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Stochastic CGL equations without linear

dispersion in any space dimension

Sergei Kuksin∗, Vahagn Nersesyan†

Abstract. We consider the stochastic CGL equation

u̇− ν∆u+ (i+ a)|u|2u = η(t, x), dimx = n,

where ν > 0 and a ≥ 0, in a cube (or in a smooth bounded domain) with Dirichlet

boundary condition. The force η is white in time, regular in x and non-degenerate.

We study this equation in the space of continuous complex functions u(x), and prove

that for any n it defines there a unique mixing Markov process. So for a large class

of functionals f(u(·)) and for any solution u(t, x), the averaged observable Ef(u(t, ·))

converges to a quantity, independent from the initial data u(0, x), and equal to the

integral of f(u) against the unique stationary measure of the equation.
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1 Introduction

We study the stochastic CGL equation

u̇− ν∆u + (i+ a)|u|2u = η(t, x), dim x = n, (1.1)

where n is any, ν > 0, a ≥ 0 and the random force η is white in time and regular
in x. All our results and constructions are uniform in a from bounded intervals
[0, C], C ≥ 0. Since for a > 0 the equation possesses extra properties due to the
nonlinear dissipation (it is “stabler”), then below we restrict ourselves to the
case a = 0; see discussion in Section 5. This equation is the Hamiltonian system
u̇ + i|u|2u = 0, damped by the viscous term ν∆u and driven by the random
force η. So it makes a model for the stochastic Navier-Stokes system, which
may be regarded as a damped–driven Euler equation (which is a Hamiltonian
system, homogeneous of degree two). In this work we are not concerned with
the interesting turbulence-limit ν → 0 (see [Kuk97, Kuk99] for some related
results) and, again to simplify notation, choose ν = 1. That is, we consider the
equation

u̇−∆u+ i|u|2u = η(t, x). (1.2)

For the space-domain we take the cube K = [0, π]n with the Dirichlet boundary
conditions, which we regard as the odd periodic boundary conditions

u(t, . . . , xj , . . .) = u(t, . . . , xj + 2π, . . .) = −u(t, . . . ,−xj , . . .) ∀ j.

Our results remain true for (1.2) in a smooth bounded domain with the Dirichlet
boundary conditions, see Section 5.

The force η(t, x) is a random field of the form

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∑

s∈Nn

bsβs(t)ϕs(x). (1.3)

Here bs are real numbers such that

B∗ :=
∑

s∈Nn

|bs| < ∞,

βs = β+
s + iβ−

s , where β±
s are standard independent (real-valued) Brownian

motions, defined on a complete probability space (Ω,F ,P) with a filtration
{Ft; t ≥ 0}.1

The set of real functions {ϕs(x), s ∈ Nn} is the L2-normalised system of
eigenfunctions of the Laplacian,

ϕs(x) = (2/π)
n/2

sin s1x1 · . . . · sin snxn, (−∆)ϕs = αsϕs, αs = |s|2.
1The filtered probability space (Ω,F , {Ft},P), as well as all other filtered probability space,

used in this work, are assumed to satisfy the usual condition, see [KS91].
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Our work continues the research [Kuk99] and makes use of its method which
exploits essentially the well known fact that the deterministic equation (1.2)η=0

implies for the real function |u(t, x)| a parabolic inequality with the maximum
principle. Denote by Hm the Sobolev space of order m, formed by complex odd
periodic functions and given the norm

‖u‖m = ‖(−∆)m/2u‖, (1.4)

where ‖ · ‖ is the L2-norm on the cube K. In Section 2.1 we repeat some
construction from [Kuk99] and state its main result, which says that if

u(0, x) = u0(x), (1.5)

where u0 ∈ Hm, m > n/2, and

Bm :=
∑

b2s|s|2m < ∞,

then (1.2), (1.5) has a unique strong solution u(t) ∈ Hm. Moreover, for any
T ≥ 0 the random variable XT = supT≤t≤T+1 |u(t)|2∞ satisfies the estimates

EXq
T ≤ Cq ∀ q ≥ 0, (1.6)

where Cq depends only on |u0|∞ and B∗. Analysis of the constants Cq, made
in Section 2.2, implies that suitable exponential moments of the variables XT

are finite:
EecXT ≤ C′ = C′(B∗, |u0|∞), (1.7)

where c > 0 depends only on B∗.
Denote by C0(K) the space of continuous complex functions on K, vanishing

at ∂K. In Section 3 we consider the initial-value problem (1.2), (1.5), assuming
only that B∗ < ∞ and u0 ∈ C0(K). Approximating it by the regular problems
as above and using that the constants in (1.6), (1.7) depend only on B∗ and
|u0|∞, we prove

Theorem A. Let B∗ < ∞ and u0 ∈ C0(K). Then the problem (1.2), (1.5)
has a unique strong solution u(t, x) which almost surely belongs to the space
C([0,∞), C0(K))∩L2

loc([0,∞), H1) . The solutions u define in the space C0(K)
a Fellerian Markov process.

Consider the quantities J t =
∫ t

0
|u(τ)|2∞dτ −Kt, where K is a suitable con-

stant, depending only on B∗. Based on (1.7), we prove in Lemma 2.7 that
the random variable supt≥0 J

t has exponentially bounded tails. Since the non-
autonomous term in the linearised equation (1.2) is quadratic in u, ū, then the
method to treat the 2d stochastic Navier-Stokes system, based on the Foias-
Prodi estimate and the Girsanov theorem (see [KS12] for discussion and refer-
ences to the original works) allows us to prove in Section 4

(stability) There is a constant L ≥ 1 and two sequences {Tm ≥ 0,m ≥ 1} and
{εm > 0,m ≥ 1}, εm → 0 as m → ∞, such that if for any m ≥ 1 we have
solutions u(t), u′(t) of (1.2), satisfying

u(0), u′(0) ∈ Bm = {u ∈ C0(K) : ‖u‖ ≤ 1/m, |u|L∞
≤ L},
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then for each t ≥ Tm we have ‖D(u(t)) − D(u′(t))‖∗L ≤ εm. Here ‖µ − ν‖∗L is
the dual-Lipschitz distance between Borelian measures µ and ν on the space H0

(see below Notation).

We also verify in Section 4 that
(recurrence) For each m ≥ 1 and for any u0, u

′
0 ∈ C0(K), the hitting time

inf{t ≥ 0 : u(t) ∈ Bm, u′(t) ∈ Bm}, where u(t) and u′(t) are two independent
solutions of (1.2) such that u(0) = u0 and u′(0) = u′

0, is almost surely finite.

These two properties allow us to apply to eq. (1.2) an abstract theorem from
[KS12] 2 which implies the second main result of this work:

Theorem B. There is an integer N = N(B∗, ν) ≥ 1 such that if bs 6= 0 for
|s| ≤ N , then the Markov process, constructed in Theorem A, is mixing. That
is, it has a unique stationary measure µ, and every solution u(t) converges to µ
in distribution

This theorem implies that for a large class of continuous functionals f on
C0(K) we have the convergence

Ef(u(t)) →
∫

f(v)µ(dv) as t → ∞,

where u(t) is any solution of (1.2). See Corollary 4.3.
In Section 5 we explain that our results also apply to equations (1.1), con-

sidered in smooth bounded domains in Rn with Dirichlet boundary conditions;
that Theorem A generalises to equations

u̇− ν∆u+ (i + a)gr(|u|2)u = η(t, x), (1.8)

where gr(t) is a smooth function, equal to tr, r ≥ 0, for t ≥ 1, and Theorem B
generalises to eq. (1.8) with 0 ≤ r ≤ 1.

Similar results for the CGL equations (1.8), where η is a kick force, are
obtained in [KS12] without the restriction that the nonlinearity is cubic, and for
the case when η is the derivative of a compound Poisson process – in [Ner08].
Our technique does not apply to equations (1.8) with complex ν. To prove
analogies of Theorems A, B for such equations, strong restrictions should be
imposed on n and r. See [Hai02, Oda08] for equations with Re ν > 0 and a > 0,
and see [Shi06] for the case Re ν > 0 and a = 0. We also mention the work
[DO05] which treats interesting class of one-dimensional equations (1.1) with
complex ν such that Re ν = 0 and a = 0, damped by the term αu in the l.h.s.
of the equation.

Acknowlegement. The authors were partially supported by the Agence
Nationale de la Recherche, Projets STOSYMAP ANR 2011 BS01 015 01 and
Blanc EMAQS ANR 2011 BS01 017 01.

2That result was introduced in [Shi06], based on ideas, developed in [KS02] to establish
mixing for the stochastic 2D NSE. It applies to various nonlinear stochastic PDEs, including
the complicated CGL equation (1.1) where a = 0 and ν is complex number with a positive
real part, see [Shi06].
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Notation. By H we denote the L2-space of odd 2π-periodic complex
functions with the scalar product 〈u, v〉 := Re

∫

K u(x)v̄(x)dx and the norm
‖u‖2 := 〈u, u〉; by Hm(K), m ≥ 0 – the Sobolev space of odd 2π-periodic
complex functions of order m, endowed with the homogeneous norm (1.4) (so
H0(K) = H and ‖ · ‖0 = ‖ · ‖). By C0(Q) we denote the space of continuous
complex functions on a closed domain Q which vanish at the boundary ∂Q (note
that the space C0(K) is formed by restrictions to K of continuous odd periodic
functions).

For a Banach space X we denote:
Cb(X) – the space of real-valued bounded continuous functions on X ;
L(X) – the space of bounded Lipschitz functions f on X , given the norm

‖f‖L := |f |∞ + Lip(f) < ∞, Lip(f) := sup
u6=v

|f(u)− f(v)| ‖u− v‖−1
;

B(X) – the σ-algebra of Borel subsets of X ;
P(X) – the set of probability measures on (X,B(X));
BX(d), d > 0 – the open ball in X of radius d, centered at the origin.
For µ ∈ P(X) and f ∈ Cb(X) we denote (f, µ) = (µ, f) =

∫

X
f(u)µ(du). If

µ1, µ2 ∈ P(X), we set

‖µ1 − µ2‖∗L = sup{|(f, µ1)− (f, µ2)| : f ∈ L(X), ‖f‖L ≤ 1},
‖µ1 − µ2‖var = sup{|µ1(Γ)− µ2(Γ)| : Γ ∈ B(X)}.

The arrow ⇀ indicates the weak convergence of measures in P(X). It is well
known that µn ⇀ µ if and only if ‖µn−µ‖∗L → 0, and that ‖µ1−µ2‖∗L ≤ 2‖µ1−
µ2‖var.

The distribution of a random variable ξ is denoted by D(ξ). For complex
numbers z1, z2 we denote z1 ·z2 =Re z1z̄2; so z ·dβs = (Re z)dβ+

s +(Im z)dβ−
s (t).

We denote by C,Ck unessential positive constants.

2 Stochastic CGL equation

2.1 Strong and weak solutions.

Let the filtered probability space (Ω,F , {Ft},P) be as in Introduction. We use
the standard definitions of strong and weak solutions for stochastic PDEs (e.g.,
see [KS91]):

Definition 2.1. Let 0 < T < ∞. A random process u(t) = u(t, x), t ∈ [0, T ]
in C0(K) defined on a probability space (Ω,F ,P) is called a strong solution of
(1.2), (1.5) if the following three conditions hold:

(i) the process u(t) is adapted to the filtration Ft;

(ii) its trajectories u(t) a.s. belong to the space

H([0, T ]) := C([0, T ], C0(K)) ∩ L2([0, T ], H1);
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(iii) for every t ∈ [0, T ] a.s. we have

u(t) = u0 +

∫ t

0

(∆u − i|u|2u)ds+ ζ(t),

where both sides are regarded as elements of H−1.

If (i)-(iii) hold for every T < ∞, then u(t) is called a strong solution for
t ∈ R+ = [0,∞).

A continuous adapted process u(t) ∈ C0(K) and a Wiener process ζ′(t) ∈ H ,
defined in some filtered probability space, are called a weak solution of (1.2) if
D(ζ′) = D(ζ) and (ii), (iii) of Definition 2.1 hold with ζ replaced by ζ′.

We recall that for l ≥ 0 we denote Bl :=
∑

s∈Nn |bs|2|s|2l ≤ ∞. Note that
B0 ≤ B2

∗ < ∞. Let us fix any
m > n/2.

Problem (1.2), (1.5) with u0 ∈ Hm and Bm < +∞ was considered in [Kuk99].
Choosing δ = 1 in [Kuk99], we state the main result of that work as follows:

Theorem 2.2. Assume that u0 ∈ Hm and Bm < +∞. Then (1.2), (1.5) has
a unique strong solution u which is in H([0,∞)) a.s., and for any t ≥ 0, q ≥ 1
satisfies the estimates

E sup
s∈[t,t+1]

|u(s)|q∞ ≤ Cq, (2.1)

E‖u(t)‖qm ≤ Cq,m,

where Cq is a constant depending on |u0|∞, while Cq,m also depends on ‖u0‖m
and Bm.

In this theorem and everywhere below the constants depend on n and B∗.
We do not indicate this dependence.

Remark 2.3. It was assumed in [Kuk99] that n ≤ 3. This assumption is not
needed for the proof. The force η(t, x) in [Kuk99] has the form η(t, x)β̇(t), where
β is the standard Brownian motion and η(t, x) is a random field, continuous and
bounded uniformly in (t, x), smooth in x and progressively measurable. The
proof without any change applies to forces of the form (1.3).

Our next goal is to get more estimates for solutions u(t, x). Applying Itô’s
formula to ‖u‖2, where u(t) =

∑

us(t)ϕs(x) is a solution constructed in Theo-
rem 2.2, we find that

‖u(t)‖2 = ‖u0‖2 +
∫ t

0

(−2‖u(τ)‖21 + 2B0)dτ + 2
∑

s∈Nn

bs

∫ t

0

us(τ) · dβs(τ).

Taking the expectation, we get for any t ≥ 0

E‖u(t)‖2 + 2E

∫ t

0

‖u(τ)‖21dτ = ‖u0‖2 + 2B0t. (2.2)
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To get more involved estimates, we first repeat a construction from [Kuk99]
which evokes the maximum principle to bound the norm |u(t, x)| of a solution
u(t, x) as in Theorem 2.2 in terms of a solution of a stochastic heat equation.

Let ξ ∈ C∞(R) be any function such that

ξ(r) =

{

0 for r ≤ 1
4 ,

r for r ≥ 1
2 .

Writing uN
τM in the polar form uN

τM = reiφ and using the Itô formula for ξ(|uM |)
(see [DZ92], Section 4.5 and [KS12], Section 7.7), we get

ξ(r) = ξ0 +

∫ t

0

[

ξ′(r)(∆r − r|∇φ|2) + 1

2

∑

s∈Nn

b2s

(

ξ′′(r)(eiφ · ϕs)
2

+ ξ′(r)
1

r
(|ϕs|2 − (eiφ · ϕs)

2)
)

]

dt+Υ(t), (2.3)

where ξ0 = ξ(|u0|), a · b = Re ab̄ for a, b ∈ C and Υ(t) is the real Wiener process

Υ(t) =
∑

s∈Nn

∫ t

0

ξ′(r)bsϕs(e
iφ · dβs). (2.4)

Since |u| ≤ ξ + 1
2 , then to estimate |u| it suffices to bound ξ. To do that we

compare it with a real solution of the stochastic heat equation

v̇ −∆v = Υ̇, v(0) = v0, (2.5)

where v0 := |ξ0|. We have that v = v1 + v2, where v1 is a solution of (2.5) with
Υ := 0, and v2 is a solution of (2.5) with v0 := 0. By the maximum principle

sup
t≥0

|v1(t)|∞ ≤ |v0|∞ ≤ |u0|∞. (2.6)

To estimate v2, we use the following lemma established in [Kuk99] (see [Kry96,
MR96, KNP03] for more general results).

Lemma 2.4. Let v2 be a solution of (2.5) with Υ̇ =
∑

s bsf
s(t, x)β̇s(t) and

v0 = 0, where progressively measurable functions f s(t, x) and real numbers bs
are such that |f s(t, x)| ≤ L for each j and t almost surely. Then a.s. v2 belongs
to C(R+, C0(K)), and for any t ≥ 0 and p ≥ 1 we have

E sup
s∈[t,t+T ]

|v2(s)|2p∞ ≤ (C(T )LB∗)
2ppp. (2.7)

Moreover,
E‖v2 |([t,t+1]×K) ‖pCθ/2,θ ≤ C(p, θ)

for any 0 < θ < 1, where ‖ · ‖Cθ/2,θ is the norm in the Hölder space of functions
on [t, t+ 1]×K.
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In [Kuk99], this result is stated with a constant Cp instead of (CLB∗)
2ppp in

the right-hand side of (2.7). Following the constants in the proof of [Kuk99], one
can see that Cp = (CLB∗)

2pC̃p, where C̃p is the constant in the Burkholder–

Devis–Gundy inequality. By [Bur73], we have C̃p ≤ Cppp.

Using the definition of ξ we see that the noise Υ defined by (2.4) verifies the

conditions of this lemma since the eigen-functions ϕs satisfy |ϕs(x)| ≤ (2/π)
n
2

for all x ∈ K.
Let us denote

h(t, x) = ξ(r(t, x)) − v(t, x).

Since a.s. u(t, x) is uniformly continuous on sets [0, T ]×K, 0 < T < ∞, then
a.s. we can find an open domain Q = Qω ⊂ [0,∞)×K with a piecewise smooth
boundary ∂Q such that

r ≥ 1

2
in Q, r ≤ 3

4
outside Q.

Then h(t, x) is a solution of the following problem in Q

ḣ−∆h =
1

2r

∑

s∈Nn

b2s|ϕs|2 −
(

r|∇φ|2 + 1

2r

∑

s∈Nn

b2s(e
iφ · ϕs)

2

)

=: g(t, x), (2.8)

h|∂+Q = (r − v)|∂+Q =: m, (2.9)

where ∂+Q stands for the parabolic boundary, i.e., the part of the boundary of
Q where the external normal makes with the time-axis an angle ≥ π/2. Note
that m(0, x) = 0. We write h = h1 + h2, where h1 is a solution of (2.8), (2.9)
with g = 0 and h2 is a solution of (2.8), (2.9) with m = 0. Since each |ϕs(x)| is
bounded by (2π)n/2 and r ≥ 1

2 in Q, then g(t, x) ≤ (2/π)
n
B0 everywhere in Q.

Now applying the maximum principle (see [Lan97]), we obtain the inequality

sup
t≥0

|h2(t)|∞ ≤ CB0,

(see Lemma 6 in [Kuk99]). Therefore

|u(t)|∞ ≤ 1
2 + |ξ(t)|∞ ≤ 1

2 + CB0 + |v1(t)|∞ + |v2(t)|∞ + |h1(t)|∞. (2.10)

To estimate h1 we note that

h1(s, x) =

∫

∂+Q

m(ξ)G(s, x, dξ),

where G(s, x, dξ) is the Green function3 for the problem (2.8), (2.9) with g = 0,
which for any (s, x) ∈ Q is a probability measure in Q, supported by ∂+Q. Here
we need the following estimate for G, proved in [Kuk99], Lemma 7, where

Q[a,b] := Q ∩ ([a, b]×K).

3It depends on ω, as well as the set Q. All estimates below are uniform in ω.
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Lemma 2.5. Let 0 ≤ s ≤ t. Then for any x ∈ K we have G(t, x,Q[0,t−s]) =

G(t, x,Q[0,t−s] ∩ ∂+Q) ≤ 2
n
2 e−

nπ2

4 s.

Since r|∂+Q ≤ 3
4 , we have

|h1(t, x)| ≤
3

4
+

∫

∂+Q

|v1(ξ)|G(t, x, dξ) +

∫

∂+Q

|v2(ξ)|G(t, x, dξ). (2.11)

Estimate (2.6) implies

∫

∂+Q

|v1(ξ)|G(t, x, dξ) ≤ |u0|∞. (2.12)

Let us take a positive constant T and cover the segment [0, t] by segments
I1, . . . , IjT , where

jT =
[ t

T

]

+ 1, Ij = [t− T j, t− T j + T ].

To bound the last integral in (2.11), we apply Lemma 2.5 as follows:

∫

∂+Q

|v2(ξ)|G(t, x, dξ) ≤
jT
∑

j=1

∫

QIj

|v2(ξ)|G(t, x, dξ)

≤ 2
n
2

jT
∑

j=1

e−
nπ2

4 (j−1)T sup
τ∈Ij

|v2(τ)|∞,

where v2(τ) is extended by zero outside [0, t]. Denoting

ζj = sup
τ∈Ij

|v2(τ)|∞, Y =

jT
∑

j=1

e−2jT ζj ,

and using that nπ2/4 > 2 we get

∫

∂+Q

|v2(ξ)|G(t, x, dξ) ≤ CY. (2.13)

So by (2.12) |h1(t)|∞ ≤ 3
4 + |u0|∞ + CY . As |v2(t, x)| ≤ ζ1 ≤ CY , then using

(2.10) and (2.6) we get for any u0 ∈ Hm and any t ≥ 0 that the solution u(t, x)
a.s. satisfies

|u(t, x)| ≤ 2|u0|∞ + CB0 + 2 + CY. (2.14)

Let us show that there are positive constants c and C, not depending on t
and u0, such that

E|u(t)|2∞ ≤ Ce−ct|u0|2∞ + C for all t ≥ 0. (2.15)
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Indeed, since v1 is a solution of the free heat equation, then

|v1(t)|∞ ≤ Ce−c1t|u0|∞ for t ≥ 0. (2.16)

This relation, Lemma 2.5 and (2.6) imply that

∫

∂+Q

|v1(ξ)|G(t, x, dξ) ≤
∫

∂+Q
[0, t

2
]

|v1(ξ)|G(t, x, dξ) +

∫

∂+Q
[ t
2
,t]

|v1(ξ)|G(t, x, dξ)

≤ sup
s≥0

|v1(s)|∞G(t, x,Q[0, t2 ]
) + sup

s≥ t
2

|v1(s)|∞

≤ |u0|∞2
n
2 e−

nπ2

4
t
2 + Ce−c1t|u0|∞ ≤ Ce−ct|u0|∞.

(2.17)

By Lemmas 2.4 and 2.5

E

∣

∣

∣

∣

∣

∫

∂+Q

v2(ξ)G(t, x, dξ)

∣

∣

∣

∣

∣

2

≤ C

for any t ≥ 0. Combining this with (2.10), (2.11), (2.16) and (2.17), we arrive
at (2.15).

Estimates (2.14) and (2.15) are used in the next section to get bounds for
exponential moments of |u|∞.

2.2 Exponential moments of |u(t)|∞
In this section, we strengthen bounds on polynomial moments of the random
variables sups∈[t,t+1] |u(s)|2∞, obtained in Theorem 2.2, to bounds on their ex-

ponential moments. As a consequence we prove that integrals
∫ T

0 |u(s)|2∞ ds
have linear growth as functions of T and derive exponential estimates which
characterise this growth. These estimates are crucially used in Sections 3-4 to
prove that eq. (1.2) defines a mixing Markov process.

Theorem 2.6. Under the assumptions of Theorem 2.2, for any u0 ∈ Hm, any
t ≥ 0 and T ≥ 1 the solution u(t, x) satisfies the following estimates:

(i) There are constants c∗(T ) > 0 and C(T ) > 0, such that for any c ∈
(0, c∗(T )] we have

E exp(c sup
s∈[t,t+T ]

|u(s)|2∞) ≤ C(T ) exp (5c|u0|2∞). (2.18)

(ii) There are positive constants λ0, C and c2 such that

E exp(λ

∫ t

0

|u(s)|2∞ds) ≤ C exp (c1|u0|2∞ + c2t), (2.19)

for each λ ≤ λ0, where c1 = Const · λ.
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Proof. Step 1 (proof of (i)). Due to (2.14), to prove (2.18) we have to estimate
exponential moments of Y 2. First let us show that for a suitable C2(T ) > 0 we
have

E exp(c sup
s∈[t,t+T ]

|v2(s)|2∞) ≤ 1

1− cC2(T )
for any t ≥ 0 and c <

1

C2(T )
.

(2.20)

Indeed, using (2.7), we get

E exp(c sup
[t,t+T ]

|v2(s)|2∞) = E

∞
∑

p=0

cp sup[t,t+T ] |v2(s)|2p∞
p!

≤
∞
∑

p=0

cp(C(T )B∗)
2ppp

p!

≤
∞
∑

p=0

(ce(C(T )B∗)
2)p ≤ 1

1− ce(C(T )B∗)2

since p! ≥ (p/e)p. Thus we get (2.20) with C2 := e(C(T )B∗)
2. In particular,

Eec
′ζ2

j ≤
(

1− c′C2(T )
)−1 ∀ c′ ≤ c. (2.21)

Next we note that since

Y 2 ≤ C2





jT
∑

j=1

e−j
(

e−jζj

)





2

≤ 2C2

jT
∑

j=1

e−2jζ2j

by Cauchy-Schwartz (we use that T ≥ 1), then

Eec
′Y 2 ≤ E

jT
∏

j=0

e2c
′C25−jζ2

j ,

as e2 > 5. Denote pj = α2j , j ≥ 0. Choosing α ∈ (1, 2) in a such a way that
∑jT

j=0(1/pj) = 1, using the Hölder inequality with these pj ’s and (2.21), we find
that

Eec
′Y 2 ≤

jT
∏

j=0

(

Ee2pjc
′C25−jζ2

j

)
1
pj ≤

jT
∏

j=0

(

Ee2c
′C2ζ2

j

)
1
pj

≤
jT
∏

j=0

(

1− c′C3(T )
)− 1

pj = exp



−
jT
∑

j=0

p−1
j ln(1− c′C3)



 ≤ ec
′C4(T ),

(2.22)

if 2c′C2 ≤ c and c′ ≤
(

2C3(T )
)−1

. In view of (2.14), this implies (2.18).

Step 2. Now we show that for any A ≥ 1 there is a time T (A) such that for
T ≥ T (A) we have

E exp
(

c( sup
s∈[0,T ]

|u(s)|2∞ +A|u(T )|2∞)
)

≤ C̃ exp (6c|u0|2∞) (2.23)
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for any c ∈ (0, c̃], where C̃ and c̃ depend on A and T . Indeed, due to (2.10) and
(2.16),

|u(T )|∞ ≤ 2 + Ce−cT |u0|∞ + CB0 + |v2(T )|∞ + |h1(T )|∞.

By (2.11), (2.17) and (2.13), |h1(T )|∞ ≤ 3
4 + CY + Ce−c′T |u0|∞. Therefore

choosing a suitable T = T (A) we achieve that

cA|u(T )|2∞ ≤ c(C1A+ C2AY
2 + |u0|2∞) + 2cA|v2(T )|2∞.

Using Hölder’s inequality we see that the cube of the l.h.s. of (2.23) is bounded
by

C(A)e3c|u0|
2
∞Ee3cC2AY 2

Ee6cA|v2(T )|2
∞ Ee3c sups∈[0,T ] |u(s)|

2
∞ .

Taking c ≤ c(A) and using (2.22), (2.20) and (2.18) we estimate the product by

C(A, T )e3c|u0|
2
∞ e15c|u0|

2
∞ . This implies (2.23).

Step 3 (proof of (ii)). Let T0 ≥ 1 be such that (2.23) holds with A = 6. Let
c > 0 and C > 0 be the constants in (2.18), corresponding to T = T0, and let
λ ≤ c/T0. It suffices to prove (2.19) for t = T0k, k ∈ N, since this result implies
(2.19) with any t ≥ 0 if we modify the constant C. By the Markov property,

Xλ := Eu0 exp
(

λ

∫ T0k

0

|u(s)|2∞ds
)

= Eu0

(

exp(λ

∫ T0(k−1)

0

|u(s)|2∞ds)

× Eu(T0(k−1)) exp(λ

∫ T0

0

|u(s)|2∞ds)
)

,

and by (2.18)

Eu(T0(k−1)) exp
(

λ

∫ T0

0

|u(s)|2∞ds
)

≤ C exp
(

5λT0|u(T0(k − 1))|2∞
)

.

Combining these two relations we get

Xλ ≤ CEu0 exp
(

λ

∫ T0(k−1)

0

|u(s)|2∞ds+ 6T0|u(T0(k − 1)|2∞
)

.

Applying again the Markov property and using (2.23) with A = 6 and c = λT0

we obtain

Xλ ≤ CEu0

(

exp(λ

∫ T0(k−2)

0

|u(s)|2∞ds)

× Eu((T0(k−2)) exp
(

λT0( sup
0≤s≤T0

|u(s)|2∞ + 6|u(T0)|2∞)
)

)

≤ C2
Eu0 exp

(

λ

∫ T0(k−2)

0

|u(s)|2∞ds+ 6λT0|u(T0(k − 2))|2∞
)

.
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Iteration gives

Xλ ≤ Cm
Eu0 exp

(

λ

∫ T0(k−m)

0

|u(s)|2∞ds+ 6λT0|u(T0(k −m))|2∞
)

,

for any m ≤ k. When m = k, this relation proves (2.19) with t = kT0, C =
1, c1 = 6λT0 and a suitable c2.

In the lemma below by c1, c2 and λ0 we denote the constants from Theo-
rem 2.6(ii).

Lemma 2.7. For any u0 ∈ Hm the solution u(t, x) satisfies the following esti-
mate for any ρ ≥ 0

P{sup
t≥0

(∫ t

0

|u(s)|2∞ds−Kt

)

≥ ρ} ≤ C′ exp(c1|u|2∞ − λρ), (2.24)

where C′ is an absolute constant, K = λ−1(c2 + 1) and λ is a suitable constant
from (0, λ0].

Proof. For any real number t denote ⌈t⌉ = min{n ∈ Z : n ≥ t}. Then
{

(

∫ t

0

|u|2∞ ds−Kt
)

≥ ρ
}

⊂
{

(

∫ ⌈t⌉

0

|u|2∞ ds−K⌈t⌉
)

≥ ρ−K
}

.

So it suffices to prove (2.24) for integer t since then the required inequality
follows with a modified constant C′. Accordingly below we replace supt≥0 by
supn∈N. By the Chebyshev inequality and estimate (2.19) we have

P

{

sup
n∈N

(∫ n

0

|u(s)|2∞ds−Kn

)

≥ ρ
}

≤
∑

n∈N

P

{

∫ n

0

|u(s)|2∞ds ≥ ρ+Kn
}

≤
∑

n∈N

exp(−λ(ρ+Kn))C exp (c1|u0|2∞ + c2n)

≤ C exp(−λρ+ c1|u0|2∞)
∑

n∈N

exp (−n)

= C′ exp(c1|u0|2∞ − λρ)

since λK − c2 = 1. This proves (2.24).

3 Markov Process in C0(K).

The goal of this section is to construct a family of Markov processes, associated
with eq. (1.2) in the space C0(K). To this end we first prove a well-posedness
result in that space.
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3.1 Existence and uniqueness of solutions

Let u0 ∈ C0(K). Denote by Πm : H→Cm the usual Galerkin projections and
set ηm := Πmη =: ∂

∂tζ
m. Let um

0 ∈ C∞ be such that |um
0 − u0|∞→0 as m→∞

and |um
0 |∞ ≤ |u0|∞ + 1. Let um be a solution of (1.2), (1.5) with η = ηm and

u0 = um
0 , existing by Theorem 2.2.

Fix any T > 0. For p > 1, α ∈ (0, 1) and a Banach spaceX , letWα,p([0, T ], X)
be the space of all u ∈ Lp([0, T ], X) such that

‖u‖pWα,p([0,T ],X) := ‖u‖pWp([0,T ],X) +

∫ T

0

∫ T

0

‖u(t)− u(τ)‖pX
|t− τ |1+αp

dτdt < ∞.

Let us define the spaces

U := L2([0, T ], H1) ∩Wα,4([0, T ], H−1),

V := L2([0, T ], H1−ε) ∩ C([0, T ], H−2),

where α ∈ (14 ,
1
2 ) and ε ∈ (0, 1

2 ) are fixed. Then

space U is compactly embedded into V . (3.1)

Indeed, by Theorem 5.2 in [Lio69], U ⋐ L2([0, T ], H1−ε). On the other hand,

Wα,4([0, T ], H−1) ⊂ Cα− 1
4 ([0, T ], H−1) and H−1

⋐ H−2.

Lemma 3.1. For m ≥ 1 let Mm be the law of the solution {um}, constructed
above. Then

(i) The sequence {Mm} is tight in V.

(ii) Any limiting measure M of Mm is the law of a weak solution ũ(t), 0 ≤
t ≤ T , of (1.2), (1.5). This solution satisfies (2.1) for 0 ≤ t ≤ T − 1 and
(2.2), (2.18), (2.24) for 0 ≤ t ≤ T .

(iii) If 1 ≤ t ≤ T − 1, then for any 0 < θ < 1 and any q ≥ 1 we have

E‖ũ |([t,t+1]×K) ‖qCθ/2,θ ≤ C(q, θ, |u0|∞). (3.2)

Proof. The process um satisfies the following equation with probability 1

um(t) = um
0 +

∫ t

0

(∆um − i|um|2um)ds+ ζm =: V m + ζm.

Using (2.1) and (2.2), we get

E‖Vm‖2W 1,2([0,T ],H−1) ≤ C. (3.3)

It is well known that for any p > 1 and α ∈ (0, 1
2 ), we have

E‖ζm‖2Wα,p([0,T ],H) ≤ C (3.4)
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(e.g., see [KS12], Section 5.2.1). Combining (3.3) and (3.4), we get

E‖um‖2Wα,4([0,T ],H−1) ≤ CE‖V m‖2W 1,2([0,T ],H−1) + CE‖ζm‖2Wα,4([0,T ],H) ≤ C.

Jointly with (2.2) this estimate implies that E‖um‖2U ≤ C1 for each m with a
suitable C1. Now (i) holds by (3.1) and the Prokhorov theorem.

Let us prove (ii). Suppose that Mm converges weakly to M in V . By
Skorohod’s embedding theorem, there is a probability space (Ω̃, F̃ , P̃), and V-
valued random variables ũm and ũ defined on it such that each ũm is distributed
as Mm, ũ is distributed as M and P-a.s. we have ũm→ũ in V .

Since V ⊂ L2([0, T ]×K) =: L2, then ũm → ũ in L2, a.s. For any R ∈ (0,∞]
and p, q ∈ [1,∞) consider the functional fp

R,

fp
R(u) =

∣

∣|u|q ∧R
∣

∣

Lp([t,t+1]×K)
≤ |u|q∞.

Since for p,R < ∞ it is continuous in L2, then by (2.1) we have E(fp
R(ũ)) ≤

Cq for p,R < ∞. As for each v(t, x) ∈ L∞([t, t + 1] × K) the function
[1,∞] ∋ p 7→ |v|Lp([t,t+1]×K) ∈ [0,∞] is continuous and non-decreasing, then
sending p and R to ∞ and using the monotone convergence theorem, we get
E sups∈[t,t+1] |ũ(s)|q∞ ≤ Cq. I.e., ũ satisfies (2.1).

By (2.2) for each m and N we have

E‖ΠN ũm(t)‖2 + 2E

∫ t

0

‖ΠN ũm(τ)‖21dτ ≤ ‖um
0 ‖2 +B0t.

Passing to the limit as m→∞ and then N→∞ and using the monotone con-
vergence theorem, we obtain that ũ satisfies (2.2), where the equality sign is
replace by ≤ . We will call this estimate (2.2)≤ .

By the same reason (cf. Lemma 1.2.17 in [KS12]) the process ũ(t) satisfies
(2.18) and (2.24).

Since ũm is a weak solution of the equation, then

ũm(t)− um
0 −

∫ t

0

(∆ũm − i|ũm|2ũm)ds = ζ̃m, (3.5)

where ζ̃m is distributed as the process ζ. Using the Cauchy–Schwarz inequality
and (2.1), we get

E

∫ T

0

∥

∥|ũm|2ũm − |ũ|2ũ
∥

∥ds ≤ C E

∫ T

0

‖(ũm − ũ)(|ũm|2 + |ũ|2)‖ds

≤ C E sup
t∈[0,T ]

(|ũm(t)|2∞ + |ũ(t)|2∞)

∫ T

0

‖ũm − ũ‖ds

≤ C
√
T

(

E sup
t∈[0,T ]

(|ũm(t)|4∞ + |ũ(t)|4∞)

)
1
2
(

E

∫ T

0

‖ũm − ũ‖2ds
)

1
2

≤ C(T, |u0|∞)

(

E

∫ T

0

‖ũm − ũ‖2ds
)

1
2

.
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Since the r.h.s. goes to zero when m → ∞, then for a suitable subsequence
mk→∞ we have a.s.

∥

∥

∥

∫ t

0

|ũmk |2ũmkds−
∫ t

0

|ũ|2ũds
∥

∥

∥

C([0,T ],L2)
→0 as k→∞.

Therefore the l.h.s. of (3.5) converges to
(

ũ(t)− u0 −
∫ t

0
(∆ũ− i|ũ|2ũ)ds

)

in the
space C([0, T ], H−2) over the sequence {mk}, a.s. So a.s. there exists a limit
lim ζ̃mk(·) = ζ̃(·), and

ũ(t)− u0 −
∫ t

0

(∆ũ − i|ũ|2ũ)ds = ζ̃(t). (3.6)

We immediately get that ζ̃(t) is a Wiener process in H−2, distributed as the
process ζ. Let F̃t, t ≥ 0, be a sigma-algebra, generated by {ũ(s), 0 ≤ s ≤ t}
and the zero-sets of the measure P̃. From (3.6), ζ̃(t) is F̃t-measurable. So ζ̃(t)
is a Wiener process on the filtered probability space (Ω̃, F̃ , {F̃t}, P̃), distributed
as ζ.

Since ũ(t, x) satisfies (3.6), we can write ũ = u1+u2+u3, where u1 satisfies
(2.5) with Υ̇ = 0, v0 = u0; u2 satisfies (2.5) with Υ̇ = −i|ũ|2ũ, v0 = 0 and u3

satisfies (2.5) with Υ = ζ̃, v0 = 0. Now Lemma 2.4 and the parabolic regularity
imply that ũ ∈ C([0, T ];C0(K)), a.s. As ũ satisfies (2.2)≤ , then ũ ∈ H([0, T ])
a.s. Since clearly ũ(0) = u0 a.s., then ũ is a weak solution of (1.2), (1.5).

Regarding ũ(t) as an Ito process in the space H , using (2.1) and applying to
‖ũ(t)‖2 the Ito formula in the form, given in [KS12], we see that ‖ũ(t)‖2 satisfies
the relation, given by the displayed formula above (2.2). Taking the expectation
we recover for ũ the equality (2.2).

It remains to prove (iii). Functions u1 and u3 meet (3.2) by Lemma 2.4 and
the parabolic regularity. Consider u2. Since u2 = ũ− u1 − u3, then u2 satisfies
(2.1). Consider restriction of u2 to the cylinder [t − 1, t + 1] × K. Since u2

satisfies the heat equation, where the r.h.s. and the Cauchy data at (t− 1)×K
are bounded functions, then by the parabolic regularity restriction of u2 to
[t, t+ 1]×K also meets (3.2).

The pathwise uniqueness property holds for the constructed solutions:

Lemma 3.2. Let u(t) and v(t), t ∈ [0, T ], be processes in the space C0(K),
defined on the same probability space, and let ζ(t) be a Wiener process, defined
on the same space and distributed as ζ in (1.3). Assume that a.s. trajectories
of u and v belong to H([0, T ])and satisfy (1.2), (1.5). Then u(t) ≡ v(t) a.s.

Proof. For any R > 0 let us introduce the stopping time

τR = inf{t ∈ [0, T ] : |u(t)|∞ ∨ |v(t)|∞ ≥ R}, (3.7)

and consider the stopped solutions uR(t) := u(t ∧ τR) and vR(t) := v(t ∧ τR).
Then w := uR − vR satisfies

ẇ −∆w + i(|uR|2uR − |vR|2vR) = 0, w(0) = 0.
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Taking the scalar product in H of this equation with w and applying the Gron-
wall inequality, we get that w(t) ≡ 0. Since u, v ∈ H([0, T ]), then τR → T , a.s.
Therefore uR→u and vR→v a.s. as R→∞. This completes the proof.

By the Yamada–Watanabe arguments (e.g., see [KS91]), existence of a weak
solution plus pathwise uniqueness implies the existence of a unique strong solu-
tion u(t), 0 ≤ t ≤ T . Since T is any positive number, we get

Theorem 3.3. Let u0 ∈ C0(K). Then problem (1.2), (1.5) has a unique strong
solution u(t), t ≥ 0. This solutions satisfies relations (2.1), (2.2), (2.18) and
(2.24); for t ≥ 1 it also satisfies (3.2).

3.2 Markov process

Let us denote by u(t) = u(t, u0) the unique solution solution of (1.2), corre-
sponding to an initial condition u0 ∈ C0(K). Equation (1.2) defines a family of
Markov process in the space C0(K) parametrized by u0. For any u ∈ C0(K)
and Γ ∈ B(C0(K)), we set Pt(u,Γ) = P{u(t, u) ∈ Γ}. The Markov operators
corresponding to the process u(t) have the form

Ptf(u) =

∫

C0(K)

Pt(u, dv)f(v), P∗
tµ(Γ) =

∫

C0(K)

Pt(u,Γ)µ(du),

where f ∈ Cb(C0(K)) and µ ∈ P(C0(K)).

Lemma 3.4. The Markov process associated with (1.2) is Feller.

Proof. We need to prove that Ptf ∈ Cb(C0(K)) for any f ∈ Cb(C0(K)) and
t > 0. To this end, let us take any u0, v0 ∈ C0(K), and let u and v be the
corresponding solutions of (1.2) given by Theorem 3.3. Let us take any R >
R0 := |u0|∞ ∨ |v0|∞. Let τR be the stopping time defined by (3.7), and let
uR(t) := u(t ∧ τR) and vR(t) := v(t ∧ τR) be the stopped solutions. Then

|Ptf(u0)−Ptf(v0)| ≤ E|f(u)− f(uR)|+ E|f(v)− f(vR)|
+ E|f(uR)− f(vR)| =: I1 + I2 + I3.

By (2.1) and the Chebyshev inequality, we have

max{I1, I2} ≤ 2|f |∞P{t > τR} ≤ 2|f |∞P{U(t) ∨ V (t) > R}
≤ 4

R |f |∞ sup
|u0|∞≤R0

EU(t)→0 as R→∞,

where U(t) = sups∈[0,t] |u(s)|∞ and V (t) is defined similarly. To estimate I3,
notice that w = uR − vR is a solution of

ẇ −∆w + i(|uR|2uR − |vR|2vR) = 0, w(0) = u0 − v0 =: w0.

We rewrite this in the Duhamel form

w = et∆w0 − i

∫ t

0

e(t−s)∆(|uR|2uR − |vR|2vR)ds.

17



Since, by the maximum principle, |et∆z|∞ ≤ |z|∞, then

|w|∞ ≤ |w0|∞ +

∫ t

0

||u|2u− |v|2v|∞ds ≤ |w0|∞ + 3

∫ t

0

(|u|2∞ + |v|2∞)|w|∞ds.

By the Gronwall inequality, I3 ≤ E|w|∞ ≤ |w0|∞etCR→0 as |w0|∞→0. There-
fore the function Ptf(u) is continuous in u ∈ C0(K), as stated.

A measure µ ∈ P(C0(K)) is said to be stationary for eq. (1.2) if P∗
tµ = µ for

every t ≥ 0. The following theorem is proved in the standard way by applying
the Bogolyubov–Krylov argument (e.g. see in [KS12]).

Theorem 3.5. Equation (1.2) has at least one stationary measure µ, satisfying
∫

H1 ‖u‖21µ(du) = 1
2B0 and

∫

C0(K)
ec|u|

2
∞ µ(du) < ∞ for any c < c∗, where c∗ > 0

is the constant in assertion (i) of Theorem 2.6.

3.3 Estimates for some hitting times

For any d, L,R > 0 we introduce the following hitting times for a solution u(t)
of (1.2):

τ1,d,L := inf{t ≥ 0 : ‖u(t)‖ ≤ d, |u(t)|∞ ≤ L},
τ2,R := inf{t ≥ 0 : |u(t)|∞ ≤ R}.

Lemma 3.6. There is a constant L > 0 such that for any d > 0 we have

Eeγτ1,d,L ≤ C(1 + |u(0)|2∞), (3.8)

where γ and C are suitable positive constants, depending on d and L.

It is well known that inequality (3.8) follows the from two statements below
(see Proposition 2.3 in [Shi04] or Section 3.3.2 in [KS12]).

Lemma 3.7. There are positive constants δ, R and C such that

Eeδτ2,R ≤ C(1 + |u(0)|2∞). (3.9)

Lemma 3.8. For any R > 0 and d > 0 there is a non-random time T > 0 and
positive constants p and L such that

P{u(T, u0) ∈ BH(d) ∩BC0(K)(L)} ≥ p for any u0 ∈ BC0(K)(R).

Proof of Lemma 3.7. Let us consider the function F (u) = max(|u|2∞, 1). We
claim that this is a Lyapunov function for eq. (1.2). That is,

EF (u(T, u)) ≤ aF (u) for |u|∞ ≥ R′, (3.10)

for suitable a ∈ (0, 1), T > 0 and R′ > 0. Indeed, let |u|∞ ≥ R′ and T > 1.
Since F (u) ≤ 1 + |u|2∞, then

EF (u(T, u)) ≤ 1 + E|u(T, u)|2∞ ≤ 1 + Ce−cT |u|2∞ + C,
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where we used (2.15). This implies (3.10). Since due to (2.15) for |u|∞ < R′ and
any T > 1 we have EF (u(T, u)) ≤ C′ then (3.9) follows by a standard argument
with Lyapunov function (e.g., see Section 3.1 in [Shi08]).

Proof of Lemma 3.8. Step 1. Let us write u(t) = v(t) + z(t), where z is a
solution of (2.5) with v0 = 0, i.e.,

z =
∑

s∈Nn

∫ t

0

e(t−τ)∆bsϕsdβ
ω
s .

Then

v̇ −∆v + i|v + z|2(v + z) = 0, v(0) = u0. (3.11)

Clearly for any δ ∈ (0, 1] and T > 0 we have

PΩδ > 0 , where Ωδ = { sup
0≤t≤T

|z(t)|∞ < δ}.

Step 2. Due to (3.11),

v̇ −∆v + i|v|2v = L3, (t, x) ∈ QT = [0, T ]×K, (3.12)

where L3 is a cubic polynomial in v, v̄, z, z̄ such that every its monomial contains
z or z̄. Consider the function r = |v(t, x)|. Due to (3.12), for ω ∈ Ωδ and outside
the zero-set X = {r = 0} ⊂ QT the function r satisfies the parabolic inequality

ṙ −∆r ≤ Cδ(r2 + 1), r(0, x) = |v(0, x)| ≤ R+ 1. (3.13)

Define τ = inf{t ∈ [0, T ] : |r(t)|∞ ≥ R + 2}, where τ = T if the set is empty.
Then τ > 0 and for 0 ≤ t ≤ τ the r.h.s. in (3.13) is ≤ Cδ((R+2)2+1) = δC1(R).
Now consider the function

r̃(t, x) = r − (R+ 1)− tδC1(R).

Then r̃ ≤ 0 for t = 0 and for (t, x) ∈ ∂(QT \K). Due to (3.13) and the definition
of τ , for (t, x) ∈ Qτ \X this function satisfies

˙̃r −∆r̃ ≤ Cδ(r2 + 1)− δC1(R) ≤ 0.

Applying the maximum principle [Lan97], we see that r̃ ≤ 0 in Qτ \K. So for
t ≤ τ we have r(t, x) ≤ (R+1)+ tδC1(R). Choose δ so small that TδC1(R) < 1.
Then r(t, x) < R+ 2 for t ≤ τ . So τ = T and we have proved that

|v(t)|∞ = |r(t)|∞ ≤ R+ 2 ∀ 0 ≤ t ≤ T if δ ≤ δ(T,R), ω ∈ Ωδ. (3.14)

Step 3. It remains to estimate ‖v(t)‖. To do this we first define v1(t, x) as a
solution of eq. (1.2) with η = 0 and v1(0) = u0. Then

‖v1(t)‖ ≤ e−α1t‖u0‖, |v1(t)|∞ ≤ |u0|∞ ≤ R, (3.15)
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since outside its zero-set the function |v1(t, x)| satisfies a parabolic inequality
with the maximum principle (namely, eq. (3.13) with δ = 0).

Step 4. Now we estimate w = v−v1. This function solves the following equation:

ẇ −∆w + i
(

|v + z|2(v + z)− |v1|2v1
)

= 0, w(0) = 0.

DenotingX = w+z (so that v+z = X+v1), we see that the term in the brackets
is a cubic polynomial P3 of the variables X, X̄, v1 and v̄1, such that every its
monomial contains X or X̄. Taking the H-scalar product of the w-equation
with w we get that

1

2

d

dt
‖w‖2 + ‖∇w‖2 = −〈iP3, w〉, w(0) = 0.

By (3.15), for ω ∈ Ωδ the r.h.s. is bounded by C′(R, T )(δ2 + ‖w‖2 + ‖w‖4).
Therefore

‖w(T )‖2 ≤ e2C
′′(R,T )δ2 (3.16)

everywhere in Ωδ, if δ is small.

Step 5. Since u = w+v1+z, then by (3.15), (3.14) and (3.16), for every δ, T > 0
and for each ω ∈ Ωδ we have

‖u(T )‖ ≤ δ + e−α1TR+ eC
′′(R,T )T δ =: κ.

Since u = v+ z, then |u(T )|∞ ≤ δ+R+2. Choosing first T ≥ T (R, d) and next
δ ≤ δ(R, d, T ) we achieve κ ≤ d. This proves the lemma with L = R+ 3.

4 Ergodicity

In this section, we analyse behaviour of the process u(t) with respect to the
norms ‖u‖ and |u|∞ and next use an abstract theorem from [KS12] to prove
that the process is mixing.

4.1 Uniqueness of stationary measure and mixing

First we recall the abstract theorem from [KS12] in the context of the CGL
equation (1.2). Let us, as before, denote by Pt(u,Γ) and P∗

t the transition
function and the family of Markov operators, associated with equation (1.2) in
the space of Borel measures in C0(K). Let u(t) be a trajectory of (1.2), starting
from a point u ∈ C0(K). Let u′(t) be an independent copy of the process u(t),
starting from another point u′, and defined on a probability space Ω′ which is a
copy of Ω. For a closed subset B ⊂ C0(K) we set B = B×B ⊂ C0(K)×C0(K)
and define the hitting time

τ (B) := inf{t ≥ 0 : u(t) ∈ B, u′(t) ∈ B}, (4.1)

which is a random variable on Ω × Ω′. The following result is an immediate
consequence of Theorem 3.1.3 in [KS12].
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Proposition 4.1. Let us assume that for any integer m ≥ 1 there is a closed
subset Bm ⊂ C0(K) and constants δm > 0, Tm ≥ 0 such that δm→0 as m→∞,
and the following two properties hold:

(i) (recurrence) For any u, u′ ∈ C0(K), τ (Bm) < ∞ almost surely.
(ii) (stability) For any u, u′ ∈ Bm

sup
t≥Tm

‖Pt(u, ·)− Pt(u
′, ·)‖∗L(C0(K)) ≤ δm. (4.2)

Then the stationary measure µ of eq. (1.2), constructed in Theorem 3.5, is
unique and for any λ ∈ P(C0(K)) we have P∗

tλ ⇀ µ as t→∞.

We will derive from this that the Markov process, defined by eq. (1.2) in
C0(K), is mixing:

Theorem 4.2. There is an integer N = N(B∗) ≥ 1 such that if bs 6= 0 for
|s| ≤ N , then there is a unique stationary measure µ ∈ P(C0(K)) for (1.2), and
for any measure λ ∈ P(C0(K)) we have P∗

tλ ⇀ µ as t→∞.

The theorem is proved in the next section. Now we derive from it a corollary:

Corollary 4.3. Let f(u) be a continuous functional on C0(K) such that |f(u)| ≤
Cfe

c|u|2
∞ for u ∈ C0(K), where c < c∗ (c∗ > 0 is the constant in assertion (i)

of Theorem 2.6). Then for any solution u(t) of (1.2) such that u(0) ∈ C0(K) is
non-random, we have

Ef(u(t)) → (µ, f) as t → ∞.

Proof. For any N ≥ 1 consider a smooth function ϕN (r), 0 ≤ ϕN ≤ 1, such that
ϕN = 1 for |r| ≤ N and ϕN = 0 for |r| ≥ N+1. Denote fN (u) = ϕN (|u|∞)f(u).
Then fN ∈ Cb(C0(K)), so by Theorem 4.2 we have

|EfN (u(t))− (µ, fN )| ≤ κ(N, t),

where κ → 0 as t → ∞, for any N . Denote νt(dr) = D(|u(t)|∞), t ≥ 0. Due to
(2.18),

|E(fN (u(t)) − f(u(t))| ≤ Cf

∫ ∞

0

(1− ϕN (r))ecr
2

νt(dr)

≤ Cfe
(c−c∗)N

2

∫ ∞

0

ec∗r
2

νt(dr) ≤ C1e
(c−c∗)N

(note that the r.h.s. goes to 0 when N grows to infinity). Similar, using Theo-
rem 3.5 we find that |(µ, fN )−(µ, f)| → 0 as N → ∞. The established relations
imply the claimed convergence.
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4.2 Proof of Theorem 4.2

It remains to check that eq. (1.2) satisfies properties (i) and (ii) in Proposi-
tion 4.1 for suitable sets Bm. For m ∈ N and L > 0 we define

Bm,L := {u ∈ C0(K) : ‖u‖ ≤ 1

m
, |u|∞ ≤ L}

(these are closed subsets of C0(K)). For u0, u
′
0 ∈ Bm,L consider solutions

u = u(t, u0), u′ = u(t, u′
0),

defined on two independent copies Ω,Ω′ of the probability space Ω, and consider
the first hitting time τ (Bm,L) of the set Bm,L by the pair (u(t), u′(t)) (this is
a random variable on Ω × Ω′, see (4.1)). The proof of the following lemma is
identical to that of Lemma 3.6.

Lemma 4.4. There is a constant L′ > 0 such that for any m ∈ N we have

Eeγτ (Bm,L′) ≤ C(1 + |u0|2∞ + |u′
0|2∞) for all u0, u

′
0 ∈ C0(K),

where γ and C are suitable positive constants.

Let us choose L = L′ in the definition of the sets Bm,L in Proposition 4.1.
Then the property (i) holds and it remains to establish (ii), where Pt(u0, ·) =
D(u(t)) and Pt(u

′
0, ·) = D(u′(t)). From now on we assume that the solutions u

and u′ are defined on the same probability space. It turns out that it suffices
to prove (4.2) with the norm ‖ · ‖∗L(C0(K)) replaced by ‖ · ‖∗L(H). To show this

we first estimate the distance between D(u(t)) and D(u′(t)) in the Kantorovich
metrics

‖D(u(t))−D(u′(t))‖K(H) = sup{|(f,D(u(t))) − (f,D(u′(t)))| : Lip(f) ≤ 1}

in terms of
d = ‖D(u(t))−D(u′(t))‖∗L(H),

where t ≥ 0 is any fixed number. Without loss of generality, we can assume
that the supremum in the definition of the Kantorovich distance is taken over
f ∈ L(H) such that Lip(f) ≤ 1 and f(0) = 0. By (2.18),

E(ec‖u(t)‖ + ec‖u
′(t)‖) ≤ CL. (4.3)

Setting fR(u) = min{f(u), R} and using (4.3), the Cauchy–Schwarz and Cheby-
shev inequalities, we get

E|f(u(t)) − fR(u(t))| ≤ E(‖u(t)‖ −R)I‖u(t)‖≥R ≤ C′
Le

− c
2R.

A similar inequality holds for u′(t). Since ‖fR‖L(H) ≤ R+ 1, then

E|f(u(t))− f(u′(t))| ≤ 2C′
Le

− c
2R + (R + 1)d.
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Optimising this relation in R, we find that E|f(u(t))− f(u′(t))| ≤ C′′
L

√
d. Thus

‖D(u(t))−D(u′(t))‖K(H) ≤ C′′
L

√
d,

By (3.2), the functions u(t) and u′(t) belong to Cθ(K) for any θ ∈ (0, 1).
The following interpolation inequality is proved at the end of this section.

Lemma 4.5. For any u ∈ Cθ(K) we have

|u|∞ ≤ Cn,θ‖u‖
2θ

n+2θ |u|
n

n+2θ

Cθ . (4.4)

By the celebrated Kantorovich theorem (e.g. see in [Dud89]), we can find
random variables ξ and ξ′ such that D(ξ) = D(u(t)), D(ξ′) = D(u′(t)) and

E‖ξ − ξ′‖ = ‖D(u(t))−D(u′(t))‖K(H) ≤ C′′
L

√
d.

Using (4.4), (3.2), this estimate and the Hölder inequality, we find that

E|ξ − ξ′|∞ ≤ CE‖ξ − ξ′‖ 2θ
n+2θ |ξ − ξ′|

n
n+2θ

Cθ ≤ (C′′
L

√
d)

2θ
n+2θC′′′

L

n
n+2θ = C̃Ld

θ
n+2θ .

Therefore, for any f such that ‖f‖L(C0(K)) ≤ 1 we have

|(f,D(u(t))) − (f,D(u′(t)))| = |Ef(ξ) − f(ξ′)| ≤ E|ξ − ξ′|∞ ≤ C̃Ld
θ

n+2θ ,

which implies that

‖D(u(t))−D(u′(t))‖∗L(C0(K)) ≤ C̃L

(

‖D(u(t))−D(u′(t))‖∗L(H)

)
θ

n+2θ

. (4.5)

Thus we have proved

Lemma 4.6. Assume that

sup
t≥Tm

‖Pt(u0, ·)− Pt(u
′
0, ·)‖∗L(H) ≤ δm (4.6)

for all u0, u
′
0 ∈ Bm,L, where δm → 0. Then (4.2) holds for Bm = Bm,L with

δ′m = CLδ
θ

n+2θ
m .

So to prove Theorem 4.2 it remains to verify (4.6).

Proof of (4.6). In view of the triangle inequality we may assume that in (4.6)
u′
0 = 0.
Step 1. In this step we prove that it suffices to establish (4.6) for solutions

of an equation, obtained by truncating the nonlinearity in (1.2). For any ρ ≥ 0
and any continuous process {z(t) : t ≥ 0} with range in C0(K) we define the
stopping time

τz = inf
{

t ≥ 0 :

∫ t

0

|z(τ)|2∞dτ −Kt ≥ ρ},

23



where K is the constant in Lemma 2.7 (as usual, inf ∅ = ∞). We set Ωz
ρ =

{τz < ∞} and πz = P(Ωz
ρ). Then

πu ≤ Ce−γρ, πu′ ≤ Ce−γρ (4.7)

for suitable C, γ > 0 and for any ρ > 0. Consider the following auxiliary
equation:

v̇ −∆v + i|v|2v + λPN (v − u) = η(t, x), v(0) = 0. (4.8)

Consider τv and define Ωv
ρ and πv as above. Define the stopping time

τ = min{τu, τu′

, τv} ≤ ∞,

and define the continuous processes û(t), û′(t) and v̂(t) as follows: for t ≤ τ they
coincide with the processes u, u′ and v respectively, while for t ≥ τ they satisfy
the heat equation

ż −∆z = η.

Due to (4.7)

‖D(u(t))−D(û(t))‖∗L + ‖D(u′(t))−D(û′(t))‖∗L ≤ 4P{τ < ∞} ≤ 8Ce−γρ + 4πv.
(4.9)

So to estimate the distance between D(u(t)) and D(u′(t)) it suffices to estimate
πv and the distance between D(û(t)) and D(û′(t)).

Step 2. Let us first estimate the distance between D(û(t)) and D(v̂(t)).
Equations (1.2) and (4.8) imply that for t ≤ τ the difference w = v̂− û satisfies

ẇ −∆w + i
(

|v̂|2v̂ − |û|2û
)

+ λPNw = 0, w(0) = −u0,

where |〈|v̂|2v̂− |û|2û, w〉| ≤ C(|û|2∞+ |v̂|2∞)‖w‖2 . Taking the H-scalar product
of the w-equation with 2w, we get that

d

dt
‖w‖2 + 2‖∇w‖2 + 2λ‖PNw‖2 ≤ C(|û|2∞ + |v|2∞)‖w‖2, t ≤ τ. (4.10)

Since ‖∇w‖2 ≥ αN‖QNw‖2, where QN = id−PN , then

2‖∇w‖2 + 2λ‖PNw‖2 ≥ 2λ1‖w‖2, λ1 := min{αN , λ}.

Choosing λ and N so large that λ1 − CK ≥ 1 and applying to (4.10) the
Gronwall inequality, we obtain that

‖w‖2 ≤ ‖u0‖2 exp
(

−2λ1t+ C

∫ t

0

(|û|2∞ + |v̂|2∞)ds

)

≤ 1

m2
exp (−2(λ1 − CK)t+ 2Cρ) ≤ 1

m2
exp (−2t+ 2Cρ) ,
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for t ≤ τ . Clearly for t ≥ τ we have (d/dt)‖w‖2 ≤ −2‖w‖2. Therefore

‖w‖2 ≤ 1

m2
exp (−2t+ 2Cρ) ∀ t ≥ 0 a.s. (4.11)

So for any f ∈ L(H) such that ‖f‖L ≤ 1 we get

|E(f(û(t))− f(v̂(t)))| ≤
(

E‖w‖2
)

1
2 ≤ 1

m
eCρ−t =: d(m, ρ, t).

Thus

‖D(û(t)) −D(v̂(t))‖∗L(H) ≤ d(m, ρ, t). (4.12)

Step 3. To estimate the distance between D(v̂(t)) and D(û′(t)) notice that,
without loss of generality, we can assume that the underlying probability space
(Ω,F ,P) is of the particular form: Ω is the space of functions u ∈ C(R+, C0(K))
that vanish at t = 0, P is the law of ζ defined by (1.3), and F is the completion of
the Borel σ-algebra of Ω with respect to P. For any ω· ∈ Ω, define the mapping
Φ : Ω→Ω by

Φ(ω)t = ωt − λ

∫ t

0

χs≤τPN

(

v̂(s)− û(s)
)

ds.

Clearly, a.s. we have

û′Φ(ω)(t) = v̂ω(t) for all t ≥ 0. (4.13)

Note that the transformation Φ is finite dimensional: it changes only the first
N components of a trajectory ωt. Due to (4.11), almost surely

∫ ∞

0

‖PNw(s)‖2 ds ≤ 1

2m2
e2Cρ.

This relation, the hypothesis that bs 6= 0 for any |s| ≤ N, and the argument in
Section 3.3.3 of [KS12], based on the Girsanov theorem, show that

‖Φ ◦ P− P‖var ≤ C(ρ)

m
=: d̃(m, ρ). (4.14)

Using (4.13), we get D(v̂(t)) = v̂t ◦ P = û′
t ◦ (Φ ◦ P), where v̂t stands for the

random variable ω→v̂ω(t). Therefore,

‖D(v̂(t))−D(û′(t))‖∗L(H) ≤ 2‖D(v̂(t)) −D(û′(t))‖var
≤ 2‖Φ ◦ P− P‖var ≤ 2d̃(m, ρ). (4.15)

Step 4. Now let us prove (4.6). We get from (4.7) and (4.14) that

πv = PΩv
ρ = PΦ−1(Ωû

ρ) = (Φ ◦ P)Ωû
ρ ≤ PΩû

ρ + d̃(m, ρ) ≤ Ce−γρ + d̃(m, ρ).
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Due to (4.9), (4.12), (4.15) and the last inequality we have

‖D(u(t))−D(u′(t))‖∗L ≤ 12Ce−γρ + d(m, ρ, t) + 6d̃(m, ρ)

≤ 12Ce−γρ +
1

m
eCρ−t +

6

m
C(ρ) =: Dm(t).

Let us choose ρ = ρ(m), where ρ(m) → ∞ in such a way that 6
mC(ρ(m)) → 0,

and next take Tm = Cρ(m). Then for t ≥ Tm we have Dm(t) ≤ δm → 0. This
completes the proof.

Proof of Lemma 4.5. Let us take any u ∈ Cθ, u 6≡ 0 and set M := |u|∞, U :=
|u|Cθ . Take any x∗ ∈ K such that |u(x∗)| = M . To simplify the notation, we
suppose that x∗ = 0. Regarding u as an odd periodic function on R

n we have

|u(x)| ≥ M − |x|θU ∀x.

The l.h.s of this inequality vanishes at |x| = (M/U)
1/θ

=: r∗ ≤ 1. Integrating
the squared relation we get

‖u‖2 ≥ C

∫ r∗

0

(M − rθU)2rn−1dr

= CU2

∫ r∗

0

(r2θ∗ rn−1 − 2rθ∗r
n+θ−1 + rn+2θ−1)dr

= CU2rn+2θ
∗ (

1

n
− 2

n+ θ
+

1

n+ 2θ
) = U2rn+2θ

∗ C(n, θ) > 0.

Replacing in this inequality r∗ by its value we get (4.4).

5 Some generalisations

1) Our proof, as well as that of [Kuk99], applies practically without any change
to equations (1.1), where ν > 0 and a ≥ 0. Indeed, scaling the time and u
we achieve ν = 1 (the random force scales to another force of the same type).
Now consider equation (1.1) with ν = 1 and a ≥ 0, and write the equation for
ξ(r(t, x)). The integrand in the r.h.s. of eq. (2.3) gets the extra term −ξ′(r)ar2.
Accordingly, the r.h.s. part g(t, x) of eq. (2.8) gets the non-positive term −ar2.
Since the proof in Section 2 only uses that g ≤ 1

2r

∑

b2s|ϕs|2, it does not change.
In Sections 3-4, as well as in [Kuk99], we only use results of Section 2 and the
fact that the nonlinearity in the equation, as well as its derivatives up to order
m, admit polynomial bounds. For the argument in Section 4 it is important
that the nonlinearity’s derivative grows no faster than C|u|2.
2) The proof of Theorem 2.2, given in [Kuk99], applies with minimal changes if
the Sobolev space Hm(K) with m > n/2 (a Hilbert algebra) is replaced by the
Sobolev space W 1,p(K) with p > n (a Banach algebra). It implies the assertions
of the theorem with the norm ‖ · ‖m replaced by the norm | · |W 1,p , under the
condition that B1 < ∞. The argument in Sections 2.1-3.2 remains true in this
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setup since it does not use the Hm-norm. So to establish results of Section 3
one can use the W 1,p-solutions instead of Hm-solutions.

3) Similar to 1) results of Sections 2.1-3.2 remain true for eq. (1.8).

4) Consider equation (1.2) in a smooth bounded domain O ⊂ Rn with Dirichlet
boundary conditions:

u |∂O= 0. (5.1)

Denote by {ϕj , j ≥ 1} the eigenbasis of −∆,

−∆ϕj = λjϕj , j ≥ 1

and define the random field ζ(t, x) as in Section 1, i.e. ζ =
∑

j bjβj(t)ϕj(x).
Denote

B∗ =
∑

j

bj|ϕj |∞, B1 =
∑

j

b2j |∇ϕ|2p .

The W 1,p-argument as in 2) applies to eq. (1.2), (5.1) and proves an analogy
of Theorem 2.2 with the ‖ · ‖m-norm replaced by the | · |W 1,p -norm, under the
assumption that B∗, B1 < ∞. The only difference is that now the assertion of
Lemma 2.4 follows not from [Kuk99], but from the result of [KNP03] (also see
[Kry96, MR96]).

After that the proof goes without any changes compared to Sections 1-4 and
establishes for equation (1.2), (5.1) analogies of the main results of this work
(with the space C0(K) replaced by C0(O) and H1 by H1

0 (O)):

Theorem 5.1. Assume that B∗ < ∞. Then
i) for any u0 ∈ C0(O) problem (1.2), (1.5), (5.1) has a unique strong solution

u such that u ∈ H(0,∞) a.s. This solution defines in the space C0(O) a Fellerian
Markov process.

ii) This process is mixing.

The first assertion remains true if in eq. (1.2) we replace the nonlinearity
by igr(|u|2)u, 0 < r < ∞. If r ≤ 1, then the second assertion is also true. It
is unknown if the systems, corresponding to equations with r > 1, are mixing
(this is a well known difficulty: it is unknown how to prove mixing for SPDEs
without non-linear dissipation and with a conservative nonlinearity which grows
at infinity faster that in the cubic way).

5) Lemmas 2.7, 4.4 and estimate (4.5) allow to apply to eq. (1.2) the methods,
developed recently to prove exponential mixing for the stochastic 2d Navier-
Stokes system (see in [KS12] Theorems 3.1.7, 3.4.1 as well as discussion of this
result). It implies that the Markov process, defined by eq. (1.2), is exponentially
mixing, i.e. in Theorem 4.2 the distance ‖P∗

tλ−µ‖∗L converges to zero exponen-
tially fast. See Section 4 of [KS12] for consequences of this result. Proof of this
generalization is less straightforward than those in 1)-4) and will be presented
elsewhere.
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