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Abstract

This paper deals with the numerical simulations of the 2D generalized quasi geostrophic

equation, where the velocity field is related to the solution θ by a rotation of Riesz transforms.

Depending on the parameters of the problem, we present numerical evidences for long time

behavior of the solution such as global existence effects or blow up in finite time.

1 Introduction

The quasi-geostrophic equations describe large-scale motions in the ocean and atmosphere at middle
latitudes. Indeed, air that streams to the south is pushed east or west through Coriolis forces,
creating a pressure gradient perpendicular to this motion. The resulting stationary state is called
the geostrophic equilibrium. Then, describing the time dependence to lowest order, and since the
vertical velocity has to be zero on the bottom of the ocean, or more generally on the lower boundary,
the surface behavior can be written independently as a two dimensional equation. This gives rise
to the "surface non dissipative quasi-geostrophic equations" see [8].

Here we focus on the 2D dissipative quasi-geostrophic equation, in a generalized version. Let T2

be the bi-periodic square [0, 1]2 of R2, let 0 < α ≤ 1 be fixed and let f ∈ L2(T2) be a given scalar
time independent function. We are looking for a real scalar function θ = θ(t, x) defined on R+ ×T2

representing the temperature of the fluid and satisfying the following dissipative equation:

∂tθ + ν(−∆)αθ + u.∇θ = f, x ∈ T2, t > 0, (1)

and we suppose that the solution θ satisfies the following initial condition:

θ(0, x) = θ0(x), (2)

where ν> 0 is the viscosity coefficient and u = (u1, u2) is the velocity field which is related to the
scalar θ by a rotation of Riesz transforms:

u = Qβ(−∆)−
1
2∇⊥θ, (3)

= Qβ(−∂x2(−∆)−
1
2 θ, ∂x1(−∆)−

1
2 θ). (4)

1



with

Qβ =

(
cos β − sinβ
sinβ cos β

)
.

Here β ∈ [0, 2π) is a fixed parameter. We mention that when β = kπ we recover the usual
2D dissipative quasi geostrophic equation carrying the name of (SQG), for which the velocity is
divergence free, and when β 6= kπ we recover the generalized 2D quasi geostrophic equation (GSQG).
We notice that we consider periodic boundary conditions on T2.

In this paper, we aim at studying numerically the asymptotic behavior of the solutions, associated
to both usual and generalized quasi geostrophic equation (SQG) and (GSQG). Part of the numerical
simulations are made to confirm the results predicted by the theory, essentially that solutions to
(SQG) globally exist for 1

2 < α ≤ 1, and that solutions to (GSQG) develop finite-time singularities
for 1

4 < α ≤ 1. On the other hand, several numerical tests was performed on a large range of
diffusion, viscosity and rotation parameters α, ν and β to depict key parameter dependence of the
solutions, and particularly to control the impact of each parameter to guess the blow-up law.

This paper is organized as follows. In the second Section, we introduce the general framework and
settings of our study, and we give some list of the existant theory. In section 3, we define the spectral
discretization and we propose the numerical time schemes used for the numerical simulations. Then,
we discuss their numerical properties in Subsection 3.2.1, namely the mean conservation property,
and the numerical stability. Section 4, deals with the numerical simulations for both the usual and
the generalized quasi-geostrophic equation.

2 Framework and settings

Before going ahead to exhibit our main results, we shall review the existing dynamic literature.

2.1 The usual quasi geostrophic equation(SQG)

In this section we only focus on the case β = kπ, hence we take use of the divergence free property
of the velocity field

div u = 0

that is exclusively verified in the non rotational case.

For the (SQG) equation, many studies were concerned with existence and regularity of quasi
geostrophic solution, in the continuous case.
Global existence of classical solutions and uniqueness in weaker sense have been resolved for the
(SQG) equation in the subcritical case α > 1

2 , in [9] and [20] for instance. Some global well posedness
results are also well known. We refer the reader to [14], [5] and [12] to more details. The critical
case α = 1

2 was first dealt with by Constantin and al in [7] and later studied in [3], [4], [10], [15]
and [26]. The harder case was the supercritical case α < 1

2 and it still a big challenge until now.
On the other hand, it is an open problem whether smooth initial data would blow up in finite
time. Long time behavior of solutions to the dissipative (SQG) equation with forcing term, has
been studied in Berselli [2], where the existence of the global attractor in L2 space was proved in
the critical case α = 1

2 , and the existence of the weak global attractor was proved in the subcritical
case α ∈ (1

2 , 1). Whereas, Ning Ju solves the problem of existence of the global attractor in the
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subcritical case with an affirmative answer in [15], see also [21] for a review of fundamental concept
and techniques in analysis of infinite dimensional dynamical systems.
From the numerical point of view, Majda and Tabak in [18], first conducted numerical simulations
and found that the non dissipative (SQG) equation with smooth initial data develop finite time
singularities on ∇θ. However a more careful simulation later conducted in [8] and [19] revealed the
absence of such singularity and attributed the observation in [18] to a growth of double exponential
type.

2.1.1 Analytic properties for (SQG)

We point out that we consider the domain Ω = [0, 1]2 with periodic boundary conditions. Let us
recall Poincaré’s inequality, for any mean zero function θ:

| (−∆)
α
2 θ |22 ≥ C0 | θ |22; (5)

if λ1 the first nonnegative eigenvalue of the operator (−∆), with periodic boundary conditions, then
C0 = λα

1 .

Now, the following Lemma is proved.

Lemma 1 We denote by θ̄ = 1
|Ω|

∫
Ω θdxdy, the mean of the solution to (SQG), and by f̄ =

1
|Ω|

∫
Ω fdxdy, the mean of the external force f . Then θ̄ and f̄ satisfy:

1. d
dt θ̄ = f̄ ,

2. if f̄ = 0 then θ̄ = cte = θ̄0,

3. if f = 0 then limt→+∞ | θ − θ̄ |2= 0.

Proof:

1. it is obvious that, since we deal with periodic functions, and using (3) for β = kπ, (−∆)αθ
and ∇(uθ) are mean zero functions, then we get the first property.

2. It follows promptly that if f̄ = 0 then θ̄ = cte = θ̄0

3. Furthermore, if f = 0 then θ − θ̄ satisfies the following equation:

∂t(θ) + ν(−∆)α(θ − θ̄) + u.∇(θ − θ̄) = 0,

then, taking the inner product with θ − θ̄, using the relation
∫

∂tθ(θ − θ̄)dx =
∫

∂t(θ − θ̄)(θ −
θ̄)dx,the Poincaré inequality and the fact that θ − θ̄ is mean zero, we obtain:

1

2

d

dt
| θ − θ̄ |22 +νC0 | θ − θ̄ |22≤ 0,

hence,

| θ − θ̄ |22≤ e−2νC0t | θ0 − θ̄0 |22 (6)

which goes to zero when t goes to infinity.
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Concerning the energy point of view, it is well known from the work of S. Resnick [20] that ∀T >
0, θ0 ∈ L2, f ∈ L1([0, T ], L2) the initial value problem (SQG) admits a solution,

θ ∈ L∞([0, T ], L2) ∩ L2([0, T ],Hα) (7)

that fulfill the energy estimate

| θ(., t) |22 +

∫ t

0
| Λαθ(., τ) |22 dτ ≤| θ(., 0) |22 +

∫ t

0
| f(., τ) |2 dτ, (8)

which leads to the energy conservation property in the continuous case when f = 0.

2.2 The generalized quasi geostrophic equation (GSQG)

In this section we shall focus on the case β 6= kπ. Notice that the main problem which leads to the
different theoretical study, is the loss of the divergence free property of the velocity field. Indeed,
taking the divergence operator of equation (3), one can straightforwardly get

divu = sinβ(−∆)
1
2 θ

which equals zero only for β = kπ. This lack, ensues automatically the loss of the numerical
properties proved for the (SQG) in the sequent section.

Besides, the question of the global well posedness for the (GSQG) was first answered in the super-
critical case in [17], the authors restricted their attention to radial solutions of constant sign, and
they proved under some conditions on the initial data that the solution blows-up in finite time for
0 ≤ α < 1

4 . We notice that they consider the whole domain R2 for their analysis and they prove
that the blow-up occurs at the level of ‖ ∇θ ‖∞. However, they mentioned that the restriction of
α is just a limitation of their approach and conjectured that singularities exist for all supercritical
range 0 ≤ α < 1

2 .
It is obvious that radial solutions are steady state solutions for the usual inviscid (SQG) (i.e. ν = 0)
which is no longer the case for β 6= kπ. Indeed, Dong and Li proved in [11] that smooth radial
solution of the inviscid (GSQG) always develop gradient blow up in finite time. The criteria of
blow-up is proved in the whole domain Ω = R2 in [17], for the supercritical case, especially in the
range α ∈ (0, 1

4) for smooth radial initial data that satisfies some properties. Besides, Balodis and
Còrdoba showed in [1] the existence of singularities for the inviscid (GSQG) equation for β = π

2 +kπ.
The authors obtained some new bilinear estimates for the Riesz transforms and used them to show
the existence of singularities for general smooth initial data not necessarily radial, and without any
restriction on the sign of θ.

3 Discretization schemes

3.1 Pseudo-spectral space discretization

Due to the periodic boundary conditions, the Fourier pseudo-spectral method appears to be suitable
for the space discretization of the problem. We review in this section an essential description of this
method, used in our computations.
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We recall that for any periodic function f in L2(Ω), f and all their derivatives take an expansion
in terms of Fourier series according to:

f(x, y) =
+∞∑

k1=−∞

+∞∑

k2=−∞

f̂(k1, k2)e
2iπk1.xe2iπk2.y (9)

where (k1, k2) is the fourier discrete vector of Z2.
The Fourier coefficients f̂(k1, k2) are computed numerically in such a way, that SNf(x, y) interpo-
lates f at the grid points (xk, yl), where k, l = 0, ....., N − 1 . They are defined by the relations:

SNf(xk, yl) =

N
2∑

k1=−N
2

+1

N
2∑

k2=−N
2

+1

f̂(k1, k2)e
2iπk1.xke2iπk2.yl . (10)

Then, using the discrete orthogonality we get inversely:

f̂(k1, k2)) =
4

N2

N
2∑

k=−N
2

+1

N
2∑

l=−N
2

+1

f(xk, yl)e
−2iπk1.xke−2iπk2.yl . (11)

The further, serial pseudo-spectral algorithm being computed in practice ,by using fft routines.

Besides, using (11) and denoting by k = (k1, k2), we define the derivative operators as follows:

d̂iv(f)(k) = ik.f̂(k) (12)

Λ̂γf(k) = | k |γ f̂(k), (13)

where Λ = (−∆)1/2.

3.2 The time marching schemes

For the time discretization, we propose five different schemes that will allow us not only to compare
the numerical results for each of them, but also to validate the codes therein at the same time. We
cite namely:

• the Forward Euler scheme,

• the linear Backward Euler scheme,

• the Sanz-Serna Cranck-Nickolson scheme,

• the Splitting scheme,

• the Runge-Kutta scheme.

We define hereafter the different schemes, and we review the existant properties therein. We also
derive numerical analysis, for each one, namely concerning the mean conservation, and the numerical
stability. In Section 4, we validate our results by implementing all these schemes.
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3.2.1 The Forward Euler scheme

Let τ > 0 be a fixed real, and set tn = nτ for n ∈ N. Then, we recursively construct elements θn+1

which approches θ(tn+1) according to the first order convergence scheme:

θn+1 − θn

τ
+ ν(−∆)αθn+1 + un+1.∇θn+1 = f. (14)

Where θ0 is an approximation of θ0, and

un+1 = Qβ(−∆)−
1
2∇⊥θn+1.

Existence, uniqueness, regularity results have been established in [23] for the infinite dimensional
case. In the finite dimensional case an application of the fixed point Browder’ Theorem, gives
promptly the wished result. That is in particular, the sequence (θn)n given by (14) is well defined
for all n ∈ N, see [22] for more details.

We begin by proving the following Proposition, which is a discrete version of Lemma 1:

Proposition 1 θ̄n and f̄ satisfy:

1. θ̄n = nτf̄ + θ̄0

2. if f̄ = 0 then θ̄n = cte = θ̄0,

3. if f = 0 then limn→+∞ | θn − θ̄0 |2= 0.

Proof:

1. equation (14) is written equivalently as follows:

θn+1 + τν(−∆)αθn+1 + τ∇.(un+1θn+1) = τf + θn. (15)

Now getting the mean of equation (15), and using the fact that we treat periodic initial data,
and that for these data derivatives are periodic and mean zero functions we get

θ̄n+1 = θ̄0 + τ f̄ . (16)

Hence recursively we get the wished result.

2. Since f̄ = 0 then the second point follows promptly from the first one.

3. If f = 0, then θn+1 − θ̄0 satisfies:

(θn+1 − θ̄0) − (θn − θ̄0)

τ
+ ν(−∆)α(θn+1 − θ̄0) + un+1.∇(θn+1 − θ̄0) = 0. (17)

Then getting the L2 inner product of (17) with θn+1 − θ̄0, and using the Poincaré inequality
(5), and the fact that un+1 is divergence free, we obtain:

<
(θn+1 − θ̄0) − (θn − θ̄0)

τ
, θn+1 − θ̄0 > +νC0 | θn+1 − θ̄0 |22≤ 0. (18)
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Hence, due to the parallelogram identity we get:

1

2
(| θn+1 − θ̄0 |2 + | θn+1 − θn |2) + C0ντ | θn+1 − θ̄0 |2≤ 1

2
| θn − θ̄0 |2 . (19)

Then,

| θn+1 − θ̄0 |2≤ 1

1 + 2C0ντ
| θn − θ̄0 |2, (20)

and since 1
1+2C0ντ < 1, we obtain the result by a simple induction.

Now, we prove the unconditional stability of (14) in the sequent Proposition:

Proposition 2 The forward Euler scheme (14), is unconditionally stable. Moreover, we have the
following estimate:

| θn+1 |22≤
1

1 + ντC0
| θn |22 +

τ

4νC0
| f |22 . (21)

Proof: taking the L2 inner product of (14) with θn+1, leads to:

(θn+1 − θn, θn+1) + ντ | (−∆)
α
2 θn+1 |22 +τ(un+1.∇θn+1, θn+1) (22)

= (τf, θn+1).

Then, applying the paralelogram inequality, Poincaré’s inequality (5), and Young’s inequality on
(22), we get:

| θn+1 − θn |22 + | θn+1 |22 − | θn |22 +2ντC0 | θn+1 |22≤
τ2

2ε
| f |22 +

ε

2
| θn+1 |22, (23)

for any ε > 0. Now, choosing ε = 2ντC0 ensues:

| θn+1 |22≤
1

1 + ντC0
| θn |22 +

τ

4νC0
| f |22 . (24)

Let γ = 1
1+ντC0

which is a constant < 1, then, by a simple induction on (24) we obtain:

| θn |22 ≤ γn | θ0 |22 +
τ

4νC0(1 − γ)
| f |22 (25)

≤ γn | θ0 |22 +
1 + γτC0

4ν2C0
| f |22 . (26)

Hence, | θn |2 is uniformly bounded in L2 and (14) is unconditionally stable. We point out that we
have used the divergence free property of the velocity field.
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3.2.2 The linearized Backward Euler scheme

This one, is a linearized Euler scheme which is given by:

θn+1 − θn

τ
+ ν(−∆)αθn+1 + un.∇θn+1 = f. (27)

The linear Backward Euler scheme is also a first order convergence scheme. Furthermore, analogous
results concerning well posedness and global existence of solution to (27), are proved in [6], starting
from an initial data θ0 ∈ Hα.
On the other hand, proving numerical stability and mean conservation properties of proposition 1
for (27) is identically the same task as for (14), owing to the canceling property of the nonlinear
term, then it is omitted for conciseness.

3.2.3 The Sanz-Serna Crank-Nicolson scheme

For sake of precision, we implement this second order convergence’ scheme, which reads:

θn+1 − θn

τ
+ ν(−∆)α(

θn+1 + θn

2
) + (

un+1 + un

2
).∇(

θn+1 + θn

2
) = f. (28)

Obviously, this scheme satisfies as well the two first items of Proposition 1. Let us prove the third
one. Indeed, since f = 0, θn+1 − θ̄0 satisfies:

(θn+1 − θ̄0) + (θ̄0 − θn)

τ
+ ν(−∆)α(

θn+1 − θ̄0 + θn − θ̄0

2
) (29)

+(
un+1 + un

2
).∇(

(θn+1 − θ̄0) + (θn − θ̄0)

2
) = 0.

Then, getting the inner product of (29) with ( θn+1−θ̄0+θn−θ̄0

2 ), we obtain,

1

2τ
(| θn+1 − θ̄0 |22 − | θn − θ̄0 |22) +

ν

4
| (−∆)

α
2 (θn+1 − θ̄0 + θn − θ̄0) |22= 0. (30)

It follows by Poincaré’s inequality, that

| θn+1 − θ̄0 |22 +
ντC0

2
| θn+1 − θ̄0 + θn − θ̄0 |22≤| θn − θ̄0 |22, (31)

and this means that (| θn − θ̄0 |22)n is a decreasing positive sequence, and hence convergent; ∃l ≥
0 / limn→+∞ | θn − θ̄0 |22= l.
Then, since θn = cte is a solution to (28) with zero forcing term, and that for this case l = 0, thus
we get,

lim
n→+∞

| θn − θ̄0 |22= 0,

and the third item of Proposition 1 is hence proved for the Sanz-Serna Crank-Nicolson scheme.

Remark 1 An application of the fixed point Browder’ Theorem in the finite dimensional case, gives
as well that the sequence (θn)n given by (28) is well defined for all n ∈ N, by replacing only θn+1 by
θn+θn+1

2 , see [22].
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However, it is shown hereafter, that the discretization (28) is not the better one due to his unfor-
tunate local stability. Indeed, we only succeed to get a numerical stability in a range [0, T ∗] for a
fixed T ∗, given by the next Proposition:

Proposition 3 For f ∈ L2([0, T ∗], L2) the Sanz-Serna scheme (28) is L2-stable in any range [0, T ∗]
for fixed T ∗. Indeed

| θn |22≤| θ0 |22 +
T ∗

2νC0
| f |22 . (32)

Proof: taking the inner product of (28) with (θn+1+θn

2 ) we get

| θn+1 |22 − | θn |22 +ντ | (−∆)
α
2
θn+1 + θn

2
|22≤

1

2ε
| τf |22 +

ε

2
| θn + θn+1

2
|22 . (33)

Then using Poincaré’s inequality (5), and for ε = ντC0, we infer that

| θn+1 |22 +
ντC0

2
| θn+1 + θn

2
|22≤| θn |22 +

τ

2νC0
| f |22 (34)

Now let T ∗ = n0τ a fixed finite time. Getting the sum
∑n0−1

0 of (34), and using the discrete
Gronwall lemma we prove that | θn | is uniformly bounded according to the L2 norm for any range
[0, T ∗], and particularly we have,

| θn |22 +
ντC0

2

n0−1∑

k=0

| θk+1 + θk

2
|22 ≤ | θ0 |22 +

τ(n0 − 1)

2νC0
| f |22 (35)

≤ | θ0 |22 +
T ∗

2νC0
| f |22 . (36)

Notice that comparing (36) and (26) gives an advantage to the forward and the linear backward
euler schemes. Whereas, despite his unconditional stability, using the full implicit Euler scheme,
one have to solve a large system of nonlinear equations. Then, the linearized scheme seems to be the
perfect one at this stage. Hence, to take advantage of the improvement of the convergence order,
without falling into numerical instabilities, we introduce the Strang Splitting scheme.

3.2.4 The Splitting scheme

The splitting approximation that we used here, consists on considering the diffusive and the con-
vective parts separately, according to a Strang Formula, as follows.
Let us first define the operator Lt such that the solution of the linear diffusive part,





∂tθ + ν(−∆)αθ = 0,

θ(0, .) = θ0(x),
(37)

writes
θ(t, x) = Lt.θ0(x) = e−νt(−∆)α

θ0(x)
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Accordingly, we first consider the diffusive part, and we look for a first intermediate half step
solution, given by:

θn+ 1
3 = L τ

2
θn. (38)

The second step of the Strang splitting, consists in taking the solution θn+ 1
3 of the first step as an

initial data to a Sanz-Serna Crank Nicolson discretization for the convective part, with a full time
step τ . Namely, we look for a data θn+ 2

3 solution of,

θn+ 2
3 − θn+ 1

3

τ
+ (

un+ 2
3 + un+ 1

3

2
).∇(

θn+ 2
3 + θn+ 1

3

2
) = f. (39)

Finally, the third step reads:

θn+1 = L τ
2
θn+ 2

3 . (40)

Now, since we used a splitting scheme according to a Strang formula, and the corresponding sub-
schemes (38)-(40) have all of them a convergence order n ≥ 2, then the resulting discrete solution
is some second order approximation of the solution to the system (1)-(2).

Proposition 4 For the splitting scheme (38)-(40), θ̄n and f̄ satisfy:

1.

θ̄n = Lnτ θ̄0 + τ
n∑

k=0

L( 2k+1
2

)τ f̄ , (41)

2. if f̄ = 0 then θ̄n = Lnτ θ̄0 → 0 when n → +∞,

3. if f = 0 then limn→+∞ | θn − θ̄n |2= 0.

Proof:

1. from (39) we get
¯

θn+ 2
3 =

¯
θn+ 1

3 + τ f̄ , so using (38) and (40) we deduce that,

¯θn+1 = Lτ θ̄n + τL τ
2
f̄ . (42)

A simple induction on (42) gives the desired relation.

2. If we replace f̄ = 0 in (41), we get θ̄n = Lnτ θ̄0 which goes to zero when n → +∞, owing to
the definition of L.

3. Now, suppose that f = 0 Eq.(39) rewrites:

(θn+2
3 −L

( 2n+1
2 )τ

θ̄0)−(θn+1
3 −L

( 2n+1
2 )τ

θ̄0)

τ

+(un+2
3 +un+1

3

2 ).∇(
θn+2

3 −L
( 2n+1

2 )τ
θ̄0+θn+1

3 −L
( 2n+1

2 )τ
θ̄0

2 ) = 0 . (43)

Taking the L2 inner product of (43) with
θn+2

3 −L
( 2n+1

2 )τ
θ̄0+θn+1

3 −L
( 2n+1

2 )τ
θ̄0

2 , it follows that:

| θn+ 2
3 − L( 2n+1

2
)τ θ̄

0 |22=| θn+ 1
3 − L( 2n+1

2
)τ θ̄

0 |22 .
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Besides, using this relation and (38), (40) we deduce that:

| θn+1 − L(n+1)τ θ̄0 |2 = | L τ
2
θn+ 2

3 − L(n+1)τ θ̄0 |2
≤ | L τ

2
|| θn+ 2

3 − L( 2n+1
2

)τ θ̄
0 |2 (44)

≤ | L τ
2
|| θn+ 1

3 − L( 2n+1
2

)τ θ̄
0 |2 (45)

≤ | L τ
2
|| L τ

2
θn − L( 2n+1

2
)τ θ̄

0 |2 (46)

≤ | Lτ || θn − Lnτ θ̄0 |2 . (47)

Hence the result since | Lτ |< 1.

Now, concerning the numerical stability point of view, the splitting scheme is unconditionally stable,
owing to:

Proposition 5 We suppose that θ satisfies
∫
Ω θ(t, x)dx = 0, then the splitting scheme (38)-(40) is

unconditionally stable. Moreover we have the following estimate:

| θn+1 |2≤ δ | θn |2 +τ
√

δ | f |2, (48)

where δ < 1 is a contraction constant given in (53).

Proof: getting the L2 inner product of (39) by θn+ 2
3 + θn+ 1

3 leads to

| θn+ 2
3 |22 − | θn+ 1

3 |22= τ < f, θn+ 2
3 + θn+ 1

3 >L2 , (49)

then by Cauchy Schwarz we get

| θn+ 2
3 |2 − | θn+ 1

3 |2≤ τ | f |2 . (50)

On the other hand, referring to (38) and (40) and using the definition of the operator Lt, it becomes
obvious that to get the uniform bound on | θn+1 |2 we must contract the L2 norm of the operator
Lt. Indeed

Lt(θ)(x, y) =
∑

k1,k2∈Z2

θ̂k1,k2e
−νtλα

k1,k2e2iπk1.xe2iπk2.y,

where λk1,k2 are the eigenvalues of the operator (−∆)α. Then using the Parseval identity, we get

| L τ
2
θ |22=

∑

k1,k2

| θ̂k1,k2 |2 e
−ντλα

k1,k2 . (51)

It follows, that for some mean zero periodic function θ, (λ0,0 = 0), we obtain:

| L τ
2
θ |22≤ e−ντλα

1,0 | θ |22, (52)

where λ1,0 is the first nonnegative eigenvalue.
Hence, setting

δ = e−ντλα
1,0 < 1, (53)
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we ensure that L τ
2

is a contraction operator, and that

| Lθ |22≤ δ | θ |22 . (54)

Actually, we insert (54) in (38), (40) and then in (50), to get the wished result:

| θn+1 |2≤ δ | θn |2 +τ
√

δ | f |2,

and then follows promptly the unconditional stability of the splitting scheme.

Remark 2 It would be possible to consider a first order convergence Strang splitting, if we have
discretized the first and the third steps of the splitting according to a forward Euler scheme, and the
unconditional stability would remain verified. Particularly, we get the following bound:

| θn+1 |22≤
1

1 + ντC0
| θn |22 +

2τ

νC0
| f |22 .

Remark 3 We emphasize that the solution θn+1 obtained by the four schemes, fulfill the previous
numerical properties, only for the usual quasi geostrophic equation (SQG), due to the divergence
free velocity field. Furthermore, owing to the linearity of the spectral discretization, the properties
proved for the semi-discretization in time, still available for the full one.

In order to get a full discretization of the equation (1), we shall go back to the pseudo- spectral
discretization of the previous subsection. For instance, we insert (12) and (13) on (14), and this
leads to the full discretized scheme:

θ̂n+1(Id + ντ | k |2α) = (θ̂n + τ f̂n+1) − iτk. ̂(un+1.θn+1). (55)

Where un+1 = F−1(ûn+1) and

ûn+1 = (−i
k2

| k | θ̂
n+1, i

k1

| k | θ̂
n+1). (56)

Doing the same for the different time schemes introduced in this section, we get three other full
discretizations of (1).

3.2.5 The Runge-Kutta scheme

For an accurate simulation of the blow-up in the case of the (GSQG) equation, we considered this
third order convergence scheme introduced by Driscoll in [13]. In that paper, the author proposed
a composite method in which different integrators are used for different parts of Fourier Space: a
standard Runge-Kutta fourth order integrator (RK4) at the lowest wave numbers and stiffly stable,
and a linearly implicit third order Runge-Kutta at high wave numbers where the explicit method
fails.
Noting by λ the matrix of the linear term which is here the fractional Laplacian, and f(θ(t)) is the
nonlinear term which is here the convective term, the equation under consideration is then

˙θ(t) = f(θ(t)) + λθ(t) (57)
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The method consists on partition (57) into

˙θ(t) = f(θ(t), z(t)) + λθ(t) (58)
˙z(t) = g(θ(t), z(t)). (59)

Then the scheme reads:

K1 = θn

K̃1 = zn

K2 = (1 − 1

3
τλ)−1(θn +

1

2
τf(K1, K̃1) +

1

6
τλK1)

K̃2 = zn +
1

2
τg(K1, K̃1),

K3 = (1 − τλ)−1(θn +
1

2
τf(K2, K̃2) +

1

2
τλK1 − τλK2)

K̃3 = zn +
1

2
τg(K2, K̃2)

K4 = (1 − 1

3
τλ)−1(θn + τf(K3, K̃3) +

2

3
τλK3)

K̃4 = zn + τg(K3, K̃3)

θn+1 = θn +
1

6
τ [f(K1, K̃1) + f(K4, K̃4) + λ(K1 + K4)]

+
1

3
τ [f(K2, K̃2) + f(K3, K̃3) + λ(K2 + K3)],

zn+1 = zn +
1

6
τ [g(K1, K̃1) + g(K4, K̃4)] +

1

3
τ [g(K2, K̃2) + g(K3, K̃3)]

We emphasize that this method is a third order stable method, and that his constant error is close
to the best achievable, and that our choice is essentially made for optimum performance, especially
to get the exact blow-up time in the most perfect manner, and that results obtained by the Driscoll
scheme, agrees with those obtained by the linear backward Euler one, for instance.

4 Numerical results

4.1 Aims

Our aim in this paper is to capture some theoretical properties, yet proved in previous works, by
numerical simulations on (SQG), namely the global existence effect, and the L2 norm conservation
property for β = kπ. Then the first part of numerical computations will be devoted to the validation
of our codes, by implementing them at the same time, and comparing the results therein.
On the other hand, we aim to explore the (GSQG) equation, particularly, we discuss the formation
of singularities at β 6= kπ, for various values of the diffusion and the viscosity parameters α and ν.
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Particularly, we intend to study the interaction of these parameters to get a law which controls the
blow-up criteria, that will be discussed in the last part of this section.
Besides, we emphasize that our simulations are performed in the torus T2, unlike the paper of
José and Lie [17], in which the authors considered the whole space R2 and this gives us a good
opportunity of comparison.

4.2 Numerical simulations for SQG

We choose Matlab r for the implementation of our codes taking advantage of the built-in FFT
commands.

Besides, we notice that we used two different methods for the space discretization: the Fourier
pseudo-spectral method and the finite differences one (whose results are not reported here), this
last one being first used for validating the Fourier code; however, we point out that the use of the
finite differences method allows us to explore new frameworks. Indeed, this code is let to later
work to get numerical simulation for homogeneous or open boundary conditions. In this paper we,
concentrate only on the spectral code.
To validate our codes, three main tests were implemented using the previous discretizations, ac-
cording to (14), (28) and (38)-(40) schemes, starting with the initial data:

θ0(x, y) = sin(2πx) sin(2πy).

At first, let us check the output of our code when computing the approximation of a real function
θ given by:

θ(x, t) = sin(2πx) sin(2πy) exp(sin t) = θexact (60)

which is a solution of (1) according to the external force

f = F−1(cos tθ̂ + ν | k |2α θ̂ + exp(sin t)û0.∇θ). (61)

Where u0 is the velocity field corresponding to θ0 according to the formula (3) with β = 0.
The subsequent figures represent respectively, a mean square fitting of the L2− norm and the L∞−
norm convergence errors. These simulations are results of the forward Euler, the Sanz-Serna and
the Splitting schemes with different time steps ∆t. The plots for N = 32, β = 0, ν = 0.0001 and
α = 1 are given in Figure(1), Figure(2) and Figure(3).
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Figure 1: The evolution of the L2 error norm and the L∞ error norm Vs τ for an exact solution
according to the linearized backward Euler scheme

10
−4

10
−3

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Sanz−Serna

 

 

L2 Error
L−infini Error

Figure 2: The evolution of the L2 error norm and the L∞ error norm Vs dτ for an exact solution
according to the Sanz-Serna Crank-Nicolson scheme
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Figure 3: The evolution of the L2 error norm and the L∞ error norm Vs τ for an exact solution
according to the splitting scheme

Hence, we confirm by the previous figures that the error corresponds to a first order convergence
scheme, for Figure.(1), and to second order convergence schemes for Figure.(2) and Figure.(3).
Indeed, the slopes of the three curves are given respectively by:

a1 = 1.036 (62)

a2 = 2.0018 (63)

a3 = 2.0015, (64)

and this contribute to confirm the validity of the codes. Next, we show a comparison between the
three curves in Figure (4)
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Figure 4: A comparison between the three schemes of the L2 norms Vs τ .

Keeping the same previous parameters α and ν unchanged, we also run numerical simulations of
dissipative (SQG) with various initial data and external forces, to display results of proposition 1

16



using the linearized backward Euler scheme in Figure(5), the splitting scheme in Figure(6) and the
Sanz-Serna scheme in Figure(7). We emphasize that this last test were implemented for ν = 1 for
sake of stability. We ran respectively the cases f = 2θ0, f = 1 and f = 0 emanating from the initial
data θ0 = sin(2πx) sin(2πy) for N = 64 and τ = 10−4.
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Figure 5: The mean of θ Vs time according to the external force f = 2θ0 using the linearized
backward Euler scheme

0 1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

10
1

Mean VS time

Figure 6: The mean of θ Vs time according to the external force f = 1 using the splitting scheme
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Figure 7: The mean of θ Vs time according to the external force f = 0 using the Sanz-Serna
Crank-Nicolson scheme
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Now we move on towards the third step of validation, to confirm the global existence results of [6]
for instance. For that purpose, we plot the L2 norm, and the contour lines of the solution to the
dissipative (SQG) for α = 0.67 ≥ 2

3 , using the full implicit Euler scheme. By these simulations,
we observed that this norm became bounded for t ≥ T ∗ for some fixed time T ∗as illustrated in
Figure(8) and Figure(10).

At this point, we underline that for these simulations, we have changed the choice of the initial
data θ0 and the external force F , to restrict ourself only to periodic data that belongs to L2 and
eventually to Lp for p ≤ 2

1−α , and no more regular, to catch exactly results of the main Theorem

in [6]. So let θ0 =
√

sin(2πx(1 − x)) sin(2πy(1 − y)), and let F = 2θ0. The simulations are
represented comparatively for the initial and the final step of plotting, in Figure(8) and Figure(9),
giving respectively the behavior of the solution, and its contour lines. Whereas in Figure(10) we
draw the solution’ L2 norm accordingly to F = 2θ0 and for F = 0, then the convergence to the
global attractor is obviously faster in the second case, owing to the higher regularity of the external
force. This is shown in figure (10):
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Figure 8: The evolution of the behavior of an L2 initial data θ0, with f = 2θ0 according to a full implicit

Euler scheme
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Figure 9: The evolution of the contour lines of an L2 initial data θ0, with f = 2θ0 according to a full

implicit Euler scheme.
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Figure 10: Global existence starting from an L2 initial data θ0, first with f = 2θ0 and second for f = 0
according to a full implicit Euler scheme.

Originally, numerical simulations denied the critical behavior at α = 2
3 , and even at α = 1

2 . In fact,
this can be deduced by the convergence to the global behavior of the discrete solution to the forward
Euler scheme at α = 1

2 , in Figure(11).
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Figure 11: Global existence starting from an L2 initial data θ0, with f = 2θ0 and α = 0.5 according to a

full implicit Euler scheme.
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From now on, we focus on the numerical simulations of the generalized quasi-geostrophic equa-
tion, for β ∈]0, 2π[\kπ. In particular, we aim first to confirm the theoretical predictions of Section
2, and then to catch the real limitation of each parameter to get the blow-up criteria.

4.3 Numerical simulations for (GSQG)

In the sequel, we plot numerical tests, for several values of α, ν and β, and the results are illustrated
by the next tables. We denote by "Y" the case when the solution blows-up, and by "N" the case
when not. We also mention that the tables are arranged in the decreasing order according to the
viscosity parameter ν which was arbitrary chosen in the set 1, 0.7, 0.5, 0.2, 10−1, 10−2, 10−3, 10−4.
The tables prove the closure interaction between the different parameters, to give the final behavior
of the solution.
For these simulations we used the linearized third order Runge-Kutta method given by Driscoll in
[13] for the time discretization, and the pseudo-spectral one for the space discretization.

Remark 4 We emphasize that all results obtained according to the Runge-Kutta scheme were al-
ready detected for the forward Euler scheme or the Splitting scheme for instance, and that this choice
is done only for sake of precision to depict the exact blow-up time.

Remark 5 We restricted our simulations to the range β ∈ [0, π
2 ], since we have remarked that

blow-up is function of sinβ, (this will be discussed in details later).

❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.8 1

0 N N N N N N N N N N
π

100 N N N N N N N N N N
π
10 N N N N N N N N N N
π
6 N N N N N N N N N N
π
4 Y N N N N N N N N N
π
3 Y N N N N N N N N N
π
2 Y N N N N N N N N N

Table 1: ν = 1, τ = 10−4

❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.8 1

0 N N N N N N N N N N
π

100 N N N N N N N N N N
π
10 N N N N N N N N N N
π
6 N N N N N N N N N N
π
4 Y Y N N N N N N N N
π
3 Y Y N N N N N N N N
π
2 Y Y N N N N N N N N

Table 2: ν = 0.7, τ = 10−4
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❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.8 1

0 N N N N N N N N N N
π

100 N N N N N N N N N N
π
10 Y N N N N N N N N N
π
6 Y Y N N N N N N N N
π
4 Y Y N N N N N N N N
π
3 Y Y Y N N N N N N N
π
2 Y Y Y N N N N N N N

Table 3: ν = 0.5, τ = 10−4

❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.8 1

0 N N N N N N N N N N
π

100 N N N N N N N N N N
π
10 Y Y Y Y Y N N N N N
π
6 Y Y Y Y Y N N N N N
π
4 Y Y Y Y Y N N N N N
π
3 Y Y Y Y Y N N N N N
π
2 Y Y Y Y Y N N N N N

Table 4: ν = 0.2, τ = 10−4

❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.8 1

0 N N N N N N N N N N
π

100 N N N N N N N N N N
π
10 Y Y Y Y Y Y N N N N
π
6 Y Y Y Y Y Y N N N N
π
4 Y Y Y Y Y Y N N N N
π
3 Y Y Y Y Y Y N N N N
π
2 Y Y Y Y Y Y N N N N

Table 5: ν = 10−1, τ = 10−3
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❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 1

0 N N N N N N N N N N N N
π

100 N N N N N N N N N N N N
π
10 Y Y Y Y Y Y Y Y N N N N
π
6 Y Y Y Y Y Y Y Y Y N N N
π
4 Y Y Y Y Y Y Y Y Y N N N
π
3 Y Y Y Y Y Y Y Y Y N N N
π
2 Y Y Y Y Y Y Y Y N N N N

Table 6: ν = 10−2, τ = 10−4

The criteria of blow-up detected for example for the case β = π
3 , α = 0.5 and ν = 10−2 is illustrated

by the following figures which represents the solution’ blow-up and the corresponding L2 norm:
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L2 norm of the solution vs time

Figure 12: resolution with a third order Runge-Kutta scheme. α = 0.5, ν = 10−2, β = π
3 , dx =

dy = 1
128 , τ = 0.0001; θ0 = sin(2πx) sin(2πy) and f = 2θ0

In [17], Dong Lie and José Rodrigo, have considered the blow-up in the supercritical range, we
propose here to complete the study by considering the dissipative parameter α belonging in the
whole interval ]0, 1[; the angle β ∈ [0 + δ, π − δ], where π

100 ≤ δ ≤ π
10 . We emphasize that we have

detected a criteria of blow up for β = π
100 , for ν ≤ 10−3. This can be observed in the following

table:
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❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.7 0.8 0.9 1

0 N N N N N N N N N N N N
π

1000 Y N N N N N N N N N N N
π

500 Y N N N N N N N N N N N
π

200 Y N N N N N N N N N N N
π

100 Y Y Y Y Y N N N N N N N
π
10 Y Y Y Y Y Y Y Y Y N N N
π
6 Y Y Y Y Y Y Y Y Y Y N N
π
4 Y Y Y Y Y Y Y Y Y Y N N
π
3 Y Y Y Y Y Y Y Y Y Y N N
π
2 Y Y Y Y Y Y Y Y Y N N N

Table 7: ν = 10−3, τ = 10−4

❍
❍

❍
❍

❍❍
β

α
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.8 0.9 0.95 1

0 N N N N N N N N N N N N
π

1000 Y Y Y Y Y Y Y Y N N N N
π

500 Y Y Y Y Y Y Y Y Y N N N
π

200 Y Y Y Y Y Y Y Y Y Y N N
π

100 Y Y Y Y Y Y Y Y Y Y Y N
π
10 Y Y Y Y Y Y Y Y Y Y Y N
π
6 Y Y Y Y Y Y Y Y Y Y Y Y
π
4 Y Y Y Y Y Y Y Y Y Y Y Y
π
3 Y Y Y Y Y Y Y Y Y Y Y Y
π
2 Y Y Y Y Y Y Y Y Y Y Y N

Table 8: ν = 10−4, τ = 10−5

Remark 6 • Notice that the criteria of blow-up simulated in the previous tables is independent
of the choice of the time step τ particularly, we implemented all the tests of Table7 for exam-
ple, with τ = 10−3 or τ = 10−5 and the results were unchanged.

• Besides, the criteria of blow-up is closely related to the L2 norm of the initial data θ0. Hence,
this test confirm one more time the theoretical predictions, which pretend that under some
smallness conditions on the initial data’s norm, we can prove global existence of the solution
of (1).

We specify that we implemented several tests where the solution blew-up in finite time for an
initial data θ0 and didn’t for θ0

2 .

The non blow-up in the case α = 1 is illustrated by a convergence to a stationary solution detected
on the L2 norm. This can be observed in the following figure which corresponds to the evolution of
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the L2 norm of the solution to the (GSQG) equation with β = π
2 and ν = 10−4 for instance.

0 2 4 6 8 10

10
0

 L2 norm of the solution vs time 

Figure 13: resolution with a third order Runge-Kutta code. α = 1, ν = 10−4, β = π

2
, dx = dy = 1

128
,

τ = 0.0001; θ0 = sin(2 ∗ π ∗ x) sin(2 ∗ πy) and f = 2θ0

4.4 Toward the capture of a law for the blow-up

Let us denote by T ∗ the blow-up time which can be estimated by the numerical simulations for
fixed diffusion and viscosity parameters α and ν. It is then easy to observe that T ∗ is an increasing
function of the decreasing rate of sinβ. Particularly, the limiting criteria of non blow-up for β = kπ
enforced these predictions, and T ∗ = φ( 1

sin β ) seems to be a good apprehension.
However, to more understand the variation of this blow-up time, according to the different param-
eters, we draw some tables giving the blow-up time T ∗, respectively by fixing two parameters and
varying the third one of them. More precisely, the Table(9), Table(10), Table(11) and Table(12)
give the resulting blow-up time with respect to β for respective fixed α and ν. We confirm by these
tables that the blow-up time is an increasing function of ν.

β π
10

π
9

π
8

π
7

π
6

π
5

π
4

π
3

7π
20

2π
5

π
2

T ∗ N 1.79 1.27 1.02 0.82 0.66 0.53 0.52 0.48 0.51

Table 9: ν = 0.5, α = 0.15

β π
10

π
9

π
8

π
7

π
6

π
5

π
4

π
3

7π
20

2π
5

π
2

T ∗ 0.91 0.84 0.75 0.68 0.61 0.54 0.47 0.41 0.4 0.37 0.38

Table 10: ν = 10−1, α = 0.1

β π
10

π
9

π
8

π
7

π
6

π
5

π
4

π
3

7π
20

2π
5

π
2

T ∗ 0.86 0.79 0.71 0.65 0.59 0.52 0.46 0.4 0.39 0.37 0.37

Table 11: ν = 10−2, α = 0.25
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β π
10

π
9

π
8

π
7

π
6

π
5

π
4

π
3

7π
20

2π
5

π
2

T ∗ 0.85 0.78 0.7 0.64 0.58 0.52 0.45 0.39 0.38 0.36 0.37

Table 12: ν = 10−3, α = 0.35

On the other hand, since we have simulated the results for various α, we opted for two other kinds
of studies, fixing separately α and ν, to depict the accurate influence of both diffusion and viscosity
parameters on T ∗. The results are given in tables (13) and (14) for fixed ν and β, and in Table (15)
for fixed α. We emphasize that all the following simulations are resulting from an implementation
of the Runge-Kutta scheme for τ = 10−4 and N = 128:

α 0.1 0.15 0.2 0.25 0.3 0.35
T ∗ 0.45 0.45 0.45 0.45 0.46 0.46

Table 13: ν = 10−2, β = π
4

α 0.1 0.15 0.2 0.25 0.3 0.35
T ∗ 0.58 0.58 0.58 0.58 0.58 0.59

Table 14: ν = 10−2, β = π
6

Obviously, the blow-up time seems to depend more on the viscosity parameter ν than on the diffusion
parameter α for fixed β. Indeed, for fixed α we get:

β π
2

2π
5

7π
20

π
3

π
4

T ∗
ν1

0.39 0.38 0.4 0.42 0.48
T ∗

ν2
0.51 0.48 0.52 0.53 0.66

T ∗
ν3

0.67 0.59 0.65 0.68 0.96

Table 15: ν1 = 10−1, ν2 = 0.5, ν3 = 0.7, α = 0.15

We observe from the previous table, that the variation of the blow-up time owing to a variation
νi ↔ νj depends also on β.
All of these numerical observations let us expect that the blow-up time can be written as:

T ∗ = a ∗ 1

(sinβ)ϕ(ν)

where a depends on ν and α, and ϕ is some function of ν. Indeed, the following graphs confirm this
deduction.
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Figure 14: Blow-up time first for α = 0.15 and ν = 0.5 and second for α = 0.1 and ν = 0.1 according
to the Runge-Kutta scheme.
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Figure 15: Blow-up time first for α = 0.25 and ν = 0.01 and second for α = 0.35 and ν = 0.001
according to the Runge-Kutta scheme.

These graphs correspond precisely to the blow-up function:

T ∗ ≃ ν

2

1

(sinβ)
ν
2

+ b.

Besides, due to the fact that for α = 1 we depicted an infinite blow-up time, than we concluded
that the blow-up time can be fitted by a band given by:

φup =
ν

2(1 − α)

1

(sinβ)
ν
2

+ b (65)

φsub =
1

(1 − α)

1

(sinβ)
ν
2

+ b. (66)
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The results are given by the following figures:
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The major question that we have to answer now is to get some formula which control this blow-up,
that depend on several parameters.Let us define at first, the discrete Hα norm given by

‖ θ ‖2
N,α=‖ (−∆)

α
2 θ ‖2

N,2=
1

N2

N∑

i=1

N∑

j=1

| (−∆)
α
2 θi,j | .

Since the blow-up is happened at the rate of ‖ θ ‖Hα , (as showed in figure (16)) we suppose that
the quantity

η(t) =‖ θN (., t) ‖Hα (67)

is known at different times ti, and that the blow-up time T ∗ is numerically known,
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Figure 16: The blow-up according to each norm

then, we have to compare the rapid growth rates in the solutions norm with different predictable
laws, for times close to the blow-up time T ∗. The resulting graphs according first to an exponential
type law

η1(t) = exp(T ∗ − t)−1,

and second to an empirical asymptotic fitting law,

η2(t) = (T ∗ − t)−1,

are shown in Figure 14 and Figure 15.
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Figure 17: A comparaison between the exponential blow-up law η1(t) and the solution’ Hα norm
Vs time, for α = 0.5, β = π

4 , ν = 10−2, dt = 10−4, N = 128.
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Figure 18: A comparaison between the hyperbolic blow-up law η2(t) and the solution’ Hα norm Vs
time, for α = 0.5, β = π

4 , ν = 10−2, dt = 10−4, N = 128.

These numerical observations, let deduce that the norm growth here is less rapid than the two
predicted laws, and give reason to an asymptotic fitting

η(t) = C(α, β, ν)(T ∗ − t)−γ .

A second set of numerical computations, shows that the fitted mean square rate γ decreases accord-
ing to α, sinβ and ν as shown in the following tables:

❍
❍

❍
❍

❍❍
β

α
0.15 0.25 0.35 0.5 0.6

π
4 0.2967 0.2467 0.2144 0.1733 0.1437
π
6 0.0262 0.2603 0.2202 0.1775 0.1331

Table 16: The fitted slope γ for ν = 10−2
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❍
❍

❍
❍

❍❍
β

α
0.15 0.25 0.35 0.5 0.6

π
4 0.2989 0.2485 0.2137 0.0263 0.1588
π
6 0.3220 0.0264 0.2253 0.1830 0.1636

Table 17: The fitted slope γ for ν = 10−3

Hence, for a, b, c some positive reals, the rate γ can be expected equal to:

γ = a(1 − α) + b(1 − sinβ) + c(1 − ν).

5 Conclusion

We performed numerical computations on the asymptotic behavior of solutions to (SQG) and
(GSQG) equations. Theory and experiments agree: the solution of the usual (SQG) globally ex-
ists for a dissipation α ≥ 2

3 , and moreover beyond the range α ∈ [12 , 1[, which implies that the
theoretical limitations are only technical, and that there is no critical behavior at α = 1

2 .

In the case of (GSQG), solutions blow-up on T2 for the whole range α ∈ ]0, 1[, according to an
explicit formula which controls the time blow-up, depending on sin β, 1

1−α ,, and ν. The question of
capturing a precise law of blow up with these parameters is still open; the method we have presented
here and which consists in tabuling the blow-up situations according to the values of teh different
parameters offers a way to approach the rate of blow-up, using approximation techniques.
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