helmholtz equations for the unknowns
are solved by a direct method based on full diagonalization of the second-order partial
derivatives.

Steady-state solving

Usually, time-stepping codes are only capable of providing stable steady-state solu-
tions. In order to obtain both stable and unstable steady-state solutions, one should
resort to Newton's iteration. The interesting idea proposed in {17, 23] is to take advan-
tage of the existing time-stepping schemes for the unsteady Navier-Stokes equations and
use & first-order semi-implicit time scheme (implicit treatment for diffusion terms and
explicit for the remaining terms). The difference between solutions at two consecutive
time steps has the same root as the steady-state Navier-Stokes equations and is equal
to the residual of preconditioned steady-state Navier-Stokes equations. The same rea-
soning applied to the linearized unsteady Navier-Stokes equations allows to compute an
action of the preconditioned Jacobian on a vector and to do Newton’s iteration by using
matrix-free methods as GMRes or BCG-Stab. Explicit construction of the Jacobian is
thus avoided. This method hes been found to be very efficient for large time step with
which the time-stepping scheme reduces to the Stokes operator which can be viewed as a
preconditioner of the steady state equations. More details of the methods can be found
in [17, 28] and applications to natural convection flows in [24, 25].

Linear stability analysis

When the same first-order semi-implicit time scheme is applied to the linearized
unsteady Navier-Stokes equations with very small time step, solutions at one time step
is an application of approximate exponentiation of the Jacobian to those at the previous
step. This time scheme transforms therefore the leading eigenvalues of the Jacobian
with the largest real parts into those of maximum modulus and Arnoldi’s method can be
used to calculate them. As accurate eigenvalﬁes impose a very small time step, a large
number of time steps are usually needed.

Improving accuracy and efficiency of the computations has been done in [24, 25].
The idea is to use the results of Arnoldi’s method as initial estimates of the eigenmodes
and work, by combining a continuation technique [14] with Stokes preconditioning, on
Jz = (¢ + iw)z where (o + iw) is an eigenvalue of the Jacobien J and # is the cor-
responding eigenfunction containing (u,v,w, ). The results obtained will satisfy the
discrete equations, J z = (¢ + iw)z, to round-off level.

Solving the eigen-system using continuation technique, Stokes preconditioning and
Newton’s iteration has also been coupled with steady-state solving and a secant method
for searching roots of o = 0. This allows for an accurate computation of critical values.
Embeding this coupling in a do-loop of wave number will enable to construct neutral
curves versus wave number.

Note that, if J is real, its size is equal to 4 times the grid points. In case of a complex

Jacobian, its size is equal to 8 times the grid points. For B = 10 we used for example a
spatial resolution of 200 x 30 (a grid of 201 x 31 points), the discrete Jacobian is of size
24924 or 49848 and using an iterative method to solve the eigen-system is completely
justified.

Nonlinear analysis

As time-stepping codes are available, it is straightforward to do nonlinear analysis by
integrating the unsteady Navier-Stokes equations. Time evolutions of perturbations will
indicate whether a bifurcation is supercritical and whether solutions after bifurcation are
stable. If there are several unstable modes and their critical values are close, one needs
to start computations with appropriate perturbations in order to study the unstable
modes one by one. A straightforward way is to perturb the base solution using the
eigenfunction of the unstable mode. This is particularly the case of B = 10 as there are
multiple solutions of longitudinal rolls.

Summary and remarks

In summary a typical numerical procedure to study 3D periodic perturbations is
the following: for a given set of parameters (Re, Ra, Pr, B, for example), 2D steady-
state solving is used first to obtain base solutions (solving Equations (3) for example);
Equations (4) are then integrated in order to calculate the leading eigen-modes of the
Jacobian using Arnoldi’s method; for each leading mode estimated by Arnoldi’s method,
the eigen-system coupled with steady-state solving and a secant method are then solved
to determine the critical point and construct neutral curves; a 3D time-stepping code is
finally used to investigate nonlinear behavior of the unstable modes.

Concerning wavy instability of longitudinal rolls, the terms ikU(u,v,w,6) in Equa-
tions (2) couple the real and imaginary parts of the perturbations. This requires to work
with both the real and imaginary parts and leads to doubling the dimension of the Jaco-
bian. In this sense, stability of longitudinal rolls of PRB flows is the most complicated
case of linear stability analysis in Cartesian coordinates and it is thus interesting to show
the feasibility of such analysis.

Note also that longitudinal rolls are Bénard cells and have a regular distribution
in y direction. They are generally convenient for a uniform grid but problematic for
Chebyshev collocation methods. In fact spectral Chebyshev methods use Gauss-Lobatto
collocation points which are fine near the domain ends and coarse near the domain
center, ie the grid size is O(r?/N?) near the domain ends and O(n/N) near the domain
center with N the cut-off degree of Chebyshev polynomials. A good approximation of
the Bénard cells at the channel center requires higher spatial resolution, ie bigger N,
especially in the cases of large B. This is why we have had to check the numerical results
with a spatial resolution of 200 x 30 in the case of B = 10.
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3 Numerical results and discussions

The validity of the newly developed code is assessed by computing the critical Rayleigh
numbers corresponding to the onset of longitudinal rolls for B = 3 and 4 as they were
provided earlier by Nicolas et al [20]. The onset of longitudinal rolls at B = 10 is studied
in detail as one can expect multiple solutions with increasing B and multiple solutions
of longitudinal rolls would complicate the subséquent linear stability analysis.

3.1 Onset of longitudinal rolls: linear stability analysis

The onset of longitudinal rolls in channels of finite transversal extension corresponds to
pitchfork bifurcations, it does not depend on Re nor on Pr and it was investigated in
detail for B ranging from 0.1 to 5.4 in {15, 20] and from 1 to 4 in [12]. Critical Rayleigh
numbers obtained for B = 3 and 4 are listed in Table 1 together with spatial resolutions
used: they agree well with those provided in [15, 20] and perfectly with those of Kato
and Fujimura [12]. We checked grid independence of the present results for B = 4 as is
shown in Table 1. The slight differences between the present results and those in [15, 20}
may come from the ilimited spatial resolutions used in [15, 20] (Table 1). Kato and
Fujimura, [12] used more polynomial modes and obtained grid independent results. The
critical modes for B = 3 and 4 consist of respectively 3 and 4 rolls.

Early studies [22, 20] showed the transition in number of rolls in flow structure. This
seems to indicate that above Ra, shown in Table 1 there should be other unstable modes
characterized by different roll numbers. For B = 3, we found another unstable mode of
2 rolls with Ra. = 2030.8094 and, for B = 4, another mode of 3 rolls becomes unstable
at Ra, = 1876.0997.

The case of B = 10 was investigated using a spatial resolution of 140 x 30: several
modes were found out to become unstable in a small range of Ra and the corresponding
Ra, are shown in Table 2. Spatial structures of the unstable modes are displayed in
Figure 2: one distinguishes the first two regular modes (Modes 1 and 2) from two other
irregular modes (Modes 3 and 4). The regular Modes 1 and 2 contain respectively 10
and 9 Bénard cells of almost equal size and possess respectively the reflection symmetry
in y and the centro-symmetry. The irregular Modes 3 and 4 contain respectively 11
and 12 cells and possess respectively the centro-symmetry and the reflection symmetry
in y. Although the irregular modes seem to be curious, both their critical values and
spatial structures are confirmed by a higher spatial resolution of 200 x 30. Note that the
linear modes leading to longitudinal rolis in PRB flows are identical to those of Rayleigh-
Bénard convection, unfortunately no relevant results on Rayleigh-Bénard convection in
high aspect ratio box have been found in the literature. Further studies should be done
for different aspect ratios in order to understand the behavior of each mode in terms of
aspect ratio B.

11

3.2 Onset of longitudinal rolls: nonlinear behavior

Although the critical values and the linear unstable modes characterizing the onset of
longitudinal rolls are independent of Pr and Re, their nonlinear behavior does depend on
them. In the following we use air as the working fluid (Pr = 0.71) and we fix Reynolds
number to Re = 200 and the aspect ratio to B = 10. All the 2D results presented
hereafter are obtained with a spatial resolution of 200 x 30.

The nonlinear behavior of the onset of longitudinal rolls can only be observed by using
a time-stepping code which integrates the 2D unsteady Boussinesq equations. These
computations not only reveal the supercritical or sub-critical nature of the corresponding
pitchfork bifurcation but also provide steady-state base solutions for analysis of wavy
instabilities. In practice time-stepping is used only to reveal the nature of the pitchfork
bifurcation and steady-state solving is used to produce the base solutions once a steady-
state solution after bifurcation is obtained by time-stepping. As the linear unstable
modes shown in Table 2 and Figure 2 occur in & very small range of Rayleigh number,
multiple steady-state solutions are likely. The initial conditions used in the present work
are the base solutions perturbed by the corresponding linear unstable modes.

Time-stepping computations performed at Ra = 2000 for Modes 1 and 2 revealed
that the corresponding pitchfork bifurcations are supercritical, which is also confirmed
by the fact that flow structures of the final steady-state (Figure 3) are very similar to
the linear unstable Modes 1 and 2. What happened for Modes 3 and 4 is curious: at
Ra = 2000 starting with the base solutions perturbed respectively by Modes 3 and 4, we
obtained finally steady-state solutions possessing respectively 9 and 10 regular Bénard
cells, ie those displayed in Figure 3; at Ra = 2400 Mode 3 led to a steady-state solution
of 11 regular Bénard cells while Mode 4 always led to a 10 cell solution. In order
to understand the nonlinear behavior of solutions with 11 Bénard cells, steady-state
solving was used and combined with quadratic extrapolation if necessary to investigate
higher and lower Rayleigh numbers. For lower Rayleigh numbers a turning point was
located at Ra = 2120 and unstable steady-state solutions are obtained after the turning
point for higher Rayleigh numbers. The details are illustrated in Figure 4. Compared to
solutions on the stable upper branch, those on the lower unstable branch have two smaller
weakened cells at the channel lateral ends and strengthened central cells. Computations
were realized up to Ra = 15000 beyond the range of Rayleigh number shown in Figure 4
and both branches subsist. It seems to indicate that solutions with 11 longitudinal rolls
are only an isolated branch which is not connected to the base solutions governed by
Equations (3).

Concerning the onset of longitudinal rolls, the nonlinear studies reveal up to now
three different branches of stable steady-state solutions with respectively 9, 10 and 11
Bénard cells. In the following we consider them as base solutions and study their stability
with respect to 3D periodic perturbations although the existence of other branches of
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steady-state solutions can not be excluded.

3.3 Onset of wavy instability: linear stability analysis

For each branch of stable longitudinal rolls, steady-state solving yields solutions for
different Reyleigh numbers and, for each longitudinal wave number k, approximate ex-
ponentiation of the Jacobien combined with Arnoldi’s methods indicates stability of the
base solution. Continuation method using Newton’s iteration applied to the precondi-
tioned eigen-system combined with steady-state solving and secant method yields the
critical values corresponding to the wave number k investigated. A loop over k builds
up the neutral curves.

Different test-and-error computations performed for the solution branch of 10 Bénard
cells indicate that they become unstable to 3D oscillatory perturbations, through a Hopf
bifurcation. Figure 5 shows the neutral curve and the corresponding critical angular
frequency: the neutral curve hes & minimum at approximately & = 0.8 and the critical
angular frequency is a linear function of the wave number k (w, = 1.01k). The corre-
sponding critical values are respectively k. = 0.818 & 0.001, Ra, = 3414.62 = 0.03 and
w, = 0.83103 (Table 3). Eigen-temperature of the critical mode is displayed in Figure 6.
As can be seen, the unstable mode breaks both the translation symmetry in z and the
reflection symmetry in y. The critical mode is concentrated on the central part of the
channel and damped by the lateral confinement.

Similar results obtained for the solution branches with 9 and 11 Bénard cells are
shown in Figures 7, 8, 9 and 10. The results obtained are similar to those shown in
Figures 5 and 6: minima of Rayleigh number for & about 0.8 and critical modes breaking
both the the translation symmetry in z and the centro-symmetry in the vertical y—z
plane. Table 3 details the critical values and shows that it is the branch of 11 Bénard
cells that has the lowest critical Rayleigh number. (The corresponding critical point is
displayed in Figure 4.)

Compared to the study on a chammel of infinite transversal extension realized by
Clever and Busse [9], the lateral confinement introduced by finite transversal extension
first makes the neutral curves to take usual forms. In fact in a channel of infinite
transversal extension, the neutral curves have minima at k = 0 and the critical angular
frequency is linear with & and equal to zero at k = 0. The latera] confinement shifts
the critical points to k # 0 with w, # 0 although the linear relationship between & and
w, subsist. The lateral confinement slightly delays the onset of steady longitudinal rolls
and strongly the onset of wavy oscillatory instability. In other words, it increases the
corresponding critical Rayleigh numbers. This is due to the fact that the confinement
damps not only longitudinal rolls but also the critical modes near the channel lateral
ends. Although there are choices for transversal wave length of the longitudinal rolls
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at supercritical Rayleigh numbers in a channel of infinite transversal extension, Clever
and Busse [9] used mainly, in their analyses for Pr = 0.7, the critical wave length
of Bénard cells corresponding to a transversal wave number of 3.117 and another wave
length corresponding to a transversal wave number of 2.6. With finite B, the confinement
introduces the complexity of multiple solutions with various roll numbers. This leads
us to find as many as possible the solution branches and to perform linear stability
analysis for each solution branch found. This is also one of the challenges of PRB flows
in channels of finite transversal extension.

3.4 Onset of wavy instability: nonlinear behavior

The nature of the Hopf bifurcations mentioned above can be revealed by a 3D time-
stepping code. The time-stepping code used has been taylored for natural convection
flows in a cavity and described in [25]. Periodic conditions are imposed in the z direction
and the initial conditions are longitudinal rolls randomly perturbed. A spatial resolution
of 30 x 200 x 30 is used and only one Rayleigh number of 3800 is studied for all the
three solution branches of longitudinal rolls found above. Other parameters are kept to
be the same as above, i¢ B = 10, Pr = 0.71 and Re = 200. The corresponding wave
lengths used in the z direction are respectively 7.7 for the branch of 10 longitudinal
rolls, 7.4 for the branch of 9 longitudinal rolls and 8.0 for the branch of 11 longitudinal
rolls. They correspond to respectively wave numbers of 0.816, 0.849 and 0.785 which are
approximately the critical wave numbers.

Figure 11 displays the time evolution of transversal v velocity at (y, 2) = (B/2,0.25)
obtained for the solution branch of 10 Bénard cells. As the base solution possesses the
reflection symmetry in y, the pointwise v velocity represents the perturbations and indi-
cates the breaking of reflection symmetry in y: we distinguish an early linear phase with
exponential growth in time and a final saturated phase of periodic solution with constant
amplitude. Log-scale of the perturbation amplitude shows that the Hopf bifurcation is
supercritical. As depicted by Figure 12, instantaneous flow displays wavy structure
which is convected downstream. Similar results are obtained for the other two branches
of longitudinal rolls and the corresponding details can be found in Figures 13, 14, 15 and
16. Note that steady-state solutions of 9 and 11 Bénard rolls are centro-symmetric and
that the base temperature at the channel center is equal to 0.5. Figures 13 and 15 show
that the centro-symmetry of the base flows is broken and that the Hopf bifurcations are
supercritical.
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4 Concluding remarks

Although in the literature there are many recent experimental works on longitudinal
rolls of Poiseuille-Rayleigh-Bénard (PRB) flows (see [6, 7, 8, 21] among others), stability
analyses of longitudinal rolls of PRB flows in channels of finite transversal extension
remain rare. Apart from the work of Kato and Fujimura [13] for a square channel, the
present work represents another excursion into stability analyses of longitudinal rolls of
PRB flows in channels of finite transversa] extension. The methodologies and numerical
tools used, time-stepping codes, steady-state solving and continuation method, have
been developed for natural convection flows in cavities and they were found to be very
efficient for PRB flows in channels of finite transversal extension.

An air-filled channel of transversal aspect ratio of 10 is chosen and Reynolds number
is fixed at 200. We first studied the onset of longitudinal rolls, the four most unstable
linear modes and the corresponding critical Rayleigh numbers were calculated. The first
two modes, Modes 1 and 2, contains Bénard cells of almost equal size and are regular
while the other two are irregular. Nonlinear studies using a 2D time-stepping code
showed that Modes 1 and 2 lead to supercritical pitchfork bifurcations and that, at some
appropriate Rayleigh numbers, Mode 3 leads to an isolated branch of 11 Bénard cells
with a turning point at Ra = 2120. We found in total three solution branches of stable
steady-state longitudinal rolls. The questions which remain to be answered are whether
there are other solution branches and why the irregular modes do not result in similar
nonlinear solutions.

Linear stability analysis of the three solution branches of longitudinal rolls was per-
formed with respect to 3D periodic perturbations. Similar to longitudinal rolls in a chan-
nel of infinite transversal extension [9] and in a square channel {13], they become unstable
to 3D wavy oscillatory perturbations. Neutral curves and critical angular frequency were
computed by using continuation method. Compared to [9], the lateral confinement of
the channel gives the neutral curves a more usual form although it keeps the linear re-
lationship between angular frequency and wave number. Nonlinear studies using a 3D
time-stepping code showed that unstable oscillatory linear modes results in supercritical
Hopf bifurcations. It is clear that the present work concerns only B =10, Pr = 0.71 and
Re = 200 and that further studies are needed for different values of B, Pr and Re. The
fact that there are multiple solutions of longitudinal rolls at large B complicates very
much this type of studies as the number of possible branches is unknown. Clever and
Busse [9] showed that, at small Reynolds number (with weak Poiseuille flow) in a chan-
nel of infinite transversal extension, there are, at higher Rayleigh numbers, oscillatory
instabilities arising purely from Bénard rolls and that the corresponding eigen-values are
distinguished from those leading to wavy instabilities which are termed sometimes as
wavy oscillatory instatiblities in the present paper. It will be interesting to investigate,
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in the future, oscillatory instabilities at small Reynolds number in a channel of finite
transversal extension as was done for a square channel by Kato and Fujimura [13).

Note that, although it is cormmon for rotating axisymmetric 2D flows to have three
non-trivial velocity components, it is rare for 2D flows in Cartesian coordinates to possess
this property. Longitudinal rolls of PRB flows in the vertical y~ 2 plane do have this
property and stability of longitudinal rolls is the most complicated configuration for
linear stability analysis in Cartesian coordinates due to the fact that the 2D base flows
possessing three non-trivial velocity components couples the real and imaginary parts
of perturbations. It is also of pratical interest to perform this type of linear stability
analysis and show the feasibility.

Acknowledgement: computations have been performed on NEC-SX5 supercom-
puters at IDRIS (Orsay, France) under research project 41474.
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Figure 1: Illustration of Poiseuille-Rayleigh-Bénard flows in a horizontal channel. A
pressure driven air flow comes into the channel of aspect ratio B = L/H at z = —L,
and exits at ¢ = L; — L.. The channel is heated at a constant temperature T}, through
the bottom wall and cooled at a constant temperature T, through the top wall. With
very large L. and L, the onset of longitudinal rolls in the channel of infinite length can
be studied in the 2D vertical (y—z) plane at z = 0.
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Figure 2: Linear unstable modes (for each mode, eigen-temperature 6 is on top and eigen-
stream function is at bottom) responsable for the onset of longitudinal rolls of PRB air
flows in & channel of transversal aspect ration B = 10. Modes 1 and 2 containing

respectively 10 and 9 Bénard cells are regular modes in the sense that the Bénard cells
are of almost equal size while Modes 3 and 4 are irregular modes.
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Ra, Nuraber of rolls | Spatial resolution
B=3
present work 1870.5833 3 60 x 20
Nicolas et al [20] 1870.72 3 8x8
Kato and Fujimura [12] | 1870.58 3 33 x 33
B=4
present work 1810.2690 4 60 x 20
1810.2690 4 80 x 20
Nicolas et al {20] 1810.48 4 88
Luijkx [15] 1810.285 4 14 %6
Kato and Fujimura [12] | 1810.27 4 33 x 33

Table 1: Critical Rayleigh numbers corresponding to the onset of longitudinal rolls for
B =3 and 4.

Ra, Number of rolls Symmetry
Mode 1 | 1728.833 10 Reflection in y
Mode 2 | 1732.433 9 Centro-symmetry
Mode 3 | 1791.438 11 Centro-symmetry
Mode 4 | 1811.529 12 Reflection in y

Table 2: Critical Rayleigh numbers corresponding to the onset of longitudinal rolls
obtained for B = 10 with a spatial resolution 140 x 30. The same results are also
confirmed by a higher spatial resolution of 200 x 30.

Base solution k, e Ra,
(Number of rolls)
10 0.818 £ 0.001 | 0.83103 | 3414.62 + 0.03
9 0.859 £ 0.001 | 0.87183 | 3663.72+ 0.03
11 0.784 £ 0.001 | 0.79791 | 3231.30 £ 0.03

Table 3: Critical wave number, angular frequency and Rayleigh number with respect
to 3D oscillatory perturbations obtained for different branches of base solutions with a
spatial resolution of 200 x 30.
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T 10 flow cells 9 flow cells |

Figure 3: Steady-state solutions (temperature on top and stream function at bottom)
resulted from respectively the linear unstable Modes 1 and 2 for B = 10, Pr = 0.71, Ra =
2000 and Re = 200. Both the time evolutions of perturbations and final flow structures,
similar to the linear unstable modes, indicate that the corresponding bifurcations are
supercritical.
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Stable steady-state solution at Ra = 2400 on the upper branch.
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Unstable steady-state solution at Ra = 2500 on the lower branch.

Figure 4: Diagram of solutions with 11 Bénard cells for B = 10, Pr = 0.71 and Re = 200.
A stable solution with 11 regular cells is first obtained at Ra = 2400 (top) by using the
base solution perturbed by Mode 3. It is followed for higher and lower Rayleigh numbers
using steady-state solving. The turning point is located at Ra = 2120 and quadratic
extrapolation allows to go through it and construct the lower unstable branch. The
unstable solution at Ra = 2500 is shown and the two cells at the channel lateral ends are
weakened while other central cells are strengthened. The upper stable branch becomes
unstable to 3D oscillatory perturbations leading to wavy oscillatory instability and the
critical point is located at Ra = 3231.30.

22



4200 18 T T T T T T
4100 F E 16 4
5 4000 - B & 14l 4
§ %000 E g
2 & iz} 4
£
5§ OF ] <
K £ 10t B
g oor 1 3
« L B
3800 | | < o8
2500 b 4 06 1
3400 04 L L : L . .
04 06 08 1 12 14 16 18 0.4 0.6 0.8 1 1.2 14 18 1.8
Wave number Wave number

Figure 5: Neutral curve (left) and critical angular frequency (right) obtained for the
solution branch of 10 longitudinal rolls with Pr = 0.71 and Re = 200. The critical
angular frequency is linear with the wave number k (w, = 1.01k).

g

Figure 6: Iso-surfaces of eigen-temperature 9 at the critical point (solution branch of 10
longitudinal rolls). The critical mode is strongly damped by the channel lateral confine-
ment and it breaks both the translation symmetry in £ and the reflection symmetry in
Y.
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Figure 7: Neutral curve (left) and critical angular frequency (right) obtained for the
solution branch of 9 longitudinal rolls with Pr = 0.71 and Re = 200. The critical
angular frequency is linear with the wave number k (w, = 1.04k — 0.02).

Figure 8: Iso-surfaces of eigen-temperature theta at the critical point (solution branch
of 9 longitudinal rolls). The critical mode is strongly damped by the channel lateral
confinement and it breaks both the translation symmetry in = and the centro-symmetry
in y—z plane.
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Figure 9: Neutral curve (left) and critical angular frequency (right) obtained for the
solution branch of 11 longitudinal rolls with Pr = 0.71 and Re = 200. The critical
angular frequency is linear with the wave number & (w, = 0.98k + 0.02).
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Figure 10: Iso-surfaces of eigen-temperature § at the critical point (solution branch
of 11 longitudinal rolls). The critical mode is strongly damped by the channel lateral
confinement and it breaks both the translation symmetry in z and the centro-symmetry
in y—z plane.
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Figure 11: Time trace of transversal velocity at (y, z) = (B/2,0.25) obtained at Ra =

3800 for the solution branch of 10 longitudinal rolls. Perturbations are amplified in time
to give rise to a periodic solution. Log-scale of perturbation amplitude shows that the
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Hopf bifurcation is supercritical.

Figure 12: Iso-surfaces of instantaneous temperature (top) and longitudinal velocity
(bottom) fields obtained at Ra = 3800 for the solution branch of 10 longitudinal rolls.
Spatial oscillations of the iso-surfaces illustrates the wavy oscillatory instability of lon-
gitudinal rolls. One should imagine that these spatial oscillations are travelling down-
stream in time.
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Figure 13: Time trace of transversal velocity at (y, z) = (B/2,0.5) obtained at Ra = 3800
for the solution branch of 9 longitudinal rolls. Perturbations are amplified in time to
give rise to a periodic solution. Log-scale of perturbation amplitude shows that the Hopf
bifurcation is supercritical.

Figure 14: Iso-surfaces of instantaneous temperature (top) and longitudinal velocity
(bottom) fields obtained at Ra = 3800 for the solution branch of 9 longitudinal rolls.
Spatial oscillations of the iso-surfaces illustrates the wavy oscillatory instability of lon-
gitudinal rolls.
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Figure 15: Time trace of transversal velocity at (y, 2) = (B/2,0.5) obtained at Ra = 3800
for the solution branch of 11 longitudinal rolls. Perturbations are amplified in time to
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give rise to a periodic solution. Log-scale of perturbation amplitude shows that the Hopf
bifurcation is supercritical.

Figure 16: Iso-surfaces of instantaneous temperature (top) and longitudinal velocity
{bottom) fields obtained at Ra = 3800 for the solution branch of 11 longitudinal rolls.
Spatial oscillations of the iso-surfaces illustrates the wavy oscillatory instability of lon-
gitudinal rolls. One should imagine that these spatial oscillations are travelling down-

stream in time.
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