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Abstract

Context: Adaptation is a crucial issue when building new applications by reusing existing software services

which were not initially designed to interoperate with each other. Adaptation contracts describe composition

constraints and adaptation requirements among these services. The writing of this specification by a designer

is a difficult and error-prone task, especially when interaction protocols are considered in service interfaces.

Objective: In this article, we propose a tool-based, interactive approach to support the contract design pro-

cess.

Method: Our approach includes: (i) a graphical notation to define port bindings, and an interface compatibil-

ity measure to compare protocols and suggest some port connections to the designer, (ii) compositional and

hierarchical techniques to facilitate the specification of adaptation contracts by building them incrementally,

(iii) validation and verification techniques to check that the contract will make the involved services work

correctly and as expected by the designer.

Results: Our results show a reduction both in the amount of effort that the designer has to put into building

the contract, as well as in the number of errors present in the final result (noticeably higher in the case of

manual specification).

Conclusion: We conclude that it is important to provide integrated tool support for the specification and

verification of adaptation contracts, since their incorrect specification induces erroneous executions of the

system. To the best of our knowledge, such tool support has not been provided by any other approach so

far, and hence we consider the techniques described in this paper as an important contribution to the area of

behavioural software adaptation.

Keywords:

formal specification, software adaptation, software reusability, interaction protocol

1. Introduction

Services can be accessed and used to fulfill basic

requirements, or can be composed with other ser-
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Figure 1: Contract-based adaptation process

vices in order to build bigger systems which aim

at working out complex tasks. These services must

be equipped with rich interfaces to ease their reuse

and enable their automatic composition. We can

distinguish several interoperability levels for the de-

scription of service interfaces (i.e., signature, inter-

action protocol/behaviour, quality of service, and se-

mantics [1]). Composition of services is seldom

achieved seamlessly because mismatch may occur

at the different interoperability levels and must be

solved. Software adaptation [2, 1] is a recent dis-

cipline which aims at generating, as automatically as

possible, adaptors used to solve mismatches among

services in a non-intrusive way. So far, most adap-

tation approaches have assumed interfaces described

by signatures (operation names and types) and be-

haviours (interaction protocols). Describing proto-

cols in service interfaces is essential because erro-

neous executions or deadlock situations may occur if

the designer does not consider them while building

composite services.

A first class of existing works dedicated to model-

based behavioural adaptation (see for instance [3, 4,

5]) are those which favour the full automation of the

composition process, and try to solve interoperability

issues by pruning behaviours that may lead to mis-

match. This restricts in general the functionality of

the services involved. A second class of solutions

(see for instance [6, 7, 1]) aim at avoiding the restric-

tion of service behaviour, supporting the specifica-

tion of advanced adaptation scenarios. These solu-

tions build adaptors automatically from an abstract

specification, namely an adaptation contract, of how

mismatch cases must be solved. However, this clas-

sification is not strict, since different approaches ex-

hibit features that make their classification in one of

the two categories difficult. Take for instance the

case of [5], which solves automatically some kinds

of mismatch, but requires user input to solve dead-

lock situations, or [4], which enables the restriction

of service behaviour according to user-defined prop-

erties, which can be considered as a particular kind

of adaptation contract.

Although approaches that use adaptation contracts

result in a more general and satisfactory solution

while composing and adapting services, writing the

contract is a difficult and error-prone task. Incor-

rect correspondences between operations in service

interfaces, or syntactic mistakes are common, espe-

cially in cases where the contract has to be specified

using cumbersome textual notations [6]. Contracts

should also describe in an abstract way the different

execution scenarios of the system, which may not be

easily envisioned by the designer. Moreover, con-

tracts must avoid undesirable system behaviour such

as deadlocks or incorrect order of the messages ex-

changed, and this is difficult when interaction proto-

cols are taken into account in interface descriptions.

In this article, we advocate interactive techniques

to help the designer in the adaptation contract speci-

fication process (see Figure 1 for an overview of the

whole adaptation process). For this purpose, we:

• propose a graphical notation to visualize service

protocols and define port bindings;

• propose a measure of compatibility between

protocols, integrated with our graphical nota-

tion, that the designer can use to detect parts of

service protocols which turn out to be compati-

ble, and then connect them;

• formalise compositional and hierarchical tech-

niques in order to build the system incremen-

tally, simplifying the process; and

• propose validation and verification techniques

which allow to simulate visually the execution

of the system step-by-step, and find out which

parts of the system lead to erroneous behaviour

(deadlock, infinite loops, safety and liveness

properties).
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Contract construction is an incremental process

where understanding the reasons behind incorrect

behaviour of the composition is fundamental in or-

der to obtain a correct result. Our choice of taking an

interactive approach to adaptation contract construc-

tion aims at improving the development process, en-

abling the user to perform interactive simulation of

the system behaviour in order to understand the prob-

lem, and correct the specification, all from within the

same environment. This results in a more agile de-

velopment cycle compared to alternatives such as en-

coding the contract and service protocols into the in-

put language of an existing verification tool, which

may result in a tiresome trial-and-error process.

Our approach is fully implemented in a prototype

tool, ACIDE, which has been applied to many case

studies.

A preliminary version of this work has been pub-

lished in [8], and is improved here in several aspects.

In this article, (i) we extend the textual and graphi-

cal contract language to consider data consumption

and data synthesis, (ii) we extend the adaptor pro-

tocol synthesis techniques described in [9] to take

these new contract operators into account, (iii) we

present a new simulation algorithm which consid-

ers the aforementioned extensions and allows mes-

sage reordering, (iv) we propose new techniques to

measure the compatibility degree of two service in-

terfaces using propagation algorithms, (v) we extend

our contract verification techniques with trace-based

checking of temporal logic formulas, (vi) we illus-

trate the different parts of our approach on a revised

case study, and (vii) all along the article, we add de-

tailed explanations and comments; for instance we

present an extended discussion comparing our ap-

proach with related works.

The rest of this paper is structured as follows: Sec-

tion 2 presents our service model. Section 3 intro-

duces our contract specification language and pro-

vides an overview of adaptation techniques that can

be used to generate adaptor protocols from such con-

tracts. Section 4 presents a compositional and hier-

archical approach to ease the specification of adap-

tation contracts. Section 5 describes our graphical

environment that supports contract design, as well

as our compatibility measure between service pro-

tocols. In Section 6, we propose verification tech-

niques to check contracts. Section 7 introduces our

prototype tool (ACIDE), and some experimental re-

sults. Finally, Section 8 compares our approach with

related works, and Section 9 concludes the paper.

2. Interface Model

This section describes the interface model that we

use throughout our proposal and its relation with ex-

isting implementation platforms. In particular, since

we intend to tackle mismatch both at the signature

and behavioural levels, we assume that interfaces are

equipped both with a signature (representing the set

of required and provided operations), and a protocol

specifying the interactive behaviour followed by the

component or service in terms of communication ac-

tions. These actions correspond to the invocations

of operations described in the signature. In our ap-

proach, protocols are represented by Symbolic Tran-

sition Systems (STS).

2.1. Signature

Definition 1 (Signature). A signature Σ is a set of

provided and required operation profiles. An opera-

tion profile is the name of an operation, along with its

argument types (possibly none), and its return types

(possibly none):

op : ti1 ∗ . . . ∗ tin → to1 ∗ . . . ∗ tom

Provided operations implement the functionality

of the component and are thus offered to other com-

ponents in the environment for invocation, whereas

required operations are those that the service needs

to invoke in order to fulfill its purpose.

Signatures are usually described as a set of oper-

ation profiles in component-based frameworks (e.g.,

J2EE) using an Interface Definition Language (IDL),

or with WSDL descriptions in the field of Web ser-

vices. Specifically, in the case of WSDL, services are

defined as collections of ports. A port includes the

set of operation profiles supported. Moreover, each

operation may contain a specific set of input and out-

put messages carrying the arguments and return val-

ues of the operation, respectively.

Example. Consider a simple Web service (named

MedDB) within the context of a health care organiza-

tion. MedDB receives requests for information about
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<?xml version="1.0" encoding="UTF-8"?>

<definitions name="MedDb">

    <types/>

    <message name="availabilityRequest">

        <part name="d" type="xsd:string"/>

  <part name="hash" type="xsd:string"/>                

  <part name="correlation" type="xsd:token"/>

    </message>

    <message name="availabilityResponse">

        <part name="tkt" type="xsd:int"/>

        <part name="correlation" type="xsd:token"/>

    </message>

    <portType name="MedDbPortType">

        <operation name="availability">

            <input name="input1" message="tns:availabilityRequest"/>

            <output name="output1" message="tns:availabilityResponse"/>

        </operation>

    </portType>

</definitions>

Figure 2: WSDL specification for the MedDB service.

the availability of a specialist doctor for a given date

(supplied in the request), and responds to them with

a token or ticket identifier for an appointment (or an

error code if there are no available specialist doctors

for the given date). To be valid, the request also re-

quires a hash parameter obtained from the informa-

tion of a valid user (username and password). The

specification of the single operation available on the

interface, given as a WSDL description (Figure 2),

corresponds to the following signature:

availability : string, string→ int

In this case, availability is the name of the opera-

tion, whereas string and int are the types of the inputs

(date and a hash parameter) and output token of the

operation, respectively. It is worth observing that at

the signature level, we are only interested in which

argument types are required as input, or returned by

the operation as output. Argument names will be in-

cluded at the behavioural interface level.

2.2. Protocol

In our approach, the protocol of a component or

service is represented on its interface by a Symbolic

Transition System (STS). In an STS, communica-

tion between services is represented using events rel-

ative to the emission and reception of messages cor-

responding to operation calls. Events may come with

a list of parameters whose types respect the operation

signatures. In our model, a label in a transition repre-

sents either the internal action τ, or a communication

event.

Definition 2 (Communication Event). A Commu-

nication Event is a tuple (M ,D ,PL), where:

• M is a message name.

• D ∈ {!, ?} stands for the communication direc-

tion (! for emission, and ? for reception).

• PL = [p1, . . . , pn] is either a list of expressions

if the message corresponds to an emission, or a

list of variables local to the service if the mes-

sage is a reception.

Definition 3 (STS). A Symbolic Transition System is

a tuple (A, S , I ,F ,T ) where: given a set of commu-

nication events C , A = C ∪ {τ} is an alphabet which

corresponds to the set of labels associated to transi-

tions, S is a set of states, I ∈ S is the initial state,

F ⊆ S are final states, and T : S × A → S is the

transition function.

Our STS is a reduced version of STG (Symbolic

Transition Graph) introduced in [10]. Here, guards

are abstracted as τ transitions, which denote inter-

nal (unobservable) activities of the service.The op-

erational semantics of a STS (−→b) is defined in Fig-

ure 3. A couple 〈s ,E 〉 is composed by an active state

s ∈ S and a data environment E . A data environment

is a set of pairs 〈x , v〉 where x is a variable and v a

ground value. We use a function type which returns

the type of a variable or a value, and we define the

environment update “⊘”, and the evaluation function

ev as follows:

E ⊘ 〈x , v〉 , E (x ) = v

ev (E , x ) , E (x )

ev (E , f (v1, . . . , vn)) , f (ev (E , v1), . . . , ev (E , vn))

Specifically, the three rules in Figure Figure 3

model: (i) transitions internal to the service (TAU);

and (ii) transitions where the STS evolves through an

emission or a reception (EM and REC, respectively).

It is worth observing that no environment updates are

included in these rules.

The operational semantics of n (n > 1) STSs (−→c)

is formalised using a synchronous communication

rule (COM, Figure 4) in which value-passing and
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(s
τ
−−→ s ′) ∈ T

〈s ,E 〉
τ
−−→b 〈s

′,E 〉
(TAU)

(s
a!v
−−−−→ s ′) ∈ T v ′ = ev (E , v )

〈s ,E 〉
a!v ′

−−−−→b 〈s
′,E 〉

(EM)
(s

a?x
−−−−→ s ′) ∈ T

〈s ,E 〉
a?x
−−−−→b 〈s

′,E 〉

(REC)

Figure 3: Operational Semantics of one STS

i , j ∈ {1..n} i , j

〈si ,Ei 〉
a!v
−−−−→b 〈s

′
i
,Ei 〉 〈sj ,Ej 〉

a?x
−−−−→b 〈s

′
j
,Ej 〉

type(x ) = type(v ) E ′
j
= Ej ⊘ 〈x , v〉

{as1, .., 〈si ,Ei 〉, .., 〈sj ,Ej 〉, .., asn }
a!v
−−−−→c {as1, .., 〈s

′
i
,Ei 〉, .., 〈s

′
j
,E ′

j
〉, .., asn }

(COM)

i ∈ {1..n} 〈si ,Ei 〉
τ
−−→b 〈s

′
i
,Ei 〉

{as1, .., 〈si ,Ei 〉, .., asn }
τ
−−→c {as1, .., 〈s

′
i
,Ei 〉, .., asn }

(INEτ)

Figure 4: Operational Semantics of n STSs

<?xml version="1.0" encoding="UTF-8"?>

<process name="MedDB"/>

    <partnerLinks>

        <partnerLink name="DB" partnerLinkType="tns:MedDb" 

         myRole="MedDbPortTypeRole"/>

    </partnerLinks>

    ...

    <sequence>

        <receive name="availability_REC_1" partnerLink="DB" 

                 operation="availability"

                 portType="tns:MedDbPortType">

        </receive>

        ...

        <reply name="availability_INV_1" partnerLink="DB" 

               operation="availability" 

               portType="tns:MedDbPortType">

        </reply>

    </sequence>

</process>

Final state Initial state

MedDB

availability!tkt:int

availability?d:string
             hash :string

d0

d1

d2

Figure 5: Simplified BPEL specification and STS for the

MedDB service.

variable substitutions rely on a late binding seman-

tics [11], and an independent evolution rule (INEτ,

Figure 4).

Example. Figure 5 shows a simplified Abstract

BPEL specification and its corresponding STS de-

scribing our MedDB service. The STS contains two

labels: availability?d,hash and availability!tkt which

receive the request for availability along with a date

and a hash validation parameter, and respond with a

token to the request, respectively.

For the sake of conciseness, in the rest of this pa-

per we will describe service interfaces only with their

STS, making explicit argument types in STS labels.

�

The STS formal model has been chosen because

it is simple, graphical, and it can be easily derived

from existing implementation languages (see for in-

stance [12, 13, 14, 15] where such abstractions for

Web services were used for verification, composi-

tion or adaptation purposes). In particular, signa-

ture information can be obtained for our models us-

ing the information available in WSDL descriptions,

whereas STS information is derived from the speci-

fication of a service expressed in a behavioural IDL

such as Abstract BPEL or Abstract Windows Work-

flows (see Figure 6). Moreover, this formalism is

very convenient for the development of algorithms

that rely on the traversal of the different states of pro-

tocols, and the transition function available in STS

descriptions makes the access to the set of states and

their connections straightforward.
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If we compare our model to other automata-based

formalisms, we may emphasize that transitions in

STSs are data-dependent, unlike in interface au-

tomata [16], or I/O automata [17], where transitions

are labelled exclusively with actions with no data

parameters. Data-dependent transitions are required

to appropriately model stateful interaction and data

exchange among services. Furthermore, other for-

malisms such as port automata [18] include data-

dependent transitions, but similarly to the aforemen-

tioned I/O automata, they assume input enabled-

ness, therefore the automaton is receptive towards

every possible input action at every state and does

not accept certain inputs under the assumption that

the environment never generates them. On the con-

trary, constraint automata [19] are variants of La-

beled Transition Systems featuring transitions which

include data constraints and do not assume input-

enabledness. Although constraint automata have also

been used to formalize Web service composition [20]

and provide a generic operational model that sup-

ports any kind of synchronous and asynchronous

peer-to-peer communication, in this work we chose

to use STSs, in line with other works in behavioural

adaptation of services. In particular, this has allowed

us to take advantage of existing implementations of

BPEL-STS translation mechanisms.

WSDL

Abstract BPEL

Abstract Workflow

...

Signature

STS

Interface ModelService Interface

Figure 6: Interface model extraction from existing higher-level

interface description languages.

Example. Figure 7 shows the XML description of

MedDB’s interface, containing a description of its

signature (top) and protocol STS (bottom) including

labels, states, and transitions. It is worth observing

that labels on the STS and operation names can be

related through the name attribute included in labels.

<?xml version="1.0" ?>

<interface name="MedDB">

<signatures>

<signature name="availability">

<inputs>

<dataItem name="string"/>

<dataItem name="string"/>

</inputs>

<outputs>

<dataItem name="int"/>

</outputs>

</signature>

</signatures>

<protocol>

<labels>

<label id="availability_EM" name="availability" type="OUT">

<dataItem name="tkt"/>

</label>

<label id="availability_REC" name="availability" type="IN">

<dataItem name="d"/>

<dataItem name="hash"/>

</label>

</labels>

<states>

<state id="2" final="True"/>

<state id="1"/>

<state id="0" initial="True"/>

</states>

<transitions>

<transition label="availability_REC" source="0" target="1"/>

<transition label="availability_EM" source="1" target="2"/>

</transitions>

</protocol>

</interface>

Signature

STS

Figure 7: STS-based XML description for the MedDB service.

2.3. Mismatch Detection

Most of the time, services cannot be reused as they

are because interactions among them would lead to

an erroneous execution, namely a mismatch. In prac-

tice, mismatch situations may be caused when mes-

sage names do not correspond, the assumed order

of messages is not respected, a message in one ser-

vice has no counterpart, or a message matches with

several other messages. Furthermore, mismatch may

also appear when the number and/or type of parame-

ters do not match.

More formally, cases of mismatch may lead the

whole system to a deadlock. A system deadlocks

when all its constituent services are blocked because

none of them meet the condition to move to a differ-

ent state. Accordingly, mismatch detection is per-

formed by exploring all the interactions of the set

of service STSs obtained by application of the COM

and INEτ rules.

However, this method does not extract all the mis-

match cases but only those that can be reached as-

suming that the involved services can interact using

the same set of message names. This test can then
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be used as a first step to start the construction of the

adaptation contract (presented in Section 3) that de-

scribes how mismatch situations are resolved. While

building the adaptation contract, the designer can in-

crementally build and correct it in subsequent steps

by applying the aforedescribed test until the compo-

sition is deadlock-free.

Example. In order to illustrate different mismatch

situations that may arise, we describe an on-line

medical management system which handles patient

appointments within a health care institution, either

with general practitioners, or specialist doctors.

As it can be observed in Figure 8, we reuse three

services in this new system, and we give an example

of user requirements implemented in a client:

• The Client can first log on to a server by sending

respectively his/her user name (user!) and pass-

word (password!). Then, depending on his/her

preferences (internal choice specified with τ

transitions in the client protocol), the client can

stop at this point, or ask for an appointment ei-

ther with a general practitioner (reqDoc!) or a

specialist doctor (reqSpec!), and then receive

an appointment identifier.

• Service ServerDoc first receives the client user

name and password (id?). Next, this ser-

vice receives a request for an appointment with

a general practitioner (reqDoc?) and replies

(reqDoc!).

• Service ServerEsp first receives a request

for an appointment with a specialist doctor

(reqSpec?), followed by the client user name

and password (id?). After checking doctor

availability for the given date, an appointment

identifier is returned (reqSpec!) to the client.

• Service MedDB can receive and reply to re-

quests for a specialist doctor’s availability for

a given date (availability?/availability!).

We intend to compose these services into a work-

ing system where the client can request an appoint-

ment either with a general practitioner or a specialist

doctor. It is worth observing that in order to pro-

vide appointments with specialist doctors, service

ServerEsp must check their availability using an ex-

ternal service (in this case, MedDB provides that

functionality).

Client
user!usr:string

password!pwd:string

τ τ

reqDoc!d:string reqSpec!d:string

replyS?tkt:intreplyD?tkt:int

c0

c1

c3

c2

c6

c5

c4

id?
usr:string
pwd:string

reqDoc?d:string

reqDoc!tkt:ints0

s1

s2

ServerDocMedDB

availability!tkt:int

availability?d:string
             hash :string

d0

d1

ServerEsp

Final state Initial state

s3

τ

c7

d2

id?usr:string

     pwd :stringreqSpec!tkt:int

reqSpec?

d:string

availability?tkt:int availability!d:string

s0

s1

s2

s3

s4s5

Figure 8: Behavioural interfaces for the online medical man-

agement system.

The composition of the different services in our

example is subject to different mismatch situations:

• Name mismatch occurs if a service expects

a particular message, while its counterpart is

willing to send one with a different name (e.g.,

service ServerDoc sends reqDoc!, whereas the

client is expecting replyD?). Thus there is a sin-

gle, one-to-one, conceptual correspondence be-

tween a pair of messages in both services, but

their names are different.

• N to M correspondence appears for instance if

a message on a particular interface corresponds

to several in its counterpart’s interface (or sim-

ilarly, a message has no correspondence at all).

In Figure 8 it can be observed that while the

client intends to perform authentication on a

service sending user! and password! subse-

7



quently, service ServerDoc expects only mes-

sage id? for authentication. This would be a

case of 1-to-N correspondence between mes-

sage names, and we could consider M-to-N cor-

respondences as the general case, where a group

of messages in one of the service corresponds

with several others in the counterpart services.

• Incompatible order of messages. The relative

order of operation invocations among the dif-

ferent protocols involved is different. We may

observe this in our example when the client first

sends its authentication information and then re-

quests an appointment with a specialist doctor,

whereas the ServerEsp service expects these

messages in the inverse order.

• Argument mismatch may occur when the

number and/or type of arguments either be-

ing sent or received do not match between the

events on the different interfaces. This can be

observed in ServerDoc, when id? expects both

a username (usr) and a password (pwd). The

first data term corresponds to user! on the client

interface, whereas the second belongs to pass-

word!. Moreover, parameter correspondences

on the different interfaces may not always be

one-to-one. Thus, in some cases a specific pa-

rameter value has to be synthesized from several

other values that correspond to parameters sent

from one or more services. In our example, we

may mention that the value of the hash param-

eter required by MedDB has to be generated us-

ing the values of the user’s name and password

sent from the client.

The interested reader can refer to [7, 5, 21] for fur-

ther classifications of mismatch situations made by

other authors. In the upcoming section, we describe

how to specify the resolution of the mismatch situ-

ations presented above by making use of adaptation

contracts.

3. Contract Specification and Adaptor Genera-

tion

In this section, we present the specification lan-

guage for adaptation contracts. Although the genera-

tion of adaptor protocols from such specifications is

not a part of this work, we briefly discuss this process

in order to illustrate the basic principles upon which

our adaptation approach works.

3.1. Contract Specification Language

Adaptors can be automatically built from an ab-

stract description, called adaptation contract, of how

mismatch situations can be solved. An adaptation

contract specifies how messages and data exchanged

between services are related. Consequently, this

specification indicates how some cases of mismatch

can be solved (e.g., making explicit that two mes-

sages with two different names correspond to each

other). Some other cases (reordering of messages or

data) will be worked out by our adaptor generation

algorithms (presented in Section 3.2), which use as

input an adaptation contract but also the service in-

terfaces. In this work, we use compositional vectors

(inspired from synchronous vectors [22]) and a vec-

tor LTS (VLTS) as adaptation contract specification

language [23, 1, 9]. A compositional vector (or vec-

tor, for short) contains a set of event specifications

(message, direction, set of parameters). Each event

specified in the vector is executed by one service,

and the overall result corresponds to one or several

interactions between the involved services and the

adaptor. Vectors express correspondences between

messages, like bindings between ports, or connectors

in architectural descriptions. In particular, we con-

sider a binary communication model, therefore our

vectors are always reduced to one event specifica-

tion (when a service evolves independently) or two

(when services communicate indirectly through the

adaptor). Furthermore, variables local to the adap-

tor are used as placeholders in message parameters

when these appear in vectors. The same placeholder

variable names appearing in different event specifi-

cations (possibly in different vectors in the contract)

relate sent and received arguments in the messages.

It is worth noticing that placeholders are only used in

event specifications included in the contract (specif-

ically, in vectors), and not in actual communication

events on the different STSs.

Definition 4 (Parameter Substitution). We define

a parameter substitution function psub which subti-

tutes parameters in communication events by place-

8



1 <id> ::= <alphabetic_char> | <id> <alphabetic_char> | <id> <digit>

2 <ph_id> ::= <id> | <id>"#"

3 <id_set> ::= <id> | <id> "," <id_set>

4 <ph_id_set> ::= <ph_id> | <ph_id> "," <ph_id_set>

5 <event_spec> ::= <id> ":" <id> <dir> | <id> ":" <id> <dir> <ph_id_set>

6 <dir> ::= "?" | "!"

7 <vector_prefix> ::= "o" | "c"

8 <event_spec_set> ::= <event_spec> | <event_spec> ";" <event_spec>

9 <vector> ::= <id> "=" <vector_prefix> ":" "<" <event_spec_set> ">"

10 <vector_definitions> ::= <id> "=" "{" <vector_set> "}"

11 <vector_set> ::= <vector> | <vector> "," <vector_set>

12 <param_definition> ::= "(" <id> "," "{" <id_set> "}" "," <id> ")"

13 <param_definitions> ::= <id> "=" "{" <param_definition_set> "}"

14 <param_definition_set> ::= <param_definition> | <param_definition> "," <param_definition_set>

15 <transition> ::= "(" <id> "," <id> "," <id> ")"

16 <transition_set> ::= <transition> | <transition> "," <transition_set>

17 <vlts> ::= "(" <id_set> ";" <id_set> ";" <id> ";" <id_set> ";" <transition_set> ")"

18 <contract> ::= "(" <vector_definitions> "," <param_definitions> "," <vlts> ")"

Figure 9: BNF Grammar for adaptation contracts.

holders defined in a set of names F as:

psub((M ,D ,PL),F ) = (M ,D ,PL′),

where | PL |=| PL′ | and ∀ p′ ∈ PL′, p′ ∈ F .

Let us remind that a communication event is a tuple

(M ,D ,PL) where M is a message name, D stands

for communication direction, and PL is a list of ex-

pressions/variables (please refer to Definition 2 for

more details). Moreover, we assume that valid place-

holder names in F and valid names in PL belong to

disjoint sets.

Definition 5 ((Compositional) Vector). A (compo-

sitional) vector v for a set of service STSs

(Ai , Si , Ii ,Fi ,Ti ), i ∈ {1, . . . , n} is an element of

id × {{{o, c} ×A′j } ∪ {{c} ×A′
k
×A′m}}, with j , k ,m ∈

{1, . . . , n} and k , m. ∀Ai = {l0, . . . , lq },A
′
i =

{psub(l0,F ), . . . , psub(lq ,F )}, F being a set of fresh

names. The BNF grammar presented in Figure 9 de-

tails the syntax of vectors (lines 5-9).

Let us remark that function psub substitutes pa-

rameter names by placeholder names for a single

event specification. When applied to several event

specifications in the same (or different) vectors,

placeholder names are reused for subsequent event

specifications when the specific argument value that

the placeholder refers to is involved in different

points of service interaction 1. In any case, it is worth

observing that the association between placeholders

and operation arguments is determined by the de-

signer of the adaptation contract, as it is described

in Section 5.

According to Definition 5, vectors may be prefixed

by o or c (referred to as open and closed vectors,

respectively). In this section, we will consider only

the use of closed vectors. The use of open vectors is

related to the hierarchical compositional aspects of

our approach which will be discussed in Section 4.

Parameter correspondences on the different inter-

faces may not always be one-to-one. Thus, in some

cases, specific parameter values have to be synthe-

sized from several ones that are received from one or

more services. In order to specify how these values

can be obtained, we include in our contract notation

an additional construct that enables the definition of

new placeholders, based on the values of the place-

holders already described in vectors.

Definition 6 (Synthetic Parameter). A synthetic

parameter is a tuple (nph, {iph1, . . . , iphn}, f ), where

nph is the placeholder name for the synthesized

1For further details about placeholder reuse, please refer to

Appendix A.
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parameter, and {iph1, . . . , iphn} is the set of input

parameters required to synthesize the value of

nph. Function f specifies how the new value is

computed from parameters {iph1, . . . , iphn}. Please

refer to line 12 in the BNF grammar presented in

Figure 9 for the syntax of the definition of synthetic

parameters.

Furthermore, specifying that a value to be received

by a service is to be consumed once read is also

possible in our contract notation. This is indicated

by the “#” tag in the correspoding placeholder vari-

able identifier (e.g., in vector vreqdoc = c : 〈c :

reqDoc!D; sd : reqDoc?D#〉 , we indicate that the

value sent by the client, represented by placeholder

variable D, is to be eliminated from the adaptor store

or consumed when received by the counterpart ser-

vice, and therefore, it will not be available to other

services after its consumption).

In addition, the contract notation includes an LTS

with vectors on transitions (that we call vector LTS

or VLTS).

Definition 7 (VLTS). A vector LTS is a tuple

(A, S , I ,F ,T ), where given a set of vectors V built

over a set of n STS, A is an alphabet which corre-

sponds to the set of vector identifiers in V . S is a set

of states, I ∈ S is the initial state, F ⊆ S are final

states, and T : S ×A→ S is the transition function.

Please refer to lines 15-17 in the BNF grammar pre-

sented in Figure 9 for the specific syntax of a VLTS.

This vector LTS is used as a guide in the ap-

plication order of interactions specified by vectors.

VLTSs go beyond port and parameter bindings, and

express more advanced adaptation properties (such

as imposing a sequential execution of vectors or a

choice between some of them). If the application or-

der of vectors does not matter, the vector LTS con-

tains a single state and all transitions looping on it.

Definition 8 (Adaptation Contract). An adapta-

tion contract for a set of services STSi , i ∈ {1, .., n},

is a tuple (D ,V ,VLTS ) where:

• D is a set of synthetic parameters defined over

the set of placeholders in event specifications in

V.

• V is a set of vectors built over the set of services

STSi .

• VLTS is a vector LTS, whose alphabet is de-

fined in V .

Example. Let us recall our on-line medical man-

agement system described in Section 2 which han-

dles patient appointments within a health care insti-

tution, either with general practitioners, or specialist

doctors (Figure 8). We intend to compose these ser-

vices into a working system where the client can re-

quest an appointment with a general practitioner, or

also request an appointment with a specialist doctor,

provided that there is a previous appointment with

a general practitioner (i.e., the client cannot directly

schedule an appointment with the specialist).

Figure 10 displays the adaptation contract used to

solve mismatch among the services. On the left-

hand side of the figure, we have the set of vectors

(Definition 5). It is worth observing that all vec-

tors in this contract are closed (prefix c) 2. For il-

lustration purposes, we focus on the initial part of

the composition, where we want to connect the gen-

eral practitioner server (ServerDoc) with the client,

and make authentication work correctly. For this,

we need three vectors, respectively vuser , vpwd and

vviddoc , in which we solve existing mismatches by re-

lating different message names (sd:id is related with

c:user and c:password). Concretely, we specify the

independent evolution of c:user! and c:password!

(in vectors vuser and vpwd , respectively), and specify

how parameter values are to be exchanged by sub-

stituting parameters usr and pwd with placeholders

U and P in the events specified in the three vectors,

making use of the psub function (Definition 4). In

particular, it is worth noting that the order in which

placeholders appear in vectors respect the order in

which parameters are expected by the services ( e.g.,

U appears before P in vviddoc , since sd:id is expect-

ing usr before pwd). Figure 11 further explains how

placeholders connect parameters.

The rest of the vectors in the contract work in a

similar fashion, relating the remaining parts of the

2The use of open vectors for hierarchical composition will

be introduced in Section 4.
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interfaces. Furthermore, if we focus on the bottom-

left part of Figure 10, it can be observed that the

contract also includes a synthetic parameter (Defi-

nition 6), where the placeholder name is H, its input

parameters are U and P, and its value is obtained by

applying a function that is the message digest (md5

algorithm) of the concatenation of the input parame-

ters.

Regarding the specification of additional con-

straints on the composition, we can observe in the

right-hand side of Figure 10 that the Vector LTS

(Definition 7) for the contract constrains the inter-

action of the Client, ServerDoc, and ServerEsp in-

terfaces by imposing the request for an appointment

with a general practitioner (vreqdoc1) always before

the request of an appointment with a specialist doctor

(vreqesp1). This is achieved by excluding vreqesp1 from

the possible transitions in state 0, and including the

transition (0, vreqdoc1, 1). It is worth observing that

by default, all vectors available in the contract (V )

are executable in both states of the VLTS, and only

specific vectors are removed in order to constrain the

composition. Building the VLTS in such an abstract

way simplifies its specification since transitions for

all vectors do not have to be specified one by one.

3.2. Generation of Adaptor Protocols

Given a set of service interfaces, and an adaptation

contract, an adaptor protocol can be generated using

automatic techniques as those presented in [1, 9]. An

adaptor is a third-party component that is in charge

of coordinating the services involved in the system

with respect to the set of constraints defined in the

contract. Consequently, all the services communi-

cate through the adaptor, which is able to compen-

sate mismatches by making required connections as

specified in the contract. All protocols (adaptor and

services) interact with respect to the COM and INEτ
rules presented in Figure 4.

Here, we have extended the techniques presented

in [9] to take into account the two enhancements we

made on the contract language, namely data synthe-

sis and data consumption. To do so, we have modi-

fied the Compositor tool which is in charge of gen-

erating the LOTOS code used in a second step as in-

put to Scrutator, a tool which generates the adaptor

protocol corresponding to the LOTOS specification

(see [9] for more details). The first extension (data

synthesis), at the LOTOS specification level, consists

of checking the availability of variables (placehold-

ers in contract specifications) involved in the synthe-

sis. Suppose for example that we want to compute

the addition of two variables x and y previously re-

ceived, and send the result to another service. In or-

der to be able to compute this result (x + y), we need

to check the availability of these variables in the LO-

TOS process Store which contains all the variables

received by the adaptor at any point in its behaviour.

As far as the data consumption is concerned, there

are now two possible behaviours in the LOTOS spec-

ification when some variables are sent along with

messages: either the variable does not need to be

consumed (no “#” tag for this variable in the con-

tract) and every time this variable is sent by the adap-

tor, no modification is done on the store, or this vari-

able is tagged in the contract and can be used only

once; in such a case the variable is removed from

the store. In this sense, the piece of data received

by the adaptor from a sender which corresponds to

a placeholder tagged with “#”, is destroyed from the

store by the adaptor itself, and this does not affect the

sending nor the receiving services in any way.

From adaptor protocols, either a central adaptor

can be implemented, or several service wrappers can

be generated to distribute the adaptation. In the for-

mer case, the implementation of executable adaptors

from adaptor protocols can be achieved for instance

using Pi4SOA technologies [24], or techniques pre-

sented in [9] and [15] for BPEL and Windows Work-

flow Foundation, respectively. In the latter case, each

wrapper constrains the functionality of its service

to make it respect the adaptation contract specifica-

tion [25].

Example. Figure 11 shows a small portion of the

adaptor protocol generated from the three vectors

vuser = c : 〈c : user!U〉, vpwd = c : 〈c : password!P〉

and vviddoc = c : 〈sd : id?U,P〉 given in Figure 10.

This makes service ServerDoc and the Client inter-

act correctly. We emphasize that the adaptor syn-

chronizes with the services using the same name of

messages but the reversed directions, e.g., commu-

nication between id? in ServerDoc and id! in the

adaptor. Furthermore, when a vector includes more
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V = {vuser = c : 〈c :user!U〉,

vpwd = c : 〈c :password!P〉,

vvidesp = c : 〈se : id?U,P〉,

vreqesp1 = c : 〈c : reqSpec!DATE; se : reqSpec?DATE#〉,

vreqesp2 = c : 〈c : replyS?RES1; se : reqSpec!RES1〉,

vviddoc = c : 〈sd : id?U,P〉,

vreqdoc1 = c : 〈c : reqDoc!DATE; sd : reqDoc?DATE#〉,

vreqdoc2 = c : 〈c : replyD?RES2; sd : reqDoc!RES2〉,

vavail1 = c : 〈se :availability!DATE; d :availability?DATE#,H〉,

vavail2 = c : 〈se :availability?RES1; d :availability!RES1〉 }

D = {(H, {U,P},md5(concat(U,P)))}

0 1
vreqdoc1

V \{vvreqesp1,vreqdoc1} V \{vreqdoc1}

Figure 10: Adaptation contract for our example: vectors and synthetic parameters (left) and vector LTS (right). In this article we

use a graphical notation for VLTSs, instead of the actual notation in contracts presented in Figure 9 for the sake of clarity.

login?usr,pwd

SERVERDOC

user!usr

CLIENT

password!pwd

user?U

ADAPTOR

password?P

login!U,P

login?usr,pwd

login!U,P

user!usr

password!pwd

user?U

password?P

related by placeholder U

related by placeholder P

Figure 11: Example of adaptation for authentication mis-

matches.

than one communication action, the adaptor always

starts the set of interactions formalised in the vector

with the receptions (which correspond to emissions

on service interfaces), and next handles the emis-

sions. In line with these considerations, the devel-

opment of events in Figure 11 is the following: (i)

the adaptor receives the value of the username (pa-

rameter usr) sent by the client in in emission c:user!,

which is stored in the data environment of the adap-

tor under the name U; (ii) the adaptor receives the

value of the password (parameter pwd) sent by the

client in emission c:password!, and stores it in its

data environment as P; and (iii) the adaptor can now

perform the emission that corresponds to login!U,P,

since ServerDoc is ready to receive, and the values

of U and P are already available in the adaptor’s data

environment.

Figure 12 displays the adaptor protocol generated

using the adaptation contract shown in Figure 10

where only vectors are considered (the VLTS con-

sists of a single state with all vector transitions loop-

ing on it). Interaction starts by receiving the user

and password messages sent by the Client. Next,

the adaptor can alternatively (i) receive reqDoc from

the Client; (ii) login to ServerDoc (id); or (iii) re-

ceive reqSpec from the Client. It is worth observing

that the adaptor consists of two main parts: on the

left-hand side, the client successively interacts with

the doctor and with the specialist; on the right-hand

side, the client first interacts with the specialist and

afterwards with the doctor. The left part is quite se-

quential, whereas the right one contains more inter-

leavings corresponding to all possible (correct) inter-

action scenarios.

The full adaptor protocol for our example contains

49 states and 60 transitions. This adaptor has a mod-

erate size and complexity. If we consider the adapta-

tion contract with the vector LTS given in Figure 10

and the same set of bindings, the adaptor protocol

consists of 20 states and 20 transitions. This reduc-

tion in the number of states and transitions occurs

in this case because the addition of the VLTS con-

strains the composition by imposing sequentiality on

the different actions (interactions first with the doctor

and in a second step with the specialist), thus reduc-

ing interleaving.

4. Hierarchical Service Composition and Adap-

tation

Real scenarios for service reuse and adaptation

often involve several interacting services. This in-

creases the complexity of adaptation, hindering the
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0

1

CLIENT:USER ?U

2

CLIENT:PASSWORD ?P

3

CLIENT:REQDOC ?DATE

4

CLIENT:REQSPEC ?DATE

5

SERVERDOC:ID !U,P

6

SERVERDOC:ID !U,P

7

SERVERDOC:ID !U,P

8

SERVERESP :REQSPEC !DATE

9

CLIENT:REQDOC ?DATE

10

CLIENT:REQSPEC ?DATE

11

SERVERDOC:REQDOC !DATE

12

SERVERESP :REQSPEC !DATESERVERDOC:ID !U,P

13

SERVERESP :ID !U,PSERVERDOC:REQDOC !DATE SERVERESP :REQSPEC !DATE

14

SERVERDOC:REQDOC ?RES 2

15

SERVERESP :ID !U,P SERVERDOC:ID !U,P

16

SERVERESP :AVAILABIL ITY ?DATE

17

CLIENT:REPLYD !RES2

18

SERVERESP :AVAILABILITY ?DATE

19

DB:AVAILABILITY !DATE,H

20

SERVERDOC:ID !U,P

21

CLIENT:REQSPEC ?DATE

22

DB:AVAILABIL ITY !DATE,H SERVERDOC:ID !U,P

23

DB:AVAILABIL ITY ?RES1 DB:AVAILABILITY !DATE,H

24

SERVERESP :REQSPEC !DATE

25

DB:AVAILABILITY ?RES1

26

SERVERDOC:ID !U,P

27

SERVERESP :AVAILABILITY !RES1

28

SERVERESP :ID !U,P

29

SERVERESP :AVAILABILITY !RES1SERVERESP :AVAILABIL ITY !RES1SERVERDOC:ID !U,P

30

SERVERESP :REQSPEC ?RES1

31

SERVERESP :AVAILABIL ITY ?DATE

32

SERVERESP:REQSPEC ?RES1

33

CLIENT:REPLYS !RES1

34

SERVERDOC:ID !U,P

35

DB:AVAILABILITY !DATE,H

36

CLIENT:REPLYS !RES1

37

CLIENT:REQDOC ?DATE

38

SERVERDOC:ID !U,PCLIENT:REPLYS !RES1

39

DB:AVAILABIL ITY ?RES1

40

CLIENT:REQDOC ?DATE

41

SERVERDOC:ID !U,PCLIENT:REQDOC ?DATE

42

SERVERESP :AVAILABIL ITY !RES1

43

SERVERDOC:REQDOC !DATE SERVERDOC:REQDOC !DATE

44

SERVERESP :REQSPEC ?RES1

45

SERVERDOC:REQDOC ?RES2

46

CLIENT:REPLYS !RES1

47

CLIENT:REPLYD !RES2

48

FINAL FINAL

49

FINAL

Figure 12: Adaptor protocol generated for the Online Medical System example

task of the developer. In this section, we present

a divide-and-conquer approach that simplifies the

adaptation process by building contracts incremen-

tally. This approach is used as foundation for the
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graphical notation for service hierarchy and contracts

presented in Section 5. Hence, in addition to being

able to specify the system incrementally, the com-

plexity of the approach described in this section is

hidden from the designer since in our approach con-

tracts are automatically obtained from their graphical

description.

In particular, our incremental approach is based on

the notion of composite service, which corresponds

to a hierarchy of connected services. By encapsulat-

ing interactions through composite hierarchical ser-

vices, the developer can focus on the construction of

a contract for a particular adaptation sub-problem at

a time. This encapsulation has important advantages

in terms of design, development and debugging. In

particular, composite services may be independently

developed, tested, and modularly replaced by new el-

ements as requirements change.

Definition 9 (Composite Service). A composite

service is a pair (SI ,C ) where:

• SI is a set of (composite or basic) service in-

terfaces (i.e., an Id-indexed set of STSs Si , i ∈

1..n).

• C = (D ,V = Vint ∪ Vext ,LTSv ) is an adapta-

tion contract for the set of services in SI :

– D is a set of synthetic parameters.

– Vint is a set of vectors of the form c :

〈li , lj 〉, i , j ∈ 1..n, i , j , where li ∈ Ai

and lj ∈ Aj are messages which belong to

the alphabets of two different STSs in SI .

It represents internal bindings between the

composite sub-services. We refer to this

kind of vector as closed (or c-vector) in the

remainder of this article.

– Vext is a set of vectors of the form o : 〈l〉,

where l is a message which belongs to

the alphabets of a STSs in SI . It repre-

sents ports on the composite subservices

which remain open to the environment and

therefore are exposed through the compos-

ite public interface. We refer to this kind

of vectors as open (or o-vector) in the re-

mainder of this article.

– LTSv is a vector LTS with its alphabet de-

fined on V .

Example. In our online medical system, services

ServerDoc, ServerEsp, and MedDB are bundled

within a composite MedService, which interacts

with the Client (Figure 13, top). In the remainder

of this paper, we will informally refer in our exam-

ple to the scope of the MedService composite as the

bottom level of the hierarchy, and to the global scope

of the system which contains the Client and the Med-

Service as top level:

MedService=({ServerDoc,ServerEsp,MedDB},

(∅,Vbot ,LTSvbot ))

ServerEspServerDoc c

o o

MedService

Clientc c

MedDB
vviddocO

vreqdoc1O
vreqdoc2O

vvidespO
vreqesp1O

vreqesp2O

vavail1

vavail2

vuser
vpwd

vviddoc

vreqdoc1
vreqdoc2

vvidesp
vreqesp1

vreqesp2

ServerEspServerDoc

Client

MedDB

vavail1
vavail2

vuser

vpwd
vviddoc

vreqdoc1

vreqdoc2

vvidesp
vreqesp1
vreqesp2

Figure 13: Service hierarchy and bindings (top) and flattened

structure and bindings (bottom).

The set of vectors in the bottom level (Vbot , in-

ternal to the MedService composite interface) repre-

sents both bindings internal to the scope of the com-

posite, as well as open ports (which correspond to
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closed and open vectors, respectively). The former

allow the interaction of ServerEsp and MedDB ser-

vices (closed vectors vavail1, vavail2), whereas the lat-

ter (open vectors) enable us to export the rest of the

ports in ServerDoc and ServerEsp for external in-

teraction with the client:

Vbot={ vviddocO = o : 〈sd : id?U,P〉,

vreqdoc1O = o : 〈sd : reqDoc?DATE#〉,

vreqdoc2O = o : 〈sd : reqDoc!RES2〉,

vvidespO = o : 〈se : id?U,P〉,

vreqesp1O = o : 〈se : reqSpec?DATE#〉,

vreqesp2O = o : 〈se : reqSpec!RES1〉,

vavail1 = c : 〈se :availability!DATE,H;

d :availability?DATE#,H〉,

vavail2 = c : 〈se :availability?RES1;

d :availability!RES1〉 }

At the top level, we define the interaction of the

Client with the MedService composite interface. It

is worth observing that the highest level of any hier-

archy consists of an implicit composite which con-

tains all the interfaces on the global scope of the sys-

tem and a contract relating them where all bindings

are represented by closed vectors, since no ports have

to be exported to an upper level.

System=({Client,MedService},

({(H, {U,P},md5(concat(U,P)))},Vtop ,LTSvtop))

Vtop={ vuser = c : 〈c :user!U〉,

vpwd = c : 〈c :password!P〉,

vviddoc = c : 〈s : id?U,P〉,

vreqdoc1 = c : 〈c : reqDoc!DATE;

s : reqDoc?DATE#〉,

vreqdoc2 = c : 〈c : replyD?RES2;

s : reqDoc!RES2〉,

vvidesp = c : 〈s : id?U,P〉,

vreqesp1 = c : 〈c : reqSpec!DATE;

s : reqSpec?DATE#〉,

vreqesp2 = c : 〈c : replyS?RES1;

s : reqSpec!RES1〉 }

Regarding the specification of additional con-

straints on the composition we can observe in Fig-

ure 14 that the vector LTS in the bottom level con-

tract only contains one state with a transition for all

vectors specified in the contract looping on it (it does

not impose any constraints on the composition). In

contrast, the top-level VLTS constrains the interac-

tion of the Client and the MedService just like the

VLTS described in Section 3 did.

0 10

Vtop\{vreqdoc1,vreqesp1}Vbot

vreqdoc1

Vtop\{vreqdoc1}

Figure 14: Vector LTSs for the bottom (MedService composite

–left) and top level contracts (right).

Both vector and VLTS specifications are automat-

ically generated in our approach from the graphical

description of the system that will be presented in

Section 5. �

Expressing hierarchical relationships among inter-

faces in composites is not enough to achieve compos-

ability. Particularly, if we want to replace a part of a

service hierarchy (composite service) by a black-box

service (thus making its implementation transparent

to the rest of the system), we must provide:

1. An internal implementation for the composite

service. This is obtained by generating an adap-

tor from c-vectors using the techniques refer-

enced in Section 3. Adding this adaptor enables

the involved services to interoperate while leav-

ing ports corresponding to o-vectors open to the

environment.

2. A behavioural interface for the composite ser-

vice. An STS behavioural interface can be ob-

tained for a composite service by generating the

interleaving of the parts of service protocols in

SI where labels correspond to open ports (those

ports contained in open vectors).

As an alternative to generating the implementation

of composite services and composing them incre-

mentally with the rest of the system, in some cases

it is interesting to generate a centralized adaptor for

a service hierarchy, since this reduces the number of

adaptors (and therefore messages exchanged) in the

system (Figure 15, right). In order to enable the gen-

eration of centralized adaptors, we propose an algo-

rithm to automatically merge all the partial contracts

at different levels of a service hierarchy, returning a
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single or flat adaptation contract which involves all

the interacting services in the hierarchy. A hybrid

approach can also be taken by applying the flattening

process to a restricted part of a service hierarchy, re-

ducing the overall number of adaptors in the system

without compromising parallelism in parts where its

preservation must be enforced.

Example. Figure 15 shows two alternative sys-

tem architectures: (left) an adaptor which leaves o-

vectors open to the environment (A1) is first gen-

erated for service composite MedService, and an-

other adaptor (A2) is generated in a second step

to enable interoperability between MedService and

Client and; (right) a centralized adaptor enables the

interaction of all the services after applying contract

flattening. �

ServerEspServerDoc

MedService

Client

A1

A2

MedDB ServerDoc

Client

A

MedDB ServerEsp

Figure 15: Alternative architectures.

The obtaining of a flat adaptation contract is

achieved by recursively merging contracts of adja-

cent levels n and n+1 in the service hierarchy (Algo-

rithm 1). This contract merging process implements

a depth-first traversal, since the contracts inside of

any particular sub-composite of the hierarchy must

be merged before proceeding to an upper level. The

algorithm returns a single adaptation contract involv-

ing all the services in the hierarchy.

We define now the two functions used in Algo-

rithm 1:

• Function is composite(i ) returns True if i is a

composite service.

• Function merge contracts merges two con-

tracts Cint = (Dint ,Vint ,LTSvi ) and Cext =

(Dext ,Vext ,LTSve) of adjacent levels in the hi-

erarchy, returning a single contract C for both

levels:

Algorithm 1 flat contract

Returns a single contract for a composite service.

inputs Composite service CI = (SI ,C )

output Flat adaptation contract FC

1: FC = C

2: for all i ∈SI do

3: if is composite(i ) then

4: FC = merge contracts(flat contract(i ),FC )

5: end if

6: end for

7: return FC

merge contracts(Cint ,Cext ) =

(Dint ∪ Dext ,merge vectors(Vint ,Vext ),

free product(LTSvi ,LTSve))

Specifically, two contracts are merged by:

1. Merging the sets of vectors in the two contracts

of levels n and n + 1 in the hierarchy (Algorithm 2).

This algorithm first adds to V all the c-vectors from

Vint (bottom level), and in a second step, a set of

vectors which results from merging o-vectors in Vint

with vectors in Vext (top level) which overlap in one

(open or observable) label. Finally, the rest of the

unmatched (not merged) vectors in Vext are added to

V .

2. The resulting VLTS for the merged contract is ob-

tained by computing the free product [22] of the bot-

tom and top level VLTSs (LTSvi and LTSve , respec-

tively), where transitions containing merged vectors

(Algorithm 2, lines 7, 11, and 15) have been previ-

ously relabeled.

Now, we define more formally the different func-

tions we use in Algorithm 2:

• Function id (e!(v1 . . . vn)) = e!,

id (r?(x1 . . . xn)) = r?, returns a unique

identifier for each label (by using its name and

direction).

• Function ids({l1, . . . , ln}) = {id (l1)} ∪ · · · ∪

{id (ln)} extends function id to obtain a set of

unique label identifiers from a label set.

• Function obs(e : 〈ll , lr 〉) = e is used to deter-

mine if a vector is observable from outside the

scope of its composite or not (i.e., if it is open or
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Algorithm 2 merge vectors

Merges two sets of vectors of adjacent hierarchical

levels.

inputs Bottom level vector set Vint , Top level vector

set Vext

output Vector set V

1: Observable := {v ∈ Vint | obs(v ) , c}

2: V := Vint\Observable

3: Vauxext := Vext

4: for all vo = o : 〈so : lo〉 ∈ Observable do

5: if ∃ vext = c : 〈sext1 : lext1, sext2 : lext2〉 ∈

Vext , id (lo) ∈ ids({lext1, lext2}) then

6: (ln , sn ) := (l , s) ∈

{(sext1, lext1), (sext2, lext2)}, id (l ) , id (lo)

7: vn := c : 〈so : lo , sn : ln 〉

8: Vauxext := Vauxext\{vext }

9: V := V ∪ {vn }

10: else if ∃ vext = o : 〈sext : lext 〉 ∈ Vext , id (lo) =

id (lext ) then

11: vn := o : 〈so : lo〉

12: Vauxext := Vauxext\{vext }

13: V := V ∪ {vn }

14: else if ∃ vext = c : 〈sext : lext 〉 ∈ Vext , id (lo) =

id (lext ) then

15: vn := c : 〈so : lo〉

16: Vauxext := Vauxext\{vext }

17: V := V ∪ {vn }

18: end if

19: end for

20: V := V ∪Vauxext

21: return V

closed). This is achieved by returning the prefix

of the vector (o or c for open and closed vectors,

respectively).

Example. After applying the aforedescribed con-

tract merging process to the service hierarchy in our

example, we obtain the flat contract described in Sec-

tion 3 (Figure 10). All bindings in a flat contract

are always represented by closed vectors. Figure 13

(bottom) shows a simplified graphical representation

of the bindings in the flat contract. Figure 10 also de-

picts the VLTS for the flat contract obtained by per-

forming the free product of the two input VLTSs. It is

worth observing that before this free product is per-

formed, transitions on the input VLTSs are relabeled

with the names of merged vectors.

5. Interactive Contract Specification

In order to make the contract design as simple

and user-friendly as possible, we advocate interac-

tive specification techniques to support the designer

through this process. Hence, in our approach the

designer can perform the specification of a contract

through a graphical user interface, and receive at the

same time both suggestions and feedback about the

inputs that (s)he is providing to the process. For this

purpose, we propose: (i) a notation to graphically

make explicit bindings between ports; and (ii) a com-

patibility measure which aims at pointing out mis-

matches between two protocols, but also at detecting

parts of them which turn out to be compatible.

5.1. Graphical Notation

The graphical notation for a service interface in-

cludes a representation of its protocol (STS) and a

collection of ports. Each label on the STS corre-

sponds to a port in the graphical description of the

interface. Ports include a data port for each parame-

ter contained in the parameter list of the label. Cor-

respondences between the different service interfaces

are represented as port bindings (c-vectors) and data

port bindings (solid and dashed connector lines, re-

spectively). Starting from the graphical representa-

tion of the interfaces, the designer builds a contract

by successively connecting ports and data ports. This
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results in the creation of bindings which specify how

the interactions should be carried out. It is also possi-

ble to add a T-shaped port cap (c-vector with a single

label) on a port in order to indicate that it does not

have to be connected anywhere. Our graphical no-

tation considers hierarchical relations among inter-

faces as well (see Section 4 for the underlying prin-

ciples). Thus, a port can be open (o-vector), and it

will appear in the external interface of the composite

service to which it belongs. Figure 16 summarizes

ports and bindings used in our notation.

OUT Port

IN Port

Open Port

Port Cap

Data Binding

Port Binding

Data Port

Figure 16: Graphical notation: ports and bindings

Example. Let us focus on the graphical representa-

tion of the MedDB service in our example (Figure 17

gives a graphical description of the service hierar-

chy). It can be observed that it contains a port for

the reception of the availability request with a data

port attached representing the date (d), and another

port for the emission of the availability response with

a data port attached representing the ticket identifier

issued for the given date. There is also an additional

independent data port that represents the synthetic

parameter H created for the hash that has to be in-

cluded in the availability request. Moreover, the fig-

ure depicts the hierarchy of services in our exam-

ple, where the ServerDoc, ServerEsp and MedDB

interfaces are placed inside a composite interface

(MedService) and interact on a set of bindings de-

fined between their ports. It is worth noticing that

the ServerDoc and ServerEsp interfaces have sev-

eral open ports connected to the external interface of

MedService. �

In our approach, the vector LTS imposing an order

on the application of the bindings is built implicitly

as new bindings are created. Initially, the VLTS has

a single state and no transitions. Each time a new

connection is made, the VLTS can be extended in

three different ways:

• Abstract mode. No order on the application of

the bindings is imposed. Let s be the current

state of the VLTS. Creating a binding labeled as

b in this mode results in the creation of a transi-

tion (s ,b,s) looping on the current state.

• Sequential mode. Bindings created in this

mode must be executed one after the other. This

results in the extension of the VLTS with a fresh

state s ′ and a transition (s , b, s ′). Once this tran-

sition is added, the current VLTS state is up-

dated to s ′. A subsequent binding creation in

this mode will extend the VLTS with a state s ′′

and a transition (s ′, b, s ′′).

• Branching mode. Bindings created in this

mode are mutually exclusive. The VLTS is ex-

tended in this case with a fresh state s ′ and a

transition (s , b, s ′). Unlike in sequential mode,

the current state is not updated. Thus, a subse-

quent binding creation in this mode will corre-

spond to the creation of a new state s ′′, and a

transition (s , b, s ′′).

By proceeding this way, it is possible to build a

VLTS for most contracts. However, in some cases

the designer may have to adjust the specification to

describe situations which cannot be represented us-

ing the VLTS extension modes mentioned above.

Consider for instance a binding which has to be ex-

ecuted more than once in different parts of the spec-

ification. For this purpose, the user should be able

to explicitly create a transition between two states in

the VLTS, and assign to it a binding (vector) which

has been previously created using one of the afore-

described extension methods. In order to do this,

the environment includes an explicit representation

of the VLTS which can be manipulated by the user

performing operations such as changing the current

state, deleting transitions, or creating transitions as-

signed to previously created bindings.

5.2. Protocol Compatibility Measure

Comparing two protocols helps to build adaptation

contracts by suggesting the best possible interface

matches to the user. To do so, we compute the be-

havioural compatibility degree which aims at detect-

ing parts of both protocols which turn out to be com-

patible. Our measure accepts as input two service

protocols STS1 = (A1, S1, I1,F1,T1) and STS2 =
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Figure 17: Graphical contract specification for the online medical management system.

(A2, S2, I2,F2,T2) and computes a compatibility de-

gree for each global state, i.e., each couple of states

(si , sj ) with si ∈ S1 and sj ∈ S2. All compatibility

scores range between 0 and 1, where 1 means a per-

fect compatibility. Our approach is parameterized by

a compatibility notion, that is, we measure how much

the two interfaces are far from being compatible wrt.

this compatibility notion. So far, we have carried

out experiments for several notions, such as unspec-

ified receptions (UR) [2] or unidirectional comple-

mentarity (UC) [26]. The UR compatibility requires

that if one service can send a message at a reachable

state, then the other service must receive that emis-

sion. Furthermore, one service can be able to receive

messages that cannot be sent by the other service,

i.e., there might be additional unmatched receptions.

Two services are compatible with respect to UC no-

tion if and only if there is one service which is able

to receive (send, respectively) all messages that its

partner expects to send (receive, respectively) at all

reachable states. Hence, the “bigger” service may

send and receive more messages than the “smaller”

one. Additionally, for both compatibility notions,

services must be free of deadlocks. We will use the

UR compatibility notion for illustration purposes in

the rest of this section.

Our approach consists in computing first a set of

static compatibility measures, and use them in a sec-

ond step for computing the behavioural compatibility

degree for all global states in S1 × S2.

Static Compatibility. We use three auxiliary

static compatibility measures, namely state nature,

labels, and exchanged parameters.

State Nature. The comparison of state nature as-

signs 1 to each pair of states which have the same

nature, i.e., both states are initial, final or none of

them. Otherwise, the measure is equal to 0.

Parameters. The compatibility degree of two pa-

rameter lists pl1 and pl2 depends on three auxiliary

measures, namely: (i) the compatibility of parameter

number comparing the list sizes; (ii) the compatibil-

ity of parameter order measuring the number of types

which does not appear in the same order, and (iii) the

compatibility of parameter type using the set of un-

shared types in both lists. These measures must be

set to 1 if these lists are empty.

Labels. Protocol synchronisation requires that

compatible labels must have opposite directions.

Therefore, given a pair (l1, l2) ∈ A1 × A2, the la-

bel compatibility – lab-comp(l1, l2) – is measured as

0 if these labels have same directions. Otherwise,

the computation of this measure uses the semantic

distance between message names and the parameter

compatibility degree presented above. Here, mes-

sage names are compared using the Wordnet simi-
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larity package [27].

Behavioural Compatibility. We consider a flood-

ing algorithm which performs an iterative measuring

of behavioural compatibility for every global state

in S1 × S2. This algorithm incrementally propagates

the compatibility between neighbouring states using

backward and forward processing. The compatibil-

ity propagation is based on the intuition that two

states are compatible if their backward and forward

neighbouring states are compatible, where the back-

ward and forward neighbours of global state (s ′
1
, s ′

2
)

in transition relations T1 = {(s1, l1, s
′
1
), (s ′

1
, l ′

1
, s ′′

1
)}

and T2 = {(s2, l2, s
′
2
), (s ′

2
, l ′

2
, s ′′

2
)} are the states (s1, s2)

and (s ′′
1
, s ′′

2
), respectively. The flooding algorithm re-

turns a matrix denoted COMPk
CN,D

where each en-

try COMPk
CN,D

[s1, s2] stands for the compatibility

measure of global state (s1, s2) at the k th iteration.

The parameter CN refers to the considered com-

patibility notion which must be checked according

to D , that is, a bidirectional (↔) protocol analy-

sis in this article. COMP0
CN,D

represents the ini-

tial compatibility matrix where all states are sup-

posed to be perfectly compatible, i.e., ∀(s1, s2) ∈

S1 × S2, COMP0
CN,D

[s1, s2] = 1. Then, in order to

compute COMPk
CN,D

[s1, s2], we consider the obser-

vational compatibility function, obs-compk
CN ,D

, and

the state compatibility function, state-compk
CN ,D

,

which combines the forward and backward propaga-

tions. In this article, we only present the forward

compatibility for lack of space, the backward com-

patibility can be handled in a similar way based upon

incoming rather than outgoing transitions.

Unspecified Receptions. For every global state

(s1, s2): (i) obs-compk
UR,↔

returns 1 if and only if ev-

ery outgoing emission at state s1 (and s2) perfectly

matches an outgoing reception at state s2 (and s1) and

all synchronisations on those emissions lead to com-

patible states; (ii) obs-compk
UR,↔

returns 0 if there is

a deadlock; (iii) otherwise, obs-compk
UR,↔

measures

the best compatibility of every outgoing emission at

s1 with the outgoing receptions at s2, leading to the

neighbouring states which have the highest compati-

bility degree, and vice-versa.

Forward Propagation. The compatibility is com-

puted from both services point of view. The func-

tion fw-propagk
CN,↔

((s1, s2)) propagates to (s1, s2)

the compatibility degrees obtained for the forward

neighbours of state s1 with those of state s2, and vice-

versa. For each τ transition, fw-propagk
CN,↔

must

be checked on the target state. Observable tran-

sitions going out from (s1, s2) are compared using

obs-compk
CN ,↔

((s1, s2)).

State Compatibility. The function

state-compk
CN ,D

((s1, s2)) computes the weighted

average of three measures: the forward and back-

ward compatibilities, and the value returned by the

function comparing state natures.

Compatibility Flooding. As a final measuring

step, COMPk
CN,D

[s1, s2] is computed as the average

of its previous value COMPk−1
CN,D

[s1, s2] and the cur-

rent state compatibility degree. Our iterative pro-

cess terminates when the Euclidean difference εk =

‖COMPk
CN,D
− COMPk−1

CN,D
‖ converges.

The interested reader can find more details in [28].

Application to Contract Design. As far as the

interactive contract design is concerned, the afore-

mentioned compatibility measure can be used first to

automatically generate port bindings for labels that

perfectly match. Furthermore, the user can also se-

lect a transition label l in one protocol (we call s its

source state in the rest of this paragraph), and we re-

turn the best label matching in the other protocol.

So far, we have implemented two functions which:

(i) labels all states in the other protocol with compat-

ibility measures between s and every state in the part-

ner interface, and (ii) seeks the highest value (s , sj )

in the matrix (where sj is a partner state) and returns

the label going out from sj the most compatible with

l . These functions can be completed with other alter-

natives such as returning the best label matching for

each state in the partner, or for each state whose com-

patibility measure with respect to s is higher than a

threshold t . To highlight these results in the graphi-

cal interface, we do not only display the compatibil-

ity measures but also color in red the best matchings.

Example. Compatibility measures first help to de-

tect port bindings for labels that perfectly match, sav-

ing time to the developer who would otherwise have

to relate manually ports which are obviously com-

patible. For instance, the input port reqDoc on the

Serverdoc interface perfectly matches with the out-

put port reqDoc on the Client interface, so they can
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be automatically bound together based on that infor-

mation. As far as best matching computations are

concerned, while connecting the external interface

of the MedService composite with the ports on the

Client interface, one can for instance click on the out-

put port reqDoc corresponding to a Serverdoc ac-

tion. In such a case, the best label matching (sec-

ond function presented above) returns the Client in-

put port replyD with a value of 0.50 (see Figure 18).

Therefore, we can choose to bind these ports and this

corresponds to vector vreqdoc2 in the contract we pre-

sented in Section 3.

6. Validation and Verification of Adaptation Con-

tracts

In this section, we propose a set of validation and

verification techniques to check that an adaptation

contract makes the involved services work correctly.

In this sense, it is worth observing that even if there

are several adaptation contracts defined at different

levels of the service hierarchy, we can obtain a sin-

gle contract from them by applying Algorithm 1.

These techniques are intended to help the designer

in understanding potential problematic behaviours

of the system which are not obvious (even to the

trained eye) just by observing service interaction pro-

tocols and adaptation contracts. Indeed, contracts

are only abstract specifications that express message

and data correspondences between interfaces (vec-

tors), as well as partial order on the interactions to

be carried out in the composition (VLTS). As such,

contracts do not provide an explicit representation of

the actual behaviour of the composition, which has

to be generated using state-space exploration tech-

niques in order to assess whether the application of

the contract results in a composition that complies

with the designer’s intentions.

We considered as an alternative to the techniques

presented in this section the use of a model-checker

(such as CADP or MuCRL2) for verification. How-

ever, we decided to develop our own tools for a num-

ber of reasons. Firstly, we developed exactly what

we need for analysing contracts, and this relies on a

single algorithm (simulation) from which we can an-

imate the system under construction and also check

temporal properties on the set of traces generated

from simulation. Secondly, using an existing model

checker would require a translation from one lan-

guage to another is far from easy because (i) the

translation must preserve the semantics of the orig-

inal language, and (ii) we also need to translate back

the results of the verification in the original language

if we want the user to understand them. If we con-

sider this last argument, we think that our solution

was not more costly (in time and complexity) than

the alternative solution of reusing an existing model

checker. Finally, we also wanted a self-contained

framework, with the additional advantage of having

everything available in Acide. This avoids the instal-

lation and configuration of other tools in order to use

our solution.

These techniques are completely automated, and

include four kinds of checks: (i) static checks on

the contract wrt. STS service interfaces involved,

(ii) simulation of the system execution, (iii) trace-

checking to find potential deadlocking executions

and infinite loops, and (iv) verification of temporal

logic formulas.

6.1. Static Checks

In the first place, our approach implements a set

of static checks on the contract under specification.

These include determining if all labels used in vec-

tors are defined in service interfaces, finding out if all

service identifiers appearing in vectors belong to one

of the interfaces involved in the composition, check-

ing if connected parameters have the same type, etc.

Although these checks will detect all common errors

that occur when a contract is manually written, they

are not enough since they do not focus on the inter-

actions between the services and the adaptor defined

by the contract, missing out the behavioural issues

that might be raised during execution.

6.2. Simulation

In order to be able to also detect behavioral issues,

our approach includes a set of algorithms to perform

simulation that are inspired in the composition en-

gine we presented in [29]. However, this new set of

algorithms are extended with value-passing, taking

into account data consumption and data synthesis.

Furthermore, these new mechanism enables message

reordering, simulating the execution of the system
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step-by-step and determining how the different be-

havioural interfaces evolve as different vectors in the

contract are executed.

This section introduces successively two parts.

The first one deals with the search for the existence

of a correct termination state for the system using

depth-first search. The second one includes an al-

gorithm that simulates the behaviour of the system

according to a specification given in an adaptation

contract, making use of the mechanisms described in

the first part.

6.2.1. Existence of Final States

Algorithm 3 takes as input the current state of the

system N , and determines if the set of service STSs

involved in the composition can reach a correct ter-

mination state for the execution under the current

adaptation contract. Please observe that for the sake

of clarity, we assume in the rest of this section that

the different functions and algorithms defined have

access to the set of service interfaces STSi∈{1,...,n} =

(Ai , Si , Ii ,Fi ,Ti ), as well as to the adaptation con-

tract C = (D ,V ,VLTS = (Ac , Sc , Ic ,Fc ,Tc)), even

if these are not explicitly passed as input parameters.

The global state of the system at each step of the

execution includes the current states of the different

STSs, the current state sc of the vector LTS in the

contract, the set of vectors currently under execution

RV (initially empty), and a data environment E (ini-

tially empty). This algorithm relies on a depth-first

search traversal of the state-space of the system, and

stops as soon as a final state for the whole system

has been found (i.e., the states in all the STSs and the

VLTS are final, and all vectors have finished execu-

tion). The main idea is that communication actions

that belong to the vectors in the contract are applied

going in depth until a final state is reached (end of

the algorithm), or a deadlock state is found (no fur-

ther communication actions can be executed). In the

latter case, we backtrack and try another path. The

algorithm keeps track of already traversed states to

avoid endless execution.

Now, we formally define the different functions

used in Algorithm 3:

• Function goal determines if the current state of

the system is a correct termination state of the

Algorithm 3 exist final

tests if a final state of the system may be reached from the cur-

rent state of the system N.

inputs state of the system N = (states , sc ,RV ,E )

output a boolean

1: OPEN := [] // list of open nodes

2: CLOSED := [] // list of visited nodes

3: current := N

4: OPEN := push(current ,OPEN )

5: while OPEN , ∅ do

6: current := pop(OPEN )

7: if goal (current) then

8: return True

9: else

10: CLOSED := push(current ,CLOSED)

11: for all n ∈ successors(current), n < CLOSED do

12: CLOSED := push(n ,CLOSED)

13: end for

14: end if

15: end while

16: return goal (current)

execution:

goal (N = (states , sc ,RV ,E )) = states[1] ∈ F1 ∧ . . . ∧

states[n] ∈ Fn ∧ sc ∈ Fc ∧ RV = ∅

• Functions push and pop insert and remove and

return the last element of a list, using it as a

stack:

push(e ,L = [e1, . . . , en ]) = [e1 . . . , en , e]

pop(L = [e1, . . . , en−1, en ]) = en , L = [c1, . . . , cn−1]

• Function successors obtains the set of reachable

system states through the execution of one com-

munication action from the current system state.

The result of this function is computed by Algo-

rithm 4.

The different functions used in Algorithm 4 are de-

fined as follows:

• Functions enabledEM and enabledREC de-

termine whether an emission (or a reception,

respectively) in vector v can be fired from the

current state of the system:

enabledEM (N , v ) = ∃ l ∈ v , (s , l , s ′) ∈ Ti , s ∈

states ∧ em(l ) , ∅

enabledREC (N , v ) = ∃ l ∈ v , (s , l , s ′) ∈ Ti , s ∈

states ∧ rec(l ) , ∅
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Algorithm 4 successors

generates the set of successor states from the current state of

the system N.

inputs state of the system N = (states , sc ,RV ,E )

output set of successor states Nn

1: Nn := ∅

2: for all v ∈ V do

3: if enabledEM (N , v ) ∨ enabledREC (N , v ) then

4: successor := successor (N , v )

5: if successor < Nn then

6: Nn := Nn ∪ {successor }

7: end if

8: end if

9: end for

10: return Nn

with:

em(l ) =















e if l = e!([p1, . . . , pn ])

∅ otherwise

rec(l ) =















r if l = r?([p1, . . . , pn ])

∅ otherwise

• Function successor obtains the state reachable

through the execution of a communication ac-

tion in vector v . It is worth observing that for

any given state of the system, only one commu-

nication action in a vector can be fired (either

an emission or a reception). We keep track of

this with the inclusion of the set of vectors un-

der execution (RV ) in the current state of the

system in each node representing an execution

state. If a vector is contained in RV , it means

that its emission has already been executed, and

only the reception remains to be processed.

successor (N = (states , sc ,RV ,E ), v ) =

(next states(states , v ),next(sc , v ),

extendRV (RV , v ), extendDATA(N , v ))

where:

– Functions next states and next compute

the next states of the involved STS and

the VLTS respectively, from their current

states and a vector by executing the emis-

sion in v (if v ∈ RV ), or its reception oth-

erwise:

next states([s1, . . . , sn ], v ) = [s ′
1
, . . . , s ′n ],

∀ i ∈ {1, . . . ,n} (si , li , s
′
i
) ∈ Ti

next(sc , v ) = s ′ where (s , v , s ′) ∈ Tc

– Function extendRV updates the set of

running vectors whose execution has

started with vector v :

extendRV (RV , v ) =















RV \{v } if v ∈ RV

RV ∪ {v } otherwise

– Function extendDATA updates the data

store E with the set of placeholder vari-

ables received from the emission that is

being executed from vector v . The result

of this function is computed using Algo-

rithm 5. Function consume determines if

the data value is to be consumed in the re-

ception (this corresponds to placeholders

p# in the contract, as we saw in Section 3).

Algorithm 5 extendDATA

updates the placeholders available in the data store after the

execution of an action in v at state N .

inputs state of the system N = (states , sc ,RV ,E ), vector v

output updated data store En

1: En := E

2: for all l = (m , d ,PL) ∈ v , p ∈ PL do

3: if em(l ) then

4: En := En ∪ {p}

5: else

6: if rec(l ) ∧ consume(p) then

7: En := En\{p}

8: end if

9: end if

10: end for

11: for all def = (nph , IPH , f ) ∈ D do

12: if IPH ∩ En = IPH then

13: En := En ∪ {nph}

14: end if

15: end for

16: return En

6.2.2. Composition Algorithm

This section presents an algorithm that manages

the composition between several service STSs with

respect to a given adaptation contract. Moreover, the

proposed approach does not always need to respect

the sequential interactions described within vectors

of the adaptation contract, that is, events specified in

different vectors can be interleaved. Such an inter-

leaving is interesting in cases where sequential inter-

actions as described in the vectors are not enough to
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reach a correct termination state of the system, and

event reordering is required.

To perform the composition of the involved ser-

vices, Algorithm 6 applies successively actions in

vectors that can be fired with respect to the current

state of the system. For each vector, first receptions

in the adaptation engine are executed (correspond-

ing to emissions in the services), followed by emis-

sions (corresponding to receptions in the services).

The algorithm ends when the system has reached a

global final state (i.e., the states in all the STSs and

the VLTS are final, and all vectors have finished their

execution). Since the selection of an applicable vec-

tor also relies on the final state existence algorithm

presented in Section 6.2.1, we engage the first time

in the while loop only if there exists a global final

state for the system, otherwise the composition is not

launched.

Algorithm 6 composition

composes a set of service STSs with respect to an adaptation

contract

inputs services STSi∈{1,...,n} = (Ai ,Si , Ii ,Fi ,Ti ), Adaptation

contract C = (V ,VLTS = (Ac ,Sc , Ic ,Fc ,Tc))

1: states := [I1, . . . , In ] // current states in STSi

2: E := ∅ // data store

3: sc := Ic // current state in the vector LTS

4: RV := ∅

5: current := (states , sc ,RV ,E )

6: first := True

7: v := select vector(current)

8: while (¬goal (current) ∨ first) ∧ v , v⊥ do

9: first := False

10: current := successor (current , v )

11: v := select vector(current)

12: end while

The selection of the vector to start executing at
each step is performed by function select vector :

select vector (N = (states , sc ,RV ,E )) =


























v if enabledEM (N ) ∨ enabledREC (N ), v , v⊥,

exist final (successor (N , v ))

v⊥ otherwise

Simulation can be run in two different modes:

• Safe mode. Only safe vectors (i.e., a vector for

which a global termination state of the system

exists after its execution) can be selected at each

step of the simulation.

• Unsafe mode. All applicable vectors can be se-

lected. Although this allows the application of

vectors leading to deadlock states, this possibil-

ity is interesting in order to observe and under-

stand potential flaws in the contract under spec-

ification.

6.3. Trace-checking

We also propose some automated techniques to

check execution traces. The basic idea is to generate

many execution traces using our engine that we will

use in a second step to evaluate the adaptation con-

tract. In order to obtain all possible execution traces,

and above all the erroneous ones, the final state exis-

tence test is turned off. Moreover, we make sure that

all traces are finite, making use of bounded loops (the

maximum number of allowed loop iterations can be

configured by the user in the engine). From such a

set of traces, we extract the following information

that can be used by the designer to refine and if nec-

essary correct the contract:

• Unreachable states allows the designer to iden-

tify which states of the vector LTS in the con-

tract cannot be visited.

• Unreachable transitions identify the transitions

which cannot ever be fired in the vector LTS,

preventing access in some cases to a specific

state or branch of the composition. It is worth

observing that the different behavioural inter-

faces may prevent the execution of vectors in

some cases.

• Deadlock traces are particular sequences of ap-

plied vectors that lead to a deadlock situation.

This information is not obvious at all and the

potential number of vector sequences to apply

is usually huge. In non-trivial cases, it is impos-

sible for the engineer to check all these potential

deadlock situations manually.

• Livelock traces are sequences of vector exe-

cutions that lead to a livelock situation. We

may recall that these situations are similar to

a deadlock, but in these cases the different ser-

vice STSs and the vector LTS constantly change

their state with respect to one another, although
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none of them progress. Hence, the overall sys-

tem is not able to reach a global final state.

6.4. Trace-Based Verification of Temporal Logic

Formulas

We now describe how the trace generation tech-

nique described in the previous section can be used in

order to verify user-defined safety and liveness prop-

erties on the interaction of different services which

must be satisfied by every possible execution trace

of the system. In order to express such properties,

we make use of linear temporal logic (LTL). In par-

ticular, we use the next-free variant of LTL (LTL-

X ), which denotes the class of LTL formulas with-

out the next temporal operator and is guaranteed to

be insensitive to stuttering [30]. Moreover, we use a

LTL finite-trace semantics similar to the one defined

in [31], commonly used in run-time verification. In

our approach, LTL atomic propositions correspond

to communication actions in vectors. Since our sim-

ulation algorithm executes these actions one after an-

other in order to make the system evolve, we can as-

sume that the execution of a! is synonymous to the

proposition a! in a temporal logic formula.

Defining Composition Properties Using Temporal

Logic. When the designer is defining how services

must interact in the context of the system, it is inter-

esting to specify:

• Safety properties, declaring what should not

happen while services are interacting. Hence,

no state of the execution path of the system

should violate any of the safety properties. Fol-

lowing with our running example, the designer

can specify for instance a safety property stat-

ing that the client should not in any case obtain

an appointment with a specialist doctor if there

is no prior appointment with the general prac-

titioner. This can be expressed by the formula

�(¬c : reqSpec! U c : replyDoc?). This for-

mula implies that any trace containing the exe-

cution of c : reqSpec! (request for an appoint-

ment with the specialist doctor), would have

to be preceded at some point by the reception

of an appointment with a general practitioner

(c : reqDoc!). Otherwise, the trace would vi-

olate the property.

• Liveness properties, stating what should even-

tually happen while the service interacts with

the rest of the system. As a consequence, the

property must hold at some point of the exe-

cution path to be satisfied. In our example, an

interesting liveness property would be for in-

stance ensuring that an appointment is going to

be made at some point either with a specialist or

with a general practitioner (^(c : replyDoc? ∨

c : replySpec?)). Hence, any trace needs to

contain at least one execution of any of the two

actions in the formula in order to satisfy this

property.

Some other interesting liveness properties, such

as responsiveness, can be enforced in the com-

position too. Clients or services very often send

requests that have to be acknowledged (or re-

sponded to) by other services. For such sys-

tems we are interested in the responsiveness

property (e.g., whether every request is eventu-

ally acknowledged). In our example we can for

instance make sure that the information about

availability requested by the specialist service

to the database (se : availability!) is going to

have a response (d : availability!). Hence, we

can express this responsiveness constraint in the

formula:

�(se : availability!→ ^d : availability!)

Properties are verified on the execution of the sys-

tem in two steps:

• Trace generation. Traces are obtained with the

final state existence test turned off, if the de-

signer is not interested in general properties

covered by trace checking, such as deadlock-

freedom, and wants to focus on the specified

properties. In contrast, traces can also be gener-

ated in safe mode, hence guaranteeing general

properties.

• Trace verification. Each trace is run against

observer automata built from the LTL formu-

las specified (see [31] for further details). In

particular, for a safety property of the form �φ

(¬^¬φ), we build the automaton As for ^¬φ
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and the trace violates the property if at the end

of the trace, As has reached an acceptance state.

For a liveness property of the form^φ, we build

its automaton Al , and the property is satisfied if

at the end of the trace, Al has reached an accep-

tance state.

Both trace checks and verification of temporal

logic formulas can help to quickly identify undesir-

able situations in the composition, and be used in

conjunction with simulation in order to understand

the behaviour of the system.

7. Tool Support and Experimental Results

7.1. Tool Support

The different contributions we have presented in

the preceding sections are fully implemented in a

prototype tool named ACIDE (Adaptation Contract

Interactive Design Environment). ACIDE has been

implemented in Python, using the wxWidgets toolkit

technology for the development of the user interface

and a custom-made graphics library built on top of

OpenGLTM in order to visualise the different inputs

of the tool. Interfaces and contract are described us-

ing an XML-based format specific to the tool.

ACIDE aims at helping the designer in specify-

ing a contract, reducing the risk of errors introduced

by manual specification. In contrast with using tex-

tual notations where the designer can write any (cor-

rect or incorrect) statement, our tool uses the graph-

ical notation presented in Section 5 which enables

interactive and incremental construction, as well as

checks on the contract (see Figure 18). Thus, any

contract produced with the tool is syntactically cor-

rect and consistent (e.g., all port and data port names

in the contract exist on the interfaces involved in

the composition, all vector labels in the VLTS cor-

respond to actual vector definitions in the contract,

etc.).

ACIDE has been validated on many real-world ex-

amples such as a travel agency, rate finder services,

on-line computer material store, library management

systems, a SQL server, and other systems.

7.2. Experimental Results for Protocol Compatibil-

ity

This measure is computed automatically by a pro-

totype tool we implemented and validated on more

than 100 examples, e.g., a car rental, a travel book-

ing system, or an online email service. Table 1 sum-

marises the experimental results of some of the ex-

amples of our database. Experiments have been car-

ried out on a Mac OS machine running on a 2.53

GHz Intel dual core processor with 4 GB of RAM.

In this table, we give successively the number of

states and transitions for both service protocols, the

compatibility notion used (Unspecified Receptions

or Unidirectional Complementarity, see Section 5.2),

the global measure of compatibility (between 0 and

1, 1 meaning that services are compatible), the time

required to automatically perform this check, and the

number of iterations necessary to obtain this result.

Experiments show that small examples with few

states and transitions (e.g., Ex9, Ex44, Ex71) require

a negligible time for measuring their compatibility,

whereas bigger examples (e.g., Ex90, Ex101) need

more time (see Table 1). The computation time in-

creases with respect to the number of τ branchings

and loops. For instance, Ex85 is quite big but con-

sists of protocols with sequential structure and in-

cluding very few loops, therefore the computation

time does not exceed two minutes. On the other

hand, protocols involving many loops (e.g., Ex9) re-

quire more time (and iterations) than those having

only few loops (e.g., Ex85). To sum up, experi-

ments have shown that our prototype tool computes

the compatibility degree of quite large systems (e.g.,

services with more than 200 states and transitions) in

a reasonable time (many iterations are performed in

a few minutes). In addition, the returned compatibil-

ity measures were very satisfactory. As an example,

each time a couple of states in two protocols presents

several mismatches, this corresponds to a low value

in the matrix and vice-versa. The reader may refer

to [32] for some case studies illustrating the precise-

ness of our compatibility measure.

7.3. Experimental Results for Specification and Ver-

ification of Contracts

With the assistance of a group of volunteers,

we conducted a small experimental study which
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Figure 18: Hierarchical contract specification for the Online Medical System in ACIDE

helped us to determine how our approach to adap-

tation contract specification behaves in terms of re-

quired development effort and accuracy, compared

to manual contract specification. Our volunteers

were categorized in three groups (expert, average,

novice) according to their expertise and familiarity

with behavioural interfaces and software composi-

tion. Specifically, tests were conducted by handing

over to users adaptation problems which consisted

of the graphical description of the behavioural inter-

faces to be reused in the composition, and a short

specification in natural language of what was the in-

tended functionality of the system. Users were asked

to perform contract specification either by:

• Manual contract specification (M). The user had

to directly type on a text file or write down on

a piece of paper the contract without further as-

sistance.

• Interactive contract specification (I). Volunteers

made use of our interactive environment for

contract specification (ACIDE). Users were in-

troduced to the graphical specification of con-

tracts, simulation, and trace checks. Out of the

twelve volunteers who participated in the exper-

iment, eight of them (66%) decided to use sim-

ulation to check the result, whereas only three

of them (25%) used trace checks. The pro-

cess followed to solve all adaptation problems

was incremental construction, combining par-

tial specification of the contract with simulation

runs to assess the behaviour of the system. In

the case of volunteers who decided to perform

trace checks, these were used to directly obtain

problematic traces and replicate their behaviour

in the simulator in order to understand the prob-

lem and fix the contract specification.

In order to avoid obtaining biased results in the

experiments: (i) the same number of users from each

of the three levels of expertise were assigned to each

of the two approaches, and (ii) case studies were ar-

ranged in such a way that no user could be handed
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Example States Transitions Comp. global Time (mn) Iterations

Ex9 8/5 8/5
UR 0.29 0m0.415s 8

UC 0.18 0m10.581s 8

Ex44 20/22 19/21
UR 1 0m4.440s 8

UC 0.81 0m13.860s 3

Ex71 20/4 19/3
UR 1 0m4.112s 8

UC 1 0m5.848s 9

Ex85 59/59 64/75
UR 0.70 1m1.717s 4

UC 0.69 0m47.513s 3

Ex90 86/86 90/90
UR 0.72 8m15.806s 7

UC 0.74 2m48.400s 3

Ex101 124/86 135/90
UR 0.69 19m0.575s 10

UC 0.70 8m0.460s 6

Table 1: Compatibility degree - some experimental results (t = 0.7).

over the same adaptation problem more than once

(each user solved different problems using different

approaches to prevent previous user knowledge of a

particular case study).

For our study we used different adaptation prob-

lems that were either borrowed from research papers,

or obtained from our own archive of adaptation prob-

lems. In particular, we chose a set of problems which

ranged from simple protocols and small sets of ser-

vices, to more complex problems in order to test the

scalability of the approach and quantify its benefits

with different levels of complexity. Table 2 summa-

rizes the problems used for our study, which are or-

ganized according to increasing size and complexity.

We also include the number of interfaces involved

and ports to connect, as well as the overall size of the

protocols as a total number of states and transitions.

The table also includes the experimental results (time

required to solve the problem and number of errors in

the specified contract) for each of the examples using

manual (M) and interactive (I) contract specification.

7.3.1. Efficiency

Figure 19 shows the results of our experiments. As

it can be observed on the left part of the figure, there

is a substantial difference in the amount of time re-

quired to solve the different problems between man-

ual and interactive specification, which showed a re-

duction of 53% on the time required, compared to

manual specification.

7.3.2. Accuracy

We measure as errors those of a semantic nature

in the construction of contracts, i.e., the number of

bindings created between ports which were either

wrong or useless for the resulting contract, as well

as the incorrect connections between data ports on

interfaces. In the case of manual specification, it is

worth observing that there is a remarkable amount

of syntactic errors, although we did not include them

for comparison with the interactive approach. In par-

ticular, in some cases our volunteers would not even

respect the syntax defined for contracts, whereas our

approach avoids syntactic errors, and this would have

resulted in a distortion of the results obtained by the

experiments. It is worth observing that the number of

errors appearing in Table 2 is averaged over the vol-

unteers who participated in the experiments. In Fig-

ure 19 (right), it can be noticed that the number of er-

rors in problem solutions is lower in our approach (a

reduction of 59% in the number of errors compared

to manual specification). This difference is negligi-

ble for small cases, but increases with the complexity

of the problem. It is worth pointing out that there is

a small difference between the two approaches in the

case of easyrest-005. This is explained by the low

number of mismatches this problem presents relative

to its size, something that makes the manual specifi-

cation for this particular problem less prone to errors.

8. Related Work

In this section, we survey a few key related works

which give some solutions to the behavioural adap-
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Time (s) Errors

Problem Interf. Ports States Trans. M I M I

ftp-002 2 9 11 11 338 222 1.77 1.5

client-sup-002 2 12 15 16 480 248 0.33 0.5

which-004 2 17 16 19 486 146 2.95 0.75

online-med-003 3 15 16 17 531 189 5 0

easyrest-005 4 17 22 24 689 310 3 1.66

pda-001 6 46 37 48 2160 1152 27.6 10.66

Table 2: Problem size and experimental results for the two tested approaches.
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Figure 19: Experimental results: Time elapsed and accuracy

tation of software components and services. In par-

ticular, we focus on approaches using a mapping or

contract notation in order to guide either the process

or the designer (or both) to work out mismatch cases.

Inverardi et al. [33, 4] address the enforcement

of behavioral properties out of a set of components.

Starting from the specification with Message Se-

quence Charts of the components to be assembled

and of LTL properties (liveness or safety) that the

resulting system should verify, they automatically

derive the adaptor glue code for the set of compo-

nents in order to obtain a property-satisfying system.

The set of aforementioned properties has to be given

as input to the adaptation process. With respect to

adaptor verification, their solution is an alternative to

what we propose in this paper. They build an adap-

tor which ensures by construction the set of proper-

ties given as input whereas we advocate model-based

verification techniques to check a priori that the con-

tract specifies exactly what we expect from the forth-

coming adaptor.

Nezhad et al. [5] present some techniques in or-

der to provide semi-automatic support for the identi-

fication and resolution of mismatches between Web

services at their signature and protocol levels. First,

the authors describe some techniques for signature

matching based on XML schema matching [34]. Af-

ter applying interface matching techniques, the au-

thors use the protocol definitions expressed using Fi-

nite State Machines to find all mismatch situations at

the protocol level. While unspecified receptions are

dealt with automatically, deadlock resolution is tack-

led through the generation of mismatch trees, which

present to the developer potential execution scenar-
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ios where the services deadlock. This approach deals

with some kinds of mismatch automatically, but re-

quires user input to overcome others. The situations

which can be adapted are quite limited. In particular,

correspondences between operations are static, and

1-0 correspondences (operations with no match on

the counterpart interface) are not supported. [5] does

not enable the user to write a contract giving an ab-

stract specification of the adaptation (operations and

parameter correspondences, etc.), but presents each

mismatch case not automatically solvable between

two interfaces (mismatch tree), and this can help the

user to specify an adaptation contract. In [21], the

authors extend the static matching presented in [5]

to support one-to-many correspondences. Further-

more, they improve the protocol matching proposed

in [5] using depth-based comparison and flooding al-

gorithms similarly to the approach given in [35].

Brogi et al. [6] present a methodology for be-

havioural adaptation where component behaviors are

specified with a subset of the π-calculus and com-

position specifications with name correspondences.

An adaptor generation algorithm is used to refine the

given specification into a concrete adaptor which is

able to accommodate both message name and proto-

col mismatch. More recently, [1, 9] proposed state-

of-the-art adaptation approaches that support adap-

tation policies and system properties described by

means of regular expressions or LTSs of vectors.

However, in these works, no support is proposed to

help the designer during the contract specification

task, which is therefore achieved manually.

Concerning interactive contract specification, [7]

introduces an approach to service interface adapta-

tion using a visual language based on an algebra over

behavioural interfaces. A graphical editor taking as

input pairs of behavioural interfaces allows to link

them through interface transformation expressions.

The output of this tool can be used as input for a

service mediation engine which interprets the infor-

mation in order to perform composition. Although

this approach provides the means to define interface

transformation expressions graphically, it does not

support the incremental specification of adaptation

since it only considers pairs of provided-required in-

terfaces. Moreover, our approach provides system-

atic contract verification mechanisms and protocol

compatibility measures which help to guide the spec-

ification of adaptation using the graphical notation.

In [23], the authors focus on systems where com-

ponents or services may enter and leave at any time,

such as pervasive ones, and propose an incremental

approach for the integration and adaptation of soft-

ware components. This proposal simplifies the de-

sign process by building the system incrementally,

and thus avoids the costly computation of global

adaptors. Two algorithms are proposed respectively

for the addition and suppression of a component. In

the first case, a local adaptor is generated, and in

the second case, some reconfigurations are applied

to preserve the consistency of the system. This work

shares some similarities with our proposal, such as

the incremental process and the generation of local

adaptors. However, [23] relies on a very simple

model (LTS without value passing), and advocates

for a manual writing of the adaptation contract.

To sum up, our solution to design graphically

adaptation contracts goes far beyond existing related

work, since we combine in a unique environment

new protocol compatibility results (presented in Sec-

tion 5) to guide the construction, hierachical struc-

turing to divide the composition and adaptation in

smaller pieces, and verification techniques to detect

possible design errors. Last but not least, our pro-

posal is completely supported by a prototype tool we

implemented.

9. Concluding Remarks

Manual specification of adaptation contracts is a

cumbersome and error-prone task which can be sim-

plified by assisting the designer. In this article, we

have presented an interactive approach which speeds

up the contract specification process and reduces the

risk of mistakes in the specification. Our approach

relies on compositional and hierarchical techniques,

a graphical notation, and different verification and

validation techniques. Moreover, our proposal is

fully supported by a prototype tool we implemented.

We also provided some experimental results that we

obtained from the application of our approach to dif-

ferent case studies.

These results showed a reduction both in the

amount of effort that the designer has to put into
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building the contract, as well as in the number of er-

rors present in the final result (noticeably higher in

the case of manual specification). Since the test cases

used for our experimental study were of a small-

medium size and complexity, we think that the dif-

ficulty of specifying contracts for bigger systems in-

volving dozens of components or services would be

not manageable by the designer by using just manual

specification. This puts forward the importance of

providing support to the development of adaptation

contracts, since their incorrect specification induces

erroneous executions of the system. To the best of

our knowledge, such support has not been provided

by any other approaches so far, and hence we con-

sider the techniques described in this paper as an im-

portant contribution to the area of behavioural soft-

ware adaptation.

Concerning future work, we plan to extend our so-

lution to take goal-oriented adaptation into account.

Our interactive environment would accept the graph-

ical specification of temporal properties to be used as

guidance for the adaptation process. Moreover, we

intend to propose techniques to dynamically evalu-

ate such properties. Thus, once a formula is spec-

ified, the user is informed about the satisfaction of

this property during the contract construction (e.g.,

the environment should be able to inform about the

violation of a safety property caused by the binding

of two ports as the user is connecting them).
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Appendix A: Placeholder Reuse

Placeholders in a contract are reused whenever we

add a vector that contains parameters already asso-

ciated to a placeholder in the current (partial) con-

tract. Specifically, during the contract specification

process, we incrementally build a binary relation

R ⊆ PN ×PH (initially empty) over the set of possi-

ble parameter names PN and placeholder names PH

that enables us to tell which parameter names are al-

ready associated to a placeholder name in the current

(partial) contract.

Furthermore, we also make use of data bindings

specified by the designer to keep track of which argu-

ments should be substituted by the same placeholder

in different labels:

Definition 10 (Data Binding). A data binding de-

fined over two labels lA = (MA,DA,PLA) and lB =

(MB ,DB ,PLB ) is a couple (a, b) such that a ∈ PLA

and b ∈ PLB .

Let us remark that data bindings are specified by

the designer according to the particular semantics of

the example at hand. Further details about the speci-

fication of data bindings can be found in Section 5.

Algorithm 7 substitutes parameters by placeholder

names in parameter lists PLA and PLB associated to

labels in a vector lA and lB , respectively, returning

the associated lists of placeholders for both labels

PL′
A

and PL′
B

. If the vector contains only one la-

bel, we use as input an empty list for PLB , and the

algorithm will output an empty placeholder list PL′
B

.

Moreover, if two parameter lists are used as input, we

assume that lA corresponds always to the emission,

and lB to the reception.

The algorithm works by processing all parameters

in PLA first, and checking if they are already asso-

ciated to a placeholder using relation R. If this is

the case, the placeholder in use is added to the place-

holder list. If the parameter is not associated to a

placeholder, we extract a new placeholder name from

the pool of placeholders PH , and add it to the place-

holder list, extending relation R with the new place-

holder at the same time. Once all parameters in PLA

are processed, the algorithm starts processing param-

eters in PLB . The process is analogous, but in this
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case, we first check if there is a data binding relating

the parameter with another parameter in PLA. If this

is the case, we obtain the placeholder already asso-

ciated to the bound parameter in PLA and use it to

extend the list PL′
B

.

Algorithm 7 sub ph

substitutes a set of parameter names with placeholder names

for a vector with two labels lA = (MA,DA,PLA), lB =

(MB ,DB ,PLB )

inputs parameter list for labels PLA and PLB , current binary

relation R, current placeholder set PH , current set of data bind-

ings B

1: PL′
A

:= []

2: PL′
B

:= []

3: while PLA , [] do

4: p := extract first(PLA)

5: if ∃ ph : (p, ph) ∈ R then

6: append (PL′
A
, ph)

7: else

8: ph := extract(PH )

9: R := R ∪ {(p, ph)}

10: append (PL′, ph)

11: end if

12: end while

13: while PLB , [] do

14: p := extract first(PLB )

15: if ∃(q , p) ∈ B then

16: append (PL′
B
, ph) : (q , ph) ∈ R

17: else if ∃ ph ∈ PH : (p, ph) ∈ R then

18: append (PL′
B
, ph)

19: else

20: ph := extract(PH )

21: R := R ∪ {(p, ph)}

22: append (PL′
B
, ph)

23: end if

24: end while

25: return PL′
A
,PL′

B

Let us formalize the set of functions we apply in

the algorithm:

• Function append adds a new element at the end

of a list append ([e1, . . . , en], e) = [e1, . . . , en , e]

• Function extract first returns and re-

moves the first element of a list

extract first([e1, e2, . . . , en]) = [e2, . . . , en]

• Function extract returns a random element er

from a set E = {e1, . . . , er , . . . , en}, and removes

it from the set (E := E\{er }).
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