
HAL Id: hal-00694557
https://hal.science/hal-00694557

Submitted on 4 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

fMRI functional connectivity estimators robust to region
size bias

Sophie Achard, Jean-François Coeurjolly, Romain Marcillaud, Jonas Richiardi

To cite this version:
Sophie Achard, Jean-François Coeurjolly, Romain Marcillaud, Jonas Richiardi. fMRI functional con-
nectivity estimators robust to region size bias. SSP 2011 - 2011 IEEE Workshop on Statistical Signal
Processing, Jun 2011, Nice, France. pp.813-816, �10.1109/SSP.2011.5967829�. �hal-00694557�

https://hal.science/hal-00694557
https://hal.archives-ouvertes.fr


FMRI FUNCTIONAL CONNECTIVITY ESTIMATORS ROBUST TO REGION SIZE BIAS

S. Achard∗, J.F. Coeurjolly, R. Marcillaud†

GIPSA-lab, CNRS, Grenoble INP, LJK

961 rue de la Houille Blanche, BP 46

F - 38402 GRENOBLE Cedex

J. Richiardi ‡

Medical Image Processing Laboratory

Ecole Polytechnique Fédérale de Lausanne

and University of Geneva, Switzerland

ABSTRACT

Analysis of interactions in the brain in terms of functional

resting-state networks has yielded fundamental results in neu-

roscience. The first step in such analyses of functional con-

nectivity typically involves computing correlations between

brain regions. In this paper, we show theoretical results ex-

plaining why brain region sizes bias correlation estimators,

and propose three new estimators to correct for region size in-

fluence. We show experimental results on both synthetic and

real fMRI data and discuss the influence of noise and intra-

regional correlation on the robustness of the estimators. The

bootstrap-based estimator of correlations emerges as the pre-

ferred choice.

Index Terms— correlation estimations, wavelets, fMRI

brain connectivity

1. INTRODUCTION

The exploration of brain activity has gained great interest in

recent years because of the non invasive techniques available

to measure the functioning of the brain. Among them, Func-

tional Magnetic Resonance Imaging (fMRI) allows to mea-

sure the change in blood flow related to neural activity. Rest-

ing state fMRI provides a technique to explore the brain at

rest, without doing a given task. At rest, brain regions are

organized like a network with a specific topology comprising

hubs, and exhibits a modular organisation [1].

The definition of brain regions and evaluation of signifi-

cant connections are challenging problems as fMRI data have

a high anatomical resolution but low temporal resolution [2,
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3]. Because of the large number of voxels acquired using

fMRI, and the low signal to noise ratio at the voxel level, it

is not practical to study the connectivity between all voxels.

Two different approaches have been proposed, either using a

smoothing technique for grouping the voxels [4], or defining

an anatomical template to take the average of the voxels that

belong to the same region [5, 6]. The second approach has

the advantage of facilitating the representation of the connec-

tivity networks using anatomical descriptions, and is simpler

to use for the neuroscientist.

However it has been observed that the correlations com-

puted by using regions with different sizes tend to be biased

by the size of the regions [2, 3]. In this paper, we explain sta-

tistically that the measure of connection based on the correla-

tion of the average voxels is biased by the number of voxels

used in the average. On this basis, we propose a convergent

estimator. We illustrate the efficiency of the new estimator

on simulation of multivariate Gaussian variables. Finally, we

illustrate the effect of this estimator on real data, and show

that it is no longer biased by the size of the initially defined

regions.

2. WAVELET CORRELATIONS FOR FMRI DATA

It has been shown that fMRI time series belong to the class

of long memory processes [7]. A wavelet decomposition is

therefore suitable to avoid bias due to the long dependence

property of the time series. In [6], the authors used a wavelet

correlation estimator to compute the connectivity networks

for resting-state fMRI data. In this case, the correlation is

estimated on the wavelet detail coefficients at each wavelet

scale which corresponds to a frequency band. The estimator

of wavelet correlation between two time series X and Y is

given by,



ρ̂XY (j) =
γ̂XY (j)

(γ̂X(j)γ̂Y (j))1/2

where γ̂XY (j) = (1/nj2
j)
∑

k wX
j,kwY

j,k, nj is the num-

ber of wavelet coefficients at scale j minus the number of

boundary coefficients [8] and for k, 1 ≤ k ≤ nj , wX
j,k (resp.

wY
j,k) are the wavelet coefficients at scale j for the time series

X (resp. Y ).

3. ESTIMATION OF CORRELATIONS :

OBSERVATIONS AND OBJECTIVES

Based on an anatomical template with N anatomical regions,

we extract the time series of each voxel belonging to a given

region. That is for each region Ri, 1 ≤ i ≤ N , we define a

matrix MRi
, T×N where T is the number of images acquired

in the experiment, i.e. the length of the time series.For each

region Ri, we extract,

MRi
=




X11 X21 . . . XNRi
1

...
...

...

X1T X2T . . . XNRi
T


 ,

where NRi
is the number of voxels contained in region

Ri, and for j, 1 ≤ j ≤ NRi
, Xj1 . . . , XjT is the time series

associated to voxel j for region Ri.

In [6], the authors chose, for each region, to take the aver-

age of all the voxels at each time point. They obtain N time

series, each associated to a region. Then, the computation of

wavelet correlation was done on the average time series.

However, we observe that the correlation between the av-

erage of time series and the average of correlations between

all possible pairs of time series are not equal. This was first

reported in statistics, in the studies of familial data [9] where

specific characteristics are obtained for different families with

different sizes. In fMRI, Salvador et al. [2] also pointed out

the link between value of correlation and size of the regions.

Figure 1 illustrates this fact on fMRI data : we used two

different schemes to parcellate the original template into sub-

regions. The spatial scheme consists in separating each region

in two parts along the largest dimension. The random scheme

consists in subdividing each region of the template by choos-

ing the voxels in each subregion randomly, while keeping the

number of voxels in each subregion as close as possible to

the number of voxels in the spatial scheme. The first scheme

will keep the connexity of each region, while the second has

no constraints to that effect. In figure 1, we show that the ran-

dom scheme will keep the center of gravity of each region and

values of correlations very close to the original ones. How-

ever, the center of gravity of subdivided regions based on the

spatial scheme will be different and we observe that the val-

ues of correlations are decreasing. This proves the existence

of an intrinsic spatial structure in fMRI signals, which has to

be taken into account in order to improve the estimation of

correlations.

We will first illustrate this problem using a simple exam-

ple, and then we will propose new estimators to correct this

effect.

3.1. Model and definition of estimators

First, let us define the statistical hypotheses and quantities we

want to analyse. In the sequel, t will denote the transpose of

a vector or matrix.

Definition 3.1 Let us define two random vectors : X =

(X1, . . . , XP )t and Y = (Y1, . . . , YM )t, with a given

inter-correlation structure, for all i, j such that 1 ≤ i ≤
P, 1 ≤ j ≤ M , we assume, cor(Xi, Yj) = ηX,Y . In ad-

dition, let us note, for all i, 1 ≤ i ≤ P,M , var(Xi) =

σ2

X and var(Yi) = σ2

Y , and cor(Xi, Xj) = ρX
i,j and

cor(Yi, Yj) = ρY
i,j for 1 ≤ i, j ≤ P (resp.M). Without

loss of generality, we will assume that X and Y have zero

mean.

Let us note Z = (Xt, Y
t)t, and Z1, . . . ,ZT i.i.d. random

vectors distributed as Z.

E(ZZ
t) =

(
ΣXX ΣXY

ΣY X ΣY Y

)

is semi-positive definite.

The estimator of the correlation between X̄ and Ȳ respec-

tively average of X1, . . . , XP and Y1, . . . , YM is defined as,

η̂agg

X̄,Ȳ
=

ĉov(X̄, Ȳ )

σ̂X̄ σ̂Ȳ

where ĉov (resp. σ̂) denotes the empirical estimator of

covariance (resp. variance).



Fig. 1. Comparions of random and spatial scheme to down-

sampling the regions of interest.

Proposition 3.1 Under the hypotheses and notations of defi-

nition 3.1, the estimator η̂agg

X̄,Ȳ
is converging almost surely as

T → ∞ :

η̂agg

X̄,Ȳ

a.s.→ PM
ηX,Y

(∑P
i,j=1

ρX
i,j

)1/2 (∑M
i,j=1

ρY
i,j

)1/2

Remark 3.1 From the proposition 3.1, we can deduce two

simple cases,

• When ρX
i,j = ρY

i,j = δi,j , the limit is
√

PMηXY .

• When ρX
i,j = ρY

i,j = 1, the limit is equal to ηXY .

Therefore, the size of the regions will have a greater im-

pact when the voxels inside of the regions are independent.

Proposition 3.1 leads to the definition of three alternative

estimators :

corrected estimator : the estimator corrected for the exis-

tence of intra-correlation.

η̂agg,correct

X̄,Ȳ
=

(
∑P

i,j=1
ρ̂X

i,j

∑M
i,j=1

ρ̂Y
i,j)

1/2

PM
ρ̂X̄,Ȳ . (1)

average estimator : the estimator based on the average of all

the possible correlations.

η̂average

X̄,Ȳ
=

1

PM

P∑

i=1

M∑

j=1

η̂Xi,Yj
. (2)

bootstrap estimator : the estimator based on the average

of correlations computed from multiple random sam-

plings. In order to take into account the spatial structure

of fMRI data (voxels close in space will have high cor-

relations), we propose to compute multiple estimations

of correlation after taking the average of time series in

several draws of randomly-placed small cubes of 64

mm3 within each region. This has the advantage of

decreasing the influence of noise at the voxel level. We

denote this estimator η̂boot.

3.2. Results on simulated data

On the basis of the previous results, we simulated multivari-

ate Gaussian distributions in order to compare the four esti-

mators.

Figure 2 illustrates the efficiency of the estimators, with

and without noise. We simulate two Gaussian vectors X and

Y of size 21 and 70 respectively and inter-correlation equal to

0.2. For each vector, we simulate small cubes of 7 variables

where the intra-correlation is close to 1. The structure of the

matrix is illustrated in Figure 2. Based on this, we also tested

the influence of noise by adding independent Gaussian noise

to each variable.

These simulations show that all three estimators (cor-

rected, average and bootstrap) are equivalent according to

simulations without noise. However, the presence of noise

has a crucial effect on the robustness of the corrected and

average estimators. In taking into account the spatial struc-

ture, the bootstrap estimator seems more robust and more

appropriate for real data.



(a) (b)

(c)

Fig. 2. Results on simulations of multivariate Gaussian dis-

tribution. (a) image of the covariance matrix used in simu-

lations, with small cubes of 7 random variables with intra-

correlation equal to 0.99. (b) results of estimations without

noise. (c) results of estimations with different level of noise

(10000 points in time and 100 repetitions of simulations).

4. REAL DATA

We tested the bootstrap estimator on resting-state fMRI data

for 20 controls. Figure 3 illustrates the average correlations

obtained with the aggregated and bootstrap estimators. The

bootstrap estimator was computing on small cube of 64 mm3,

repeated 500 times. We can observe that using the bootstrap

estimator, the smallest regions may have high correlations.

5. CONCLUSION

In this paper, we propose a new estimator of correlation to

construct brain functional networks using anatomical tem-

plate for the definition of regions. The introduced bootstrap

estimator is adapted to the spatial structure of fMRI images

and robust to noise. The use of this new estimator on real data

leads to correct the effect of region size bias.

Fig. 3. Average correlations values obtained using 90 anatom-

ical regions with the average (left) and bootstrap (right) esti-

mators.
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