
HAL Id: hal-00694552
https://hal.science/hal-00694552v1

Preprint submitted on 4 May 2012 (v1), last revised 22 Jan 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of open Gromov-Witten invariants for
toric Calabi-Yau 3-folds by topological recursion, a proof

of the BKMP conjecture
Bertrand Eynard, Nicolas Orantin

To cite this version:
Bertrand Eynard, Nicolas Orantin. Computation of open Gromov-Witten invariants for toric Calabi-
Yau 3-folds by topological recursion, a proof of the BKMP conjecture. 2012. �hal-00694552v1�

https://hal.science/hal-00694552v1
https://hal.archives-ouvertes.fr


IPHT-T12/030

Computation of open Gromov-Witten invariants for toric
Calabi-Yau 3-folds by topological recursion, a proof of the

BKMP conjecture

B. Eynard 1, N. Orantin 2

1 Institut de Physique Théorique, IPHT CEA Saclay,
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Abstract

The BKMP conjecture (2006-2008), proposed a new method to compute closed and

open Gromov-Witten invariants for every toric Calabi-Yau 3-folds, through a

topological recursion based on mirror symmetry. So far, this conjecture had been

verified to low genus for several toric CY3folds, and proved to all genus only for C3.

In this article we prove the general case. Our proof is based on the fact that both

sides of the conjecture can be naturally written in terms of combinatorial sums of

weighted graphs: on the A-model side this is the localization formula, and on the

B-model side the graphs encode the recursive algorithm of the topological recursion.

One can slightly reorganize the set of graphs obtained in the B-side, so that it

coincides with the one obtained by localization in the A-model.Then it suffices to

compare the weights of vertices and edges of graphs on each side, which is done in 2

steps: the weights coincide in the large radius limit, due to the fact that the toric

graph is the tropical limit of the mirror curve. Then the derivatives with respect to

Kähler radius coincide due to special geometry property implied by the topological

recursion.

1 E-mail: bertrand.eynard@cea.fr
2 E-mail: norantin@math.ist.utl.pt

1



1 Introduction

Topological string theory has raised a lot of interest, because it is a limit of string the-

ory which is mathematically well defined and where computations can be entirely per-

formed. Topological A-model string theory is mathematically formulated as Gromov–

Witten theory.

For applications in physics, one is often concerned by topological string theories

in target spaces which are Calabi–Yau 3-folds. Not so many examples of Calabi-Yau

spaces are known explicitly, but there is a family which is particularly well understood,

this is the family of ”toric” Calabi–Yau 3-folds. These are particularly well studied

thanks to their toric symmetry, which allows to go even deeper in the computations.

There are mainly two types of topological string theories: A-model and B-model,

and it was conjectured (and proved in some cases) that the A-model and B-model

are dual to each other, through mirror symmetry which exchanges the complex

and Khähler structures of the target spaces. For both A and B theories, the ”string

amplitudes” enumerate in some appropriate way, maps from a Riemann surface of

given topology, into the target space (the Calabi-Yau 3-fold X or its mirror X̂). The

string amplitudes for the A-model are called ”Gromov-Witten” invariants and are well

defined and extensively studied mathematical objects.

So, string amplitudes depend on a target space and on the topology (genus and

possibly number of boundaries) of a Riemann surface. Closed amplitudes Fg(X) enu-

merate surfaces without boundaries, they depend only on a genus g. They are encoded

into generating functions by making formal series:

F (X, gs) =
∑

g=genus

g2g−2
s Fg(X)

where X is our target space (the toric CY 3-folds) and where the formal parameter gs is

traditionally called the ”string coupling constant”. The goal is eventually to compute

Fg = Fg(X), i.e. amplitudes corresponding to enumeration of Riemann surfaces of

given genus. For example F0(X) computes planar amplitudes, i.e. rational maps from

P1 into X.

Topological vertex. In principle, topological string amplitudes for toric CY 3-

folds are entirely known, through the ”topological vertex” method [2, 36, 44, 42, 43].

In that method, one introduces

q = e−gs
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and string amplitudes are given in terms of a series in powers of q:

Z = eF (gs) = e

∑
g

g2g−2
s Fg

=
∑
k

qkCk

where the coefficients Ck are of combinatoric nature (typically they enumerate 2d or

3d partitions, this is often called a ”crystal model”), they are known rather explicitly,

or at least they are given by explicit combinatoric sums over partitions.

The problem is to extract from this q-series, which is defined as an expansion

near q = 0, the asymptotic behavior and expansion near q = 1 in powers of gs =

− ln q. Indeed, the coefficients of this expansion are the ones of physical interest for

precision computations in high energy physics. Even computing the leading order i.e.

F0, requires an infinite combinatoric sum, and is not straightforward, and going beyond

leading order directly from the combinatoric sum is a very difficult challenge.

Methods for computing Gromov–Witten invariants of fixed genus. Many

methods have been introduced to compute directly the gs expansion, most of them are

based on solving a differential equation:

- one is the famous ”holomorphic anomaly equations” [5, 1]. It is based on the

observation that topological string amplitudes should be ”modular” invariant. This

implies a relationship between their holomorphic and anti-holomorphic parts with re-

spect to the parameters of the target space, which can be translated into a set of EDP

satisfied by the string amplitudes. A drawback of the method is that one can compute

the amplitudes only up to an unknown holomorphic function, which can be fixed by

knowing the answer in some limiting cases. When applicable, the holomorphic anomaly

equation method is extremely efficient for actual computations of Gromov-Witten in-

variants.

- Another is Givental’s method [26, 25]. This method translates some geometric

relations (like gluing surfaces) into a set of EDP. Those EDP can be formally solved,

and the solution can be written as a linear operator acting on a product of Kontsevich

integrals (depending on an infinite number of times), i.e. one has to compute derivatives

of Kontsevich integrals and at the end set the times to some special values. This method

shows that the generating function of Gromov-Witten invariants is a Tau-function for

some integrable hierarchy.

In both methods one has to find the Gromov-Witten invariants of a whole family

of Calabi-Yau 3-folds, one can’t find the invariants of one manifold directly.

The remodeling method

- In 2006 [40] M. Mariño suggested a new method, and then with Bouchard, Klemm

and Pasquetti further formalized the statement under the name ”remodeling the B–
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model” in 2008 [9]. That method is based on the ”topological recursion” of [13, 18] and

on mirror symmetry (this will be described in more details in section 4 below). This

method proposes to compute the amplitudes by recursion on the Euler characteristics,

without having to solve a differential equation, and in particular allows to compute the

amplitudes of one given manifold without having to study a family of manifolds. Also,

they give a recipe to compute ”open Gromov-Witten invariants”, as well as invariants

for orbifold geometries, which were not known before. This claim of [9] is often called

the ”BKMP conjecture”, and can be seen as an explicit example of mirror symmetry

to all genus. We write it explicitly as conjecture 4.1 in section 4.3.

The authors of [9] and many others afterwards checked this conjecture for many

examples of target space manifolds, and for low genus Gromov–Witten invariants, but

the statement was so far proved to all genus only for the simplest toric Calabi–Yau

3-fold, namely X = C3 [11, 53].

It was also noticed that the topological recursion implies the holomorphic anomaly

equations [19] as well as some properties very similar to Givental’s formalism [48], but

the converse has not been proved.

In [53], the proof for X = C3 was mostly combinatorical, and used the ”cut and

join” equations of Goulden–Jackson [27]. Unfortunately the tools involved in the com-

binatorics were very specific to the C3 geometry, and not easy to generalize, and has

prevented the authors of [11, 53] to extend their proof to other toric Calabi-Yau spaces.

The goal of the present article is to present a general proof for every toric Calabi-

Yau 3-fold, mostly combinatorial although not based on cut and join, but more based

on special properties of the topological recursion as well as localization.

Sketch of the proof:

- on the A-model side, it is known [36, 12] how to write the Gromov-Witten in-

variants through a localization formula, as a combinatorial sum over graphs, with

weights associated to edges and vertices. Vertices are labeled by a ”genus” and valency

(g, n). Weights of vertices are Gromov-Witten invariants of C3 (i.e. the topological

vertex) and are given by the Mariño–Vafa formula, i.e. they are triple Hodge integrals

in Mg,n.

- on the B-model side, the topological recursion can be naturally written as a

combinatorial sum over graphs, with weights associated to edges and vertices (but not

the same graphs and weights as the A-model side). Vertices are also labeled by a genus

and valency (g, n). Weights of vertices are combinations of residues of meromorphic

forms computed at the branchpoinst of the mirror curve.

- contrarily to the A-model side, the graphs of the B-model side have no (0, 1) or

(0, 2) vertices (genus zero, valency 1 or 2). There is a standard graph combinatorial
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toolkit which allows to relate sums of graphs with or without vertices of valency 1 or

2. In other words we can add (0, 1) and (0, 2) vertices to the B-model sum of graphs,

at the price of changing (”renormalizing”) the weights of edges and vertices.

- after this graph manipulation, so that we have the same graphs on both sides, it

remains to check whether the weights of edges and vertices in the A-model and in the

B-model coincide. This is done in two steps:

- In the large radius limit, where all Kähler parameters are large tj → +∞, i.e. the

tropical limit, the fact that the tropical limit of the spectral curve is the toric graph

of the A-model side, implies that the weights coincide at all tj =∞.

- For finite Kähler radius tj, thanks to the topological recursion, the weights of

the B-model side satisfy the ”special geometry property” (similar to Seiberg–Witten

relations), i.e. a differential equation with ∂/∂tj, which allows to compute their deriva-

tives with respect to tj, and thus show that the weights of the A-model and B-model

side, coincide for all tj’s (large enough).

This concludes the proof of the BKMP conjecture.

This article is organised as follows:

• Section 2 is a reminder on Toric Calabi-Yau 3-folds geometry and mirror sym-

metry.

• Section 3 is devoted to the description of the A-model side reminding the topo-

logical vertex formalism through localization.

• In section 4, we present the BKMP conjecture and prove it by reorganising the

graphs involved by the topological recursion into a set of graphs matching the

ones rising for the localisation analysis of section 3.

• Section 5 is a conclusion.

• The first two appendices are reminder of the topological recursion formalism and

its relation to intersection numbers. The other ones present some of the technical

proofs of theorems requested for proving the BKMP conjecture.

2 Reminder: geometry of Toric Calabi–Yau 3-folds

The geometry of toric Calabi-Yau 3-folds is well known and described in many works

and review articles [49, 8, 23, 36, 51], it is mostly combinatorial. The goal of this

section is to give a brief description of the geometry and combinatorics of those spaces

and introduce notations, which will be useful for the rest of the article. Since these are
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classical results of toric geometry, we only provide sketches of proofs here and we refer

the reader to the aforementioned literature for more details.

2.1 Construction of toric Calabi–Yau 3-folds

Every toric Calabi-Yau 3-fold X can be constructed as follows. Let r be a non

negative integer, and let ~q1, . . . , ~qr be independent integer vectors called charges

~qi = (qi,1, . . . , qi,r+3) ∈ Zr+3 for i = 1, . . . , r such that

∀ i = 1, . . . , r ,

r+3∑
j=1

qi,j = 0. (2.1)

In addition, these charges will be asked to fulfill additional condtions called ”smooth-

ness condition” which are described later in section 2.1.2.

Let t1, . . . , tr be r positive real numbers ti > 0, called Kähler parameters, or radii

and X1, . . . , Xr+3 be the cannonical coordinates of Cr+3. We write

Xi = |Xi| eiθi . (2.2)

Definition 2.1 For charges {~qi}ri=1, Kähler parameters {ti}ri=1 and {Xi}r+3
i=1 as above,

one defines the 6-dimensional real manifold X as follows. X is the submanifold of Cr+3

defined by the r relations

∀ i = 1, . . . , r ,
r+3∑
j=1

qi,j |Xj|2 = ti, (2.3)

and quotiented by the equivalence relations:

∀ i = 1, . . . , r , ∀α ∈ R , (θ1, . . . , θr+3) ≡ (θ1, . . . , θr+3)+α (qi,1, . . . , qi,r+3). (2.4)

Under a suitable choice of charges ~qi’s, X is a smooth 6 dimensional manifold.

It turns out that X has a complex structure inherited from that of Cr+3 and it has

the Calabi-Yau property which is equivalent to
r+3∑
j=1

qi,j = 0. One can check that the

following symplectic form:

ω =
1

2

r+3∑
i=1

d|Xi|2 ∧ dθi (2.5)

is a well defined symplectic form on X (it is the reduction of the cannonical symplectic

form on Cr+3, and it descends to the equivalence classes).

Let us consider 2 examples which we will develop in the following:
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Figure 1: The polyhedra of the resolved connifold q = (1, 1,−1,−1) and of local P2

q = (1, 1,−3, 1).

• The resolved connifold is defined with r = 1 and q = (1, 1,−1,−1), i.e.

|X1|2 + |X2|2−|X3|2−|X4|2 = t , (θ1, θ2, θ3, θ4) ≡ (θ1 +α, θ2 +α, θ3−α, θ4−α).

(2.6)

• The local P2 is defined with r = 1 and q = (1, 1,−3, 1), i.e.

|X1|2+|X2|2−3|X3|2+|X4|2 = t , (θ1, θ2, θ3, θ4) ≡ (θ1+α, θ2+α, θ3−3α, θ4+α).

(2.7)

2.1.1 The toric graph

Let π be the moment map

π : X → R3

7→ (|X1|2, |X2|2, |X3|2)
. (2.8)

The image π(X) is a convex polyhedral subdomain of R3. Its faces are given by |Xi|2 = 0

for some i = 1, . . . , 3 + r. Its edges are the locci where a pair of |Xi|2 vanish and its

vertices are reached when 3 of the |Xi|2 vanish. See fig.1 for our 2 examples.

Let us define the three vectors

α = (1, 0, 0, α4, . . . , αr+3) , β = (0, 1, 0, β4, . . . , βr+3) , γ = (0, 0, 1, γ4, . . . , γr+3)

(2.9)

satisfying

r+3∑
j=1

qi,jαj = 0 ,
r+3∑
j=1

qi,jβj = 0 ,
r+3∑
j=1

qi,jγj = 0 (2.10)

for all i = 1, . . . , r. Notice that this definition implies that

∀ j = 1, . . . , r + 3 , αj + βj + γj = 1. (2.11)
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Thus, the 3-dimensional vector (αj, βj, γj) is the normal to the jth face (|Xj|2 = 0).

We define the graph in R3 whose r + 3 vertices are the points

(αj, βj, γj) (2.12)

and we draw an edge between (αi, βi, γi) and (αj, βj, γj) iff the face |Xi|2 = 0 and

|Xj|2 = 0 have a common edge.

This graph is in R3, but since it lies on the hyperplane α + β + γ = 1 (thanks to

the Calabi-Yau condition
r+3∑
j=1

qi,j = 0), we can actually view it as a graph in R2.

We thus define:

Definition 2.2 The dual toric graph Υ̂X of X, is the graph in R2 whose r+ 3 vertices

are the points

vj = (αj, βj) (2.13)

such that two vertices vi and vj are linked by an edge if and only if the faces |Xi|2 = 0

and |Xj|2 = 0 have a common edge. Υ̂X is thus the graph whose vertices are the normal

vectors to the faces of the polyhedra of X.

Definition 2.3 The toric graph ΥX of X, is the dual of Υ̂X, i.e. a graph whose edges are

orthogonal to those of Υ̂X, and such that the length of the α–projection of the compact

edges are equal to the |X1|2 projection of the corresponding edges in the polyhedra. The

lenghts of compact edges of the toric graph, are thus linear combinations of the tj’s.

The coordinates of a vertex σ of ΥX in the R2 plane are denoted:

σ = (
◦
aσ,

◦
bσ). (2.14)

Thus
◦
aσ −

◦
aσ′ (resp.

◦
bσ −

◦
bσ′) is a linear combination of tj’s.

See fig.2 for examples.

2.1.2 Smoothness condition

The polyhedra π(X) is not smooth at its vertices. Thus X might not be smooth at these

vertices. It can be shown that the invertibility of the matrix [qi,j]i=1,...,r; j=1,...,r+3,j 6=i1,i2,i3

with integer coefficients, i.e. that:

∀(i1, i2, i3) = vertex , det (qi,j)i=1,...,r; j=1,...,r+3,j 6=i1,i2,i3 = ±1 (2.15)

ensures the smoothness of X near the vertex |Xi1|2 = |Xi2|2 = |Xi3|2 = 0. We refer to

it as the smoothness condition of X near (i1, i2, i3).
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(1,1)(0,1)

(1,0)(0,0)

(0,1)

(1,0)

(0,0)

(!1,!1)

Figure 2: The toric graphs (red) and their duals (blue) for the resolved connifold
q = (1, 1,−1,−1) and of local P2 q = (1, 1,−3, 1). All the blue triangles have area 1/2.

Near (i1, i2, i3), X is locally C3, and the condition above is related to the fact that

we can define the 3 canonical angles of C3, and the angles must have periodicities 2π

(so we need integer coefficients). Once again, we refer the reader to the literature cited

at the beginning of this section for further insights on this topic.

In terms of the toric graph, a vertex of the polyhedra is a triangular face of the

dual graph Υ̂X, and the condition 2.15 is equivalent to saying that:

area of triangle (i1, i2, i3) =
1

2
(2.16)

i.e.

αi1βi2 − αi2βi1 + αi2βi3 − αi3βi2 + αi3βi1 − αi1βi3 = ±1. (2.17)

If we relabel the points i1, i2, i3 so that the triangle (i1, i2, i3) has trigonometric orien-

tation in R2, then the expression above is +1:

αi1βi2 − αi2βi1 + αi2βi3 − αi3βi2 + αi3βi1 − αi1βi3 = +1. (2.18)

Proposition 2.1 The dual toric graph Υ̂X is a triangulated polygon with vertices in

Z2, made of triangles of area 1/2.

2.1.3 Local framings

The previous smoothness condition can be readily rewritten as a determinant, by in-

troducing the following matrix:
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Definition 2.4 To every vertex σ of ΥX, ( i.e. to a positively oriented triangle

(i1, i2, i3) of the dual Υ̂X) we associate the 2× 2 matrix fσ (called local framing matrix

at vertex σ):

fσ =

(
fa,σ fb,σ
fc,σ fd,σ

)
=

(
βi3 − βi1 βi1 − βi2
αi1 − αi3 αi2 − αi1

)
(2.19)

The smoothness condition is that det fσ = 1, i.e. fσ ∈ Sl2(Z).

Observe that a rotation of the triangle (i1, i2, i3)→ (i2, i3, i1) amounts to

fσ → fσ ×
(

0 −1
1 −1

)
, (2.20)

and a change of orientation of the triangle (i1, i2, i3)→ (i2, i1, i3) amounts to

fσ → fσ ×
(

1 0
1 −1

)
. (2.21)

Definition 2.5 Let e = (σ, σ′) be an edge of ΥX, we denote ε = (σ, e) (resp. ε′ =

(σ′, e)) the half edge of e starting from σ (resp. σ′), and let σ be dual to the positively

oriented triangle (i1, i2, i3) in Υ̂X and σ′ be dual to the positively oriented triangle

(i2, i1, i4). We define the framing of the half-edge (σ, e) as:

fε = −fε′ = βi1 − βi2 = fb,σ = −fb,σ′ . (2.22)

Notice that the framings of the 3 half-edges emanating from a vertex σ are respec-

tively:

fb,σ , −fa,σ − fb,σ , fa,σ, (2.23)

and their sum is zero:

∀σ = vertex of ΥX ,
∑

ε adjacent toσ

fε = 0. (2.24)

2.1.4 Lagrangian submanifolds

For a toric Calabi-Yau 3-fold X, we define a set of special Lagrangian submanifolds as

follows:

Definition 2.6 Consider a 1-dimensional affine subspace V of R3, given by relations

V : ∀ i = 1, 2 ,
r+3∑
j=1

ri,j|Xj|2 = ci (2.25)

where {ri,j}i=1,...,2, j=1,...,r+3 are integers such that
∑

j ri,j = 0, and c1, c2 are two real

numbers chosen such that V intersects an edge of the polyhedra of X. Then define a
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X3
2

X1
2

X2
2

L

Figure 3: Example of a brane L for X =resolved connifold. π(L) is a line V ⊂ R3,
ending on an edge of the polyhedra of X.

special Lagrangian submanifold L, as the 3 dimensional submanifold of X given by the

following relationships:

∀ i = 1, 2 ,
r+3∑
j=1

ri,j|Xj|2 = ci (2.26)

and the realtionships between θ1, . . . , θr+3:

0 = det



q1,1 . . . q1,r+3
...

...
qr,1 . . . qr,r+3

r1,1 . . . r1,r+3

r2,1 . . . r2,r+3

θ1 . . . θr+3


. (2.27)

This condition implies that L is Lagrangian, i.e. the symplectic form ω = 1
2

r+3∑
j=1

d|Xj|2∧

dθj = 0 vanishes on L.

In addition, we shall require that the plane orthogonal to V in R3 be not parallel to

any edge of the polyhedra of X.

L (in fact V ) can be pictorially represented as a half–line on the polyhedra of X,

ending on an edge, or also L can be represented as a line attached to an edge of the

toric graph, see fig.3.

The fact that L ends on an edge of the toric graph, implies that L is topologically

L ∼ C× S1, (2.28)
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and it has Betti number

b1(L) = dimH1(L,Z) = 1 , H1(L,Z) ∼ Z. (2.29)

From now on, we shall always assume that L ends on a non–compact edge.

2.2 The mirror

For a set of r complex parameters {t̃i}ri=1, and a set of charges {~qi}ri=1 as before, one

defines the projective curve embedded in P2 = (Y1, Y2, Y3) by the homogeneous degree

1 polynomial:

H(Y1, Y2, Y3; t̃1, . . . , t̃r) =
r+3∑
i=1

Yi = 0 (2.30)

where Yi = e−xi , and

∀ i = 1, . . . , r ,
r+3∑
j=1

qi,jxj = t̃i. (2.31)

Thanks to the Calabi-Yau condition
∑

j qi,j = 0, it is homogeneous of degree 1 . If we

choose the patch Y3 = 1, this defines an algebraic curve embedded into (C∗)2:

H(Y1, Y2, 1; t̃1, . . . , t̃r) = 0. (2.32)

Remark 2.1 The polynomial H(Y1, Y2, Y3) depends on the complex parameters t̃i and
charges ~qi but, as long as there is no ambiguity, we omit to write down this dependance
explicitly in the following.

Let us consider our two examples:

• For the resolved connifold q = (1, 1,−1,−1), we have x4 = x1 + x2 − x3 − t̃, i.e.

Y4 = et̃
Y1 Y2

Y3

(2.33)

and thus

H(Y1, Y2, Y3) = Y1 + Y2 + Y3 + et̃
Y1 Y2

Y3

. (2.34)

The corresponding algebraic curve is:

Y1 + Y2 + 1 + et̃ Y1Y2 = 0 (2.35)

which is parameterized by a unique parameter t̃.

• For local P2 q = (1, 1,−3, 1), we have x4 = 3x3 − x1 − x2 − t̃, i.e.

Y4 = et̃
Y 3

3

Y1 Y2

(2.36)
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and thus

H(Y1, Y2, Y3) = Y1 + Y2 + Y3 + et̃
Y 3

3

Y1 Y2

. (2.37)

The algebraic curve is:

Y1 + Y2 + 1 +
et̃

Y1 Y2

= 0. (2.38)

2.2.1 Newton’s polygon

Notice that the equation of this projective curve is always of the form:

H(Y1, Y2, Y3) =
∑

(α,β)=vertex of Υ̂X

Hα,β Y
α

1 Y β
2 Y 1−α−β

3 . (2.39)

In the patch Y3 = 1, it gives the plane curve

H(Y1, Y2, 1) =
∑

(α,β)=vertex of Υ̂X

Hα,β Y
α

1 Y β
2 = 0. (2.40)

Newton’s polygon is defined as the set of points (α, β) ∈ Z2 such that Hα,β 6= 0.

Therefore:

Proposition 2.2 the Newton’s polygon of the plane curve H(Y1, Y2, 1) = 0 is the dual

toric graph.

2.2.2 Topology of the mirror curve

Let C be the Riemann surface of polynomial equation 0 = H(X, Y ) =
∑

i,j Hi,jX
iY j

with generic coefficients Hi,j.

It is a classical result in algebraic geometry, that the genus g of C is the number of

integer points strictly contained in the convex envelope of the Newton’s polygon.

Since the Newton’s polygon is the dual toric graph Υ̂X and since Υ̂X is triangulated

with triangles of area 1/2, each triangle contains no integer point in its interior, integer

points are only at vertices, and thus the number g of integer points is the number of

vertices of Υ̂X which are strictly inside the polygon, i.e. in terms of the dual, this is

the number of compact faces of ΥX, that is to say the number ”loops” of ΥX. Since the

number of faces of ΥX is r + 33, the number of non–compact faces is r + 3 − g. This

means that:

3Remember that each face corresponds to some |Xi|2 = 0, i = 1, . . . , r + 3.
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Proposition 2.3 The genus g of the algebraic curve C is the number of loops in the

toric graph ΥX. The number of punctures of H(X, Y ) = 0 is r + 3− g.

Υ̂X is a triangulated polygon in Z2, with r + 3 vertices, g + 2r + 3 edges, g + r + 1

triangular faces (each triangle having area 1/2).

The toric graph ΥX is a planar trivalent graph with 2g+ r compact edges, r+ 3− g

non–compact edges, g+r+1 vertices, g compact faces and r+3−g non–compact faces.

For our two examples, this gives:

• The mirror of the resolved connifold has genus g = 0. The toric graph has r = 1,

it has 5 edges, 1 compact and 4 non–compact, and it has 2 vertices, and no internal

face. See fig.1.

• The mirror of local P2 has genus g = 1. Its toric graph has r = 1, it has 3 vertices,

6 edges, 3 compact and 3 non–compact, and one internal face. See fig.1.

2.2.3 Branchpoints

The branchpoints are the zeroes of the meromorphic differential form dx = −dX/X
on C. The number of branchpoints is given by the Hurwitz formula:

#zeroes of dx = 2g− 2− deg (dx) (2.41)

where − deg (dx) is the number of poles of dx, i.e. the number of punctures, which is

equal to r+ 3− g. This shows that the number of branchpoints is equal to the number

of vertices of ΥX:

#zeroes of dx = 2g− 2− deg (dx) = g + r + 1. (2.42)

To each vertex σ of ΥX, we can associate a branchpoint aσ. This labeling of branch-

points by vertices of the ΥX is made explicit in the next section.

2.2.4 Framing

For f ∈ Z, we shall consider the plane curve Hf (X, Y ) = 0 defined by

Hf (X, Y ) = H(X Y f , Y, 1) (2.43)

i.e. we have replaced Y1 = X Y f and Y2 = Y and Y3 = 1. Such an integer f ∈ Z is

called the ”framing”.

The framed curve has an equation of the form:

Hf (X, Y ) =
∑

(α,β)=vertex of Υ̂X

Hα,βX
α Y β+fα. (2.44)

14



Figure 4: The toric graph of local P2 and its dual, and the same graph after a framing
transformation X → XY f such that there is no more vertical edge (no horizontal edge
in the dual). Here the framing is f = 2.

Its Newton’s polygon is an affine transformation of the dual toric graph Υ̂X. See

fig.4 for the example of local P2.

In all what follows we shall always assume that we have chosen a framing such that

the framed toric graph has no vertical edge.

2.3 Atlas of the mirror curve with cylinders and pants

2.3.1 Amoeba and tropical limit

For describing the geometry of the mirror curve, it is very useful to introduce some

basic results of tropical geometry.

First of all, given a sub-manifold of Cn, one defines its Amoeba as follows:

Definition 2.7 For n ∈ N and a polynomial P (Y1, . . . , Yn), we define the Amoeba of

the submanifold V := {(Y1, . . . , Yn) ∈ Cn|P (Y1, . . . , Yn) = 0} by

A(P ) :=
{

(Rex1, . . . ,Rexn)|P (e−x1 , . . . , e−xn) = 0
}
. (2.45)

Another way to define this Amoeba is the image of V under the so-called Log map

which we shall now define.

Definition 2.8 For λ ∈ R+, let us define the ”Log” map

Logλ :
(C∗)n → Rn

(Y1, . . . , Yn) →
(
− log|Y1|

log λ
, . . . ,− log|Yn|

log λ

)
.

(2.46)

With this definition, one sees that

A(P ) = Loge (V) , (2.47)
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while changing the value of λ amounts to applying a rescaling to the Amoeba.

In particular, the limit λ→∞ is known as the tropical limit, following a result of

Mikhalkin [45] and Rullg̊ard [50]:

Theorem 2.1 When λ→ +∞, the λ rescaled Amoeba of P (X, Y ) =
∑
i,j

αi,jλ
−ai,jX iY j

converges to a tropical curve:

Logλ (V)→λ→∞ P∞(x, y) (2.48)

where the tropical curve

P∞(X, Y ) := ”
∑
i,j

ai,jX
iY j” (2.49)

is defined by

”
∑
i,j

ai,j X
i Y j” =

{
(x0, y0) ∈ R2|∃(i, j) 6= (k, l) , ∀(m,n) /∈ {(i, j), (k, l)} ,

ai,j + ix0 + jyo = ak,l + kx0 + ly0 ≤ am,n +mx0 + ny0} .
(2.50)

A tropical curve is thus a union of straight segments in R2, forming a graph with

trivalent vertices drawn in R2 whose faces are associated to the monomials defining

polynomial, edges to pairs of such monomials and vertices to triple of them. In partic-

ular, the λ rescaled Amoeba of P (x, y) =
∑

i,j αi,jλ
−ai,jX iY j converges in the tropical

limit to a graph whose faces correspond to sectors where the log of one of the mono-

mials αi,jλ
−ai,jX iY j has a modulus larger than the other monomials. The edges and

vertices of the limiting Amoeba are thus the locus where two, respectively three, of

these monomial are of equal magnitude, and larger than the other ones. Let us remark

that the pairs (i, j) ∈ Z2 for which αi,j 6= 0 fix the slope of the possible edges of the

tropical curve whereas the position of the vertices as well as the connectivity of the

graph representing this tropical curve depend on the exponents ai,j’s.

Let us apply the rescaling technic to the study of the geometry of the mirror curve.

Proposition 2.4 The tropical limit of the plane curve Hf (X, Y ) = 0 with complex

parameters t̃j = T̃j log λ, is the framed toric graph rescaled by log λ of X with Kähler

parameters tj = t̃j +O(1).

proof:

We are interested in the large complex parameter limit t̃k →∞. For reaching this

limit, let us define

T̃k :=
t̃k

log λ
(2.51)
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where we assume T̃k = O(1) when λ→ +∞.

Let us first remark that the coefficient of XαY β in the polynomial Hf (X, Y ) read

Hα,β−fα = et̃α,β (2.52)

where the times t̃α,β are linear combinations of the complex parameters:

t̃α,β =
∑
k

Cα,β;k t̃k. (2.53)

With these notations, the framed mirror curve can be written

Hf (X, Y ) =
∑

(α,β−fα)=vertex of Υ̂X

λ

∑
k

Cα,β;kT̃k

Xα Y β. (2.54)

We can now study the tropical limit of the plane curve Hf (X, Y ) = 0. When

λ→∞, its rescaled Amoeba converges to

H
[∞]
f (X, Y ) = ”

∑
(α,β−fα)=vertex of Υ̂X

(
−
∑
k

Cα,β;kT̃k

)
Xα Y β ”. (2.55)

It is supported by the lines of equation:

−
∑
k

Cα,β;kT̃k + αx+ βy = −
∑
k

Cα′,β′;kT̃k + α′x+ β′y (2.56)

for (α, β − fα) and (α′, β′ − fα′) two vertices of Υ̂X. It is easy to see that these lines

are parallel to the edges of the framed toric graph of X4 .

More precisely, the tropical curve H
[∞]
f (X, Y ) is a graph whose faces are sectors of

R2 where the logarithm of the modulus of one of the monomials in Hf (X, Y ) is larger

than all the other ones. It is now important to remember that such a monomial is

just the expression of one of the Yi/Y3 in terms of X and Y . If i = 3 we have that

|Yi/Y3| = 1 and |Yj/Y3| � 1 for j 6= 3. If i 6= 3, we have that |Yj/Yi| � 1 for j 6= i.

Let us write

|Xj|2 = − log |Yj/Yi|.

Hence, a face of the graph defining the tropical limit, corresponds to

|Xi|2 = 0 , ∀ j 6= i |Xj|2 > 0

and by definition
∑

j qk,j|Xj|2 = t̃k. In other words a face of the tropical curve corre-

sponds to the vanishing of one of the |Xi|2, i.e. to a face of the toric graph.

4Remark that this property does not depend on the value of the parameters Cα,β;k and T̃k.
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Figure 5: For t̃i’s large enough, the Amoeba surrounds the toric graph. Since we have
chosen the framing so that the toric graph has no vertical edge, it is possible to cut
the amoeba by vertical strips of width O(1) (when t̃i → ∞), such that the amoeba is
a union of 3-legs amoebas of fixed width R, and 2 legs amoebas of arbitrary width.

In this way, we can associate a face of the Toric graph to each face of the graph

defined by the tropical curve. The adjacency of these latter faces is thus given by

the Toric graph. Combining this result with the fact that the edges of the tropical

curve are parallel to the ones of the framed toric graph proves the proposition (up to

a translation of the edges which does not change the graph and is of no interest in the

following).

�

2.3.2 Large radius

When the parameters t̃j are large enough, the amoeba of the mirror curve is a small

region which surrounds its tropical limit (cf. fig. 5), that is to say, it is a fattening of

the framed toric graph.

Thus, when the t̃j’s are large enough, it is possible to cut the amoeba by vertical

strips of fixed width R = O(1), such that the amoeba is a union of 3-legs amoeba pieces

of fixed width, and 2 legs amoeba pieces of arbitrary width. See fig 5.

• Cylinders

Regions of the amoeba which are close to edges (i.e. 2-legs amoeba pieces) corre-

spond to two of the |Yi|’s of the same magnitude and all the others much smaller, i.e.

they are approximated by:

et̃α,βXαY β + et̃α′,β′Xα′Y β′ = o(1) (2.57)

with (α, β) and (α′, β′) two adjacent vertices of the dual toric graph.
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Im x

mod 2"

!R<Re x!a < R

Figure 6: Each Cσ is topologically a ”pair of pants” i.e. a Riemann sphere with 3 holes,
∂Cσ is the union of 3 circles. Cσ is realized by gling 2 copies of the x-complex plane,
with a cut ]∞, aσ], glued together along the cut. Moreover, since the curve is algebraic
in the variable X = e−x, this means that x has to be identified with x ≡ x + 2πi f.
Also, we have defined Cσ by restricting −R

2
< Re (x− aσ) < R

2
for large enough t̃j’s.

The curve et̃α,βXαY β + et̃α′,β′Xα′Y β′ = 0, is a rational curve with 2 punctures, it is

topologically a cylinder. It can be parametrized by a complex parameter z ∈ C∗:{
X = e−x = zβ−β

′
(1 + o(1))

Y = e−y = − e
tα,β−tα′,β′

β′−β zα
′−α (1 + o(1))

(2.58)

The differential dx = (β′−β)dz never vanishes, so this curve contains no branchpoints.

• Pairs of pants Regions of the amoeba which are close to vertices (i.e. 3-legs

amoeba pieces) correspond to three of the |Yi|’s of the same magnitude and all the

others much smaller, i.e. they are approximated by:

et̃α,βXαY β + et̃α′,β′Xα′Y β′ + et̃α′′,β′′Xα′′Y β′′ = o(1) (2.59)

where (α, β), (α′, β′), (α′′, β′′) is an oriented triangle of Υ̂X, i.e. a vertex σ of ΥX. This

curve can be parametrized by a complex parameter z ∈ C \ {0, 1,∞}:{
x = − lnX = −fb ln z − fa ln (1− z) + fb ln fb

fa+fb
+ fa ln fa

fa+fb
+
◦
aσ + o(1)

y = − lnY = −fd ln z − fc ln (1− z) + fd ln fb
fa+fb

+ fc ln fa
fa+fb

+
◦
bσ + o(1)

(2.60)

where f is the framing matrix defined in def. 2.4.

It is easy to see that this curve is topologically a pair of pants see fig.6.

The differential

dx =

(
−fb
z

+
fa

1− z

)
dz (2.61)

vanishes at exactly one point z = fb/(fa + fb), so this pair of pants contains exactly

one branchpoint (here we use that we have chosen the framing so that the framed toric

graph has no vertical edge, i.e. fa, fb and fa + fb are all non-vanishing).
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Figure 7: For t̃j’s large enough, and if we have chosen an appropriate framing (such
that the toric graph has no vertical edge), then we can cut the curve by planes
Rex =constant, such that the curve is a union of pairs of pants and cylinders. Each
pair of pant contains exactly one branchpoint aσ, and we chose the cutting planes such
that the domain {Re (x− aσ)} remains finite in the limit t̃j → +∞. The cylinders be-
come of infinite lenght in the limit t̃j → +∞, their length is of the order |Re(aσ− aσ′)|
i.e. of the order of t̃j. The example here is local P2, of equation 1+XY 2 +Y + et̃

XY 3 = 0,

i.e. the curve 1 +X + Y + et̃

XY
= 0 framed by X → XY 2.

2.3.3 Atlas of the mirror curve

This gives an explicit atlas of charts to describe the plane curve Hf (X, Y ) = 0.

In other words, an atlas of C is obtained as follows:

Proposition 2.5 The curve C is covered by a union of cylinders Ce (with e ∈edges)

and spheres with 3 holes Cσ (with σ ∈vertices).

C = ∪σ=vertices of ΥX
Cσ ∪e=edges of ΥX

Ce. (2.62)

The transition maps are given by identifying the coordinate e−x. Indeed, if σ is a vertex

and e is an adjacent edge, then the map C → C∗, 7→ e−x is analytical and invertible on

Cσ ∩ Ce (this intersection has the topology of a cylinder).

Each pair of pants Cσ contains exactly one branchpoint, and thus we label the

branchpoints by vertices σ ∈ ΥX.

2.3.4 The Harnack property

Notice that the map C → A : (e−x, e−y) 7→ (Rex,Re y) is 2 → 1 in each cylinder

and each pair of pants, and our assumption that t̃j’s are large enough implies that
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the amoeaba pieces of distinct cylinders and pairs of pants don’t overlap, so the map

C → A : (e−x, e−y) 7→ (Rex,Re y) is globally 2 → 1. This is called the ”Harnack

property”, and this means that H(e−x, e−y) = 0 is a Harnack curve.

It was shown by [32, 29] that a Harnack curve can always be realized as the limit

shape of a crystal model, which makes the link with combinatorics, but we shall not

use that here.

2.4 The mirror map

Our mirror curve is of the form:

H(X, Y ) =
∑

(i,j)∈Υ̂X

et̃i,j X i Y j (2.63)

where each coefficient t̃i,j is a linear combination of t̃i’s:

t̃i,j =
r∑

k=1

Ci,j;k t̃k. (2.64)

Notice that each I = (i, j) is a vertex of the dual toric graph Υ̂X, and thus corre-

sponds to a face of the toric graph ΥX.

Our toric graph has g loops, i.e. g compact faces. To each loop we associate a

cycle BI on C by taking the preimage of the corresponding loop at the boundary of the

amoeba (see fig.8).

Then, let us choose g compact–edges in such a way that after removing those edges

the graph remains connected (and thus is a tree).

On each of those edges eI , define AI to be a circle of constant Rex wraping the

cyilinder CeI .
We can choose the edges in such a way that

AI ∩ BJ = δI,J . (2.65)

Since the non–compact edges of ΥX correspond to punctures (i.e. places where

X = 0 or X = ∞, and Y = 0 or Y = ∞), we can choose on C \ ∪IAI a tree T whose

vertices are the punctures.

This ensures that the function lnY is well defined on C \ T .

Definition 2.9 The mirror map {t̃k}k=1,...,r+3 7→ {tk}k=1,...,r+3 is defined by:

If (i, j) is a non–compact face:

ti,j = t̃i,j, (2.66)
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Figure 8: For each vertex I = (i, j) of Υ̂X, i.e. for each loop I of the toric graph, we
draw a B-cycle BI , and then, we choose dual A-cycles AJ such that AJ is a circle with
constant Re x around a cylinder corresponding to an edge surrounding the loop, and
such that AJ ∩ BI = δI,J . Then we draw a tree on C whose vertices are the punctures
(the points where X → 0 or X → ∞), and which doesn’t intersect the A-cycles and
B-cycles.

and if I = (i, j) is a compact face:

ti,j =
1

2iπ

∮
AI
y dx =

1

2iπ

∮
AI

lnY
dX

X
. (2.67)

The times tk’s with k = 1, . . . , r, are defined by inverting the system:

ti,j =
r∑

k=1

Ci,j;k tk (2.68)

where the coefficients Ci,j;k are defined in eq. (2.64):

t̃i,j =
r∑

k=1

Ci,j;k t̃k. (2.69)

If the Kähler parameters tj’s defining the manifold X, and the complex parameters

t̃j defining the plane curve H(X, Y ; {t̃j}) are related by those relations, then we say

that H(X, Y ; {t̃j}) = 0 is the mirror curve of X5.

One can see that in the large parameter limit, when all t̃i’s are large, one has:

ti ∼ t̃i +O(e−t̃1 , . . . , e−t̃r). (2.70)

The relationships eq. (2.67) are called ”mirror map”.

5 The mirror curve defined in this way is not the image of X under mirror symmetry. This image
is indeed a 3-fold defined by the equation H(X,Y ; {t̃j}) = uv.
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Remark 2.2 These relationship can be rephrased in terms of Picard-Fuchs equations.

dx
∂y(x)

∂tI
=

∫
x′∈BI

B(x, x′). (2.71)

and thus
∂tI
∂tJ

= δI,J =
1

2iπ

∫
x∈AI

∫
x′∈BJ

B(x, x′), (2.72)

where B is the Bergman kernel on C. We shall not use this property.

3 A-model side

3.1 Closed Gromov-Witten invariants

3.1.1 Definition

Consider X a toric Calabi–Yau manifold of dimension 3, with some toric symmetry T3.

Definition 3.1 Let β ∈ H2(X,Z). We define the moduli space of ”stable maps”

Mg,0(X, β) = {(Σ, f)} (3.1)

where Σ is a (possibly nodal) connected oriented Riemann surface of genus g, and

f : Σ → X is holomorphic in the interior of Σ, f(Σ) ∈ β, and f is a stable map.

Stability means that if Σ is a nodal surface, any sphere component with at most 2 nodal

points cannot be collapsed to a point by f , and any torus component with no nodal

point cannot be collapsed to a point by f . Mg,0(X, β) is the set of equivalence classes

of stable maps modulo isomorphisms. It is an orbifold, meaning that stable maps with

symmetries are quotiented by their automorphism group.

It is a classic result of algebraic geometry that Mg,0(X, β) is a compact moduli

space (see for example [24] for a review on the subject).

It has been shown that it has a fundamental class 1 and a virtual cycle

[Mg,0(X, β)]vir [35], and thus we can define the Gromov–Witten invariants as:

Definition 3.2 We define the Gromov–Witten invariants as a formal power series

(the formal parameter being Q = e−t):

Wg,0(X, t) =
∑

β∈H2(X,Z)

e−t.β
∫

[Mg,0(X,β)]vir

1. (3.2)

where t = (t1, . . . , tb2(X)) is a vector of dimension b2(X) = dimH2(X,Z), of complex

formal parameters ti.
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We emphasize that this defines a formal series in the parameters Q = e−t, and every

equality we are going to consider, will be an equality of formal series, meaning equality

of the coefficients of the series.

We won’t study the construction of the virtual cycle in this article, as we won’t

need it, and we refer the reader who wants to know more details to the literature [49].

3.1.2 Localization

The toric symmetry of X allows to use Attiya-Bott localization and thus

Wg,0(X, t) =
∑

β∈H2(X,Z)

e−t.β
∑

Ξ∈Mg,0(X,β)fixed

∫
[Ξ]vir

1

eT (Nvir
Ξ )

(3.3)

where Mg,0(X, β)fixed is the subset of Mg,0(X, β) of maps invariant under the toric

action of X. For Ξ ∈ Mg,0(X, β)fixed, the virtual cycle of Mg,0(X, β) descends to a

virtual cycle [Ξ]vir, and to a normal bundle Nvir
Ξ , and eT is the equivariant Euler class.

This construction is well studied in the litterature, and we shall now briefly describe

the fixed locus to motivate the definition of the relative Gromov-Witten invariants given

in section 3.3.

3.1.3 Torus orbits in X

Before describing the contribution to the localization formula, it is useful to recall the

torus action on X. Remember that we have defined the moment map

π : X→ R3 , 7→ (|X1|2, |X2|2, |X3|2). (3.4)

It sends X to the polyhedra.

The torus action consists in shifting the 3 independent angles, it doesn’t change the

radius. Hence, it keeps the polyhedra fixed. Let us now study the orbits of the points

of X under this action:

- For a generic point p ∈ X, π(p) is in the bulk of the polyhedra, so the 3 independent

radius are non–vanishing, and the orbit of p under the torus action is a 3-dimensional

torus.

- For a point p such that π(p) is on a face of the polyhedra, there are only 2

non–vanishing radius, and thus an orbit of the torus action is a 2-dimensional torus.

- For a point p such that π(p) is on an edge of the polyhedra, there is only 1

non–vanishing radius, and thus an orbit of the torus action is a circle.

- For a point p such that π(p) is a vertex of the polyhedra, there is no non–vanishing

radius, and thus an orbit of the torus action is a point, i.e. vertices of the torus graph

correspond to fixed points of the torus action.

24



Notice that:

- a fixed point i.e. π−1(vetex) is a 0-dimensional manifold. For a vertex σ of ΥX,

we denote σ = π−1(σ) the corresponding fixed point of X;

- π−1(edge) is a 2-dimensional manifold (a 1-dimensional family of circles). If the

edge is a closed edge, this is a sphere with 2 punctures (the 2 punctures being the 2

fixed points), and if the edge is open, this is a half-sphere with one puncture. For a

closed edge e = (σ, σ′) (resp. an open edge ε = (σ, e)), we denote τ(σ,σ′) = π−1(e) (resp.

τ(σ,e) = π−1(ε)) the corresponding sphere (resp. half-sphere).

- π−1(face) is a 4-dimensional manifold (a 2-dimensional family of 2-dimensional

tori).

- π−1(bulk) is a 6-dimensional manifold (a 3-dimensional family of 3-dimensional

tori).

In other words, the only fixed locus of X which are manifolds of dimension at most

2, correspond to either edges or vertices of the toric graph.

Definition 3.3 Let Xfixed be the subset of X:

Xfixed = π−1(edges ∪ vertices). (3.5)

Xfixed is a circle bundle over the toric graph.

• To each vertex σ of the toric graph corresponds a circle σ of vanishing radius (a

point);

• to each compact edge e = (σ, σ′) corresponds a sphere τ(σ,σ′);

• to each non–compact edge ε = (σ, e) corresponds a half–sphere τ(σ,e).

See fig.9 for the resolved conifold example.

3.1.4 Framing

There are several possible torus actions in X, obtained by changing the cannonical basis

of C3 by an U(3) change of coordinate. So far we have choosen the basis X1, X2, X3,

but we can take (X ′1, X
′
2, X

′
3) = U (X1, X2, X3) where U ∈ U(3), so that the symplectic

form is conserved:

ω =
3∑
i=1

dXi ∧ dX̄i =
3∑
i=1

dX ′i ∧ dX̄ ′i. (3.6)

The torus action shifts the angles θ1, θ2, θ3 where Xi = |Xi| eiθi , but we could also shift

the θ′i’s where X ′i = |X ′i| eiθ
′
i .
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Figure 9: The fixed locus Xfixed = π−1(edges ∪ vertices) is a circle bundle over the
toric graph. Vertices correpond to points, compact edges correspond to spheres, and
non compact edges correspond to half-spheres.

Here, we shall choose a basis of Xi’s such that the torus action leaves the S1 circle

L∩{toric graph} invariant. It depends on our choice of L. Therefore, up to a change of

the variables {Xi}i=1,...,r+3 we shall assume that L corresponds to |Xi|2 = 0 for i 6= 1.

In other words L is the line along the coordinate X1. This can always be achieved by

a linear transformation of the type:

|X1|2 → |X1|2 + f |X2|2 + f ′|X3|2. (3.7)

Notice that for the mirror, it corresponds to

Y1 → Y1 Y
f

2 Y
f ′

3 (3.8)

and if we choose the patch Y3 = 1 that means

X → X Y f , (3.9)

i.e. it is a framing transformation.

3.1.5 Fixed loci

For a map [f : Σ→ X] to belong to Mg,0(X, β)fixed, it has to map Σ to f(Σ) ⊂ Xfixed.

Let Oi be an irreducible component of Σ. It’s image under f enters one of these

three cases6:

6The interested reader can find proofs and references in [37]. We only want to motivate some of
the forthcoming definition in this part.
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• Either it is collapsed, i.e. it is mapped to a 0-dimensional component of Xfixed.

This means that f |Oi is constant and maps all the points of Oi to a vertex σ(Oi)
of the polyhedra. This component can have an arbitrary topology as long as it

satisfies the stability condition: its genus g(Oi) and the number of nodal points

n(Oi) that it contains must satisfy

2− 2g(Oi)− n(Oi) < 0. (3.10)

• Either it is a sphere with two nodal points and is mapped to a compact 2-

dimensional fixed submanifold of X, that is to say, to an inner edge e of the

polyhedra. The map f |Oi is then a map between two spheres mapping the nodal

points to the two vertices to which e(Oi) is incident. This map can be of arbitrary

degree d(Oi) ∈ N∗ and is totaly ramified at the two nodal points.

• Either it is a sphere with only one nodal point and is mapped to a compact

2-dimensional fixed submanifold of X, that is to say, to an inner edge e of the

polyhedra. The nodal point is mapped to one of the two vertices adjacent to the

inner edge, therefore there exists a smooth point on Oi which is mapped to the

other vertex. The map f |Oi is then a map between two spheres mapping the

nodal point to a vertex, and the other smooth point to the other vertex. This

map can be of arbitrary degree d(Oi) ∈ N∗ and is totaly ramified at the two fixed

points.

A map (Σ, f) ∈ Mg,0(X, β)fixed is thus the union of such irreducible components Σ =⋃
iOi of respective genus g (Oi) with respectively n (Oi) nodal points and a map f

such that its restrictions fi = fOi of degree di satisfy the constraints:

• If Oi is stable, i.e. if 2− 2g (Oi)− n (Oi) < 0, then di = 0 and fi is the constant

map mapping all the points of Oi to a vertex σ (Oi) = σl(i) of the Toric graph.

The label l(i) tells which fixed point of X, Oi is mapped to.

• If Oi is unstable, i.e. if g (Oi) = 0 and n (Oi) ∈ {1, 2}, then fi has an arbitrary

degree di = d (Oi) > 0 mapping the sphere Oi ' P1 to one of the 1-dimensional

fixed submanifolds of X, fi (Oi) = τel(i) . The label l(i) tells to which 1-dimensional

fixed locus of X, Oi is mapped to.

• The intersection of two irreducible components is a nodal point which is mapped

to a fixed point of X, i.e. to a vertex of the toric graph;

• The genus of Σ is equal to g;
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• The image of Σ belongs to the class β, which translates into∑
Oi unstable

di

[
τel(i)

]
= β. (3.11)

3.2 Graphs for the fixed locus

A good way to encode such a fixed map is through a map betweenMg,0(X, β)fixed and a

set of graphs. For later convenience, we now introduce a set of graphs which is slightly

larger than the one requested for describing Mg,0(X, β)fixed.

3.2.1 Graphs

This leads us to define the following set of graphs Gg,n as:

Definition 3.4 Let g, n be non-negative integers. Gg,n is the set of graphs defined as

follows: G ∈ Gg,n if G is a connected graph, made of vertices and half–edges, each

closed edge is a pair of half-edges, and:

- each vertex v has a ”color” σv which is a vertex of ΥX, a ”genus” gv ∈ N, and a

”valence” nv = # of half–edges incident to v. We denote

Ev = {h |h = half − edge incident to v} , #Ev = nv. (3.12)

- each half-edge h ∈ Ev carries a ”degree” dh ∈ N and a ”color” εh which is an

half-edge of ΥX, incident to σv.

εh ∈ {half − edges of ΥX incident toσv(h)} where v(h) is the vertex adjacent toh,

(3.13)

which implies that for a given h, εh can take only 3 values (there are 3 half-edges

incident to a vertex in ΥX).

- There are exactly n open half–edges, they are labeled h1, . . . , hn.

- each closed edge e = (h+, h−) is made of two half–edges.

- we impose to have

2− 2g − n =
∑
v

(2− 2gv − nv). (3.14)

• We define Gstable
g,n ⊂ Gg,n the subset of Gg,n with the additional condition that

G ∈ Gstable
g,n iff

∀ v , 2− 2gv − nv < 0, (3.15)

in other words (gv, nv) 6= (0, 1) and (gv, nv) 6= (0, 2).

• We also define G̃g,n (resp. G̃stable
g,n ) as the same set of graphs, but without degree

labels dh attached to half-edges.
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3.2.2 Fixed map and graphs

Let Ξ = (Σ, f) be a fixed stable map. Notice that only the irreducible components of

Σ which are spheres with 1 or 2 nodal points, are not mapped to a fixed point of Xfixed,

and they are mapped to spheres of Xfixed.

Therefore we define:

Definition 3.5 Let Ξ = (Σ, f) ∈Mg,0(X, β)fixed be a fixed stable map. Let us define:

Σvertices = f−1(fixed points inXfixed) , Σedges = Σ \ Σvertices. (3.16)

Let us write Σvertices and Σedges as the disjoint union of their connected components:

Σvertices = ]i Ôi , Σedges = ]i Oi. (3.17)

Each Oi is a sphere with 2 point removed, i.e. it is a cylinder homeomorphic to C∗,
and each Ôi is either a nodal surface, or it is an isolated nodal point, or an isolated

smooth point on a sphere with only one other nodal point.

To Ξ = (Σ, f), we associate a graph of Gg,0 as follows:

- to each Oi ⊂ Σedges we associate an edge ei. The edge ei is made of two half–edges

hi+ and hi− corresponding to the two nodal points of Oi. The edge ei, and thus the

two half–edges hi± carry the degree dei of the map f : Oi → Xfixed. Each half–edge hi±

carries a label εhi± equal to the label of the corresponding half–edge in the toric graph

ΥX.

- to each Ôi ⊂ Σvertices we associate a vertex vi. The vertex carries a label σvi
which is the vertex of the toric graph corresponding to the fixed point f(Ôi). It carries

a genus gvi =genus of Ôi (and we set gvi = 0 if Ôi is a point). It carries a valence

nvi = #(Σedges ∩ Ôi).

- the incidence relations are determined as follows: an edge ei is adjacent to a vertex

vj iff Oi ∩ Ôj 6= ∅. For each vertex v we define Ev = {half − edges adjacent to v}.

See fig.10 for an example.

We have defined those graphs so that it defines an injective orbifold morphism7:

Mg,0(X, β)fixed → ⊕
G∈Gg,0

∏
v=vertices(G)

Mgv ,nv × N# half−edges(G)

(Σ, f) 7→ ⊕
i=vertices

Ôi ⊕
h=half−edges

dh. (3.18)

Remark 3.1 Notice that this application is not surjective. Indeed not all graphs G ∈
Gg,0 satisfy that the degrees of closed half-edges d(v,e) be such that they combine to be the

7For a precise definition as well as the description of the image of this morphism see [37].
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(0,2)

(0,1)

(1,1)

(1,3)
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1
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3

Figure 10: In this example, X is local P2, whose toric graph has 3 vertices, labeled
(1), (2), (3). (Σ, f) ∈ Mg,0(X, β)fixed is a stable nodal map, invariant under the torus
action. Each sphere component Oi with 1 or 2 nodal point is mapped by f to an
invariant sphere of Xfixed. Each higher genus component Ôi or each sphere with at
least 3 nodal points is mapped to a fixed point of X, with label 1, 2 or 3. Each nodal
point is also mapped to a fixed point of X. For sphere components with only one nodal
point (see the bottom left sphere in this example) there is also a smooth point mapped
to a fixed point. To each sphere component Oi of Σ with 1 or 2 nodal point we associate
an edge. To each connected component Ôi of the preimage of a fixed point (this can be
either a stable nodal surface, or an isolated nodal point, or an isolated smooth point)
we associate a vertex, to which we associate the label of the fixed point and the pair
(g, n) corresponding to the total genus g of Ôi (and we set g = 0 if Ôi is a point), and
where n is the number of edges adjacent to it.

homology class β. Moreover, the image f(Σ) ⊂ Xfixed must be such that neighboring vertices
v, v′ can only have labels σv, σv′ which are adjacent in the toric graph, and if h and h′ are
the two half edges of an edge e = (h, h′) we should have that (εh, εh′) be an edge of ΥX,
and we should have dh = dh′ . As we have defined them, not all graphs in Gg,n satisfy those
conditions. In [36] the authors prefer to define a smaller set of graphs containing only the
graphs which can be images of fixed stable maps.

Here, we prefer to define a larger set of graphs Gg,n in order to make the link with the
topological recursion formalism in the B-model side, later in section 4.4.

Our strategy will be to assign weights to graphs, in order that unwanted graphs receive
a vanishing weight.

3.2.3 Gromov-Witten invariants and weighted sum over graphs

Since this morphism is injective, the sum over fixed stable maps can be translated into

a sum over ⊕G∈Gg,0
∏

v=vertices(G) Mgv ,nv ×N# half−edges(G), i.e. over decorated graphs.

It can be shown that the measure on this set of graphs factorises, up to a symmetry

factor, into a product of measures on the vertices and edges forming the graph [37]:
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Theorem 3.1 (Localization formula [36, 12]) The Gromov–Witten invariants of

a calabi-Yau X can be written as a sum over graphs, weighted by products of weights

Hg,n;σ({k1, . . . , kn}) associated to vertices and weights Fε,ε′(k, k
′) associated to edges:

Wg,0(X, t) =
∑
G∈Gg,0

(−1)n

#Aut(G)

∏
v

Hgv ,nv ;σv({dh/fεh}h∈Ev)∏
edges e=(h+(e),h−(e))

Fεh+(e),εh−(e)
(dh+(e), dh−(e)).

(3.19)

where

• if 2− 2g − n < 0:

Hg,n,σ(k1, . . . , kn) = 2g−1

(
1

2

∏
ε=half−edges of σ

fε

)g−1+n
2

∫
M̄g,n

∏
ε=half−edges of σ

Λ̂Hodge(fε)
n∏
i=1

γfσ(ki)

1− ki ψi
(3.20)

where γf(k) =
1√
π k

Γ̂(k (fa + fb))

Γ̂(k fa)Γ̂(k fb)
(3.21)

and where Γ̂ is the ”regularized” Γ function defined as

Γ̂(u) =
eu
√
u

uu
√

2π
Γ(u) = e

∞∑
k=1

B2k
2k(2k−1)

u1−2k

(3.22)

(Γ(u) is the Gamma function and Bk is the kth Bernoulli number), and Λ̂Hodge(f) is

the Hodge class in Mg,n and ψi is the first Chern class of the cotangent bundle at the

ith marked point.

The same formula applies to (g, n) = (0, 1) and (0, 2) if we define

• if (g, n) = (0, 1):∫
M̄0,1

∏
ε=half−edges of σ

Λ̂Hodge(fε)
1

1− k ψ
def
=

1

k2
(3.23)

• if (g, n) = (0, 2):∫
M̄0,2

∏
ε=half−edges of σ

Λ̂Hodge(fε)
1

1− k1 ψ1

1

1− k2 ψ2

def
=

1

k1 + k2

. (3.24)

• and

Fε+,ε−(d, d′) = Aε+,ε− δd,d′
d

f 2
ε+

e
−d
◦
aσ(ε+)−

◦
aσ(ε−)

fε+ (3.25)
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where Aε+,ε− = 1 if there exists an edge e = (ε+, ε−) in the toric graph and zero

otherwise, and
◦
aσ is the projection along the axis |X1|2 of the vertex σ of the toric graph,

defined in def. 2.3 (it is a linear combination of the ti’s). Notice that if Aε+,ε− = 1, we

have fε+ = −fε−, and thus

Fε+,ε−(d, d′) = Fε−,ε+(d′, d). (3.26)

Sketch of a proof:

Intuitively, this decomposition comes from the fact that, once a graph is fixed, the

enumeration of corresponding fixed maps can be performed independently for each

irreducible component of Σ.

The functions Hg,n;σ({k1, . . . , kn}) correspond to vertices, i.e. to constant maps

f : Ôi → fixed point inX, and can thus be computed only with the knowledge of a

vicinity of a fixed point of X, and in the vicinity of a fixed point, X can be replaced by

C3, thus Hg,n;σ({k1, . . . , kn}) are related to the Gromov-Witten invariants of C3, i.e.

to the topological vertex, and are computed by the Mariño–Vafa formula [41, 38] as

triple Hodge integrals, and result in eq. (3.20).

For edges, we already mentioned that graphs in Gg,n which are not images of fixed

stable maps, should receive a vanishing weight, so in particular Fε−,ε+(d′, d) must vanish

if ε± are not the two half–edges forming an edge of ΥX, and also it must vanish if d 6= d′,

so it must be proportional to Aε+,ε− δd,d′ . The weight e
−d
◦
aσ(ε+)−

◦
aσ(ε−)

fε+ is such that thanks

to (3.11) ∏
edges e=(h+,h−)

e
−de

◦
aσ(εh+

)−
◦
aσ(εh− )

fεh+ = e−t.β. (3.27)

The factor
∏

edges e de/f
2
e is a symmetry factor.

All those factors are encoded by Fε,ε′(k, k
′) defined in eq. (3.25). �

3.3 Open Gromov-Witten invariants

We wish to generalize this definition of Gromov-Witten invariants to the enumeration

of open surfaces whose boundaries are mapped to Lagrangian sub-manifolds. For this

purpose, we define:

Definition 3.6 For β ∈ H2(X, L,Z) (relative homology class of 2-chains in X whose

boundaries lie on L) and ~w = (w1, . . . , wn) with wi ∈ H1(L,Z), and such that
∑
i

wi =

∂β, we define the moduli space

Mg,n(X, L, β, ~w) = {(Σ, f)} (3.28)
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where Σ is a (possibly nodal) connected oriented Riemann surface of genus g with n

circle boundaries labeled ∂1Σ, . . . , ∂nΣ, and f : Σ → X is a holomorphic stable map,

such that f(∂iΣ) ⊂ L, and f is a stable map. Stability means that if Σ is a nodal

surface, any sphere component with at most 2 nodal or marked points or boundaries

cannot be collapsed to a point by f , and any torus component with no nodal point or

boundary cannot be collapsed to a point by f . And f(Σ) ∈ β and f(∂iΣ) ∈ wi. Again,

Mg,n(X, L, β, ~w) is the set of equivalence classes of stable maps modulo isomorphisms.

It is an orbifold, meaning that stable maps with symmetries are quotiented by their

automorphism group.

When n > 0, Katz and Liu [30] have constructed a virtual class and virtual cycle

in Mg,n(X, L, β, ~w). Their method is based on the fact that L is the fixed locus of

an antiholomorphic involution in X, and thus by ”doubling” Σ (i.e. extending Σ to

a larger closed Riemann surface by Schwarz principle across the boundaries), they

embed Mg,n(X, L, β, ~w) in a closed moduli space Mg′,0(X, β′), where the virtual cycle

and class are well known, and they take the restriction to the part invariant under

the antiholomorphic involution. This allows them to show that there is a localization

formula, which we use below.

For our purpose here, we shall start directly from the localization formula of [38],

and which is the straightforward generalization of theorem 3.1:

Definition 3.7 For n ≥ 0 we define the open Gromov–Witten invariants as

Wg,n(X, L, t;x1, . . . , xn) =
∑

G∈Gg,n

(−1)n

#Aut(G)

∏
v

Hgv ,nv ;σv({dh/fεh}h∈Ev)∏
closed edges e=(h+(e),h−(e))

Fεh+(e),εh−(e)
(dh+(e), dh−(e))

∏
open half edges hi, i=1,...,n

δεhi ,εi dhi

f2εhi
e
−
dhi
fεi

(xi−
◦
aσ(εi)

)
,

(3.29)

where we recall that εi is the half–edge of ΥX on which L ends, fεi is its framing, and
◦
aσ(εi) is the position of the vertex of ΥX adjacent to the half–edge εi on which L ends.

The factors Hg,n,σ(k1, . . . , kn) and Fε+,ε−(d, d′) are defined in eq. (3.20) and eq. (3.25).

3.3.1 Heuristic origin of this definition

One would like to define the Open Gromov–Witten invariants as formal power series

(the formal parameters being Q = e−t and Xi = e−xi) computing the integral of the
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fundamental class 1 over the virtual fundamental cycle of [Mg,n(X, L, β, ~w)]vir:

Wg,n(X, L, t;x1, . . . , xn) ” = ”
∑

β,w1,...,wn

e−t.β
n∏
i=1

e
− wi

fεi
xi

∫
[Mg,n(X,L,β, ~w)]vir

1

(3.30)

where fεi is the framing of the half-edge of ΥX on which L ends (see def. 2.5).

Since this virtual cycle is not so well understood, we prefer to attempt to define the

Open Gromov–Witten invariants through the localization formula:

Wg,n(X, L, t;x1, . . . , xn) ” = ”
∑

β∈H2(X,L,Z)

∑
wi∈H1(L,Z)

e−t.β e

−

n∑
i=1

wi
fεi
xi ∑

Ξ∈Mg,n(X,L,β,w)fixed∫
[Ξ]vir

1

eT (Nvir
Ξ )

(3.31)

whereMg,n(X, L, β, w)fixed is the fixed locus of the moduli space of stable maps under

the torus action under study. In order to give a meaning to that definition, we need to

describe the fixed locus in more details.

3.3.2 Fixed maps

The fixed locus Mfixed

g,n (X, L, β, ω) is well studied and well known [37, 2, 49]. Let us

describe it briefly. It is just a generalization of the n = 0 case studied in the preceding

section 3.1.5 obtained by including maps from half-spheres components of Σ to fixed

half-spheres τ(σ,e) of X.

Let Ξ = (Σ, f) ∈Mg,n(X, L, β, w)fixed be a fixed stable map.

Since the boundaries of Σ have to be sent to L, this means that they must be sent

to L ∩ Xfixed which is a circle of fixed radius, and

π(f(∂iΣ)) = point on the toric graph = L ∩ toric graph. (3.32)

Also, we see that the image of any irreducible component of Σ must be either a

point or a sphere with 2 fixed points, or a half-sphere (a disc bounded by the circle

L∩Xfixed) with 1-fixed point (this last case only if the component contains a boundary).

In particular this implies that a component of Σ containing a boundary is never

collapsed to a point, and therefore it can be only a disc with only 1 nodal point and

one boundary. Therefore, each boundary is on a disc component.

Appart from those disc components, which are necessarily sent to the half–edge of

the toric graph on which L ends, all the other components are mapped by f in the

same way as described in section 3.1.5.
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Figure 11: Example of a fixed map of a (nodal) curve Σ of genus 5 and 3 boundaries
into X. The image f(Σ) ⊂ X is made of fixed points in X, and of spheres and half
spheres invariant under the torus action. All components of a topology with χ < 0
are necessarily collapsed to fixed points. Only components which are spheres with 1
or 2 nodal points can be mapped to invariant curves. Nodal points are mapped to
fixed points, and it may also happen that some smooth point gets mapped to a fixed
point. The fixed map can be represented by a diagram whose vertices are labeled by
(fixed points, genus of the component), and edges correspond to invariant curves. Each
vertex carries 2 indices: the label of the fixed point and the genus of the component
which was mapped to it.

3.3.3 Fixed maps and graphs

Using the sets of graphs defined in definition 3.4, the study of the fixed locus of the

torus action allows to introduce the following morphism.

Definition 3.8 We define an injective orbifold morphism:

Mg,n(X,L, β, w)fixed → ⊕
G∈Gg,n

∏
v=vertices(G)

Mgv ,nv × N# half−edges(G) (3.33)

where each fixed map Ξ = (Σ, f) is mapped to a graph G as follows:

1) to each sphere component of Σ with 1 or 2 nodal points is associated a closed

edge e of the graph, i.e. two half–edges.

2) to each half-sphere component whose boundary is the circle ∂iΣ, is associated the

open half–edge hi with label i, and we have εhi = εi the open half–edge of ΥX on which the

brane L ends, and the degree dhi = wi the degree of the map f : ∂iΣ→ S1 = L∩Xfixed.

εhi = εi , dhi = wi. (3.34)

3) to each connected component of Σvertices = f−1(fixed points), we associate a vertex

v whose labels (gv, nv, σv) are such that σv is the label of the fixed point to which that

component is sent by f , gv is the genus of that component (if the component is an

isolated point we set gv = 0), and nv is the number of adjacent spheres or half–spheres.
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5) the incidence relations between vertices and half–edges are obviously the incidence

relations of components of Σ.

6) to each half-edge h = (v, e) is associated the degree dh ∈ N of the map f from

the sphere of Σ corresponding to edge e to the sphere of Xfixed at the nodal or possibly

smooth point of that sphere sent to the vertex v.

7) to each vertex v corresponding to a connected component of Σ as described in 3),

we associate the corresponding nodal Riemann surface in Mgv ,nv . If (gv, nv) = (0, 1)

we define M0,1” = ”point, and if (gv, nv) = (0, 2) we define M0,2” = ”point.

From that definition, it is easy to see how the localization formula eq. (3.31) should

give eq. (3.29) in def.3.7. The only difference between eq. (3.29) and eq. (3.19), is that

we now have a factor counting the half–spheres.

4 B-model side

The B-model side is also a ”counting” of embeddings of Riemann surfaces into a Calabi–

Yau 3-fold X̂, but with a weight different from the Gromov–Witten side. Mirror sym-

metry, and here more precisely the BKMP conjecture, claim that ”amplitudes” com-

puted in the B-model with X̂ =mirror of X, equal the (open or closed) Gromov-Witten

invariants of X of the A-model side.

We refer the reader to the literature [49] for a precise definition of the B-model. Here

we shall use the ”remodeled” B-model (as named in [9]), which defines the B-model

amplitudes as some ”topological recursion invariants” which we explain below.

4.1 Mirror

Mirror symmetry assigns another Calabi–Yau manifold to X, namely:

X̂ = {w+w− = H(X, Y )} ⊂ C2 × (C∗)2 (4.1)

i.e. X̂ is a 3-dimensional complex submanifold of C2 × (C∗)2, defined in coordinates

(w+, w−) ∈ C2 and (X, Y ) ∈ (C∗)2 by the relationship:

w+ w− = H(X, Y ) (4.2)

where H is the mirror curve defined in section 2.2.

It has the Calabi-Yau property, and the nowhere vanishing holomorphic 3-form is:

Ω =
dw+ ∧ dX ∧ dY

w+X Y
= − dw− ∧ dX ∧ dY

w−X Y
. (4.3)
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Definition 4.1 The plane curve

H(e−x e−fy, e−y) = 0 (4.4)

is called the framed ”spectral curve” of X̂, by abuse of notation, we shall also call it X̂.

It is also often called the ”mirror curve” of X.

It is the singular locus in X̂ at which w+ = 0 or w− = 0. In general, the Calabi–Yau

3-fold X̂ is an hyperbolic bundle over (C∗)2, whose fiber degenerates on the spectral

curve.

4.2 Spectral curves

A spectral curve is in fact the data of a plane curve with some additional structure.

Definition 4.2 (Spectral curve) A spectral curve S = (C, x, y, B), is the data of:

• a Riemann surface C, not necessarily compact,

• two analytical functions x : C → C, y : C → C,

• a Bergman kernel B : C ×C → T ∗(C)⊗T ∗(C), i.e. a symmetric 2nd kind bilinear

meromorphic differential, having a double pole on the diagonal and no other pole, and

normalized (in any local coordinate z) as:

B(z1, z2) ∼
z2→z1

dz1 ⊗ dz2

(z1 − z2)2
+ analytical. (4.5)

Moreover, the spectral curve S is called regular if the meromorphic form dx has a

finite number of zeroes on C, denoted {α1, . . . , αb} which are all simple zeroes, and dy

doesn’t vanish at the zeroes of dx. In other words, locally near a branchpoint αi, y

behaves like a square root of x:

y(z) ∼
z→αi

y(αi) + y′(ai)
√
x(z)− ai +O(x(z)− ai) , y′(ai) 6= 0 (4.6)

and where ai = x(αi) is the x–projection of the branchpoint αi:

x(αi) = ai. (4.7)

From now on, all spectral curves considered shall be mirrors of toric CY 3folds:

S = (C, x, y, B) (4.8)

where:
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• C is the Riemann surface described in section 2.2.2, and whose atlas of charts

(obtained by gluing pairs of pants and cylinders) C = ∪σCσ ∪(σ,σ′) Cσ,σ′ was described

in section 2.3.3, cf fig.7. C is a compact Riemann surface of some genus g equal to the

number of loops of the toric graph ΥX.

• the analytical functions x and y are:

x = − lnX , y = − lnY. (4.9)

Notice that X : C → C, z 7→ X(z) (resp. Y ) is a meromorphic function on C,
its number of poles = its number of zeroes = the degree in Y (resp, in X) of the

polynomial H(X, Y ).

This shows that x and y have logarithmic singularities, but their differentials dx =

−dX/X and dy = −dY/Y are meromorphic forms on C, having only simple poles, and

their residues are rational numbers (related to the degrees of X and Y at their poles

or zeroes).

The poles of dx and dy are the punctures, i.e. the zeroes or poles of X and/or of

Y .

• The Bergman kernel B is the unique fundamental form of the 2nd kind on C
(i.e. having a double pole on the diagonal and no other pole, see [22]), normalized

on AI-cycles (the cycles were defined in def 2.9 section 2.4, they are the ones which

compute the mirror map, in particular A-cycles wrap around cylinders and B-cycles

wrap around loops of the toric graph):∮
z2∈Aj

B(z1, z2) = 0. (4.10)

B can be obtained as the second logarithmic derivative of the prime form on C (cf [22]):

B(z1, z2) = d1 ⊗ d2 lnE(z1, z2). (4.11)

B is also related to the ”heat kernel” on C, or to the ”Green function” on C, see [28, 22].

Its ”physical meaning” is that it gives the electric field measured at z2 created by a

unit dipole located at z1 (the log of the prime form lnE(z1, z2) would be the electric

potential measured at z2 created by a unit charge located at z1).

4.3 Invariants of spectral curves and the BKMP conjecture

To any spectral curve S is associated a set of ”invariants” ωg,n(S; z1, . . . , zn) first defined

in [18]. We emphasize that those invariants are defined for any spectral curve, there is

no need to be related to the mirror of a CY manifold.
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For completeness, we recall the definition of invariants ωg,n(S) of a spectral curve

S in appendix A, however we emphasize that it shall not be needed in this article.

Instead we shall need only a few of their properties, and in particular the fact that

they can be written in terms of graphs, in section 4.4 below, and can be written in

terms of intersection numbers in the moduli space of curvesMg,n in theorem 4.2 below.

For our purpose we just need:

Definition 4.3 To a spectral curve S, we associate the family of its invariants ωg,n

(g, n ∈ N) : Cn → T ∗(C)⊗n, defined by the topological recursion of [18] (see full defini-

tion in appendix A.2).

ωg,n(S; z1, . . . , zn) ∈
n times︷ ︸︸ ︷

T ∗(C)⊗ · · · ⊗ T ∗(C) . (4.12)

It is a symmetric multilinear meromorphic differential. If 2 − 2g − n < 0, it has

poles only at zi =branchpoints of the spectral curve (zeroes of dx), of order at most

6g + 2n− 4, and have no residues. In particular for n = 0 we denote Fg = ωg,0:

Fg(S) = ωg,0(S) ∈ C. (4.13)

As special cases, for the lowest values of g and n we mention that:

ω0,1(S; z) = y(z) dx(z) , ω0,2(S; z1, z2) = B(z1, z2), (4.14)

ω0,3(S; z1, z2, z3) =
∑

σ=branch point

Res
z→σ

B(z, z1)B(z, z2)B(z, z3)

dx(z) dy(z)
. (4.15)

F0 = ω0,0 is the ”prepotential”, and F1 = ω1,0 is related to the log determinant of a

Laplacian on C, and for other values of (g, n) we refer to appendix A or to the literature

[18].

Those invariants have many fascinating properties (modularity, integrability, special

geometry) [18, 20], and can be expressed in terms of intersection numbers [14, 15].

The invariants ωg,n(S; z1, . . . , zn) depend on n points (z1, . . . , zn) ∈ Cn, however,

it is convenient to use a local coordinate on C, and use the variable xi = x(zi) ∈ C
instead of zi ∈ C, we thus write:

Definition 4.4

Wg,n(S;x1, . . . , xn) = ωg,n(S; z1, . . . , zn) , xi = x(zi) ∈ C. (4.16)

Remark 4.1 ωg,n is an analytical (meromorphic) function of each zi ∈ C, but since the map
zi 7→ x(zi) might be non–invertible (it is not invertible at the branchpoints), the Wg,n are
not analytical functions of their variables xi ∈ C, they are typically multivalued, and they
have branchcuts starting and ending at the branchpoints and at the punctures.
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In [40, 9], Mariño, Bouchard, Klemm and Pasquetti, conjectured that Gromov–

Witten invariants of toric Calabi–Yau 3–folds, coincide with the invariants of their

mirror’s spectral curve S = X̂.

This conjecture was checked by [9] for many manifolds X to low genus, and it was

proved to all genus only for the simplest case, namely X = C3 (=framed topological

vertex), independently by Chen [11] and Zhou [53] in 2009, by extending the existing

proof for the Hurwitz numbers (which is the infinite framing limit of the BKMP con-

jecture for the topological vertex, known as Bouchard–Mariño conjecture [10], proved

in [7, 17]).

Conjecture 4.1 (BKMP conjecture 2006-2008 [40, 9]) If X is a toric Calabi–

Yau 3-fold, we have

Wg,n(X, L, t;x1, . . . , xn) dx1 ⊗ · · · ⊗ dxn = Wg,n(X̂;x1, . . . , xn) (4.17)

where X̂ is the framed mirror curve of X.

As we mentioned, this conjecture was already proved for X = C3, and was proved

to low genus in a many examples. We prove the general case below.

4.4 Invariants as graphs and intersection numbers

We shall not need the explicit definition of the invariants Wg,n, instead we give a

combinatoric algorithm to compute them, following [14], we write the invariants as the

following two theorems (valid for any spectral curves):

Theorem 4.1 (E. 2011 [14]) Let Sσ = (Cσ, x, y, Bσ) be a spectral curve with only

one branchpoint located at x = aσ. The invariants Wg,n(Sσ) with 2− 2g − n < 0, can

be expressed as integrals of combinations of ψ and Mumford’s κ classes in Mg,n as:

Wg,n(Sσ;x1, . . . , xn) =
23g−3+n

e−t̂σ,0(2g−2+n)

∑
d1+···+dn≤3g−3+n

(∫
Mg,n

Λ̂Sσ

n∏
i=1

τdi

)
n∏
i=1

dξσ,di(xi)

(4.18)

where we have defined:

•
e−t̂σ,0 = 4y′(aσ) = 2 lim

z→ασ

y(z)− y(z̄)√
x(z)− aσ

(4.19)

where y′(aσ) was defined in eq. (4.6).

• the times t̂σ,k, or more precisely their generating function gσ(u)

gσ(u) =
∞∑
k=1

t̂σ,k u
−k (4.20)
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is defined by the Laplace transform of the 1-form ydx along a ”steepest descent” path

γσ ⊂ Cσ such that x(γσ)− x(aσ) = R+ and aσ ∈ γσ (i.e. γσ is the horizontal trajectory

of x going through the branchpoint aσ):

e−t̂σ,0 e−gσ(u) =
2u3/2 eu aσ√

π

∫
γσ

e−ux ydx (4.21)

• the coefficients B̂σ,k,l, or more precisely their generating function B̂σ(u, v) is de-

fined by the double Laplace transform of Bσ along γσ:

B̂σ(u, v) =
∞∑

k,l=0

B̂σ;k,lu
−kv−l =

uv

u+ v
+

√
uv e(u+v) aσ

2π

∫
γσ×γσ

e−ux e−vx
′
Bσ(x, x′) (4.22)

where the double integral is properly regularized so that the result has a large u, v ex-

pansion, see [14].

• The one forms dξσ,d(x) are defined as

dξσ,d(x) = − (2d− 1)!!

2d
Res
x′→aσ

Bσ(x, x′) (x′ − aσ)−d−1/2

(4.23)

• the tautological class Λ̂Sσ is a combination of τd = ψd and Mumford’s κ classes

in Mg,n (see appendix B), defined as

Λ̂Sσ = e
∑
k≥1 t̂σ,kκk e

1
2

∑
δ∈∂Mg,n

∑
k,l B̂σ;k,llδ∗ τkτl (4.24)

lδ∗ is the natural inclusion of ∂Mg,n into Mg−1,n+2 ∪
∑

h+h′=g,m+m′=nMh,m+1 ×
Mh′,m′+1.,

proof:

The proof is done in [14]. Let us just sketch the main steps.

The prototype of a spectral curve with only one branchpoint is y =
∑
k∈N

tk+2(x− a)k/2.

This is the spectral curve of Kontsevich’s matrix Airy integral with times {tk} [33],

whose invariants ωg,n are (almost by definition of Kontsevich’s integral, see [16, 33]),

generating functions for intersection numbers of ψ classes in Mg,n (see appendix B).

Finding a Kontsevich spectral curve (i.e. finding the Kontsevich times tk) which has

the same Taylor expansion near the branchpoint as Sσ, allows to express the invariants

of any spectral curve with one branchpoint in terms of intersection of classes in Mg,n.

Moreover, the result looks even better if we rewrite, using Arbarello and Cornalba’s

relations [4], the combinations of ψ classes in terms of Mumford κ classes. All this was

done in [14] and results into theorem 4.1.

�
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Remark 4.2 Formula eq. (4.18) looks very similar to the ELSV formula, and indeed it
reduces to the ELSV formula for the spectral curve (C, x(z) = z − ln z, y(z) = z,B(z1, z2) =
dz1⊗dz2/(z1−z2)2) which appears in the study of simple Hurwitz numbers [10, 7, 17, 14]. In
that case the combination of κ and ψ classes in eq. (4.24) reduces to the Hodge class through
Mumford’s formula [47]. See [14] for the detailed proof.

Once we know how to compute the invariants of spectral curves having only 1

branch-point, the following theorem (proved in [15]) gives invariants of spectral curves

with an arbitrary number of branchpoints:

Theorem 4.2 (corrolary of the theorem in [15, 3, 48, 34]) Let S = (C, x, y, B)

be a spectral curve with branchpoints {a1, . . . , ab}. Let Sσ = (Cσ, x, y, Bσ) be the local

spectral curve near the branchpoint aσ, with Cσ ⊂ C containing only the branchpoint

aσ, and x and y are the restrictions of x and y to Cσ, and Bσ a Bergman kernel8 on

Cσ.

When 2− 2g − n < 0, the invariants of S can be computed in terms of graphs and

invariants of local curves near branchpoints, as

Wg,n(S;x1, . . . , xn) =
∑

G∈G̃stable
g,n

1

#Aut(G)

∏
h=half−edges

Res
xh→aσv(h)∏

v=vertices

Wgv ,nv(Sσv ; {xh}h∈Ev)∏
(h+,h−)=closed edges

[
ln
(
E(S;xh+ , xh−)

)
−δσv(h+),σv(h−)

ln
(
E(Sσv(h+)

;xh+ , xh−)
)]

∏
hi=open half−edges

dS(S;xi, xhi) (4.25)

where E(S;x1, x2) denotes the prime form associated to the Bergman kernel on S, i.e.

d1 ⊗ d2 lnE(S;x1, x2) = B(S;x1, x2). (4.26)

and dS(S;x1, x2) is the Cauchy kernel associated to the Bergman kernel on S

d1 lnE(S;x1, x2) = dS(S;x1, x2) =

∫ x2

x′2=o

B(S;x1, x
′
2). (4.27)

And G̃stable
g,n is the same set of graphs as in Gstable

g,n defined in def.3.4, but without degree

labels dh on half-edges.

8Bσ needs not be the restriction of B to Cσ, neither needs to be the normalized Bergman kernel
on Cσ. For this theorem it just needs to be any symmetric bilinear differential having a normalized
double pole on the diagonal.
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For example W0,4: since
∑

v(2−2gv−nv) = −2 and 2−2gv−nv < 0 and
∑

v nv ≥ 4,

G̃stable
0,4 contains graphs with at most 2 vertices. More precisely, G̃stable

0,4 contains either

graphs with one 4-valent vertex, or graphs with two 3-valent vertices:

W0,4(S;x1, x2, x3, x4)

=
∑
σ

Res
x′1,x

′
2,x
′
3,x
′
4→aσ

W0,4(Sσ;x′1, x
′
2, x
′
3, x
′
4)

4∏
i=1

dS(S;xi, x
′
i)

+
∑
σ1

∑
σ2

Res
x′1,x

′
2,x
′
5→aσ1

Res
x′3,x

′
4,x
′
6→aσ2

W0,3(Sσ1 ;x′1, x
′
2, x
′
5) W0,3(Sσ2 ;x′3, x

′
4, x
′
6)

(lnE(S;x′5, x
′
6)− δσ1,σ2 lnE(Sσ1 ;x′5, x

′
6))

4∏
i=1

dS(S;xi, x
′
i)

+permutations of {x1, x2, x3, x4} (4.28)

)(0,4,1)

x

x x

x1 2

3 4

(0,4,2)

xx

x x3 4

1 2

(0,3,1) (0,3,2)

x x

x

x’x’

x

1 2

3 4

65

+ +W
(0,4) = + perm. ( x , x , x , x1 2 3 4

proof:

This is a mere rewriting of [15], and it is a consequence of [48, 34], the graphs

are a way of encoding the order in which residues are computed, i.e. it is only a

combinatorical way of summing over σ the residues at the branchpoints aσ. A detailed

proof is written in [15]. We emphasize that this theorem applies to any spectral curve

S, it doesn’t need to be related to any Calabi–Yau mirror geometry.

�

4.5 Geometry of the local spectral curve

In prop 2.5, we have defined an atlas for the curve C, in terms of pairs of pants Cσ and

cylinders Cσ,σ′ , labeled by vertices and edges of the toric graph ΥX. Each Cσ contains

exactly one branchpoint aσ.

Since Cσ is topologically a pair of pants, it can be realized as the projective complex

plane with 3 holes, and we can choose the 3 holes to be connected domains respectively

containing z = 0, 1,∞, i.e.

Cσ ⊂ P1 \ {0, 1,∞}. (4.29)

The functions X = e−x and Y = e−y are holomorphic functions on Cσ, and thus the

functions x and y are holomorphic functions on Cσ \T where the tree T was introduced

in section 2.4 as a cut for the log.
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4.5.1 Large radius limit (tropica limit)

Let (
◦
aσ,

◦
bσ) be the vertices of the toric graph (see def. 2.3). Cσ was defined in section

2.3.3 so that x − ◦aσ and y −
◦
bσ have a non-trivial limit when all tj → +∞, i.e. we

define:

Definition 4.5 The functions
◦
xσ : Cσ → C and

◦
yσ : Cσ → C are the large radius limits

of x and y in C ∩ Cσ:

◦
xσ = lim

t̃j→+∞
x− ◦aσ ,

◦
yσ = lim

t̃j→+∞
y −

◦
bσ. (4.30)

A vertex σ of the toric graph is a triangle σ = (i1, i2, i3) of the dual Υ̂X. Since we

are very close to a vertex of the toric graph, in the tropical limit only three of the Yi’s

don’t tend to 0, i.e. the large radius limit of the mirror curve is:

Yi1 + Yi2 + Yi3 = 0, (4.31)

or alternatively, only 3 monomials in H(X, Y ) = 0 =
∑

i,j e−t̃i,j X i Y j survive in that

limit H(X, Y )→
◦
Hσ (

◦
Xσ,

◦
Y σ):

H →
◦
Hσ ,

◦
Hσ (

◦
X,

◦
Y ) = 1 + Cσ

◦
X

fd,σ ◦
Y
−fb,σ

+ C̃σ
◦
X
−fc,σ ◦

Y
fa,σ

. (4.32)

The exponents (fa,σ, fb,σ, fc,σ, fd,σ) ∈ Z4 are integers corresponding to the vertices of the

dual toric graph around the vertex σ. They form the local framing matrix at vertex σ

defined in def.2.4:

fσ =

(
fa,σ fb,σ
fc,σ fd,σ

)
, det fσ = 1. (4.33)

The coefficients Cσ and C̃σ are the limits of:

− lnCσ = lim
t̃j→+∞

−fd,σaσ + fb,σy(aσ) + t̃i−fd,σ ,j+fb,σ − t̃i,j (4.34)

− ln C̃σ = lim
t̃j→+∞

fc,σaσ − fa,σy(aσ) + t̃i+fc,σ ,j−fa,σ − t̃i,j (4.35)

where (i, j) ∈ Z2 is any vertex of the dual graph Υ̂X adjacent to the vertex σ.

We can parametrize our curve eq. (4.32) by a complex variable z ∈ C \ {0, 1,∞},
and here explicitly:

◦
Xσ(z) = e−

◦
xσ(z) = (−Cσ)−fa,σ (−C̃σ)−fb,σ zfb,σ (1− z)fa,σ

◦
Y σ(z) = e−

◦
yσ(z) = (−Cσ)−fc,σ (−C̃σ)−fd,σ zfd,σ (1− z)fc,σ (4.36)
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i.e.

◦
xσ(z) = fa,σ ln (−Cσ) + fb,σ ln (−C̃σ) − fb,σ ln z − fa,σ ln (1− z)
◦
yσ(z) = fc,σ ln (−Cσ) + fd,σ ln (−C̃σ) − fd,σ ln z − fc,σ ln (1− z) (4.37)

taking the differentials gives:

d
◦
xσ = −

(
fb,σ
z

+
fa,σ
z − 1

)
dz , d

◦
yσ = −

(
fd,σ
z

+
fc,σ
z − 1

)
dz. (4.38)

Notice that d
◦
xσ and d

◦
yσ are meromorphic forms on P1 having only simple poles at

0, 1,∞, and the entries of f are the residues of those poles.

We have realized Cσ as an open domain of P1 \ {0, 1,∞}.

Notice that d
◦
xσ vanishes at

z =
fb,σ

fa,σ + fb,σ
, (4.39)

therefore the branchpoint is located at (by definition it was at
◦
xσ = 0,

◦
yσ = 0):

0 = fa,σ ln (−Cσ) + fb,σ ln (−C̃σ) − fb,σ ln
fb,σ

fa,σ + fb,σ
− fa,σ ln

fa,σ
fa,σ + fb,σ

(4.40)

and similarly
◦
yσ must vanish at the branchpoint. This determines the coefficients Cσ

and C̃σ.

We thus define:

Definition 4.6 Let

f =

(
fa fb
fc fd

)
∈ Sl2(Z) , fa fd − fb fc = 1 (4.41)

be a local framing matrix, then we define the ”vertex” spectral curve
◦
S f as:

◦
S f = (P1 \ {0, 1,∞}, ◦xf,

◦
yf,

◦
Bf) (4.42)

where 
◦
xf(z) = −fb ln z − fa ln (1− z) + fb ln fb

fa+fb
+ fa ln fa

fa+fb◦
yf(z) = −fd ln z − fc ln (1− z) + fd ln fb

fa+fb
+ fc ln fa

fa+fb◦
Bf(x1, x2) = dz1⊗dz2

(z1−z2)2 where x1 =
◦
xf(z1), x2 =

◦
xf(z2).

(4.43)

This curve is the spectral curve of a toric Calabi-Yau whose toric graph has only

one vertex, and thus it is X = C3, together with a framing matrix f. In other words,

the large radius limit of the mirror curve near a vertex σ, is the mirror curve of the

toric Calabi–Yau 3-fold X = C3 with framing fσ.
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4.5.2 Local spectral curve at a vertex

Now, we can consider the spectral curve on its whole without considering the large

radius limit. We define

Definition 4.7 Let Sσ be the spectral curve obtained by restriction of the full spectral

curve S, to the vicinity Cσ of aσ:

Sσ = (Cσ, x−
◦
aσ, y −

◦
bσ, Bσ) (4.44)

where x, y are simply the restrictions to Cσ of x, y on C, and Bσ is the Bergman kernel

of the Riemann sphere P1 (remember that Cσ is a sphere with 3 holes, i.e. Cσ ⊂ P1),

i.e. it is the same
◦
Bfσ introduced in def.4.6, shifted by aσ −

◦
aσ

B(Sσ;x1, x2) = Bσ(x1, x2) =
◦
Bfσ(x1 − aσ +

◦
aσ, x2 − aσ +

◦
aσ). (4.45)

By definition, the spectral curve Sσ has only one branchpoint, located at x = aσ−
◦
aσ.

Its invariants are computed by theorem 4.1, and can thus be written in terms of integrals

of some classes in Mg,n.

4.6 Large radius limit: the topological vertex

Almost by definition def 4.6, the large radius limit of the spectral curve Sσ is
◦
S fσ :

◦
S f = (P1,

◦
xf,
◦
yf,

◦
Bf) (4.46)

where 
◦
xf(z) = −fb ln z − fa ln (1− z) + fb ln fb

fa+fb
+ fa ln fa

fa+fb◦
yf(z) = −fd ln z − fc ln (1− z) + fd ln fb

fa+fb
+ fc ln fa

fa+fb◦
Bf(x1, x2) = dz1⊗dz2

(z1−z2)2 where x1 =
◦
xf(z1), x2 =

◦
xf(z2).

(4.47)

It has a unique branchpoint (d
◦
xf(z) = 0) at

z =
fb

fa + fb
. (4.48)

Let us then apply theorem 4.1 to
◦
S f (this was done in [14]):

Theorem 4.3 (”Mariño–Vafa formula”) We have:

Wg,n(
◦
S f;x1, . . . , xn)

=
23g−3+n

et̂f,0(2−2g−n)

∑
{di}

〈
Λ̂Hodge(fa) Λ̂Hodge(fb) Λ̂Hodge(−fa − fb)

n∏
i=1

τdi

〉
g,n

n∏
i=1

d
◦̃
ξf,di(xi)
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(4.49)

where

e−t̂f,0 =
2
√

2√
fafb(fa + fb)

(4.50)

and where, if x lies near the puncture of P1\{0, 1,∞} (i.e. z = 0, 1 or∞) corresponding

to the half-edge ε, (whose framing is fε = fb, fa or −fa − fb respectively):

◦̃
ξfε,d(x) = (−1)d

(
d

dx

)d ◦
ξfε,0(x) =

∑
k

kd

fd+1
εi

γf(k/fε) e−
k
fε
x. (4.51)

Thus, if xi lies near the puncture corresponding to the half-edge εi, (whose framing

is fε):

Wg,n(
◦
S f;x1, . . . , xn)

=
23g−3+n

et̂f,0(2−2g−n)

∑
{ki}

〈
Λ̂Hodge(fa) Λ̂Hodge(fb) Λ̂Hodge(−fa − fb)

n∏
i=1

1

1− ki
fεi
ψi

〉
g,n

n∏
i=1

ki
f2εi

γf(ki/fεi) e
− ki

fεi
xi
dxi

(4.52)

where the sum carries over positive integers (k1, . . . , kn) ∈ Zn+.

proof:

This theorem is a mere application of theorem 4.1, and is fully proved in [14], or

alternatively, it can be seen as a consequence of the proof of BKMP for the framed

vertex [11, 53]. For completeness, we redo it in appendix E, as an application of theorem

4.1. �

Remark 4.3 One can recognize that the right hand side of eq. (4.49) is the Mariño–Vafa
formula for the topological vertex [41, 39, 38], i.e. the Gromov–Witten invariants of X = C3

with framing matrix f, and thus, theorem 4.3 (proved in [14]) can be viewed as another proof
of the BKMP conjecture for the topological vertex X = C3 with framing matrix f. The first
proof of the BKMP conjecture for X = C3, are those of Chen [11] and Zhou [53].

4.7 Invariants of the local spectral curve

We know that in the tropical limit when all tj → +∞, we have Sσ →
◦
S fσ , and we have

expressed the invariants of
◦
S fσ in terms of Hodge classes integrals inMg,n. Moreover, it

is shown in [18], that the invariants ωg,n of any spectral curve satisfy ”special geometry

relations” (similar to Seiberg–Witten for ω0,0), which allows to compute the derivatives

∂/∂tj, and thus allow to compute the Taylor expansion of the invariants in a vicinity

of the tropical limit. This gives the following lemma:
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Lemma 4.1 If 2− 2g − n < 0

Wg,n(Sσ;x1, . . . , xn)

=
23g−3+n

et̂fσ,0(2−2g−n)

∞∑
k=0

1

k!

∑
d1,...,dn+k

k∏
i=1

Rσ,dn+i〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

n+k∏
j=1

τdj

〉
g,n+k

n∏
j=1

d
◦̃
ξfσ ,dj(xj)

=
23g−3+n

et̂fσ,0(2−2g−n)

∑
d1,...,dn

n∏
j=1

d
◦̃
ξfσ ,dj(xj)〈

Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ) el1∗
∑
dRσ,dτd

n∏
j=1

τdj

〉
g,n

(4.53)

where

Rσ,d =
− 2 et̂fσ,0

2πi

∮
∂Cσ

◦̃
ξfσ ,d(x) (y(x+

◦
aσ)−

◦
bσ −

◦
yfσ(x)) dx, (4.54)

where ∂Cσ is the boundary of Cσ, i.e. the union of three circles, oriented so that Cσ
lies on the left of ∂Cσ. In the second equality, l1∗ denotes the natural inclusion of

Mg,n ⊂ Mg,n+1 ,so that el1∗
∑
d Cσ,dψ

d
is just a short hand notation for the formula

above.

And similarly for (g, n) = (0, 2):

W0,2(Sσ;x1, x2) = Bσ(x1, x2) =
◦
Bfσ(x1 − aσ +

◦
aσ, x2 − aσ +

◦
aσ)

=
◦
Bfσ(x1, x2) +

1

2

∞∑
k=1

1

k!

∑
d1,...,dk+2

d
◦̃
ξfσ ,d1

(x1) d
◦̃
ξfσ ,d2

(x2)
k+2∏
i=3

Rσ,di〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

k+2∏
j=1

τdj

〉
0,k+2

(4.55)

and for (g, n) = (0, 1):

W0,1(Sσ;x1) = (y(x1 +
◦
aσ)−

◦
bσ) dx1

=
◦
yfσ(x1)dx1 +

1

2πi

∮
∂Cσ

◦
Bfσ(x1, x

′) Φ(x′)

+
e−t̂fσ,0

4

∞∑
k=2

1

k!

∑
d1,...,dk+1

d
◦̃
ξfσ ,d1

(x1)
k+1∏
i=2

Rσ,di〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ) τd1

k+1∏
j=2

τdj

〉
0,k+1

(4.56)
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proof:

Since the proof is quite technical and long, we do it in appendix F.

Let us just mention that it is proved using the ”special geometry” property of the

topological recursion. This property says that the derivative of Wg,n with respect to a

parameter t on which the spectral curve depends, is the integral of Wg,n+1 on the dual

cycle of ∂ydx/∂t. The dual cycle t∗ is a cycle such that:

∂

∂t
y(x)dx =

∫
x′∈t∗

B(x, x′). (4.57)

The special geometry property of the topological recursion is that:

Theorem 4.4 (Special geometry, proved in [18]) For any spectral curve we have:

∂

∂t
Wg,n(S;x1, . . . , xn) =

∫
x′∈t∗

Wg,n+1(S;x1, . . . , xn, x
′). (4.58)

The proof of lemma 4.1 uses that property to show that both sides of lemma 4.1

satisfy the same differential equations with respect to the variables tj’s. Moreover

thanks to the large radius limit (tropical limit), the two sides obviously coincide when

all tj = +∞, which concludes the proof.

�

As a corollary of lemma 4.1 as well as the expression of
◦
ξ(x) eq. (4.51), we get:

Corollary 4.1 Let σ be a vertex of ΥX, and assume that xj, j = 1, . . . , n are such that

xj belongs to a cylinder Cεj where εj is an half–edge of ΥX adjacent to σ, we have for

2− 2g − n < 0:

Wg,n(Sσ;x1, . . . , xn)

=
23g−3+n

et̂fσ,0(2−2g−n)

∑
k1,...,kn

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ) el1∗

∑
dRσ,dτd

n∏
j=1

γfσ(kj/fεj)

1− kj
fεj
ψj

〉
g,n

n∏
j=1

kj
(fεj)

2
e
−

kj
fεj

xj
dxj ,

(4.59)

W0,2(Sσ;x1, x2) = Bσ(x1, x2) =
◦
Bfσ(x1 +

◦
aσ − aσ, x2 +

◦
aσ − aσ)

=
◦
Bfσ(x1, x2) +

1

2

∑
k1,k2

∞∑
k=1

1

k!〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)(∑
d

Rσ,dτd

)k 2∏
j=1

γfσ(kj/fεj)

1− kj
fεj
ψj

〉
0,k+2
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2∏
j=1

kj
(fεj)

2
e
−

kj
fεj

xj
dxj

(4.60)

and

W0,1(Sσ;x1) = (y(x1 +
◦
aσ)−

◦
bσ) dx1

=
◦
yfσ(x1) dx1 +

2

2πi

∮
x′∈∂Cσ

◦
Bfσ(x1, x

′) Φ(x′) +
e−t̂fσ,0

4

∑
k1

∞∑
k=2

1

k!〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)(∑
d

Rσ,dτd

)k
γfσ(k1/fε1)

1− k1

fε1
ψ1

〉
0,k+1

k1

(fε1)2
e
− k1

fε1
x1
dx1 .

(4.61)

4.8 Invariants of the mirror curve as graphs

This allows to rewrite theorem 4.2 as:

Corollary 4.2

Wg,n(S;x1, . . . , xn)

=
∑

G∈Gstable
g,n

1
#Aut(G)

∏
v=vertices 23gv−3+nv et̂σv,0(2gv−2+nv)

(∫
Mgv,nv

Λ̂Hodge(fa,σv)Λ̂Hodge(fb,σv)Λ̂Hodge(−fa,σv − fb,σv)e
l1∗

∑
dRσv,dτd

∏
h∈Ev τdh

)∏
(h+,h−)=closed edges

Êσv(h+),dh+
;σv(h−),dh−

n∏
j=1, hj=open half−edges

−1
2πi

∮
x′j∈∂Cσv(hj)

◦̃
ξσv(hj),dhj

(x′j −
◦
aσv(hj)

) B(S;x′j, xj)

(4.62)

where the sum is only over stable graphs (every vertex v is such that 2− 2gv−nv < 0),

and where

Êσ,d;σ′,d′ =
1

(2πi)2

∮
x∈∂Cσ

∮
x′∈∂Cσ′

◦̃
ξσ,d(x−

◦
aσ)
(
B(S;x, x′)

−δσ,σ′B(Sσ;x− ◦aσ, x′ −
◦
aσ)
) ◦̃
ξσ′,d′(x

′ − ◦aσ′).
(4.63)

If xj lies on a cylinder Cεj where εj is any half-edge (not necessarily corresponding the

non-compact half-edge of ΥX where the special Lagrangian brane L is ending), we have

the expansion
◦̃
ξσ(εj),d

(xj) = −
∞∑
k=1

γfσ(εj)
(k/fεj)

fεj
e
− k

fεj
xj kd

(fεj)
d
. (4.64)
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Using this expansion of
◦̃
ξ, we easily arrive at:

Theorem 4.5 If xj ∈ Cεj where εj is an half edge of ΥX (not necessarily corresponding

to a non-compact edge, neither the one on which the brane L ends), we have

Wg,n(S;x1, . . . , xn)

=
∑

G∈Gstable
g,n

1

#Aut(G)

∏
v=vertices

H̃gv ,nv ,σv({dh/fεh}h∈Ev)

∏
e=(h+,h−)=closed edges

F̃εh+
,dh+

;εh− ,dh−

n∏
j=1, hj=open half−edges

dJ̃εhj ,dhj (xj)

(4.65)

where the sum is only over stable graphs (every vertex v is such that 2− 2gv−nv < 0),

and where

H̃g,n,σ(k1, . . . , kn) =
23g−3+n

e−t̂σ,0(2g−2+n)

∫
Mg,n

Λ̂Hodge(fa,σ)Λ̂Hodge(fb,σ)Λ̂Hodge(−fa,σ − fb,σ)

el1∗
∑
dRσ,dτd

n∏
i=1

γfσ(ki)

1− ki ψi
, (4.66)

F̃ε,d;ε′,d′ =
1

fε fε′ (2πi)2

∮
x∈∂εCσ(ε)

∮
x′∈∂ε′Cσ(ε′)

e−
d
fε

(x−◦aσ(ε))
(
B(S;x, x′)

−δσ(ε),σ(ε′)B(Sσ(ε);x−
◦
aσ(ε), x

′ − ◦aσ(ε))
)

e
− d′

fε′
(x′−◦aσ(ε′)) (4.67)

and

dJ̃ε,d(x) =
1

fε 2πi

∮
x′∈∂εCσ(ε)

e−
d
fε
x′ B(S;x′ +

◦
aσ(ε), x). (4.68)

4.9 Weight of edges

In the graph sum, the weight of edges is given by formula eq. (4.67), it involves the

double Fourrier transform of the Bergman kernel.

4.9.1 More geometry: the Bergman kernel

Recall that the curve C is a union of cylinders Cσ,σ′ and of pairs of pants Cσ, cf fig.7

and fig 12.

The following lemma allows to express the Bergman kernel of the full curve C in

terms of Bergman kernels of its pieces Cσ and Cσ,σ′ . Recall that we write (for any curve

S) that the Bergman kernel is the double derivative of the log of the prime form E:

B(S;x1, x2) = dx1 ⊗ dx2 lnE(S;x1, x2). (4.69)

We have:
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Figure 12: The curve C is a union of cylinders Cσ,σ′ corresponding to edges of the toric
graph ΥX and of pairs of pants Cσ corresponding to vertices of ΥX. Its Bergman kernel
can be obtained as a combination of the Bergman kernels of each pieces. Notice that
the framing of the edge σ, σ′ is fσ,σ′ = −fσ′,σ = fb,σ′ = −fb,σ = βi2 − βi1 .

Lemma 4.2 Let σ, σ′ be two vertices. Let x ∈ Cσ and x′ ∈ Cσ′, then we have

lnE(S;
◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′ lnE(Sσ;x, x′)

=
1

(2πi)2

∮
x2∈∂σCσ′

∮
x1∈∂σ′Cσ

lnE(Sσ;x, x1)×

×B(Sσ,σ′ ;x1, x2 +
◦
aσ′ −

◦
aσ) lnE(Sσ′ ;x2, x

′)

+
∑
σ1

1

(2πi)2

∮
x2∈∂σCσ1

∮
x1∈∂σ1Cσ

lnE(Sσ;x, x1)B(Sσ,σ1 ;x1, x2 +
◦
aσ1 −

◦
aσ)(

lnE(S;
◦
aσ1 + x2,

◦
aσ′ + x′)− δσ1,σ′ lnE(Sσ′ ;x2, x

′)
)

(4.70)

where

B(Sσ,σ′ ;x1, x2) = Aσ,σ′
1

(fσ,σ′)2

e
− x1

fσ,σ′ e
− x2

fσ,σ′(
e
− x1

fσ,σ′ − e
− x2

fσ,σ′

)2 dx1 ⊗ dx2 (4.71)

is the Bergman kernel on the cylinder Cσ,σ′, Aσ,σ′ is the adjacency matrix of the toric

graph, i.e. Aσ,σ′ = 1 if σ and σ′ are neighbors and 0 otherwise, and fσ,σ′ is the framing

of the edge (σ, σ′) as defined in def 2.5.

This lemma is illustrated in fig. 13.

proof:

This lemma is proved in appendix C. The proof is only complex analysis on C, it

consists in writing Cauchy residue formula and moving the integration contours. �
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+B B!’"! B B B( x , x’) ( x , x’)=

Figure 13: Lemma 4.2 shows that the Bergman kernel of the full curve C, can be
constructed by combining Bergman kernels of the pairs of pants Cσ and Bergman
kernels of cylinders Cσ,σ′ . In some sense Btotal = Bpant +Bpant Bcylinder Btotal.

4.9.2 Renormalizing edges

Now, it remains to compute the weights eq. (4.67) attached to edges of the graph

decomposition of Wg,n(S) through corollary 4.2, i.e. the integrals

F̃ε,d;ε′,d′ =
1

fε fε′ (2πi)2

∮
x∈∂εCσ(ε)

∮
x′∈∂ε′Cσ(ε′)

e−
d
fε
x
(
B(S;x+

◦
aσ(ε), x

′ +
◦
aσ(ε′))

−δσ(ε),σ(ε′)B(Sσ(ε);x, x
′)
)

e
− d′

fε′
x′
.

(4.72)

From lemma 4.2 above, we prove that:

Proposition 4.1 The edge weight F̃ε,d;ε′,d′ satisfies:

F̃ε,d;ε′,d′ = Fε,d;ε′,d′ +
∑
ε1,d1

∑
ε2,d2

Fε,d;ε1,d1 H̃0,2,σ(ε1)(d1/fε1 ; d2/fε2) F̃ε2,d2;ε′,d′ (4.73)

where

Fε,d;ε′,d′ =
d

f2ε
e−

d
fε

(
◦
aσ(ε′)−

◦
aσ(ε)) Aε,ε′ δd,d′ (4.74)

and

H̃0,2,σ(k; k′) = H0,2,σ(k; k′)

+
1

2

∞∑
n=1

1

n!

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)(∑

d

Rσ,d τd

)n
γfσ(k)

1− k ψ
γfσ′ (k

′)

1− k′ ψ′
〉

0,n+2
(4.75)

and

H0,2,σ(k; k′) =
1

k + k′
γfσ(k) γfσ′ (k

′). (4.76)

This lemma means that:

F̃ = F + FH̃0,2F + FH̃0,2FH̃0,2F + FH̃0,2FH̃0,2FH̃0,2F + . . . (4.77)
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which is illustrated as:

= + + + . . .

i.e. H0,2,σ can be viewed as the (0, 2) vertex, and F as an edge weight.

proof:

From lemma 4.2 in appendix C, we see that we first have to compute:

Fε,d;ε′,d′ =
1

fε fε′ (2πi)4

∮
x1∈∂σ(ε′)Cσ(ε)

∮
x∈∂εCσ(ε)

∮
x2∈∂σ(ε)Cσ(ε′)

∮
x′∈∂ε′Cσ(ε′)

d

fε

d′

fε′
dx dx′

e−
d
fε
x lnE(Sσ(ε);x, x1)B(S(σ(ε),σ(ε′));x1, x2 +

◦
aσ′ −

◦
aσ)

lnE(Sσ(ε′);x2, x
′) e
− d′

fε′
x′

(4.78)

which is non-vanishing only if σ(ε) and σ(ε′) are adjacent vertices in ΥX.

Moreover, if ε (resp. ε′) is not the half-edge linking σ(ε) to σ(ε′) (resp. σ(ε′) to

σ(ε)), we may push the integration contour for x (resp. x′) towards the puncture of

Cσ(ε) (resp. Cσ(ε′)) in the direction of the half-edge ε (resp. ε′) without meeting any

singularity, and thus the result vanishes. Fε,d;ε′,d′ is thus proportional to the adjacency

matrix Aε,ε′ which is 1 if the half-edges ε and ε′ form an edge of ΥX, and 0 otherwise:

Fε,d;ε′,d′ =
Aε,ε′

fε fε′ (2πi)4

∮
x1∈∂εCσ(ε)

∮
x∈∂εCσ(ε)

∮
x2∈∂ε′Cσ(ε′)

∮
x′∈∂ε′Cσ(ε′)

d

fε

d′

fε′
dx dx′

e−
d
fε
x lnE(Sσ(ε);x, x1)B(S(σ(ε),σ(ε′));x1, x2 +

◦
aσ′ −

◦
aσ)

lnE(Sσ(ε′);x2, x
′) e
− d′

fε′
x′
. (4.79)

So, from now on, we assume that (ε, ε′) is the edge linking σ(ε) to σ(ε′).

x’

’

! ’

x1 x

"

x2

!

"

We can push the integration contour of x through that of x1 and send it to the

puncture of Cσ(ε) where it vanishes, we only pick a residue at x = x1, and similarly for

x′ and x2, and we get:

Fε,d;ε′,d′ =
Aε,ε′

fε fε′ (2πi)2

∮
x1∈∂εCσ(ε)

∮
x2∈∂ε′Cσ(ε′)
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e−
d
fε
x1 B(S(ε,ε′);x1, x2 +

◦
aσ′ −

◦
aσ) e

− d′
fε′

x2
.

(4.80)

Similarly, on the cylinder C(ε,ε′), we can push the integration contour of x1 through

that of x2 and send it to the puncture where it vanishes, we only pick a residue at

x1 = x2 +
◦
aσ′ −

◦
aσ, and we get:

Fε,d;ε′,d′ =
d

fε

Aε,ε′

fε fε′ 2πi

∮
x2∈∂ε′Cσ(ε′)

e−
d
fε

(x2+
◦
aσ′−

◦
aσ) e

− d′
fε′

x2
dx2.

(4.81)

Then, notice that if Aε,ε′ 6= 0, this means that (ε, ε′) is an edge of the toric graph and

thus fε′ = −fε. Consider the variable z = e−x2/fε = ex2/fε′ , we thus have

Fε,d;ε′,d′ =
−d
f3ε

e−
d
fε

(
◦
aσ′−

◦
aσ) Aε,ε′

2πi

∮
x2∈∂ε′Cσ(ε′)

e−
d−d′
fε

x2 dx2

=
d

f3ε
e−

d
fε

(
◦
aσ′−

◦
aσ) Aε,ε′ Res

z→0
zd−d

′
fε
dz

z

=
d

f2ε
e−

d
fε

(
◦
aσ′−

◦
aσ) Aε,ε′ δd,d′ . (4.82)

Then, using lemma 4.2, we have:

F̃ε,d;ε′,d′ −Fε,d;ε′,d′

=
1

fε fε′ (2πi)4

∑
σ1

∮
x1∈∂σ1Cσ(ε)

∮
x∈∂εCσ(ε)

∮
x2∈∂σ(ε)Cσ1

∮
x′∈∂ε′Cσ(ε′)

d

fε

d′

fε′
dx dx′

e−
d
fε
x lnE(Sσ(ε);x, x1)B(S(σ(ε),σ1);x1, x2 +

◦
aσ1 −

◦
aσ(ε))(

lnE(S;
◦
aσ1 + x2,

◦
aσ(ε′) + x′)− δσ1,σ(ε′) lnE(Sσ(ε′);x2, x

′)
)

e
− d′

fε′
x′

(4.83)

where the sum vanishes if σ1 is not a neighbor of σ(ε).

Again, if ε is not the half-edge linking σ(ε) to σ1, we can push the integration

contour of x towards the puncture of Cσ(ε) without meeting any singularity and the

result vanishes. In other words, σ1 has to be chosen as the vertex on the other side of

the half-edge ε.

We can then push the integration contour of x through that of x1 and send it to

the puncture of Cσ(ε) where it vanishes, we only pick a residue at x = x1

F̃ε,d;ε′,d′ −Fε,d;ε′,d′

=
1

fε fε′ (2πi)3

∮
x1∈∂εCσ(ε)

∮
x2∈∂σ(ε)Cσ1

∮
x′∈∂ε′Cσ(ε′)

d′

fε′
dx′

e−
d
fε
x1 B(S(σ(ε),σ1);x1, x2 +

◦
aσ1 −

◦
aσ(ε))
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(
lnE(S;

◦
aσ1 + x2,

◦
aσ(ε′) + x′)− δσ1,σ(ε′) lnE(Sσ(ε′);x2, x

′)
)

e
− d′

fε′
x′

(4.84)

then we can push the integration contour of x1 through that of x2 and send it to the

puncture where it vanishes, we only pick a residue at x1 = x2 +
◦
aσ1 −

◦
aσ(ε)

F̃ε,d;ε′,d′ −Fε,d;ε′,d′

=
1

fε fε′ (2πi)2

∮
x2∈∂σ(ε)Cσ1

∮
x′∈∂ε′Cσ(ε′)

d

fε

d′

fε′
dx2 dx

′ e−
d
fε

(x2+
◦
aσ1−

◦
aσ(ε))

(
lnE(S;

◦
aσ1 + x2,

◦
aσ(ε′) + x′)− δσ1,σ(ε′) lnE(Sσ(ε′);x2, x

′)
)

e
− d′

fε′
x′

=
∑
ε1,d1

Fε,d;ε1,d1

1

fε′ (2πi)2

∮
x2∈∂ε1Cσ(ε1)

∮
x′∈∂ε′Cσ(ε′)

d′

fε′
dx2 dx

′ e
d1
fε1

x2

(
lnE(S;

◦
aσ(ε1) + x2,

◦
aσ(ε′) + x′)− δσ(ε1),σ(ε′) lnE(Sσ(ε′);x2, x

′)
)

e
− d′

fε′
x′

(4.85)

where we have used that Fε,d;ε1,d1 is non-vanishing only if ε1 is the half edge linking σ1

to σ(ε), and thus fε1 = −fε. One would be tempted to identify this last integral with

F̃ε1,−d1;ε′,d′ , but it is not possible because of the wrong sign of d1 in the exponential.

Instead, we insert another integral:

F̃ε,d;ε′,d′ −Fε,d;ε′,d′

= −
∑
ε1,d1

Fε,d;ε1,d1

fε1
d1 fε′ (2πi)2

∮
x2∈∂ε1Cσ(ε1)

∮
x′∈∂ε′Cσ(ε′)

Res
x3→x2

d′

fε′
dx′

e
d1
fε1

x2
B(Sσ(ε1);x2, x3)

(
lnE(S;

◦
aσ(ε1) + x3,

◦
aσ(ε′) + x′)

−δσ(ε1),σ(ε′) lnE(Sσ(ε′);x3, x
′)
)

e
− d′

fε′
x′

(4.86)

and we deform the integration contour of x3 (i.e. a small circle around x2) into a pair

of circles around the cylinder, one on each side of the integration contour of x2.

3

!

3
x

!
!,( )

!

1

1

x
1x

x2
x
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Then, we push the x3 circle which is inside Cσ1 through the pair of pants, and thus

we deform the integration contour for x3 into ∂Cσ1 :

!

+
1

x
1x

x

x

2

3

+

!
!,( )

!

1

1

x
1x

x2
x3

!
! !,( )

!

1

1

x
1xx2x3

!
! !,( )

!

1

Eventually we have

F̃ε,d;ε′,d′ −Fε,d;ε′,d′

= −
∑
ε1,d1

Fε,d;ε1,d1

∑
ε′′

fε1
d1 fε′ (2πi)3

∮
x3∈∂ε′′Cσ(ε1)

∮
x2∈∂ε1Cσ(ε1)

∮
x′∈∂ε′Cσ(ε′)

d′

fε′
dx′

e
d1
fε1

x2
B(Sσ(ε1);x2, x3)

(
lnE(S;

◦
aσ(ε1) + x3,

◦
aσ(ε′) + x′)

−δσ(ε1),σ(ε′) lnE(Sσ(ε′);x3, x
′)
)

e
− d′

fε′
x′

(4.87)

where
∑

ε′′ means the sum over the 3 boundaries of Cσ1 , and where x2 is integrated in

the interior of Cσ1 .

Then, notice that the following integral (whose integration contour leaves x3 near

one of the punctures): ∮
x2∈∂ε1Cσ(ε1)

e
d1
fε1

x2
B(Sσ(ε1);x2, x3) (4.88)
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is an analytic function of e−x3/fε′′ when x3 approaches the puncture ε′′. Therefore we

may expand it as:

− fε1 fε′′

d1 2iπ

∮
x2∈∂ε1Cσ(ε1)

e
d1
fε1

x2
B(Sσ(ε1);x2, x3)

∼
∞∑

d′′=0

H̃0,2,σ(ε1)(d1/fε1 ; d′′/fε′′) e
− d′′

fε′′
x3 d′′

fε′′
dx3 , (4.89)

whose coefficients H̃0,2,σ(d/fε; d
′/fε′) can be determined by computing a residue at the

puncture ε′, i.e. a contour integral around ∂ε′Cσ:

H̃0,2,σ(d/fε; d
′/fε′) = − fε fε′

d d′
1

(2iπ)2

∮
x∈∂εCσ

∮
x′∈∂ε′Cσ

e
d
fε
x B(Sσ;x, x′) e

d′
fε′

x′
. (4.90)

According to corollary 4.1, we have

−H̃0,2,σ(k; k′) = H0,2,σ(k; k′)

+
1

2

∞∑
n=1

1

n!

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)(∑

d

Rσ,d τd

)n
γfσ(k)

1− k ψ
γfσ′ (k

′)

1− k′ ψ′
〉

0,n+2
(4.91)

where

H0,2,σ(d/fε; d
′/fε′) =

fε fε′

d d′
1

(2iπ)2

∮
x∈∂εCσ

∮
x′∈∂ε′Cσ

e
d
fε
x ◦
Bfσ(x, x′) e

d′
fε′

x′
(4.92)

can be computed explicitely:

H0,2,σ(k; k′) =
1

k + k′
γfσ(k) γfσ(k′) (4.93)

and can be included into the sum by formally writing:〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ−fb,σ)

1

1− k ψ
1

1− k′ ψ′
〉

0,2
” = ”

2

k + k′
. (4.94)

Finally we have:

F̃ε,d;ε′,d′ = Fε,d;ε′,d′ +
∑
ε1,d1

∑
ε2,d2

Fε,d;ε1,d1 H̃0,2,σ(ε1)(ε1, d1; ε2, d2) F̃ε2,d2;ε′,d′ (4.95)

which proves the proposition. �
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4.9.3 External legs

Then, we need to compute the weight of external legs given by eq. (4.68):

Proposition 4.2 If x ∈ Cεi is on an open edge, we have

dJ̃ε,d(x) = dJε,d(x) +
∑

ε′,d′,ε′′,d′′

Fε,d;ε′,d′ H̃0,2,σ(ε′)(d
′/fε′ ; d

′′/fε′′) dJ̃ε′′,d′′(x) (4.96)

where

dJε,d(x) = δε,εi e−
d
fε

(x−◦aσ(ε))
d

f2ε
dx. (4.97)

proof:

Assume that x ∈ Cεi . We have from eq. (4.68)

dJ̃ε,d(x) =
1

fε 2πi

∮
x′∈∂εCσ(ε)

e−
d
fε

(x′−◦aσ(ε)) B(S;x′, x). (4.98)

Let ε′ be the other side of the edge of ε (i.e. such that Aε,ε′ = 1, and then we have

fε′ = −fε). Let us move the integration contour to the other end of the cylinder, by

doing so, we may pick a residue at x = x′ in the case where x′ lies on the cylinder. We

thus have

dJ̃ε,d(x) = δε,εi e−
d
fε

(x−◦aσ(ε))
d

f2ε
dx

+
∑
ε′

Aε,ε′

fε′
e−

d
fε

(
◦
aσ(ε′)−

◦
aσ(ε))

1

2πi

∮
x′∈∂ε′Cσ(ε′)

e
+ d

fε′
(x′−◦aσ(ε′)) B(S;x′, x).

(4.99)

Since we have the wrong sign for the exponential, we insert another integral like in

(4.86):

dJ̃ε,d(x) = δε,εi e−
d
fε

(x−◦aσ(ε))
d

f2ε
dx

−
∑
ε′,d′

Fε,d;ε′,d′
fε′

d′
1

2πi

∮
x′∈∂ε′Cσ(ε′)

Res
x′′→x′

e
+ d

fε′
(x′−◦aσ(ε′)) dS(Sσ(ε′), x

′ − ◦aσ(ε′), x
′′ − ◦aσ(ε′))B(S;x′′, x)

= δε,ε′′ e
− d

fε
(x−◦aσ(ε))

d

f2ε
dx

+
∑
ε′,d′,ε′′

Fε,d;ε′,d′
fε′

d′
1

(2πi)2

∮
x′∈∂ε′Cσ(ε′)

∮
x′′∈∂ε′′Cσ(ε′)

e
+ d′

fε′
(x′−◦aσ(ε′)) dS(Sσ(ε′), x

′ − ◦aσ(ε′), x
′′ − ◦aσ(ε′))B(S;x′′, x).

(4.100)
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Then we use

− fε′ fε′′

d′ 2iπ

∮
x′∈∂ε′Cσ(ε′)

e
d′
fε′

x′
dS(Sσ(ε′);x

′, x′′) = −
∞∑

d′′=0

H̃0,2,σ(ε′)(d
′/fε′ ; d

′′/fε′′) e
− d′′

fε′′
x′′
.

(4.101)

That gives

dJ̃ε,d(x) = δε,εi e−
d
fε

(x−◦aσ(ε))
d

f2ε
dx

−
∑

ε′,d′,ε′′,d′′

Fε,d;ε′,d′ H̃0,2,σ(ε′)(d
′/fε′ ; d

′′/fε′′) dJ̃ε′′,d′′(x).

(4.102)

�

In other words, we may replace the edge weight F̃ by F , by introducing a 2-valent

vertex H̃0,2.

We thus have:

Theorem 4.6 If xj ∈ Cεj where εj is an half edge of ΥX (not necessarily corresponding

to a non-compact edge, neither necessarily the one on which the brane L ends), we have

Wg,n(S;x1, . . . , xn)

= 23g−3+n
∑

G∈Gstable+(0,2)
g,n

1

#Aut(G)

∏
v=vertices

H̃gv ,nv ,σv({dh/fεh}h∈Ev)∏
h∈Ev fεh∏

e=(h+,h−)=closed edges

Fεh+
,dh+

;εh− ,dh−

n∏
j=1

e
−
dj
fεj

(xj−
◦
aσ(εj)) dj

fεj
dxj

(4.103)

where the sum is over stable graphs with possibly (0, 2) vertices (every vertex v is such

that 2− 2gv − nv < 1), with

H̃g,n,σ(k1, . . . , kn) = et̂σ,0(2g−2+n)

∫
Mg,n

Λ̂Hodge(fa,σ)Λ̂Hodge(fb,σ)Λ̂Hodge(−fa,σ − fb,σ)

el1∗
∑
d R̃σv,dτd

n∏
i=1

γfσ(ki)

1− ki ψi
, (4.104)

H̃0,2,σ(k1, k2) = H0,2,σ(k1, k2)

+
∞∑
k=1

1

k!

∫
M0,k+2

Λ̂Hodge(fa,σ)Λ̂Hodge(fb,σ)Λ̂Hodge(−fa,σ − fb,σ)(∑
d

R̃σv ,dτd

)k
γfσ(k1)

1− k1 ψ1

γfσ(k2)

1− k2 ψ2

(4.105)

and

Fε,d;ε′,d′ = d e−
d
fε

(
◦
aσ′−

◦
aσ) Aε,ε′ δd,d′ . (4.106)
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proof:

The sum over all (0, 2) vertices can be performed due to

F̃ = F + FH̃0,2F + FH̃0,2FH̃0,2F + FH̃0,2FH̃0,2FH̃0,2F + . . .

which is illustrated as:

= + + + . . .

and it exactly reproduces the left hand side. This is a usual trick used in combinatorics

of graphs. �

4.9.4 Renormalized disc amplitude Rσ,d

Proposition 4.3 The vertex weights can be renormalized by

H̃g,n,σ(d1, . . . , dn)

= Hg,n,σ(d1, . . . , dn)

+
∞∑
k=1

1

k!

∑
εn+1,...,εn+k

∑
dn+1,...,dn+k

Hg,n+k,σ(d1, . . . , dn+k)
n+k∏
i=n+1

Fε,di;εi,diCσ(ε′i)
(di)

(4.107)

and

Cσ(d) = H0,1,σ(d)

+
∞∑
k=1

1

k!

∑
ε2,...,εk+1

∑
d2,...,dk+1

H0,k+1,σ(d1, d2, . . . , dk+1)
k+1∏
i=2

Fε,di;εi,diCσ(ε′i)
(di)(4.108)

where

H0,1,σ(k) =
e−t̂fσ,0

4 k2
γfσ(k) (4.109)

and, for 2− 2g − n < 0:

Hg,n,σ(k1, . . . , kn) =
23g−3+n

e(2−2g−n)t̂fσ,0

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

n∏
i=1

γfσ(ki)

1− ki ψi

〉
g,n
. (4.110)

proof:

From lemma 4.1, we have

Rσ,d =
−2 et̂fσ,0

2πi

∮
∂Cσ

◦̃
ξfσ ,d(x) (y(x+

◦
aσ)−

◦
bσ −

◦
yfσ(x)) dx. (4.111)
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We first decompose ∂Cσ into its 3 circles ∪ε∂εCσ, and on each ∂εCσ we use the expansion

(E.15) for
◦̃
ξfσ ,d(x). This implies

∑
d

ψdRσ,d = 2 e
t̂fσ(ε),0

∑
ε

∑
k

γσ(k/fε)

1− k
fε
ψ
R̂ε(k/fε) (4.112)

where

R̂ε(k/fε) =
1

fε 2πi

∮
∂εCσ(ε)

e−
k
fε

(x−◦aσ(ε)) (y(x)−
◦
bσ(ε) −

◦
yfσ(ε)

(x− ◦aσ(ε))) dx. (4.113)

When k = 0, we have to compute∮
∂εCσ(ε)

(y(x)−
◦
bσ(ε) −

◦
yfσ(ε)

(x− ◦aσ(ε))) dx = 0 (4.114)

which vanishes (order by order in the Q expansion) due to (F.7). So, let us assume

k 6= 0 and integrate by parts:

R̂ε(k/fε) =
1

k

1

2πi

∮
∂εCσ(ε)

e−
k
fε

(x−◦aσ(ε)) (dy(x)− d
◦
yfσ(ε)

(x− ◦aσ(ε))). (4.115)

Using the parametrization of def. 4.6 one can compute explicitely∮
∂εCσ(ε)

e−
k
fε
x d
◦
yfσ(ε)

(x) = 0, (4.116)

and thus

R̂ε(k/fε) =
1

k

1

2πi

∮
∂εCσ(ε)

e−
k
fε

(x−◦aσ(ε)) dy(x). (4.117)

Then, let us move the integration contour through the cylinder Cε. Let us call ε′ the

other half-edge of the cylinder (i.e. Aε,ε′ = 1, and in that case fε′ = −fε):

R̂ε(k/fε) = − 1

k

1

2πi

∑
ε′

Aε,ε′ e
− k

fε
(
◦
aσ(ε′)−

◦
aσ(ε))

∮
∂ε′Cσ(ε′)

e
+ k

fε′
(x−◦aσ(ε′)) dy(x) (4.118)

which we can write

R̂ε(k/fε) =
∑
ε′,k′

Fε,k;ε′,k′ Cε′(k
′/fε′) (4.119)

with

Cε(k/fε) = − f2ε
k2

1

2πi

∮
∂εCσ(ε)

e+ k
fε

(x−◦aσ(ε)) dy(x)

= − f2ε
k2

1

2πi

∮
∂εCσ(ε)

e+ k
fε
x dΦ(x)− f2ε

k2

1

2πi

∮
∂εCσ(ε)

e+ k
fε
x d
◦
yfσ(ε)

(x)

(4.120)
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where we have introduced Φ(x) such that

dΦ(x) = (y(x)−
◦
bσ −

◦
yfσ(x− ◦aσ)) dx. (4.121)

Then, let us use eq. (4.61) of corollary 4.1:

dΦ(x) =
1

2πi

∮
x′∈∂Cσ

◦
Bfσ(x, x′) Φ(x′)− e−t̂fσ,0

4

∑
k1

∞∑
n=2

1

n!〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)(∑
d

Rσ,dτd

)n
γfσ(k1/fε)

1− k1

fε
ψ1

〉
0,n+1

k1

(fε)2
e−

k1
fε
x dx.

(4.122)

We thus get that:

Cε(k/fε) = − fε
k

1

(2πi)2

∮
x∈∂εCσ(ε)

∮
x′∈∂Cσ

e+ k
fε
x ◦
Bfσ(x, x′) Φ(x′)

+
e−t̂fσ,0

4

∞∑
n=2

1

n!

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)(∑

d

Rσ,dτd

)n
γfσ(k/fε)

1− k
fε
ψ1

〉
0,n+1

.

(4.123)

For 2− 2g − n < 0 we define:

Hg,n,σ(k1, . . . , kn) =
23g−3+n

e(2−2g−n)t̂fσ,0

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

n∏
i=1

γfσ(ki)

1− ki ψi

〉
g,n

(4.124)

and

H0,2,σ(k/fε, k
′/fε′) = − fε fε′

k k′
1

(2πi)2

∮
x∈∂εCσ(ε)

∮
x′∈∂Cσ

e+ k
fε
x ◦
Bfσ(x, x′) e

+ k′
fε′

x′
(4.125)

and

H0,1,σ(k) =
e−t̂fσ,0

4 k2
γfσ(k). (4.126)

This amounts to write virtually:〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

1

1− k ψ

〉
0,1

” = ”
1

k2
. (4.127)

This gives that

Cσ(k/fε) = H0,1,σ(k/fε) +
∞∑
n=1

1

n!

∑
ε′i, i=1,...,n

∑
d′i, i=1,...,n
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H0,n+1,σ(k/ε, k1/ε1, . . . , kn/εn)
n∏
i=1

Fεi,ki;ε′i,k′i Cσ(ε′i)
(k′i/ε

′
i).

(4.128)

�

4.10 Finishing the proof

So far we had from theorem 4.5 that, if xj ∈ Cεj where εj is an half edge of ΥX (not

necessarily corresponding to a non-compact edge, neither necessarily the one on which

the brane L ends), we have

Wg,n(S;x1, . . . , xn)

=
∑

G∈Gstable
g,n

1

#Aut(G)

∏
v=vertices

H̃gv ,nv ,σv({dh/fεh}h∈Ev)

∏
e=(h+,h−)=closed edges

F̃εh+
,dh+

;εh− ,dh−

n∏
j=1, hj=open half−edges

dJ̃εhj ,dhj (xj)

(4.129)

where the quantities H̃g,n,σ and F̃ε,d;ε′,d′ are directly computed from the spectral curve,

and where the sum is only over stable graphs (every vertex v is such that 2−2gv−nv <
0).

However, we have just found that we have for (g, n) 6= (0, 1):

H̃g,n,σ(k1/fε1 , . . . , kn/fεn)

= Hg,n,σ(k1/fε1 , . . . , kn/fεn)

+
∞∑
m=1

1

m!

∑
ε′i, i=n+1,...,n+m

∑
d′i, i=n+1,...,n+m

Hg,n+m,σ(k1/ε1, . . . , kn+m/εn+m)
n+m∏
i=n+1

Fεi,ki;ε′i,k′i Cσ(ε′i)
(k′i/ε

′
i)

(4.130)

and for (g, n) = (0, 1)

Cσ(k/fε) = H0,1,σ(k/fε) +
∞∑
n=1

1

n!

∑
ε′i, i=1,...,n

∑
d′i, i=1,...,n

H0,n+1,σ(k/ε, k1/ε1, . . . , kn/εn)
n∏
i=1

Fεi,ki;ε′i,k′i Cσ(ε′i)
(k′i/ε

′
i)

(4.131)

and we have

F̃ε,k;ε′,k′ = Fε,k;ε′,k′ +
∑

ε′′,ε′′′,k′′,k′′′

Fε,k;ε′′,k′′H̃0,2,σ(ε′′)(k
′′/fε′′ , k

′′′/fε′′′) F̃ε′′′,k′′′;ε′,k′ (4.132)
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= + + + + . . .1
2 6

1

g,n+2 g,n+3HHH~ g,n g,n Hg,n+1 H

= + + + + . . .1
2 6

1

HH0,1 H0,2 H0,3 0,4

= + + + . . .

Figure 14: The vertices weights H̃g,n are obtained by gluing C in all possible ways,
and C must be chosen such that H̃0,1 = C. The weight for the propagator is F̃ =
F + FH̃0,2F + FH̃0,2FH̃0,2F + · · · = F + FH̃0,2F̃

and

dJ̃ε,k(x) = dJε,k(x) +
∑

ε′,ε′′,k′,k′′

F̃ε,k;ε,k′ H̃0,2,σ(ε′)(k
′/fε′ , k

′′/fε′′) dJε′′,k′′(x) (4.133)

All this is sufficient to prove that:

Theorem 4.7

Wg,n(S;x1, . . . , xn)

=
∑

G∈Gg,n

1

#Aut(G)

∏
v=vertices

Hgv ,nv ,σv({dh/fεh}h∈Ev)

∏
e=(h+,h−)=closed edges

Fεh+
,dh+

;εh− ,dh−

n∏
j=1, hj=open half−edges

dJεhj ,dhj (xj)

(4.134)

where now the sum is over all graphs (not only stable ones). Moreover we have:

Hg,n,σ(k1, . . . , kn) =
23g−3+n

e(2−2g−n)t̂fσ,0

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

n∏
i=1

γfσ(ki)

1− ki ψi

〉
g,n

(4.135)
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where for (g, n) = (0, 2) and (0, 1) we have defined〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

1

1− k ψ

〉
0,1

def
=

1

k2
(4.136)

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

1

1− k ψ1

1

1− k′ ψ2

〉
0,2

def
=

2

k + k′
(4.137)

and

Fε,d;ε′,d′ = Aε,ε′ δd,d′
d

f2ε
e−

d
fε

(
◦
aσ′−

◦
aσ) (4.138)

dJε,k(x) = e−
k
fε

(x−◦aσ(ε))
k

f2ε
dx (4.139)

proof:

The proof is best represented graphically, this is fig. 14. �

One can check that this expression coincides with the localization formula for

Gromov–Witten invariants. This concludes the proof of the BKMP conjecture:

Theorem 4.8 The BKMP conjecture holds true. In other words the invariants Wg,n

of the mirror curve S do coincide with the Gromov–Witten invariants:

Wg,n(S;x1, . . . , xn) =Wg,n(X, x1, . . . , xn) dx1 ⊗ · · · ⊗ dxn. (4.140)

5 Conclusion

We have obtained theorem 4.7 using only properties of the topological recursion (mostly

combinatorics of graphs and complex analysis on the spectral curve), and it is re-

markable that what we obtain is exactly the localization formula of Gromov-Witten

invariants.

Our proof is thus a proof which works mostly on the B-model side. The main

ingredients are localization, tropical limit, special geometry, graph combinatorics and

complex analysis on C.

En route we have seen that the B-model formula continues to make sense when the

boundaries are not all on the same brane, each boundary can be chosen on a different

brane, and also the brane needs not be on a non-compact edge of the toric graph, it

can be on any half-edge.

We hope that the present proof may shed some new light on the A-model side

geometry.
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Appendix A

A Invariants of spectral curves and topological re-

cursion

A.1 Spectral curves

A spectral curve is in fact the data of a plane curve with some additional structure.

We set:

Definition A.1 (Spectral curve) a spectral curve S = (C, x, y, B), is the data of:

• a Riemann surface C, not necessarily compact,

• two analytical functions x : C → C, y : C → C,

• a Bergman kernel B, i.e. a symmetric 2nd kind bilinear meromorphic differential,

having a double pole on the diagonal and no other pole, and normalized (in any local

coordinate z) as:

B(z1, z2) ∼
z2→z1

dz1 ⊗ dz2

(z1 − z2)2
+ analytical. (A.1)

Moreover, the spectral curve S is called regular if the 1-form dx has a finite number

of zeroes on C, denoted {α1, . . . , αb}, and they are simple zeroes, and dy doesn’t vanish

at the zeroes of dx. In other words, locally near a branchpoint α, y behaves like a square

root of x:

y(z) ∼
z→α

y(α) + y′(a)
√
x(z)− a+O(x(z)− a) , y′(a) 6= 0 (A.2)

and where a = x(α) is the x–projection of the branchpoint α:

x(α) = a. (A.3)

67



A.2 Invariants

In [18], it was defined how to associate to a regular spectral curve S, an infinite sequence

of symmetric multilinear meromorphic forms ω
(g)
n ∈ T ∗(C)⊗· · ·⊗T ∗(C), and a sequence

of complex numbers Fg(S) ∈ C. The definition is given by a recursion, often called

”topological recursion”, which we recall:

Definition A.2 (Invariants ωg,n(S)) Let S = (C, x, y, B) be a regular spectral curve.

Let α1, . . . , αb be its branchpoints (zeroes of dx in C), and ai = x(αi). We define

ω0,1(S; z) = y(z) dx(z), (A.4)

ω0,2(S; z1, z2) = B(z1, z2), (A.5)

and for 2g − 2 + (n+ 1) > 0:

ωg,n+1(S; z1, . . . , zn, zn+1) =
b∑
i=1

Res
z→αi

K(zn+1, z)
[
ωg−1,n+2(z, z̄, z1, . . . , zn)

+

g∑
h=0

′∑
I]J={z1,...,zn}

ωh,1+#I(z, I)ωg−h,1+#J(z, J)
]

(A.6)

where the prime in
∑

h

∑′
I]J means that we exclude from the sum the terms (h =

0, I = ∅) and (h = g, J = ∅), and where z̄ means the other branch of the square-root in

(4.6) near a branchpoint αi, i.e. if z is in the vicinity of αi, z̄ 6= z is the other point in

the vicinity of αi such that

x(z̄) = x(z), (A.7)

and thus y(z̄) ∼ y(α)− y′(a)
√
x(z)− a. The recursion kernel K(zn+1, z) is defined as

K(zn+1, z) =

∫ z
z′=z̄

B(zn+1, z
′)

2(y(z)− y(z̄)) dx(z)
(A.8)

K is a 1-form in zn+1 defined on C with a simple pole at zn+1 = z and at zn+1 = z̄,

and in z it is the inverse of a 1-form, defined only locally near branchpoints, and it has

a simple pole at z = αi.

Using the x(z) coordinate instead of z, we define

Wg,n(S;x(z1), . . . , x(zn)) = ωg,n(z1, . . . , zn). (A.9)

We also define for g ≥ 2:

Fg(S) = ωg,0(S) =
1

2− 2g

b∑
i=1

Res
z→αi

ωg,1(S; z)

(∫ z

z′=αi

y(z′)dx(z′)

)
. (A.10)
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With this definition, Fg(S) ∈ C is a complex number associated to S, sometimes

called the gth symplectic invariant of S, and ωg,n(S; z1, . . . , zn) is a symmetric multi-

linear differential ∈ T ∗(C) ⊗ · · · ⊗ T ∗(C), sometimes called the nth descendant of Fg.

Very often we denote Fg = ωg,0. If 2− 2g − n < 0, ωg,n is called stable, and otherwise

unstable, the only unstable cases are F0, F1, ω0,1, ω0,2. For 2−2g−n < 0, ωg,n has poles

only at branchpoints (when some zk tends to a branchpoint ai), without residues, and

the degrees of the poles are ≤ 6g + 2n − 4. In the x variables, Wg,n are multivalued

functions of the xi’s and their singular behavior near xi → aj are half integer power

singularities:

Wg,n(S;x1, . . . , xn) ∼ O
(

(xi − aj)−di,j−
1
2

)
dxi (A.11)

where

di,j ≤ 3g − 3 + n (A.12)

We shall not write here the definition of F0 and F1, see [18], since we shall not use

them here.

Those invariants Fg and ωg,n’s have many fascinating properties, in particular re-

lated to integrability, to modular forms, and to special geometry, and we refer the

reader to [18, 20].

B Intersection numbers

Since many of our formula involve intersection numbers in moduli spaces of curves, let

us introduce basic concepts. We refer the reader to [] for deeper description.

B.1 Definitions

Let Mg,n be the moduli space of complex curves of genus g with n marked points. It

is a complex orbifold (manifold quotiented by a group of symmetries), of dimension

dimMg,n = dg,n = 3g − 3 + n. (B.1)

Each element (Σ, p1, . . . , pn) ∈ Mg,n is a smooth complex curve Σ of genus g with n

smooth distinct marked points p1, . . . , pn. Mg,n is not compact because the limit of a

family of smooth curves may be non–smooth, some cycles may shrink, or some marked

points may collapse in the limit. The Deligne–Mumford compactificationMg,n ofMg,n

also contains stable nodal curves of genus g with n distinct smooth marked points (a

nodal curve is a set of smooth curves glued at nodal points, and thus nodal points

are equivalent to pairs of marked points, and stability means that each punctured
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Figure 15: A stable curve inMg,n can be smooth or nodal. Here we have an example in
M3,4 of a stable curve of genus g = 3, with n = 4 marked points p1, . . . , p4, and made
of 3 components, glued by 3 nodal points. Each nodal point is a pair of marked points
(qi, qj). Each component is a smooth Riemann surface of some genus gi, and with ni
marked or nodal points. Stability means that for each component χi = 2−2gi−ni < 0.
Here, one component has genus 2 and 1 nodal point q4 so χ = −3, another component
is a sphere with 2 marked points p1, p2 and 3 nodal points q1, q2, q3 i.e. χ = −3, and
the last component is a sphere with 2 marked points p3, p4 and 2 nodal points q5, q6

so χ = −2. The total Euler characteristics is χ = −3 − 3 − 2 = −8 which indeed
corresponds to 2 − 2g − n for a Riemann surface of genus g = 3 with n = 4 marked
points.

component curve has an Euler characteristics < 0), see fig 15. Mg,n is then a compact

space.

Let Li be the cotangent bundle at the marked point pi, i.e. the bundle over Mg,n

whose fiber is the cotangent space T ∗(pi) of Σ at pi. It is customary to denote its first

Chern class:

ψi = ψ(pi) = c1(Li). (B.2)

ψi is (the cohomology equivalence class modulo exact forms, of) a 2-form on Mg,n.

Since dimRMg,n = 2 dimCMg,n = 6g− 6 + 2n, it makes sense to compute the integral

of the exterior product of 3g−3+n 2-forms, i.e. to compute the ”intersection number”

Definition B.1

〈τd1 . . . τdn〉g,n :=
〈
ψd1

1 . . . ψdnn
〉
g,n

:=


∫
Mg,n

ψd1
1 . . . ψdnn if

∑
i

di = dg,n = 3g − 3 + n

0 otherwise

.

(B.3)
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More interesting characteristic classes and intersection numbers are defined as fol-

lows. Let (we follow the notations of [31], and refer the reader to it for details)

π :Mg,n+1 →Mg,n

be the forgetful morphism (which forgets the last marked point), and let σ1, . . . , σn be

the canonical sections of π, and D1, . . . , Dn be the corresponding divisors in Mg,n+1.

Let ωπ be the relative dualizing sheaf. We consider the following tautological classes

on Mg,n:

• The ψi classes (which are 2-forms), already introduced above:

ψi = c1(σ∗i (ωπ))

It is customary to use Witten’s notation:

ψdii = τdi . (B.4)

• The Mumford κk classes [47, 4]:

κk = π∗(c1(ωπ(
∑
i

Di))
k+1).

κk is a 2k–form. κ0 is the Euler class, and in Mg,n, we have

κ0 = −χg,n = 2g − 2 + n.

κ1 is known as the Weil-Petersson form since it is given by 2π2κ1 =
∑

i dli ∧ dθi in the

Fenchel-Nielsen coordinates (li, θi) in Teichmüller space [52].

In some sense, κ classes are the remnants of the ψ classes of (clusters of) forgotten

points. There is the formula [4]:

π∗ψ
d1
1 . . . ψdnn ψk+1

n+1 = ψd1
1 . . . ψdnn κk (B.5)

π∗π∗ψ
d1
1 . . . ψdnn ψk+1

n+1 ψ
k′+1
n+2 = ψd1

1 . . . ψdnn (κk κk′ + κk+k′) (B.6)

and so on...

• The Hodge class Λ(α) = 1 +
∑g

k=1 (−1)k α−k ck(E) where ck(E) is the kth Chern

class of the Hodge bundle E = π∗(ωπ). Mumford’s formula [47, 21] says that

ΛHodge(α) = e−
∑
k≥1

B2k α
1−2k

2k(2k−1) (κ2k−1−
∑
i ψ

2k−1
i + 1

2

∑
δ

∑
j(−1)j lδ∗ψj ψ

′2k−2−j) (B.7)

where Bk is the kth Bernoulli number, δ a boundary divisor (i.e. a cycle which can be

pinched so that the pinched curve is a stable nodal curve, i.e. replacing the pinched
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Figure 16: The curve C is a union of cylinders Cσ,σ′ corresponding to edges of the toric
graph ΥX and of pairs of pants Cσ corresponding to vertices of ΥX. Its Bergman kernel
can be obtained as a combination of the Bergman kernels of each pieces. Notice that
the framing of the edge σ, σ′ is fσ,σ′ = −fσ′,σ = fb,σ′ = −fb,σ = βi2 − βi1 .

cycle by a pair of marked points, all components have a strictly negative Euler char-

acteristics), and lδ∗ is the natural inclusion into the moduli spaces of each connected

component. In other words
∑

δ lδ∗ adds a nodal point in all possible stable ways, i.e.

it adds two marked points, and ψ and ψ′ are their ψ classes.

In fact, all tautological classes in Mg,n can be expressed in terms of ψ-classes or

their pull back or push forward from some Mh,m [6]. Faber’s conjecture [21] (partly

proved in [46] and [31]) proposes an efficient method to compute intersection numbers

of ψ, κ and Hodge classes.

C Bergman kernel of a spectral curve

Lemma 4.2 Let σ, σ′ be two vertices. Let x ∈ Cσ and x′ ∈ Cσ′, then we have

(2iπ)2
[
lnE(S;

◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′ lnE(Sσ;x, x′)

]
=

∮
x2∈∂σCσ′

∮
x1∈∂σ′Cσ

lnE(Sσ;x, x1)B(Sσ,σ′ ;x1, x2 +
◦
aσ′ −

◦
aσ) lnE(Sσ′ ;x2, x

′)

+
∑
σ1

∮
x2∈∂σCσ1

∮
x1∈∂σ1Cσ

lnE(Sσ;x, x1)B(Sσ,σ1 ;x1, x2 +
◦
aσ1 −

◦
aσ)(

lnE(S;
◦
aσ1 + x2,

◦
aσ′ + x′)− δσ1,σ′ lnE(Sσ′ ;x2, x

′)
)

(C.1)
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where

B(Sσ,σ′ ;x1, x2) = Aσ,σ′
1

(fσ,σ′)2

e
− x1

fσ,σ′ e
− x2

fσ,σ′(
e
− x1

fσ,σ′ − e
− x2

fσ,σ′

)2 dx1 ⊗ dx2 (C.2)

is the Bergman kernel on the cylinder Cσ,σ′, Aσ,σ′ is the adjacency matrix of the toric

graph, i.e. Aσ,σ′ = 1 if σ and σ′ are neighbors and 0 otherwise, and fσ,σ′ is the framing

of the edge (σ, σ′) as defined in def 2.5.

proof:

For some choice of a basepoint o, we define the Cauchy kernel

dS(S;x, x′) =

∫ x′

x′′=o

B(S;x, x′′) (C.3)

Notice that C is not simply connected, neither is any pair of pants Cσ nor any cylinder

Cσ,σ′ , so the integral from o to x′ might depend on the integration contour. However,

since we have normalized our Bergman kernels onA cycles (cf section 2.4), andA-cycles

surround cylinders, we see that dS(S;x, x′) is globally well defined on any pair of pants

Cσ or on any cylinder Cσ,σ′ (it would be ill defined on a subdomain of C containing a

B-cycle because the B-cycle integral of B does’nt vanish).

Locally near x′ = x it behaves like

dS(S;x, x′) ∼ dx

x− x′
+ analytical. (C.4)

This can thus be used to write Cauchy formula, and we write:

B(S;
◦
aσ + x,

◦
aσ′ + x′) = − Res

x1→x
dS(Sσ;x, x1)B(S;

◦
aσ + x1,

◦
aσ′ + x′) (C.5)

and by moving the integration contour (a small circle around x) to the boundaries of

Cσ (we pick a pole at x1 = x′ in the case x′ ∈ Cσ, i.e. in the case σ′ = σ), we get:

B(S;
◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′B(Sσ, x, x′)

= −
∑
σ1

1

2πi

∮
x1∈∂σ1Cσ

dS(Sσ;x, x1)B(S;
◦
aσ + x1,

◦
aσ′ + x′)

(C.6)

(we choose to orient the boundaries of Cσ such that the surface lies on the left of its

boundaries).

x

x
!
x1 x

!
1x

1x

1
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Then since x1 ∈ Cσ,σ1 , we write Cauchy formula again with the Cauchy kernel

dS(Sσ,σ1 ;x1, x2) of Cσ,σ1 , i.e.

B(S;
◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′B(Sσ, x, x′)

= −
∑
σ1

1

2πi

∮
x1∈∂σ1Cσ

dS(Sσ;x, x1)B(S;
◦
aσ + x1,

◦
aσ′ + x′)

=
∑
σ1

1

2πi

∮
x1∈∂σ1Cσ

Res
x2→x1

dS(Sσ;x, x1) dS(Sσ,σ1 ;x1, x2)B(S;
◦
aσ + x2,

◦
aσ′ + x′)

(C.7)

and again, moving the integration contour (a small circle around x1) to a pair of circles

around the cylinder Cσ,σ1 , we get:

B(S;
◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′B(Sσ, x, x′)

= −
∑
σ1

1

(2πi)2

∮
x1∈∂σ1Cσ

∮
x2∈∂σ1Cσ

dS(Sσ;x, x1) dS(Sσ,σ1 ;x1, x2)

B(S;
◦
aσ + x2,

◦
aσ′ + x′)

−
∑
σ1

1

(2πi)2

∮
x2∈∂σCσ1

∮
x1∈∂σ1Cσ

dS(Sσ;x, x1) dS(Sσ,σ1 ;x1, x2)

B(S;
◦
aσ + x2,

◦
aσ′ + x′) (C.8)

2

! ( )

!

1

1

xx2
1xx

!
!,( )

!

1

1

xx2
1x

!
! !,

For the first line, notice that both Cσ and Cσ,σ1 can be realized as the complex

projective plane CP 1, and Cσ,σ1 can be realized as a subset of Cσ (a disc around one of

the punctures of Cσ = CP 1 \ {0, 1,∞}) and we can send x1 → ∞ (i.e. to the punc-

ture) without picking any singularity (because both B(Sσ;x, x1) and B(Sσ,σ1 ;x1, x2)

are analytical at the punctures, they have poles only at coinciding points), i.e.∮
x1∈∂σ1Cσ

∮
x2∈∂σ1Cσ

dS(Sσ;x, x1) dS(Sσ,σ1 ;x1, x2)B(S;
◦
aσ + x2,

◦
aσ′ + x′) = 0 (C.9)

x
!

xx2

1
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Therefore, after changing the variable x2:

B(S;
◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′B(Sσ, x, x′)

= −
∑
σ1

1

(2πi)2

∮
x2∈∂σCσ1

∮
x1∈∂σ1Cσ

dS(Sσ;x, x1) dS(Sσ,σ1 ;x1, x2 +
◦
aσ1 −

◦
aσ)

B(S;
◦
aσ1 + x2,

◦
aσ′ + x′) (C.10)

2

!

x
1xx

!
!,( )

!

1

1

we may rewrite it as:

B(S;
◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′B(Sσ, x, x′)

= − 1
(2πi)2

∮
x2∈∂σCσ′

∮
x1∈∂σ′Cσ

dS(Sσ;x, x1) dS(Sσ,σ′ ;x1, x2 +
◦
aσ′ −

◦
aσ)B(Sσ′ ;x2, x

′)

−
∑

σ1

1
(2πi)2

∮
x2∈∂σCσ1

∮
x1∈∂σ1Cσ

dS(Sσ;x, x1) dS(Sσ,σ1 ;x1, x2 +
◦
aσ1 −

◦
aσ)(

B(S;
◦
aσ1 + x2,

◦
aσ′ + x′)− δσ1,σ′ B(Sσ′ ;x2, x

′)
)

(C.11)

and integrating:

(2iπ)2
[
lnE(S;

◦
aσ + x,

◦
aσ′ + x′)− δσ,σ′ lnE(Sσ, x, x′)

]
=

∮
x2∈∂σCσ′

∮
x1∈∂σ′Cσ

lnE(Sσ;x, x1)B(Sσ,σ′ ;x1, x2 +
◦
aσ′ −

◦
aσ) lnE(Sσ′ ;x2, x

′)

+
∑

σ1

∮
x2∈∂σCσ1

∮
x1∈∂σ1Cσ

lnE(Sσ;x, x1)B(Sσ,σ1 ;x1, x2 +
◦
aσ1 −

◦
aσ)(

lnE(S;
◦
aσ1 + x2,

◦
aσ′ + x′)− δσ1,σ′ lnE(Sσ′ ;x2, x

′)
)

(C.12)

which proves the lemma. �

D Local description of the spectral curve near

branchpoints

Let S = (C, x, y, B) be a regular spectral curve, let {α1, α2, . . . , αb} be the set of its

branchpoints, i.e. the zeores of dx, and ai = x(αi). We first need to set up notations.
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For each branchpoint aσ we define the steepest descent path γσ, as a connected arc

on C passing through ασ such that

x(γσ)− aσ = R+ , (D.1)

i.e. the vertical trajectory of x going through ασ. In a vicinity of ασ the following

quantity is a good local coordinate √
x(z)− aσ. (D.2)

D.1 Coefficients B̂σ,k;σ′,l

We expand the Bergman kernel in the vicinity of branchpoints in powers of the local

coordinates
√
x(z)− a as follows:

B(z, z′) ∼
z′→ασ′
z→ασ

( δσ,σ′

(
√
x(z)− aσ −

√
x(z′)− aσ′)2

+
∑
d,d′≥0

Bσ,d;σ′,d′ (x(z)− aσ)d/2 (x(z′)− aσ′)d
′/2
)

dx(z)⊗ dx(z′)

4
√
x(z)− aσ

√
x(z′)− aσ′

(D.3)

and then we define

B̂σ,k;σ′,k′ = (2k − 1)!! (2l − 1)!! 2−k−l−1 Bσ,2k;σ′,2k′ . (D.4)

It is useful to notice that the generating function of these last quantities can also be

defined through Laplace transform, we define:

B̌σ,σ′(u, v) =
∑
k,k′≥0

B̂σ,k;σ′,k′u
−k v−l, (D.5)

which is given by the Laplace transform of the Bergman kernel

B̌σ,σ′(u, v) = δσ,σ′
uv

u+ v
+

√
uv euaσ evaσ′

2π

∫
z∈γσ

∫
z′∈γσ′

B(z, z′) e−ux(z) e−vx(z′) (D.6)

where the double integral is conveniently regularized when σ = σ′, so that B̌σ,σ′(u, v)

is a power series of u and v.

D.2 Basis of differential forms dξσ,d(z)

We define the set of functions ξσ,d(z) as follows:

dξσ,d(z) = − (2d− 1)!! 2−d Res
z′→ασ

B(z, z′) (x(z′)− aσ)−1/2−d (D.7)
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It is a meromorphic 1-form defined on C, with a pole only at z = ασ, of degree 2d+ 2.

Namely, near z → ασ′ it behaves like

ξσ,d(z) ∼
z→ασ′

δσ,σ′
(2d− 1)!!

2d (x(z)− aσ′)1/2+d
− (2d− 1)!!

2d

∑
k

1

k + 1
Bσ,2d;σ′,k (x(z)− aσ′)

k+1
2 .

(D.8)

These differential forms will play an important role because they give the behavior

of the Bergman kernel B near a branchpoint:

B(z, z′)−B(z̄, z′) ∼
z→aσ

−2
∑
d≥0

2d

(2d− 1)!!
ζaσ(z)2d dζaσ(z)⊗ dξaσ ,d(z′) (D.9)

where ζaσ(z) =
√
x(z)− aσ.

D.3 fσ,σ′(u)

Knowing ξσ′,0(z), it is useful to define its Laplace transform along γσ as

fσ,σ′(u) =

√
u

2
√
π

euaσ
∫
γσ

e−ux ξσ′,0 dx

=
1

2
√
π u

euaσ
∫
γσ

e−ux dξσ′,0

= δσ,σ′ −
∑
k≥0

B̂σ′,0;σ,k

uk+1
. (D.10)

In [15], it was proved that

Lemma D.1 If C is a compact Riemann surface and dx is a meromorphic form on C
and B is the fundamental form of the second kind normalized on A-cycles, we have

B̌σ,σ′(u, v) =
uv

u+ v

(
δσ,σ′ −

b∑
σ′′=1

fσ,σ′′(u) fσ′,σ′′(v)

)
(D.11)

so that all we need to compute is in fact fσ,σ′(u).

D.4 The times t̂σ,k

Finally we define the times t̂σ,k at branchpoint aσ in terms of the local behavior of y(z)

by the Laplace transform of ydx along γσ

e−t̂σ,0 e−gσ(u) =
2u3/2 euaσ√

π

∫
z∈γσ

e−ux(z) y(z) dx(z) =
2
√
u euaσ√
π

∫
z∈γσ

e−ux(z) dy(z)

(D.12)
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The times t̂σ,k are the coefficients of the expansion of g(u) at large u:

gσ(u) =
∑
k≥1

t̂σ,ku
−k. (D.13)

Notice that the time t̂σ,0 is given by

e−t̂σ,0 = lim
z→ασ

y(z)− y(z̄)√
x(z)− aσ

def
= 2 y′(aσ). (D.14)

Here we add another lemma:

Lemma D.2 If C is a compact Riemann algebraic surface of equation

H(e−x, e−y) = 0 (D.15)

where H is a polynomial, and we assume that all poles of dy are also poles of dx, and

the Bergman kernel B is the fundamental 2-form of the second kind normalized on

A-cycles (i.e.
∮
Ai B(., z) = 0), then we have

e−gσ(u) =
∑
σ′

et̂σ,0−t̂σ′,0 fσ,σ′(u). (D.16)

proof:

Since e−x and e−y are meromorphic functions, their logarithmic derivatives are

meromorphic forms, i.e. dx and dy are meromorphic forms, and thus

dy

dx

is a meromorphic function.

It has poles at all the zeroes of dx, namely

dy(z)

dx(z)
∼

z→ασ

y′(ασ)

2
√
x(z)− x(ασ)

∼
z→ασ

y′(ασ)

2
ξσ,0(z). (D.17)

Since dx and dy are logarithmic derivatives of meromorphic functions, they can only

have simple poles, and we assumed that all poles of dy must also be poles of dx,

therefore dy/dx has no pole at the poles of dy. The only poles of dy/dx are thus the

ασ, and therefore dy/dx −
∑

σ y
′(ασ)ξσ,0/2 has no pole pole. Taking the differential

once again says that

d
dy

dx
− 1

2

∑
σ

y′(ασ) dξσ,0 (D.18)

is a holomorphic differential without poles, therefore it can be written

d
dy

dx
=

1

2

∑
σ

y′(ασ) dξσ,0 +

g∑
i=1

ci dui (D.19)
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where ci are some coefficients determined by

ci = −1

2

∑
σ

y′(ασ)

∮
Ai
dξσ,0 = 0 (D.20)

(they vanish because dξσ,0 is normalized on Ai like B). This implies that

dy

dx
=

1

2

∑
σ

y′(ασ) ξσ,0 + C (D.21)

where C is some integration constant.

The Laplace transforms are:

e−t̂σ,0e−gσ(u) =
2
√
u euaσ√
π

∫
γσ

e−ux
dy

dx
dx (D.22)

and

fσ,σ′(u) =

√
u euaσ

2
√
π

∫
γσ

e−ux ξσ′,0 dx (D.23)

We thus obtain (notice that the constant term does’nt contribute because it is the

integral of a total derivative):

e−t̂σ,0e−gσ(u) = 2
∑
σ′

y′(ασ′) fσ,σ′(u) (D.24)

Notice that at large u we have e−gσ(u) → 1 and fσ,σ′(u) → δσ,σ′ , therefore we recover

the relatonship eq. (D.14)

e−t̂σ,0 = 2y′(ασ) (D.25)

and finally as announced

e−gσ(u) =
∑
σ′

et̂σ,0−t̂σ′,0 fσ,σ′(u). (D.26)

�

D.5 More Lemmas

All the following formulae are easy to prove and we write them for bookkeeping purpose:

dξa,d(z)

dx(z)
= −ξa,d+1(z)−

∑
a′

B̂a,d;a′,0 ξa′,0(z) (D.27)

∂ξa,d(z)

∂Q

∣∣∣∣
x(z)

=
∂x(a)

∂Q
ξa,d+1(z) +

∑
a′

B̂a,d;a′,0
∂x(a′)

∂Q
ξa′,0(z) (D.28)
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i.e.

∂ξa,d(z)

∂Q

∣∣∣∣
x(z)

+
∂x(a)

∂Q

dξa,d(z)

dx(z)
=
∑
a′ 6=a

B̂a,d;a′,0

(
∂x(a′)

∂Q
− ∂x(a)

∂Q

)
ξa′,0(z) (D.29)

∂fa′′,a(u)

∂Q
= u

(
∂x(a′′)

∂Q
− ∂x(a)

∂Q

)
fa′′,a(u) +

∑
a′ 6=a

B̂a,0;a′,0

(
∂x(a′)

∂Q
− ∂x(a)

∂Q

)
fa′′,a′(u)

(D.30)

∂B̂a,0;a′′,k

∂Q
=

(
∂x(a′′)

∂Q
− ∂x(a)

∂Q

)
B̂a,0;a′′,k+1 +

∑
a′ 6=a

B̂a,0;a′,0

(
∂x(a′)

∂Q
− ∂x(a)

∂Q

)
B̂a′,0;a′′,k

(D.31)

E Invariants of the topological vertex

Theorem E.1 [”Mariño–Vafa formula”] we have:

Wg,n(
◦
S f;x1, . . . , xn)

=
23g−3+n

et̂f,0(2−2g−n)

∑
{di}

〈
Λ̂Hodge(fa) Λ̂Hodge(fb) Λ̂Hodge(−fa − fb)

n∏
i=1

τdi

〉
g,n

n∏
i=1

d
◦̃
ξf,di(xi)

(E.1)

where, if x lies near the puncture of P1 \ {0, 1,∞} (i.e. z = 0, 1 or ∞) corresponding

to the half-edge ε, (whose framing is fε = fb, fa or −fa − fb respectively):

◦̃
ξfε,d(x) = (−1)d

(
d

dx

)d ◦
ξfε,0(x) =

∑
k

kd+1

fd+2
εi

γf(k/fε) e−
k
fε
x dx. (E.2)

Thus, if xi lies near the puncture corresponding to the half-edge εi, (whose framing

is fε):

Wg,n(
◦
S f;x1, . . . , xn)

=
23g−3+n

et̂f,0(2−2g−n)

∑
{ki}

〈
Λ̂Hodge(fa) Λ̂Hodge(fb) Λ̂Hodge(−fa − fb)

n∏
i=1

1

1− ki
fεi
ψi

〉
g,n

n∏
i=1

ki
f2εi

γf(ki/fεi) e
− ki

fεi
xi
dxi

(E.3)

where the sum carries over positive integers (k1, . . . , kn) ∈ Zn+.
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proof:

This is a mere application of theorem 4.1, and is fully proved in [14], or alternatively,

it can be seen as a consequence of the proof of BKMP for the framed vertex [11, 53].

According to theorem 4.1 the invariants of
◦
S f are

W g,n(
◦
S f;x1, . . . , xn) =

23g−3+n

e−t̂f,0(2g−2+n)

∑
d1,...,dn

〈
Λ̂ ◦
S(f)

n∏
i=1

ψdii

〉
Mg,n

n∏
i=1

d
◦
ξf,d(xi)

(E.4)

where the classes Λ̂ ◦
S(f)

and d
◦
ξf,d(x) are computed from the recipe given in theorem 4.1:

• the times t̂f,k: their generating function
◦
gf(u) =

∑
k t̂f,ku

−k is obtained by com-

puting the Laplace transform of ydx:

e−t̂f,0 e−
◦
gf(u) =

2u3/2

√
π

∫
γ

e−u
◦
x ◦yd

◦
x

=
2u1/2

√
π

∫
γ

e−u
◦
x d
◦
y

=
2u1/2

√
π

(fa + fb)
(fa+fb)u

ffaua ffbub

∫ 1

0

zfbu(1− z)fau
(

fc
1− z

− fd
z

)
dz

=
2u1/2

√
π

(fa + fb)
(fa+fb)u

ffaua ffbub

(
fc

Γ(fbu+ 1)Γ(fau)

Γ((fa + fb)u+ 1)
− fd

Γ(fbu)Γ(fau+ 1)

Γ((fa + fb)u+ 1)

)
=

fcfb − fdfa
fa + fb

2
√
u (fa + fb)

(fa+fb)u

√
π ffaua ffbub

Γ(fau) Γ(fbu)

Γ((fa + fb)u)

= − 2
√

2√
fafb(fa + fb)

Γ̂(fau) Γ̂(fbu)

Γ̂((fa + fb)u)

= − 2
√

2√
fafb(fa + fb)

1√
π u γf(u)

(E.5)

where γf(u) was introduced in eq. (3.21) for the localization formula in theorem 3.7:

γf(u) =
1√
π u

Γ̂(u(fa + fb))

Γ̂(u fa) Γ̂(u fb)
. (E.6)

That gives

e−t̂f,0 =
− 2
√

2√
fafb(fa + fb)

(E.7)

and, using the Stirling expansion of the Log of the Gamma–function:

◦
gf(u) =

∑
k≥1

u−k t̂f,k =
∑
k≥1

u1−2k B2k

2k(2k − 1)
((fa + fb)

1−2k − f1−2k
a − f1−2k

b ) (E.8)

where Bk is the kth Bernoulli number.
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• the functions
◦
ξf,d are found from eq. (4.23). For d = 0, eq. (4.23) implies that

◦
ξf,0(x) is a meromorphic function on Cσ, i.e. a rational function of the variable z ∈ P1,

and with a simple pole at the branchpoint, and which behaves like:

◦
ξf,0(x) ∼

x→0

1√
x

+ analytical. (E.9)

We thus easily find the unique rational fraction of z having that property:

◦
ξf,0(x) =

√
2fafb
fa + fb

1

(fa + fb)z − fb
where x =

◦
xf(z). (E.10)

Its Laplace transform is

f(u) =

√
u

2
√
π

∫ 1

z=0

e−u
◦
x(z)

◦
ξf,0(

◦
x(z)) d

◦
x(z)

=

√
2fafb
fa + fb

√
u

2
√
π

(fa + fb)
(fa+fb)u

ffaua ffbub

∫ 1

z=0

zfbu(1− z)fau
dz

z(1− z)

=

√
fafb

fa + fb

√
u√
2π

(fa + fb)
(fa+fb)u

ffaua ffbub

Γ(fau)Γ(fbu)

Γ((fa + fb)u)

= e−
◦
gf(u) (E.11)

(we could also have obtained this result directly from lemma D.2 in the appendix D).

Lemma E.1 In general, if ε is one of the punctures 0, 1,∞, we write fε = fa, fb,−fa−fb
respectively, and we have when x approaches the puncture ε:

◦
ξf,0(x) =

−1

fε

∞∑
k=0

γf(k/fε) e−
k
fε
x (E.12)

proof:

Let us prove it near the puncture z = 0 in P1 \ {0, 1,∞} (the other cases are

obtained in the same way), we have z ∼ e−
◦
x(z)/fb , and thus the Taylor expansion of

◦
ξf,0

into powers of z near z → 0 gives a Fourrier expansion in powers of e−k
◦
x(z)/fb :

◦
ξf,0(x) ∼

∞∑
k=0

ck e
−k x

fb , (E.13)

where the coefficients ck can be computed by a residue formula:

ck = − Res
z→0

e
k x

fb

◦
ξf,0(x)

dx

fb

=

√
2fafb
fa + fb

f
k fa

fb
a fkb

(fa + fb)
k

fa+fb
fb

Res
z→0

z−k (1− z)
−k fa

fb
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1

(fa + fb)z − fb

(
1

z
+

fa
fb

1

z − 1

)
dz

=
−1

fb

√
2fafb
fa + fb

f
k fa

fb
a fkb

(fa + fb)
k

fa+fb
fb

Res
z→0

z−k−1 (1− z)
−k fa

fb
−1

dz

=
−(fa + fb)

fa fb

√
2fafb
fa + fb

f
k fa

fb
a fkb

(fa + fb)
k

fa+fb
fb

Γ(k fa+fb
fb

)

k! Γ(k fa
fb

)
(E.14)

In other words we have

◦
ξf,0(x) = −

√
2(fa + fb)

fa fb

∞∑
k=0

f
k fa

fb
a fkb

(fa + fb)
k
fa+fb

fb

Γ(k fa+fb
fb

)

k! Γ(k fa
fb

)
e
− k

fb
x

= − 1

fb

∑
k

γf(k/fb) e
− k

fb
x

(E.15)

This could also have been deduced by doing the inverse Laplace transform of

eq. (E.11) and see that

◦
ξf,0(z) = − 1

2πi

∮
du

2
√
π√
u
f(u) eux (E.16)

where the integration contour surrounds in the trigonometric direction all the points

−k/fb, k ∈ N (i.e. the poles of Γ(fbu)), but not the points −k/fa (poles of Γ(fau)).

Writing that this integral is the sum of residues at all poles of Γ(fbu) i.e. at u = −k/fb
gives the expansion eq. (E.15).

�

• The coefficients B̂k,l. Their generating function
◦̂
B(u, v) =

∑
k,l B̂k,l u

−k v−l is

obtained from lemma D.1 in the appendix, i.e.

◦̂
Bf(u, v) = uv

1− f(u) f(v)

u+ v
= uv

1− e−
◦
gf(u) e−

◦
gf(v)

u+ v
. (E.17)

Then, using Mumford formula [47] for the Hodge class:

Λ̂Hodge(α) = e−
∑∞
k=1

B2k α
1−2k

2k(2k−1)
(κ2k−1−

∑n
i=1 ψ

2k−1
i + 1

2

∑
δ∈∂Mg,n

∑2k−2
l=0 (−1)l lδ∗τlτ2k−2−l) (E.18)

one can show (done in [14]) that the class Λ̂ ◦
Sf

defined in eq. (4.24), is a product of 3

Hodge classes:

Theorem E.2 (proved in [14])

Λ̂ ◦
S(f)

n∏
i=1

e−
◦
gf(1/ψi) = Λ̂Hodge(fa) Λ̂Hodge(fb) Λ̂Hodge(−fa − fb) (E.19)
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• The forms d
◦̃
ξf,d(x).

In order to absorb the term e−
◦
gf(1/ψi) in theorem E.2 above, we shall define d

◦̃
ξf,d(x)

such that: ∑
d

ψd d
◦
ξf,d(x) = e−

◦
gf(1/ψ)

∑
d

ψd d
◦̃
ξf,d(x). (E.20)

For that purpose, let us start from eq. (D.9), and Laplace transform:∑
d

u−dd
◦
ξf,d(x) = −

√
u√
π

∮
γ

e−ux
′
B(x′, x) (E.21)

Doing another Laplace transform in x implies

√
v

2
√
π

∑
d u
−d ∮

γ
e−vxd

◦
ξf,d(x) = uv

u+v
− B̂(u, v)

= u v e
−
◦
gf(u)

e
−
◦
gf(v)

u+v

= −
∑

d u
−d(−v)d+1e−

◦
gf(u) e−

◦
gf(v)

= − e−
◦
gf(u)

∑
d u
−d(−v)d+1

√
v

2
√
π

∮
γ

◦
ξf,0(x) e−vx dx

= − e−
◦
gf(u)

∑
d u
−d
√
v

2
√
π

∮
γ

◦
ξf,0(x) (d/dx)d+1e−vx dx

= − e−
◦
gf(u)

∑
d u
−d
√
v

2
√
π

∮
γ

e−vx (−d/dx)d+1
◦
ξf,0(x) dx

(E.22)

In other words ∑
d

u−d
◦
ξf,d(x) = e−

◦
gf(u)

∑
d

u−d (−d/dx)d
◦
ξf,0(x) (E.23)

We are thus led to define:

◦̃
ξf,d(x) = (−1)d (d/dx)d

◦
ξf,0(x). (E.24)

Using lemma E.1, we can expand
◦̃
ξf,d(x) as:

◦̃
ξf,d(x) =

∞∑
k=0

γf(k/fε) e−
k
fε
x −kd

fd+1
ε

(E.25)

and thus∑
d

ψd
◦
ξf,d(x) = e−

◦
gf(1/ψ)

∑
d

ψd
◦̃
ξf,d(x) = e−

◦
gf(1/ψ) −1

fε

∞∑
k=0

γf(k/fε) e−
k
fε
x 1

1− k
fε
ψ

(E.26)

�
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E.1 Summary of some formulae for the topological vertex

e−g(u) =
(f + 1)(f+1)u

√
u

f fu
√

2π

Γ(u) Γ(fu)

Γ((f + 1)u)
(E.27)

◦
B(u, v) = uv

1− e−g(u) e−g(v)

u− v
(E.28)

Notice that g(u) = −g(−u) and we can write in the large u expansion:

e−g(−u) =
(f + 1)(f+1)u

√
2π

f fu
√
u

Γ((f + 1)u)

Γ(u) Γ(fu)
(E.29)

We also have:

◦̃
ξf,d(x) =

−1

fε

∞∑
k=0

γf(k/fε) e−
k
fε
x (k/fε)

d (E.30)

d
◦
yf(x) =

−1

fε

e−t̂f,0

4

∞∑
k=0

γf(k/fε) e−
k
fε
x dx (E.31)

◦
Bf(x, x

′) =
1

fε fε′

∑
k,l

γf(k/fε) γf(l/fε′)
k
fε

+ l
fε′

e−
k
fε
x e
− l

fε′
x′ k

fε
dx

l

fε′
dx′ (E.32)

F Proof of Lemma 4.1

Lemma 4.1 If 2− 2g − n < 0

Wg,n(Sσ;x1, . . . , xn)

=
23g−3+n

et̂fσ,0(2−2g−n)

∞∑
k=0

1

k!

∑
d1,...,dn+k

k∏
i=1

Rσ,dn+i〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

n+k∏
j=1

τdj

〉
g,n+k

n∏
j=1

d
◦̃
ξfσ ,dj(xj)

=
23g−3+n

et̂fσ,0(2−2g−n)

∑
d1,...,dn

n∏
j=1

d
◦̃
ξfσ ,dj(xj)〈

Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ) el1∗
∑
dRσ,dτd

n∏
j=1

τdj

〉
g,n

(F.1)

where

Rσ,d =
− 2 et̂fσ,0

2πi

∮
∂Cσ

◦̃
ξfσ ,d(x) (y(x+

◦
aσ)−

◦
bσ −

◦
yfσ(x)) dx, (F.2)
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where ∂Cσ is the boundary of Cσ, i.e. the union of three circles, oriented so that Cσ
lies on the left of ∂Cσ. In the second equality, l1∗ denotes the natural inclusion of

Mg,n ⊂ Mg,n+1 ,so that el1∗
∑
d Cσ,dψ

d
is just a short hand notation for the formula

above.

And similarly for (g, n) = (0, 2):

W0,2(Sσ;x1, x2) = Bσ(x1, x2) =
◦
Bfσ(x1 − aσ +

◦
aσ, x2 − aσ +

◦
aσ)

=
◦
Bfσ(x1, x2) +

1

2

∞∑
k=1

1

k!

∑
d1,...,dk+2

d
◦̃
ξfσ ,d1

(x1) d
◦̃
ξfσ ,d2

(x2)
k+2∏
i=3

Rσ,di〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

k+2∏
j=1

τdj

〉
0,k+2

(F.3)

and for (g, n) = (0, 1):

W0,1(Sσ;x1) = (y(x1 +
◦
aσ)−

◦
bσ) dx1

=
◦
yfσ(x1)dx1 +

1

2πi

∮
∂Cσ

◦
Bfσ(x1, x

′) Φ(x′)

+
e−t̂fσ,0

4

∞∑
k=2

1

k!

∑
d1,...,dk+1

d
◦̃
ξfσ ,d1

(x1)
k+1∏
i=2

Rσ,di〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ) τd1

k+1∏
j=2

τdj

〉
0,k+1

(F.4)

proof:

The proof is based on the fact that almost by definition this lemma holds at the

tropicla limit tj = +∞, and then, in order to show that it holds for all tj’s (in an open

vicinity of tj = +∞), we prove using special geometry, that both sides obey the same

differential equation.

First, notice that Wg,n(
◦
S(fσ);x1, . . . , xn) is a meromorphic form on Cσ = C \

{0, 1,∞}, i.e. on CP 1, which has poles only at the branchpoint xi = 0 without residue

(when 2g − 2 + n > 0), and thus its primitive is a meromorphic function. In other

words

Wg,n(
◦
S(fσ);x1, . . . , xn) = d1 ⊗ · · · ⊗ dn

◦
Φg,n(

◦
S(fσ);x1, . . . , xn) (F.5)

and
◦
Φg,n is an algebraic function of each Xi = e−xi for all i = 1, . . . , n, having a

square–root branchcut [0,∞[. In particular, it is analytical in a vicinity of ∂Cσ (see

figure 6).

Notice that, by definition of
◦
yf, y(x+

◦
aσ)−

◦
bσ−

◦
yfσ(x) vanishes in the tropical limit

ti → +∞, i.e. at Qi = e−ti = 0, and can be Taylor expanded in powers of Q = {Qi}
near Q = 0.
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Indeed, first observe that the coefficients Hi,j of the algebraic equation Hf (X, Y ) =

0, have a Laurent expansion in powers of Q. Since
◦
aσ and

◦
bσ are linear combinations of

the ti’s, i.e. e−
◦
aσ and e−

◦
bσ are product or ratios of the Qi’s, we see that Y (x+

◦
aσ)e

◦
bσ is

an algebraic function of e−x, which has a Laurent expansion into powers of Qi’s. This

implies that

∂

∂Qi

(y(x+
◦
aσ)−

◦
bσ−

◦
yfσ(x)) = − 1

Y (x+
◦
aσ)

(
∂Y (x+

◦
aσ)

∂Qi

+
∂
◦
aσ
∂Qi

∂Y (x+
◦
aσ)

∂x

)
− ∂

◦
bσ

∂Qi

(F.6)

has a Laurent expansion in powers of Qi’s, whose coefficients are algebraic functions of

e−x. And since we know that (y(x+
◦
aσ)−

◦
bσ −

◦
yfσ(x)) vanishes at Q = 0, we see that

the Laurent expansion is in fact a Taylor expansion. This implies that:

y(x+
◦
aσ)−

◦
bσ −

◦
yfσ(x) =

∑
k

Qk Yk(e−x) (F.7)

where each Yk(X) is an algebraic function of X on Cσ. Yk maybe singular at x = 0

(where
◦
y has a squareroot branchcut), or also at the punctures 0, 1,∞ in the pair of

pants Cσ.

Notice that due to the log, y = − lnY was well defined only on C cut along a tree,

and similarly
◦
yfσ is also well defined only on Cσ with some cuts, but the difference

y(x+
◦
aσ)−

◦
yfσ(x) has, order by order in Q, no logarithmic cut.

In particular, order by order in powers of Q, (y(x+
◦
aσ)−

◦
bσ −

◦
yfσ(x)) is analytical

in a vicinity of ∂Cσ. Therefore, the following integral makes sense (as a formal power

series in Q): ∮
∂Cσ

◦
Φg,n(

◦
S(fσ);x1, . . . , xn) (y(xn +

◦
aσ)−

◦
bσ −

◦
yfσ(xn)) dxn (F.8)

and it depends only on the homotopy class of the integration contour, i.e. it is invariant

under small continuous deformations of the integration contour. We can also integrate

by parts and write it as: ∮
∂Cσ

Wg,n(
◦
S(fσ);x1, . . . , xn) Φ(xn) (F.9)

where
dΦ(x)

dx
= y(x+

◦
aσ)−

◦
bσ −

◦
yfσ(x). (F.10)

Notice that a priori, Φ(x) seems to be defined only on a universal covering of Cσ, i.e.

it is not necessarily an algebraic function of e−x. However, the monodromies of Φ are

the integrals ∮
(y(x+

◦
aσ)−

◦
bσ −

◦
yfσ(x)) dx (F.11)
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which are linear combinations of the ti’s (due to the mirror map eq. (2.67)). This shows

that
∂

∂Qi

∮
(y(x+

◦
aσ)−

◦
bσ −

◦
yfσ(x)) dx ∝ 1

Qi

(F.12)

and since y(x+
◦
aσ)−

◦
bσ−

◦
yfσ(x) is a power series of Q with only positive powers of the

Qi’s, this shows that in fact the monodromies of Φ must be independent of Q, and since

they vanish at Q = 0, they must vanish identically (the fact that the monodromies of

Φ vanish could also have been deduced directly from the tropical limit of the mirror

map relationship). This proves that Φ(x) is in fact, to each order in powers of Q, an

algebraic function of e−x.

Therefore, we may define define the following as a formal power series in Q:

Ug,n(x1, . . . , xn) = Wg,n(
◦
S(fσ);x1, . . . , xn) +

∞∑
k=1

1

(2πi)k k!

∮
∂Cσ

. . .

∮
∂Cσ

Wg,n+k(
◦
S(fσ);x1, . . . , xn, xn+1, . . . , xn+k)

k∏
i=1

Φ(xn+i).

(F.13)

Taking a derivative with respect to any Qi, we have

∂

∂Qi

Ug,n(x1, . . . , xn) =
∞∑
k=1

1

(2πi)k k!
k

∮
∂Cσ

. . .

∮
∂Cσ

Wg,n+k(
◦
S(fσ);x1, . . . , xn+k)

k−1∏
i=1

Φ(xn+i)
∂

∂Qi

Φ(xn+k)

=
∞∑
k=0

1

(2πi)k+1 k!

∮
∂Cσ

. . .

∮
∂Cσ

Wg,n+k+1(
◦
S(fσ);x1, . . . , xn+k, x

′)
k∏
i=1

Φ(xn+i)
∂

∂Qi

Φ(x′)

=
1

2πi

∮
∂Cσ

Ug,n+1(x1, . . . , xn, x
′)

∂

∂Qi

Φ(x′)

(F.14)

i.e.
∂

∂Qi

Ug,n(x1, . . . , xn) =
1

2πi

∮
∂Cσ

Ug,n+1(x1, . . . , xn, x
′)

∂

∂Qi

Φ(x′). (F.15)

Then, notice that we have

∂

∂Qi

(y(x+
◦
aσ)−

◦
bσ) dx = Res

x′→x
Bσ(x, x′)

∂Φ(x′)

∂Qi

=
1

2iπ

∮
∂Cσ

Bσ(x, x′)
∂Φ(x′)

∂Qi

(F.16)
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indeed, the first equality comes from the fact that Bσ has a double pole on the diagonal,

and the second equality, holds order by order in powers of Q, because to each order

∂Φ/∂Qi is an analytical function on Cσ and thus one can move the integration contour.

From this, the ”special geometry” property of spectral invariants (see [18] or ap-

pendix A) implies that

∂

∂Qi

Wg,n(Sσ;x1, . . . , xn) =
1

2πi

∮
∂Cσ

Wg,n+1(Sσ;x1, . . . , xn, x
′)
∂ Φ(x′)

∂Qi

(F.17)

We can now prove by recursion on the power of Q, that:
Ug,n(x1, . . . , xn) = Wg,n(Sσ;x1, . . . , xn)

U0,1(x) = (y(x+
◦
aσ)−

◦
bσ) dx

U0,2(x, x′) = Bσ(x, x′)

(F.18)

This is clearly true when Q = 0, and if it is true to order Qk, then the right hand side

of eq. (F.15) and eq. (F.17) coincide to order k, and thus ∂Wg,n/∂Qi and ∂Ug,n/∂Qi

coincide to order k, which implies that Wg,n and Ug,n coincide to order k+ 1. We have

thus proved the recursion hypothesis to order k + 1, and thus it holds to all orders.

Then, when 2g − 2 + n+ k > 0, use theorem 4.3:

Wg,n(Sσ;x1, . . . , xn)

=
∑

d1,...,dn

∑
k

1

k!

∑
dn+1,...,dn+k

23g−3+n+k

et̂fσ,0(2−2g−n−k)

〈
Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)

n+k∏
i=1

τdi

〉
g,n+k

k∏
i=1

1

2πi

∮
xn+i∈∂Cσ

Φ(xn+i) d
◦̃
ξσ,dn+i

(xn+i)
n∏
i=1

d
◦̃
ξσ,di(xi)

=
23g−3+n

et̂fσ,0(2−2g−n)

∑
d1,...,dn

∑
k

1

k!

∑
dn+1,...,dn+k〈

Λ̂Hodge(fa,σ) Λ̂Hodge(fb,σ) Λ̂Hodge(−fa,σ − fb,σ)
n+k∏
i=1

τdi

〉
g,n+k

k∏
i=1

Rσ,dn+i

n∏
i=1

d
◦̃
ξσ,di(xi) (F.19)

where

Rσ,d =
2 et̂fσ,0

2πi

∮
x∈∂Cσ

Φ(x) d
◦̃
ξσ,d(x)
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=
− 2 et̂fσ,0

2πi

∮
x∈∂Cσ

◦̃
ξσ,d(x) (y(x+

◦
aσ)−

◦
bσ −

◦
yfσ(x)) dx (F.20)

The cases (g, n) = (0, 1) and (0, 2) are obtained in the same way, except that we

can’t use theorem 4.3 for the first few values of k.

This proves the lemma. �
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