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functions on a compact Kähler
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Abstract

We prove in this article using some convex analysis results of A.

S. Lewis the log-concavity of spectral elementary symmetric functions

on the space of Hermitian matrices, and the convexity of the set of

k-admissible functions on compact Kähler manifolds.
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1 Introduction and statement of results

All manifolds considered in this article are connected.
Let (M,J, g, ω) be a compact connected Kähler manifold of complex dimen-
sion m ≥ 1. Fix an integer 1 ≤ k ≤ m. Let ϕ : M → R be a smooth function
and let us consider the (1, 1)-form ω̃ = ω + i∂∂̄ϕ and the associated 2-tensor
g̃ defined by g̃(X, Y ) = ω̃(X, JY ). Consider the sesquilinear forms h and h̃
on T 1,0 defined by h(U, V ) = g(U, V ) and h̃(U, V ) = g̃(U, V ). We denote
by λ(g−1g̃) the eigenvalues of h̃ with respect to the hermitian form h. By
definition, these are the eigenvalues of the unique endomorphism A of T 1,0

satisfying :
h̃(U, V ) = h(U,AV ) ∀U, V ∈ T 1,0 (1)

Calculations infer that the endomorphism A writes :

A : T 1,0 → T 1,0

U i∂i 7→ Aj
iU

i∂j = gjℓ̄g̃iℓ̄U
i∂j
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A is a self-adjoint/hermitian endomorphism of the hermitian space (T 1,0, h),
therefore λ(g−1g̃) ∈ R

m. Let us consider the following cone : Γk = {λ ∈
R

m/∀1 ≤ j ≤ k, σj(λ) > 0}, where σj denotes the j-th elementary symmet-
ric function.

Definition 1.1. ϕ is said to be k-admissible if and only if λ(g−1g̃) ∈ Γk.

In a note in the Comptes Rendus de l’Académie des Sciences de Paris pub-
lished online in December 2009 [7], we solve the equations ω̃k ∧ ωm−k =
ef

(m
k )

ωm (Ek), when the holomorphic bisectional curvature of M is non-negative.

In this proof performed by the continuity method, two results following from
convex analysis techniques were needed, namely the Corollaries 1.3 and 1.4.

Let us now introduce some convex analysis notations. Let Hm(C) be the
space of complex Hermitian matrices of order m. We recall that for any two
matrices B and C of Hm(C), λ ∈ C is called a B-eigenvalue of C if there
exists x 6= 0 in C

m such that Cx = λBx, x is then called a B-eigenvector
of C. Let B ∈ Hm(C) be a fixed positive definite matrix. Let us recall the
following basic result :

Lemma 1.2. Let C ∈ Hm(C), then :

1. The spectrum of B−1C (i.e. the B-spectrum of C) is entirely real.

2. The greatest eigenvalue of B−1C (i.e. the greatest B-eigenvalue of C)
equals supu 6=0

<Cu,u>
<Bu,u>

, where < ., . > denotes the standard Hermitian
product of C

m.

3. B−1C is diagonalizable.

Since the spectrum of B−1C is the spectrum of the Hermitian matrix B− 1

2 CB− 1

2 ,
the proof is an easy adaptation of the standard one for symmetric matrices.
For a given hermitian matrix C, we denote by λB(C) the eigenvalues of C
with respect to B. In this article, we prove the following four results using
the Theorem 2.3 and the Corollary 2.4 of Lewis [9] (see Theorem 3 of this
article) :

Theorem 1. For each k ∈ {1, ...,m}, the function :

FB
k : Hm(C) → R ∪ {+∞}, C 7→ FB

k (C) =







− lnσk

(

λB(C)

)

if C ∈ λ−1
B (Γk)

+∞ otherwise,

(2)

where λ−1
B (Γk) :=

{
C ∈ Hm(C)/ λB(C) ∈ Γk

}
, is convex.
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Theorem 2. If Γ is a (non empty) symmetric convex closed set of R
m, then

λ−1
B (Γ) := {C ∈ Hm(C)/ λB(C) ∈ Γ} is a convex closed set of Hm(C). In

particular, λ−1
B

(
Γk

)
is a convex closed set of Hm(C).

By the Theorem 1, and since λ−1
B (Γk) is convex (Theorem 2), we deduce

that :

Corollary 1.3. The function :

−FB
k : λ−1

B (Γk) → R, C 7→ FB
k (C) = lnσk

(

λB(C)

)

(3)

is concave.

The method used here to prove the Corollary 1.3, gives for B = I a different
approach from the proof of [3] and the elementary proof of [6, p. 51] and [8].
As an immediate consequence of Theorem 2, we get the following important
result, that allows to notably simplify the proof of uniqueness of the solution
of the equation (Ek) in comparison with [8] :

Corollary 1.4. For a compact connected Kähler manifold (M,J, g, ω), the
set of k-admissible functions Ak :=

{
ϕ ∈ C2(M, R)/λω(ω + i∂∂̄ϕ) ∈ Γk

}
is

convex.

2 Some convex analysis

The space Hm(C) has a structure of Euclidean space thanks to the fol-

lowing scalar product ≪ A,B ≫= tr
(t

AB
)

= tr(AB), called the Schur

product. Let us denote by Γ0(R
m) the set of functions u : R

m → R∪{+∞}
that are convex, lower semi-continuous on R

m, and finite in at least one
point. Given u ∈ Γ0(R

m) symmetric and B ∈ Hm(C) positive definite,
we define :

V B
u : Hm(C) → R ∪ {+∞}, by C 7→ V B

u (C) := u(λB,1(C), ..., λB,m(C))

where λB,1(C) ≥ λB,2(C) ≥ ... ≥ λB,m(C) denote the B-eigenvalues of C
repeated with their multiplicity. Such functions V B

u are called functions of

B-eigenvalues or B-spectral functions. Our first aim is to determine the
conjugation for such a function V B

u using the conjugate function of u. Let
us remind that the conjugation or the Legendre–Fenchel transform of u is
the function u∗ : R

m → R ∪ {+∞} defined by :

∀s ∈ R
m, u∗(s) = sup

x∈Rm

{

≺ s, x ≻ −u(x)

}

where ≺ ., . ≻ denotes the standard scalar product on R
m.
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Theorem 3 (A. S. Lewis [9], Conjugation of spectral functions). Let u ∈
Γ0(R

m) be symmetric, then :

1. The conjugate u∗ (∈ Γ0(R
m)) is also symmetric.

2. The functions of eigenvalues V I
u and V I

u∗ (defined as above) belong to
Γ0(Hm(C)) with V I

u∗ = (V I
u )∗, so that in particular the function of

eigenvalues V I
u is convex and lower semi-continuous.

Proof. See the Theorem 2.3 and the Corollary 2.4 of Lewis [9].

A similar theorem is proved in the case of symmetric matrices in [10] and [5]
(you can see also [2] and [1] for some details).

Corollary 2.1 (Conjugation of B-spectral functions). Let u ∈ Γ0(R
m) be

symmetric, then :

1. The conjugate u∗ (∈ Γ0(R
m)) is also symmetric.

2. The functions of B-eigenvalues V B
u and V B

u∗ (defined as above) belong
to Γ0(Hm(C)) with V B−1

u∗ = (V B
u )∗, so that in particular the function

of B-eigenvalues V B
u is convex and lower semi-continuous.

3 Proof of Theorems 1 and 2

3.1 Proof of Theorem 1

The proof of Theorem 1 is a direct application of the Corollary 2.1 to the
function :

u : R
m → R ∪ {+∞}, x = (x1, ..., xm) 7→ u(x) =

{

− lnσk(x1, ..., xm) if x ∈ Γk

+∞ otherwise

(4)

Our function u is symmetric and belongs to Γ0(R
m), indeed :

• It is clearly symmetric. It is finite in a least one point of R
m because Γk

is non empty. And it is convex, because the function (σk)
1

k : Γk → R

is concave [3, p. 269].

• It is lower semi-continuous. Indeed, let c ∈ R, and consider the set :

{x ∈ R
m/ + ∞ ≥ u(x) > c} = {x ∈ Γk/u(x) > c} ∪ {x 6∈ Γk/u(x) > c}

= {x ∈ Γk/ − lnσk(x) > c} ∪

(

R
m \ Γk

)

(5)

By continuity, {x ∈ Γk/− lnσk(x) > c} is an open set of Γk, it is then
an open of R

m since Γk is an open of R
m. Furthermore, the cone Γk
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is also a closed set of R
m (as a connected component), consequently

R
m \ Γk is an open set of R

m. Therefore, {x ∈ R
m/ + ∞ ≥ u(x) > c}

is an open set of R
m too. This is valid for all c ∈ R, so that u is lower

semi-continuous.

Therefore, we deduce by the Corollary 2.1 that the B-spectral function
V B

u = FB
k is convex, which proves the theorem.

Let us remark that the same technique allows to prove for example that the
functions

V (C) := "the greatest B-eigenvalue" of C and

Vs(C) := "the sum of the s greatest B-eigenvalues" of C

with s ∈ {1, ...,m}, (6)

are convex on Hm(C).

3.2 Proof of Theorem 2

The proof of Theorem 2 goes by considering the indicatrix function f0 := IΓ

of the set Γ, namely :

f0 := IΓ : R
m → R ∪ {+∞}, x = (x1, ..., xm) 7→ IΓ(x) =

{

0 if x ∈ Γ

+∞ otherwise

(7)

From the assumptions made on Γ, f0 lies in Γ0(R
m) and is symmetric, in-

deed :

• This function is clearly finite in at least one point since Γ is non empty.

• The inequality IΓ(tx + (1− t)y) ≤ tIΓ(x) + (1− t)IΓ(y) is valid for all
x, y ∈ R

m and all t ∈ [0, 1]. Indeed, if x, y ∈ Γ then tx + (1 − t)y ∈ Γ
by convexity of Γ and the two sides of the convexity inequality equal 0
in this case. Furthermore, if x or y does not belong to Γ then the right
side of the inequality equals +∞ and the inequality is then satisfied in
this case too, which proves that IΓ is convex.

• IΓ is lower semi-continuous. Indeed, let a ∈ R
m : If a ≥ 0 then

{x ∈ R
m/ +∞ ≥ IΓ(x) > a} = R

m \Γ is an open set since Γ is closed.
Besides, if a < 0, {x ∈ R

m/ + ∞ ≥ IΓ(x) > a} = R
m is an open set

too.

So Corollary 2.1 implies that the function of B-eigenvalues V B
IΓ

lies in Γ0(R
m);

in particular it is, convex lower semi-continuous. But this function is given
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by :

V B
IΓ

: Hm(C) → R ∪ {+∞}, C 7→ V B
IΓ

(C) =

{

0 if C ∈ λ−1
B (Γ)

+∞ otherwise
(8)

In other words, it coincides with I
λ−1

B
(Γ), the indicatrix function of λ−1

B (Γ).

So the latter must itself be convex lower semi-continuous. As a consequence,
λ−1

B (Γ) is a convex closed (non empty) set of Hm(C), indeed :

• λ−1
B (Γ) is convex because if C,D ∈ λ−1

B (Γ) and t ∈ [0, 1], we have by
convexity of Iλ−1

B
(Γ),

I
λ−1

B
(Γ)(tC + (1 − t)D) ≤ t I

λ−1

B
(Γ)(C)

︸ ︷︷ ︸

=0

+(1 − t) Iλ−1

B
(Γ)(D)

︸ ︷︷ ︸

=0

(9)

then necessarily Iλ−1

B
(Γ)(tC+(1−t)D) = 0 and tC+(1−t)D ∈ λ−1

B (Γ).

• The set λ−1
B (Γ) is closed because {M ∈ Hm(C)/ + ∞ ≥ I

λ−1

B
(Γ)(M) >

0} = Hm(C) \ λ−1
B (Γ) is an open set since Iλ−1

B
(Γ) is lower semi-

continuous.

4 Simplification of the proof of uniqueness of the solu-

tion of (Ek)

The Corollary 1.4 allows to notably simplify the proof of uniqueness of the
solution of the equation (Ek) in comparison with [8].
Let ϕ0 and ϕ1 be two smooth k-admissible solutions of the equation (Ek)
such that

∫

M
ϕ0ω

m =
∫

M
ϕ1ω

m = 0. For all t ∈ [0, 1], let us consider the
function ϕt = t ϕ1 +(1− t) ϕ0 = ϕ0 + t ϕ with ϕ = ϕ1−ϕ0. Let P ∈ M , and
let us denote hP

k (t) = fk([δ
j
i + gjℓ̄(P )∂iℓ̄ϕt(P )]). We have hP

k (1)−hP
k (0) = 0

which is equivalent to
∫ 1
0 hP ′

k (t) dt = 0. But :

hP ′

k (t) =
m∑

i,j=1

( m∑

ℓ=1

∂fk

∂Bℓ
i

([δj
i + gjℓ̄(P )∂iℓ̄ϕt(P )]) gℓj̄(P )

)

︸ ︷︷ ︸

=:αt
ij(P )

∂ij̄ϕ(P )

Therefore we obtain :

Lϕ(P ) :=
m∑

i,j=1

aij(P ) ∂ij̄ϕ(P ) = 0 with aij(P ) =

∫ 1

0
αt

ij(P ) dt

We show easily that the matrix [aij(P )]1≤i,j≤m is hermitian [6, p. 53]. By
the Corollary 1.4, we know that for all t ∈ [0, 1] and all points m ∈ M ,
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λ(g−1g̃ϕt)(m) ∈ Γk, namely that the functions (ϕt)t∈[0,1] are k-admissible.
We check then easily that the hermitian matrix [aij(m)]1≤i,j≤m is positive
definite for all m ∈ M [6, p. 54]. Consequently, the operator L is elliptic on
M . But the map ϕ is C∞ and satisfies Lϕ = 0, then by the Hopf maximum
principle [4], we deduce that ϕ is constant on M . Besides

∫

M
ϕωm = 0,

therefore we deduce that ϕ ≡ 0 on M namely that ϕ1 ≡ ϕ0 on M , which
achieves the proof of uniqueness.

Acknowledgement - The present results are an auxiliary, but indepen-
dent, part of my PhD dissertation [6].
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