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Stochastic CGL equations without linear dispersion in any space dimension

We consider the stochastic CGL equation

where ν > 0 and a ≥ 0, in a cube (or in a smooth bounded domain) with Dirichlet boundary condition. The force η is white in time, regular in x and non-degenerate. We study this equation in the space of continuous complex functions u(x), and prove that for any n it defines there a unique mixing Markov process. So for a large class of functionals f (u(•)) and for any solution u(t, x), the averaged observable Ef (u(t, •)) converges to a quantity, independent from the initial data u(0, x), and equal to the integral of f (u) against the unique stationary measure of the equation.

Introduction

We study the stochastic CGL equation u -ν∆u + (i + a)|u| 2 u = η(t, x), dim x = n,

(1.1)

where n is any, ν > 0, a ≥ 0 and the random force η is white in time and regular in x. All our results and constructions are uniform in a from bounded intervals [0, C], C ≥ 0. Since for a > 0 the equation possesses extra properties due to the nonlinear dissipation (it is "stabler"), then below we restrict ourselves to the case a = 0; see discussion in Section 5. This equation is the Hamiltonian system u + i|u| 2 u = 0, damped by the viscous term ν∆u and driven by the random force η. So it makes a model for the stochastic Navier-Stokes system, which may be regarded as a damped-driven Euler equation (which is a Hamiltonian system, homogeneous of degree two). In this work we are not concerned with the interesting turbulence-limit ν → 0 (see [START_REF] Kuksin | On turbulence in nonlinear Shrödinger equation[END_REF][START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF] for some related results) and, again to simplify notation, choose ν = 1. That is, we consider the equation u -∆u + i|u| 2 u = η(t, x).

(1.2)

For the space-domain we take the cube K = [0, π] n with the Dirichlet boundary conditions, which we regard as the odd periodic boundary conditions u(t, . . . , x j , . . .) = u(t, . . . , x j + 2π, . . .) = -u(t, . . . , -x j , . . .) ∀ j.

Our results remain true for (1.2) in a smooth bounded domain with the Dirichlet boundary conditions, see Section 5 

β s = β + s + iβ - s
, where β ± s are standard independent (real-valued) Brownian motions, defined on a complete probability space (Ω, F , P) with a filtration {F t ; t ≥ 0}. 1The set of real functions {ϕ s (x), s ∈ N n } is the L 2 -normalised system of eigenfunctions of the Laplacian, ϕ s (x) = (2/π) n/2 sin s 1 x 1 • . . . • sin s n x n , (-∆)ϕ s = α s ϕ s , α s = |s| 2 .

Our work continues the research [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF] and makes use of its method which exploits essentially the well known fact that the deterministic equation (1.2) η=0 implies for the real function |u(t, x)| a parabolic inequality with the maximum principle. Denote by H m the Sobolev space of order m, formed by complex odd periodic functions and given the norm

u m = (-∆) m/2 u , (1.4)
where • is the L 2 -norm on the cube K. In Section 2.1 we repeat some construction from [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF] and state its main result, which says that if u(0, x) = u 0 (x), (1.5)

where u 0 ∈ H m , m > n/2, and

B m := b 2 s |s| 2m < ∞,
then (1.2), (1.5) has a unique strong solution u(t) ∈ H m . Moreover, for any T ≥ 0 the random variable X T = sup T ≤t≤T +1 |u(t)| 2 ∞ satisfies the estimates

EX q T ≤ C q ∀ q ≥ 0, (1.6) 
where C q depends only on |u 0 | ∞ and B * . Analysis of the constants C q , made in Section 2.2, implies that suitable exponential moments of the variables X T are finite:

Ee cXT ≤ C ′ = C ′ (B * , |u 0 | ∞ ), (1.7) 
where c > 0 depends only on B * . Denote by C 0 (K) the space of continuous complex functions on K, vanishing at ∂K. In Section 3 we consider the initial-value problem (1.2), (1.5), assuming only that B * < ∞ and u 0 ∈ C 0 (K). Approximating it by the regular problems as above and using that the constants in (1.6), (1.7) depend only on B * and |u 0 | ∞ , we prove Theorem A. Let B * < ∞ and u 0 ∈ C 0 (K). Then the problem (1.2), (1.5) has a unique strong solution u(t, x) which almost surely belongs to the space C([0, ∞), C 0 (K)) ∩ L 2 loc ([0, ∞), H 1 ) . The solutions u define in the space C 0 (K) a Fellerian Markov process.

Consider the quantities J t = t 0 |u(τ )| 2 ∞ dτ -Kt, where K is a suitable constant, depending only on B * . Based on (1.7), we prove in Lemma 2.7 that the random variable sup t≥0 J t has exponentially bounded tails. Since the nonautonomous term in the linearised equation (1.2) is quadratic in u, ū, then the method to treat the 2d stochastic Navier-Stokes system, based on the Foias-Prodi estimate and the Girsanov theorem (see [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF] for discussion and references to the original works) allows us to prove in Section 4 (stability) There is a constant L ≥ 1 and two sequences {T m ≥ 0, m ≥ 1} and {ε m > 0, m ≥ 1}, ε m → 0 as m → ∞, such that if for any m ≥ 1 we have solutions u(t), u ′ (t) of (1.2), satisfying

u(0), u ′ (0) ∈ B m = {u ∈ C 0 (K) : u ≤ 1/m, |u| L∞ ≤ L}, then for each t ≥ T m we have D(u(t)) -D(u ′ (t)) * L ≤ ε m .
Here µν * L is the dual-Lipschitz distance between Borelian measures µ and ν on the space H 0 (see below Notation).

We also verify in Section 4 that (recurrence) For each m ≥ 1 and for any u 0 , u ′ 0 ∈ C 0 (K), the hitting time inf{t ≥ 0 : u(t) ∈ B m , u ′ (t) ∈ B m }, where u(t) and u ′ (t) are two independent solutions of (1.2) such that u(0) = u 0 and u ′ (0) = u ′ 0 , is almost surely finite. These two properties allow us to apply to eq. (1.2) an abstract theorem from [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF] 2 which implies the second main result of this work:

Theorem B.
There is an integer N = N (B * , ν) ≥ 1 such that if b s = 0 for |s| ≤ N , then the Markov process, constructed in Theorem A, is mixing. That is, it has a unique stationary measure µ, and every solution u(t) converges to µ in distribution This theorem implies that for a large class of continuous functionals f on C 0 (K) we have the convergence

Ef (u(t)) → f (v) µ(dv) as t → ∞,
where u(t) is any solution of (1.2). See Corollary 4.3.

In Section 5 we explain that our results also apply to equations (1.1), considered in smooth bounded domains in R n with Dirichlet boundary conditions; that Theorem A generalises to equations

u -ν∆u + (i + a)g r (|u| 2 )u = η(t, x), (1.8) 
where g r (t) is a smooth function, equal to t r , r ≥ 0, for t ≥ 1, and Theorem B generalises to eq. (1.8) with 0 ≤ r ≤ 1.

Similar results for the CGL equations (1.8), where η is a kick force, are obtained in [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF] without the restriction that the nonlinearity is cubic, and for the case when η is the derivative of a compound Poisson process -in [START_REF] Nersesyan | Polynomial mixing for the complex Ginzburg-Landau equation perturbed by a random force at random times[END_REF]. Our technique does not apply to equations (1.8) with complex ν. To prove analogies of Theorems A, B for such equations, strong restrictions should be imposed on n and r. See [START_REF] Hairer | Exponential mixing properties of stochastic PDE's through asymptotic coupling[END_REF][START_REF] Odasso | Exponential mixing for stochastic PDEs: the non-additive case[END_REF] for equations with Re ν > 0 and a > 0, and see [START_REF]Ergodicity for a class of Markov processes and applications to randomly forced PDE's II[END_REF] for the case Re ν > 0 and a = 0. We also mention the work [START_REF] Debussche | Ergodicity for a weakly damped stochastic nonlinear Schrödinger equations[END_REF] which treats interesting class of one-dimensional equations (1.1) with complex ν such that Re ν = 0 and a = 0, damped by the term αu in the l.h.s. of the equation.

Notation

. By H we denote the L 2 -space of odd 2π-periodic complex functions with the scalar product u, v := Re K u(x)v(x)dx and the norm u 2 := u, u ; by H m (K), m ≥ 0 -the Sobolev space of odd 2π-periodic complex functions of order m, endowed with the homogeneous norm (1.4) (so H 0 (K) = H and • 0 = • ). By C 0 (Q) we denote the space of continuous complex functions on a closed domain Q which vanish at the boundary ∂Q (note that the space C 0 (K) is formed by restrictions to K of continuous odd periodic functions).

For a Banach space X we denote: C b (X) -the space of real-valued bounded continuous functions on X; L(X) -the space of bounded Lipschitz functions f on X, given the norm

f L := |f | ∞ + Lip(f ) < ∞, Lip(f ) := sup u =v |f (u) -f (v)| u -v -1 ;
B(X) -the σ-algebra of Borel subsets of X; P(X) -the set of probability measures on (X, B(X));

B X (d), d > 0 -the open ball in X of radius d, centered at the origin. For µ ∈ P(X) and f ∈ C b (X) we denote (f, µ) = (µ, f ) = X f (u)µ(du). If µ 1 , µ 2 ∈ P(X), we set µ 1 -µ 2 * L = sup{|(f, µ 1 ) -(f, µ 2 )| : f ∈ L(X), f L ≤ 1}, µ 1 -µ 2 var = sup{|µ 1 (Γ) -µ 2 (Γ)| : Γ ∈ B(X)}.
The arrow ⇀ indicates the weak convergence of measures in P(X). It is well known that µ n ⇀ µ if and only if µ nµ * L → 0, and that

µ 1 -µ 2 * L ≤ 2 µ 1 - µ 2 var .
The distribution of a random variable ξ is denoted by D(ξ). For complex numbers z 1 , z 2 we denote z 1 •z 2 =Re z 1 z2 ; so z •dβ s = (Re z)dβ + s + (Im z)dβ - s (t). We denote by C, C k unessential positive constants.

2 Stochastic CGL equation 2.1 Strong and weak solutions.

Let the filtered probability space (Ω, F , {F t }, P) be as in Introduction. We use the standard definitions of strong and weak solutions for stochastic PDEs (e.g., see [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]):

Definition 2.1. Let 0 < T < ∞. A random process u(t) = u(t, x), t ∈ [0, T ] in C 0 (K)
defined on a probability space (Ω, F , P) is called a strong solution of (1.2), (1.5) if the following three conditions hold:

(i) the process u(t) is adapted to the filtration F t ;

(ii) its trajectories u(t) a.s. belong to the space

H([0, T ]) := C([0, T ], C 0 (K)) ∩ L 2 ([0, T ], H 1 );
(iii) for every t ∈ [0, T ] a.s. we have

u(t) = u 0 + t 0 (∆u -i|u| 2 u)ds + ζ(t),
where both sides are regarded as elements of H -1 .

If (i)-(iii) hold for every T < ∞, then u(t) is called a strong solution for t ∈ R + = [0, ∞).
A continuous adapted process u(t) ∈ C 0 (K) and a Wiener process ζ ′ (t) ∈ H, defined in some filtered probability space, are called a weak solution of (1. We recall that for l ≥ 0 we denote

B l := s∈N n |b s | 2 |s| 2l ≤ ∞. Note that B 0 ≤ B 2 * < ∞. Let us fix any m > n/2.
Problem (1.2), (1.5) with u 0 ∈ H m and B m < +∞ was considered in [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF].

Choosing δ = 1 in [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF], we state the main result of that work as follows:

Theorem 2.2. Assume that u 0 ∈ H m and B m < +∞. Then (1.2), (1.5) has a unique strong solution u which is in H([0, ∞)) a.s., and for any t ≥ 0, q ≥ 1 satisfies the estimates

E sup s∈[t,t+1] |u(s)| q ∞ ≤ C q , (2.1) E u(t) q m ≤ C q,m ,
where C q is a constant depending on |u 0 | ∞ , while C q,m also depends on u 0 m and B m .

In this theorem and everywhere below the constants depend on n and B * . We do not indicate this dependence.

Remark 2.3. It was assumed in [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF] that n ≤ 3. This assumption is not needed for the proof. The force η(t, x) in [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF] has the form η(t, x) β(t), where β is the standard Brownian motion and η(t, x) is a random field, continuous and bounded uniformly in (t, x), smooth in x and progressively measurable. The proof without any change applies to forces of the form (1.3).

Our next goal is to get more estimates for solutions u(t, x). Applying Itô's formula to u 2 , where u(t) = u s (t)ϕ s (x) is a solution constructed in Theorem 2.2, we find that

u(t) 2 = u 0 2 + t 0 (-2 u(τ ) 2 1 + 2B 0 )dτ + 2 s∈N n b s t 0 u s (τ ) • dβ s (τ ).
Taking the expectation, we get for any t ≥ 0

E u(t) 2 + 2E t 0 u(τ ) 2 1 dτ = u 0 2 + 2B 0 t. (2.2)
To get more involved estimates, we first repeat a construction from [Kuk99] which evokes the maximum principle to bound the norm |u(t, x)| of a solution u(t, x) as in Theorem 2.2 in terms of a solution of a stochastic heat equation.

Let ξ ∈ C ∞ (R) be any function such that ξ(r) = 0 for r ≤ 1 4 , r for r ≥ 1 2 .

Writing u N τM in the polar form u N τM = re iφ and using the Itô formula for ξ(|u M |) (see [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF], Section 4.5 and [KS12], Section 7.7), we get

ξ(r) = ξ 0 + t 0 ξ ′ (r)(∆r -r|∇φ| 2 ) + 1 2 s∈N n b 2 s ξ ′′ (r)(e iφ • ϕ s ) 2 + ξ ′ (r) 1 r (|ϕ s | 2 -(e iφ • ϕ s ) 2 ) dt + Υ(t), (2.3) 
where

ξ 0 = ξ(|u 0 |), a • b = Re a b for a, b ∈ C and Υ(t) is the real Wiener process Υ(t) = s∈N n t 0 ξ ′ (r)b s ϕ s (e iφ • dβ s ).
(2.4)

Since |u| ≤ ξ + 1 2 , then to estimate |u| it suffices to bound ξ. To do that we compare it with a real solution of the stochastic heat equation

v -∆v = Υ, v(0) = v 0 , (2.5) 
where v 0 := |ξ 0 |. We have that v = v 1 + v 2 , where v 1 is a solution of (2.5) with Υ := 0, and v 2 is a solution of (2.5) with v 0 := 0. By the maximum principle

sup t≥0 |v 1 (t)| ∞ ≤ |v 0 | ∞ ≤ |u 0 | ∞ . (2.6)
To estimate v 2 , we use the following lemma established in [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF] (see [START_REF] Krylov | On L p -theory of stochastic partial differential equations in the wole space[END_REF][START_REF] Mikulevicius | A note on Krylov's L p -theory for systems of SPDEs[END_REF][START_REF] Kuksin | Hölder estimates for solutions of parabolic SPDEs[END_REF] for more general results).

Lemma 2.4. Let v 2 be a solution of (2.5) with Υ = s b s f s (t, x) βs (t) and v 0 = 0, where progressively measurable functions f s (t, x) and real numbers b s are such that |f s (t, x)| ≤ L for each j and t almost surely. Then a.s. v 2 belongs to C(R + , C 0 (K)), and for any t ≥ 0 and p ≥ 1 we have

E sup s∈[t,t+T ] |v 2 (s)| 2p ∞ ≤ (C(T )LB * ) 2p p p .
(2.7)

Moreover, E v 2 | ([t,t+1]×K) p C θ/2,θ ≤ C(p, θ) for any 0 < θ < 1, where • C θ/2,θ is the norm in the Hölder space of functions on [t, t + 1] × K.
In [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF], this result is stated with a constant C p instead of (CLB * ) 2p p p in the right-hand side of (2.7). Following the constants in the proof of [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF], one can see that

C p = (CLB * ) 2p
Cp , where Cp is the constant in the Burkholder-Devis-Gundy inequality. By [START_REF] Burkholder | Distribution function inequalities for martingales[END_REF], we have Cp ≤ C p p p .

Using the definition of ξ we see that the noise Υ defined by (2.4) verifies the conditions of this lemma since the eigen-functions

ϕ s satisfy |ϕ s (x)| ≤ (2/π) n 2 for all x ∈ K. Let us denote h(t, x) = ξ(r(t, x)) -v(t, x). Since a.s. u(t, x) is uniformly continuous on sets [0, T ] × K, 0 < T < ∞, then a.s. we can find an open domain Q = Q ω ⊂ [0, ∞) × K with a piecewise smooth boundary ∂Q such that r ≥ 1 2 in Q, r ≤ 3 4 outside Q. Then h(t, x) is a solution of the following problem in Q ḣ -∆h = 1 2r s∈N n b 2 s |ϕ s | 2 -r|∇φ| 2 + 1 2r s∈N n b 2 s (e iφ • ϕ s ) 2 =: g(t, x), (2.8) h| ∂+Q = (r -v)| ∂+Q =: m, (2.9) 
where ∂ + Q stands for the parabolic boundary, i.e., the part of the boundary of Q where the external normal makes with the time-axis an angle ≥ π/2. Note that m(0, x) = 0. We write h = h 1 + h 2 , where h 1 is a solution of (2.8), (2.9) with g = 0 and h 2 is a solution of (2.8), (2.9) with m = 0. Since each |ϕ s (x)| is bounded by (2π) n/2 and r ≥ 1 2 in Q, then g(t, x) ≤ (2/π) n B 0 everywhere in Q. Now applying the maximum principle (see [START_REF] Landis | Second Order Equations of Elliptic and Parabolic Type[END_REF]), we obtain the inequality

sup t≥0 |h 2 (t)| ∞ ≤ CB 0 , (see Lemma 6 in [Kuk99]). Therefore |u(t)| ∞ ≤ 1 2 + |ξ(t)| ∞ ≤ 1 2 + CB 0 + |v 1 (t)| ∞ + |v 2 (t)| ∞ + |h 1 (t)| ∞ . (2.

10)

To estimate h 1 we note that

h 1 (s, x) = ∂+Q m(ξ)G(s, x, dξ),
where G(s, x, dξ) is the Green function3 for the problem (2.8), (2.9) with g = 0, which for any (s, x) ∈ Q is a probability measure in Q, supported by ∂ + Q. Here we need the following estimate for G, proved in [Kuk99], Lemma 7, where

Q [a,b] := Q ∩ ([a, b] × K). Lemma 2.5. Let 0 ≤ s ≤ t. Then for any x ∈ K we have G(t, x, Q [0,t-s] ) = G(t, x, Q [0,t-s] ∩ ∂ + Q) ≤ 2 n 2 e -nπ 2 4 s .
Since r| ∂+Q ≤ 3 4 , we have

|h 1 (t, x)| ≤ 3 4 + ∂+Q |v 1 (ξ)|G(t, x, dξ) + ∂+Q |v 2 (ξ)|G(t, x, dξ). (2.11) Estimate (2.6) implies ∂+Q |v 1 (ξ)|G(t, x, dξ) ≤ |u 0 | ∞ .
(2.12)

Let us take a positive constant T and cover the segment [0, t] by segments I 1 , . . . , I jT , where

j T = t T + 1, I j = [t -T j, t -T j + T ].
To bound the last integral in (2.11), we apply Lemma 2.5 as follows:

∂+Q |v 2 (ξ)| G(t, x, dξ) ≤ jT j=1 QI j |v 2 (ξ)| G(t, x, dξ) ≤ 2 n 2 jT j=1 e -nπ 2 4 (j-1)T sup τ ∈Ij |v 2 (τ )| ∞ ,
where v 2 (τ ) is extended by zero outside [0, t]. Denoting

ζ j = sup τ ∈Ij |v 2 (τ )| ∞ , Y = jT j=1 e -2jT ζ j ,
and using that nπ 2 /4 > 2 we get

∂+Q |v 2 (ξ)| G(t, x, dξ) ≤ CY. (2.13) So by (2.12) |h 1 (t)| ∞ ≤ 3 4 + |u 0 | ∞ + CY . As |v 2 (t, x)| ≤ ζ 1 ≤ CY ,
then using (2.10) and (2.6) we get for any u 0 ∈ H m and any t ≥ 0 that the solution u(t, x) a.s. satisfies

|u(t, x)| ≤ 2|u 0 | ∞ + CB 0 + 2 + CY.
(2.14)

Let us show that there are positive constants c and C, not depending on t and u 0 , such that

E|u(t)| 2 ∞ ≤ Ce -ct |u 0 | 2 ∞ + C for all t ≥ 0.
(2.15) Indeed, since v 1 is a solution of the free heat equation, then

|v 1 (t)| ∞ ≤ Ce -c1t |u 0 | ∞ for t ≥ 0. (2.16)
This relation, Lemma 2.5 and (2.6) imply that

∂+Q |v 1 (ξ)|G(t, x, dξ) ≤ ∂+Q [0, t 2 ] |v 1 (ξ)| G(t, x, dξ) + ∂+Q [ t 2 ,t] |v 1 (ξ)| G(t, x, dξ) ≤ sup s≥0 |v 1 (s)| ∞ G(t, x, Q [0, t 2 ] ) + sup s≥ t 2 |v 1 (s)| ∞ ≤ |u 0 | ∞ 2 n 2 e -nπ 2 4 t 2 + Ce -c1t |u 0 | ∞ ≤ Ce -ct |u 0 | ∞ .
(2.17) By Lemmas 2.4 and 2.5 

E ∂+Q v 2 (ξ)G(t,

Exponential moments of |u(t)| ∞

In this section, we strengthen bounds on polynomial moments of the random variables sup s∈[t,t+1] |u(s)| 2 ∞ , obtained in Theorem 2.2, to bounds on their exponential moments. As a consequence we prove that integrals

T 0 |u(s)| 2
∞ ds have linear growth as functions of T and derive exponential estimates which characterise this growth. These estimates are crucially used in Sections 3-4 to prove that eq. (1.2) defines a mixing Markov process.

Theorem 2.6. Under the assumptions of Theorem 2.2, for any u 0 ∈ H m , any t ≥ 0 and T ≥ 1 the solution u(t, x) satisfies the following estimates:

(i) There are constants c * (T ) > 0 and C(T ) > 0, such that for any c ∈ (0, c * (T )] we have

E exp(c sup s∈[t,t+T ] |u(s)| 2 ∞ ) ≤ C(T ) exp (5c|u 0 | 2 ∞ ). (2.

18)

(ii) There are positive constants λ 0 , C and c 2 such that

E exp(λ t 0 |u(s)| 2 ∞ ds) ≤ C exp (c 1 |u 0 | 2 ∞ + c 2 t), (2.19)
for each λ ≤ λ 0 , where c 1 = Const • λ.

Proof.

Step 1 (proof of (i)). Due to (2.14), to prove (2.18) we have to estimate exponential moments of Y 2 . First let us show that for a suitable C 2 (T ) > 0 we have

E exp(c sup s∈[t,t+T ] |v 2 (s)| 2 ∞ ) ≤ 1 1 -cC 2 (T )
for any t ≥ 0 and c < 1 C 2 (T ) .

(2.20) Indeed, using (2.7), we get

E exp(c sup [t,t+T ] |v 2 (s)| 2 ∞ ) = E ∞ p=0 c p sup [t,t+T ] |v 2 (s)| 2p ∞ p! ≤ ∞ p=0 c p (C(T )B * ) 2p p p p! ≤ ∞ p=0 (ce(C(T )B * ) 2 ) p ≤ 1 1 -ce(C(T )B * ) 2
since p! ≥ (p/e) p . Thus we get (2.20) with C 2 := e(C(T )B * ) 2 . In particular,

Ee c ′ ζ 2 j ≤ 1 -c ′ C 2 (T ) -1 ∀ c ′ ≤ c. (2.21)
Next we note that since

Y 2 ≤ C 2   jT j=1 e -j e -j ζ j   2 ≤ 2C 2 jT j=1 e -2j ζ 2 j
by Cauchy-Schwartz (we use that T ≥ 1), then

Ee c ′ Y 2 ≤ E jT j=0 e 2c ′ C 2 5 -j ζ 2 j ,
as e 2 > 5. Denote p j = α2 j , j ≥ 0. Choosing α ∈ (1, 2) in a such a way that jT j=0 (1/p j ) = 1, using the Hölder inequality with these p j 's and (2.21), we find that

Ee c ′ Y 2 ≤ jT j=0 Ee 2pj c ′ C 2 5 -j ζ 2 j 1 p j ≤ jT j=0 Ee 2c ′ C 2 ζ 2 j 1 p j ≤ jT j=0 1 -c ′ C 3 (T ) -1 p j = exp   - jT j=0 p -1 j ln(1 -c ′ C 3 )   ≤ e c ′ C4(T ) , (2.22) if 2c ′ C 2 ≤ c and c ′ ≤ 2C 3 (T ) -1
. In view of (2.14), this implies (2.18).

Step 2. Now we show that for any A ≥ 1 there is a time T (A) such that for T ≥ T (A) we have

E exp c( sup s∈[0,T ] |u(s)| 2 ∞ + A|u(T )| 2 ∞ ) ≤ C exp (6c|u 0 | 2 ∞ ) (2.23)
for any c ∈ (0, c], where C and c depend on A and T . Indeed, due to (2.10) and (2.16),

|u(T )| ∞ ≤ 2 + Ce -cT |u 0 | ∞ + CB 0 + |v 2 (T )| ∞ + |h 1 (T )| ∞ .
By (2.11), (2.17) and (2.13),

|h 1 (T )| ∞ ≤ 3 4 + CY + Ce -c ′ T |u 0 | ∞ . Therefore choosing a suitable T = T (A) we achieve that cA|u(T )| 2 ∞ ≤ c(C 1 A + C 2 AY 2 + |u 0 | 2 ∞ ) + 2cA|v 2 (T )| 2 ∞ .
Using Hölder's inequality we see that the cube of the l.h.s. of (2.23) is bounded by

C(A)e 3c|u0| 2 ∞ Ee 3cC2AY 2 Ee 6cA|v2(T )| 2 ∞ Ee 3c sup s∈[0,T ] |u(s)| 2 ∞ .
Taking c ≤ c(A) and using (2.22), (2.20) and (2.18) we estimate the product by C(A, T )e 3c|u0| 2 ∞ e 15c|u0| 2 ∞ . This implies (2.23).

Step 3 (proof of (ii)). Let T 0 ≥ 1 be such that (2.23) holds with A = 6. Let c > 0 and C > 0 be the constants in (2.18), corresponding to T = T 0 , and let λ ≤ c/T 0 . It suffices to prove (2.19) for t = T 0 k, k ∈ N, since this result implies (2.19) with any t ≥ 0 if we modify the constant C. By the Markov property,

X λ := E u0 exp λ T0k 0 |u(s)| 2 ∞ ds = E u0 exp(λ T0(k-1) 0 |u(s)| 2 ∞ ds) × E u(T0(k-1)) exp(λ T0 0 |u(s)| 2 ∞ ds) ,
and by (2.18)

E u(T0(k-1)) exp λ T0 0 |u(s)| 2 ∞ ds ≤ C exp 5λT 0 |u(T 0 (k -1))| 2 ∞ .
Combining these two relations we get

X λ ≤ CE u0 exp λ T0(k-1) 0 |u(s)| 2 ∞ ds + 6T 0 |u(T 0 (k -1)| 2 ∞ .
Applying again the Markov property and using (2.23) with A = 6 and c = λT 0 we obtain

X λ ≤ CE u0 exp(λ T0(k-2) 0 |u(s)| 2 ∞ ds) × E u((T0(k-2)) exp λT 0 ( sup 0≤s≤T0 |u(s)| 2 ∞ + 6|u(T 0 )| 2 ∞ ) ≤ C 2 E u0 exp λ T0(k-2) 0 |u(s)| 2 ∞ ds + 6λT 0 |u(T 0 (k -2))| 2 ∞ .
Iteration gives

X λ ≤ C m E u0 exp λ T0(k-m) 0 |u(s)| 2 ∞ ds + 6λT 0 |u(T 0 (k -m))| 2 ∞ ,
for any m ≤ k. When m = k, this relation proves (2.19) with t = kT 0 , C = 1, c 1 = 6λT 0 and a suitable c 2 .

In the lemma below by c 1 , c 2 and λ 0 we denote the constants from Theorem 2.6(ii).

Lemma 2.7. For any u 0 ∈ H m the solution u(t, x) satisfies the following estimate for any ρ ≥ 0

P{sup t≥0 t 0 |u(s)| 2 ∞ ds -Kt ≥ ρ} ≤ C ′ exp(c 1 |u| 2 ∞ -λρ), (2.24)
where C ′ is an absolute constant, K = λ -1 (c 2 + 1) and λ is a suitable constant from (0, λ 0 ].

Proof. For any real number t denote ⌈t⌉ = min{n ∈ Z : n ≥ t}.

Then t 0 |u| 2 ∞ ds -Kt ≥ ρ ⊂ ⌈t⌉ 0 |u| 2 ∞ ds -K⌈t⌉ ≥ ρ -K .
So it suffices to prove (2.24) for integer t since then the required inequality follows with a modified constant C ′ . Accordingly below we replace sup t≥0 by sup n∈N . By the Chebyshev inequality and estimate (2.19) we have

P sup n∈N n 0 |u(s)| 2 ∞ ds -Kn ≥ ρ ≤ n∈N P n 0 |u(s)| 2 ∞ ds ≥ ρ + Kn ≤ n∈N exp(-λ(ρ + Kn))C exp (c 1 |u 0 | 2 ∞ + c 2 n) ≤ C exp(-λρ + c 1 |u 0 | 2 ∞ ) n∈N exp (-n) = C ′ exp(c 1 |u 0 | 2 ∞ -λρ)
since λKc 2 = 1. This proves (2.24).

3 Markov Process in C 0 (K).

The goal of this section is to construct a family of Markov processes, associated with eq. (1.2) in the space C 0 (K). To this end we first prove a well-posedness result in that space.

Existence and uniqueness of solutions

Let u 0 ∈ C 0 (K). Denote by Π m : H→C m the usual Galerkin projections and set

η m := Π m η =: ∂ ∂t ζ m . Let u m 0 ∈ C ∞ be such that |u m 0 -u 0 | ∞ →0 as m→∞ and |u m 0 | ∞ ≤ |u 0 | ∞ + 1.
Let u m be a solution of (1.2), (1.5) with η = η m and u 0 = u m 0 , existing by Theorem 2.2. Fix any T > 0. For p > 1, α ∈ (0, 1) and a Banach space X, let W α,p ([0, T ], X) be the space of all u ∈ L p ([0, T ], X) such that

u p W α,p ([0,T ],X) := u p W p ([0,T ],X) + T 0 T 0 u(t) -u(τ ) p X |t -τ | 1+αp dτ dt < ∞.
Let us define the spaces

U := L 2 ([0, T ], H 1 ) ∩ W α,4 ([0, T ], H -1 ), V := L 2 ([0, T ], H 1-ε ) ∩ C([0, T ], H -2 ),
where α ∈ ( 1 4 , 1 2 ) and ε ∈ (0, 1 2 ) are fixed. Then space U is compactly embedded into V.

(3.1)

Indeed, by Theorem 5.2 in [Lio69], U ⋐ L 2 ([0, T ], H 1-ε ). On the other hand, W α,4 ([0, T ], H -1 ) ⊂ C α-1 4 ([0, T ], H -1 ) and H -1 ⋐ H -2 .
Lemma 3.1. For m ≥ 1 let M m be the law of the solution {u m }, constructed above. Then (i) The sequence {M m } is tight in V.

(ii) Any limiting measure M of M m is the law of a weak solution ũ(t), 0 ≤ t ≤ T , of (1.2), (1.5). This solution satisfies (2.1) for 0 ≤ t ≤ T -1 and (2.2), (2.18), (2.24) for 0 ≤ t ≤ T .

(iii) If 1 ≤ t ≤ T -1, then for any 0 < θ < 1 and any q ≥ 1 we have

E ũ | ([t,t+1]×K) q C θ/2,θ ≤ C(q, θ, |u 0 | ∞ ). (3.2)
Proof. The process u m satisfies the following equation with probability 1

u m (t) = u m 0 + t 0 (∆u m -i|u m | 2 u m )ds + ζ m =: V m + ζ m .
Using (2.1) and (2.2), we get

E V m 2 W 1,2 ([0,T ],H -1 ) ≤ C. (3.3)
It is well known that for any p > 1 and α ∈ (0, 1 2 ), we have

E ζ m 2 W α,p ([0,T ],H) ≤ C (3.4)
(e.g., see [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF], Section 5.2.1). Combining (3.3) and (3.4), we get

E u m 2 W α,4 ([0,T ],H -1 ) ≤ CE V m 2 W 1,2 ([0,T ],H -1 ) + CE ζ m 2 W α,4 ([0,T ],H) ≤ C.
Jointly with (2.2) this estimate implies that E u m 2 U ≤ C 1 for each m with a suitable C 1 . Now (i) holds by (3.1) and the Prokhorov theorem.

Let us prove (ii). Suppose that M m converges weakly to M in V. By Skorohod's embedding theorem, there is a probability space ( Ω, F , P), and Vvalued random variables ũm and ũ defined on it such that each ũm is distributed as M m , ũ is distributed as M and P-a.s. we have ũm →ũ in V.

Since V ⊂ L 2 ([0, T ] × K) =: L 2 , then ũm → ũ in L 2 , a.s. For any R ∈ (0, ∞] and p, q ∈ [1, ∞) consider the functional f p R , f p R (u) = |u| q ∧ R L p ([t,t+1]×K) ≤ |u| q ∞ .
Since for p, R < ∞ it is continuous in L 2 , then by (2.1) we have

E(f p R (ũ)) ≤ C q for p, R < ∞. As for each v(t, x) ∈ L ∞ ([t, t + 1] × K) the function [1, ∞] ∋ p → |v| L p ([t,t+1]×K) ∈ [0, ∞]
is continuous and non-decreasing, then sending p and R to ∞ and using the monotone convergence theorem, we get E sup s∈[t,t+1] |ũ(s)| q ∞ ≤ C q . I.e., ũ satisfies (2.1). By (2.2) for each m and N we have

E Π N ũm (t) 2 + 2E t 0 Π N ũm (τ ) 2 1 dτ ≤ u m 0 2 + B 0 t.
Passing to the limit as m→∞ and then N →∞ and using the monotone convergence theorem, we obtain that ũ satisfies (2.2), where the equality sign is replace by ≤ . We will call this estimate (2.2) ≤ . By the same reason (cf. Lemma 1.2.17 in [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF]) the process ũ(t) satisfies (2.18) and (2.24).

Since ũm is a weak solution of the equation, then

ũm (t) -u m 0 - t 0 (∆ũ m -i|ũ m | 2 ũm )ds = ζm , (3.5)
where ζm is distributed as the process ζ. Using the Cauchy-Schwarz inequality and (2.1), we get

E T 0 |ũ m | 2 ũm -|ũ| 2 ũ ds ≤ C E T 0 (ũ m -ũ)(|ũ m | 2 + |ũ| 2 ) ds ≤ C E sup t∈[0,T ] (|ũ m (t)| 2 ∞ + |ũ(t)| 2 ∞ ) T 0 ũm -ũ ds ≤ C √ T E sup t∈[0,T ] (|ũ m (t)| 4 ∞ + |ũ(t)| 4 ∞ ) 1 2 E T 0 ũm -ũ 2 ds 1 2 ≤ C(T, |u 0 | ∞ ) E T 0 ũm -ũ 2 ds 1 2
.

Since the r.h.s. goes to zero when m → ∞, then for a suitable subsequence m k →∞ we have a.s.

t 0 |ũ m k | 2 ũm k ds - t 0 |ũ| 2 ũds C([0,T ],L 2 )
→0 as k→∞.

Therefore the l.h.s. of (3.5) converges to ũ(t)u 0 -t 0 (∆ũ -i|ũ| 2 ũ)ds in the space C([0, T ], H -2 ) over the sequence {m k }, a.s. So a.s. there exists a limit lim ζm k (•) = ζ(•), and Since ũ(t, x) satisfies (3.6), we can write ũ = u 1 + u 2 + u 3 , where u 1 satisfies (2.5) with Υ = 0, v 0 = u 0 ; u 2 satisfies (2.5) with Υ = -i|ũ| 2 ũ, v 0 = 0 and u 3 satisfies (2.5) with Υ = ζ, v 0 0. Now Lemma 2.4 and the parabolic regularity imply that ũ ∈ C([0, T ]; C 0 (K)), a.s. As ũ satisfies (2.2) ≤ , then ũ ∈ H([0, T ]) a.s. Since clearly ũ(0) = u 0 a.s., then ũ is a weak solution of (1.2), (1.5).

ũ(t) -u 0 - t 0 (∆ũ -i|ũ| 2 ũ)ds = ζ(t). ( 3 
Regarding ũ(t) as an Ito process in the space H, using (2.1) and applying to ũ(t) 2 the Ito formula in the form, given in [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF], we see that ũ(t) 2 satisfies the relation, given by the displayed formula above (2.2). Taking the expectation we recover for ũ the equality (2.2).

It remains to prove (iii). Functions u 1 and u 3 meet (3.2) by Lemma 2.4 and the parabolic regularity. Consider u 2 . Since u 2 = ũu 1u 3 , then u 2 satisfies (2.1). Consider restriction of u 2 to the cylinder [t -1, t + 1] × K. Since u 2 satisfies the heat equation, where the r.h.s. and the Cauchy data at (t -1) × K are bounded functions, then by the parabolic regularity restriction of u 2 to [t, t + 1] × K also meets (3.2).

The pathwise uniqueness property holds for the constructed solutions: Lemma 3.2. Let u(t) and v(t), t ∈ [0, T ], be processes in the space C 0 (K), defined on the same probability space, and let ζ(t) be a Wiener process, defined on the same space and distributed as ζ in (1.3). Assume that a.s. trajectories of u and v belong to H([0, T ])and satisfy (1.2), (1.5). Then u(t) ≡ v(t) a.s.

Proof. For any R > 0 let us introduce the stopping time

τ R = inf{t ∈ [0, T ] : |u(t)| ∞ ∨ |v(t)| ∞ ≥ R}, (3.7)
and consider the stopped solutions u R (t

) := u(t ∧ τ R ) and v R (t) := v(t ∧ τ R ). Then w := u R -v R satisfies ẇ -∆w + i(|u R | 2 u R -|v R | 2 v R ) = 0, w(0) = 0.
Taking the scalar product in H of this equation with w and applying the Gronwall inequality, we get that w(t) ≡ 0. Since u, v ∈ H([0, T ]), then τ R → T , a.s. Therefore u R →u and v R →v a.s. as R→∞. This completes the proof.

By the Yamada-Watanabe arguments (e.g., see [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]), existence of a weak solution plus pathwise uniqueness implies the existence of a unique strong solution u(t), 0 ≤ t ≤ T . Since T is any positive number, we get Theorem 3.3. Let u 0 ∈ C 0 (K). Then problem (1.2), (1.5) has a unique strong solution u(t), t ≥ 0. This solutions satisfies relations (2.1), (2.2), (2.18) and (2.24); for t ≥ 1 it also satisfies (3.2).

Markov process

Let us denote by u(t) = u(t, u 0 ) the unique solution solution of (1.2), corresponding to an initial condition u 0 ∈ C 0 (K). Equation (1.2) defines a family of Markov process in the space C 0 (K) parametrized by u 0 . For any u ∈ C 0 (K) and Γ ∈ B(C 0 (K)), we set P t (u, Γ) = P{u(t, u) ∈ Γ}. The Markov operators corresponding to the process u(t) have the form

P t f (u) = C0(K) P t (u, dv)f (v), P * t µ(Γ) = C0(K) P t (u, Γ)µ(du),
where f ∈ C b (C 0 (K)) and µ ∈ P(C 0 (K)).

Lemma 3.4. The Markov process associated with (1.2) is Feller.

Proof. We need to prove that

P t f ∈ C b (C 0 (K)) for any f ∈ C b (C 0 (K))
and t > 0. To this end, let us take any u 0 , v 0 ∈ C 0 (K), and let u and v be the corresponding solutions of (1.2) given by Theorem 3.3. Let us take any R > R

0 := |u 0 | ∞ ∨ |v 0 | ∞ .
Let τ R be the stopping time defined by (3.7), and let u R (t) := u(t ∧ τ R ) and v R (t) := v(t ∧ τ R ) be the stopped solutions. Then

|P t f (u 0 ) -P t f (v 0 )| ≤ E|f (u) -f (u R )| + E|f (v) -f (v R )| + E|f (u R ) -f (v R )| =: I 1 + I 2 + I 3 .
By (2.1) and the Chebyshev inequality, we have

max{I 1 , I 2 } ≤ 2|f | ∞ P{t > τ R } ≤ 2|f | ∞ P{U (t) ∨ V (t) > R} ≤ 4 R |f | ∞ sup |u0|∞≤R0 E U (t)→0 as R→∞,
where

U (t) = sup s∈[0,t] |u(s)| ∞ and V (t) is defined similarly. To estimate I 3 , notice that w = u R -v R is a solution of ẇ -∆w + i(|u R | 2 u R -|v R | 2 v R ) = 0, w(0) = u 0 -v 0 =: w 0 .
We rewrite this in the Duhamel form

w = e t∆ w 0 -i t 0 e (t-s)∆ (|u R | 2 u R -|v R | 2 v R )ds.
Since, by the maximum principle,

|e t∆ z| ∞ ≤ |z| ∞ , then |w| ∞ ≤ |w 0 | ∞ + t 0 ||u| 2 u -|v| 2 v| ∞ ds ≤ |w 0 | ∞ + 3 t 0 (|u| 2 ∞ + |v| 2 ∞ )|w| ∞ ds.
By the Gronwall inequality,

I 3 ≤ E|w| ∞ ≤ |w 0 | ∞ e tCR →0 as |w 0 | ∞ →0.
Therefore the function P t f (u) is continuous in u ∈ C 0 (K), as stated.

A measure µ ∈ P(C 0 (K)) is said to be stationary for eq. (1.2) if P * t µ = µ for every t ≥ 0. The following theorem is proved in the standard way by applying the Bogolyubov-Krylov argument (e.g. see in [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF]).

Theorem 3.5. Equation (1.2) has at least one stationary measure µ, satisfying

H 1 u 2 1 µ(du) = 1 2 B 0 and C0(K) e c|u| 2
∞ µ(du) < ∞ for any c < c * , where c * > 0 is the constant in assertion (i) of Theorem 2.6.

Estimates for some hitting times

For any d, L, R > 0 we introduce the following hitting times for a solution u(t) of (1.2):

τ 1,d,L := inf{t ≥ 0 : u(t) ≤ d, |u(t)| ∞ ≤ L}, τ 2,R := inf{t ≥ 0 : |u(t)| ∞ ≤ R}.
Lemma 3.6. There is a constant L > 0 such that for any d > 0 we have

Ee γτ 1,d,L ≤ C(1 + |u(0)| 2 ∞ ), (3.8) 
where γ and C are suitable positive constants, depending on d and L.

It is well known that inequality (3.8) follows the from two statements below (see Proposition 2.3 in [START_REF] Shirikyan | Exponential mixing for 2D Navier-Stokes equations perturbed by an unbounded noise[END_REF] or Section 3.3.2 in [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF]).

Lemma 3.7. There are positive constants δ, R and C such that

Ee δτ2,R ≤ C(1 + |u(0)| 2 ∞ ).
(3.9) Lemma 3.8. For any R > 0 and d > 0 there is a non-random time T > 0 and positive constants p and L such that

P{u(T, u 0 ) ∈ B H (d) ∩ B C0(K) (L)} ≥ p for any u 0 ∈ B C0(K) (R).
Proof of Lemma 3.7. Let us consider the function F (u) = max(|u| 2 ∞ , 1). We claim that this is a Lyapunov function for eq. (1.2). That is,

EF (u(T, u)) ≤ aF (u) for |u| ∞ ≥ R ′ , (3.10) 
for suitable a ∈ (0, 1), T > 0 and

R ′ > 0. Indeed, let |u| ∞ ≥ R ′ and T > 1. Since F (u) ≤ 1 + |u| 2 ∞ , then EF (u(T, u)) ≤ 1 + E|u(T, u)| 2 ∞ ≤ 1 + Ce -cT |u| 2 ∞ + C,
where we used (2.15). This implies (3.10). Since due to (2.15) for |u| ∞ < R ′ and any T > 1 we have EF (u(T, u)) ≤ C ′ then (3.9) follows by a standard argument with Lyapunov function (e.g., see Section 3.1 in [START_REF]Exponential mixing for randomly forced PDE's: method of coupling[END_REF]).

Proof of Lemma 3.8. Step 1. Let us write u(t) = v(t) + z(t), where z is a solution of (2.5) with v 0 = 0, i.e., z =

s∈N n t 0 e (t-τ )∆ b s ϕ s dβ ω s . Then v -∆v + i|v + z| 2 (v + z) = 0, v(0) = u 0 . (3.11)
Clearly for any δ ∈ (0, 1] and T > 0 we have

PΩ δ > 0 , where Ω δ = { sup 0≤t≤T |z(t)| ∞ < δ}.
Step 2. Due to (3.11),

v -∆v + i|v| 2 v = L 3 , (t, x) ∈ Q T = [0, T ] × K, (3.12) 
where L 3 is a cubic polynomial in v, v, z, z such that every its monomial contains z or z. Consider the function r = |v(t, x)|. Due to (3.12), for ω ∈ Ω δ and outside the zero-set X = {r = 0} ⊂ Q T the function r satisfies the parabolic inequality

ṙ -∆r ≤ Cδ(r 2 + 1), r(0, x) = |v(0, x)| ≤ R + 1. (3.13) Define τ = inf{t ∈ [0, T ] : |r(t)| ∞ ≥ R + 2}
, where τ = T if the set is empty. Then τ > 0 and for 0 ≤ t ≤ τ the r.h.s. in (3.13) is ≤ Cδ((R+2) 2 +1) = δC 1 (R). Now consider the function r(t, x) = r -(R + 1) -tδC 1 (R).

Then r ≤ 0 for t = 0 and for (t, x) ∈ ∂(Q T \K). Due to (3.13) and the definition of τ , for (t,

x) ∈ Q τ \ X this function satisfies ṙ -∆r ≤ Cδ(r 2 + 1) -δC 1 (R) ≤ 0.
Applying the maximum principle [START_REF] Landis | Second Order Equations of Elliptic and Parabolic Type[END_REF], we see that r ≤ 0 in Q τ \ K. So for t ≤ τ we have r(t, x) ≤ (R + 1) + tδC 1 (R). Choose δ so small that T δC 1 (R) < 1. Then r(t, x) < R + 2 for t ≤ τ . So τ = T and we have proved that

|v(t)| ∞ = |r(t)| ∞ ≤ R + 2 ∀ 0 ≤ t ≤ T if δ ≤ δ(T, R), ω ∈ Ω δ . (3.14)
Step 3. It remains to estimate v(t) . To do this we first define v 1 (t, x) as a solution of eq. (1.2) with η = 0 and v 1 (0) = u 0 . Then

v 1 (t) ≤ e -α1t u 0 , |v 1 (t)| ∞ ≤ |u 0 | ∞ ≤ R, (3.15) 
since outside its zero-set the function |v 1 (t, x)| satisfies a parabolic inequality with the maximum principle (namely, eq. (3.13) with δ = 0).

Step 4. Now we estimate w = v-v 1 . This function solves the following equation:

ẇ -∆w + i |v + z| 2 (v + z) -|v 1 | 2 v 1 = 0, w(0) = 0.
Denoting X = w+z (so that v+z = X +v 1 ), we see that the term in the brackets is a cubic polynomial P 3 of the variables X, X, v 1 and v1 , such that every its monomial contains X or X. Taking the H-scalar product of the w-equation with w we get that 1 2

d dt w 2 + ∇w 2 = -iP 3 , w , w(0) = 0. By (3.15), for ω ∈ Ω δ the r.h.s. is bounded by C ′ (R, T )(δ 2 + w 2 + w 4 ). Therefore w(T ) 2 ≤ e 2C ′′ (R,T ) δ 2 (3.16)
everywhere in Ω δ , if δ is small.

Step 5. Since u = w + v 1 + z, then by (3.15), (3.14) and (3.16), for every δ, T > 0 and for each ω ∈ Ω δ we have

u(T ) ≤ δ + e -α1T R + e C ′′ (R,T )T δ =: κ. Since u = v + z, then |u(T )| ∞ ≤ δ + R + 2. Choosing first T ≥ T (R, d) and next δ ≤ δ(R, d, T
) we achieve κ ≤ d. This proves the lemma with L = R + 3.

Ergodicity

In this section, we analyse behaviour of the process u(t) with respect to the norms u and |u| ∞ and next use an abstract theorem from [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF] to prove that the process is mixing.

Uniqueness of stationary measure and mixing

First we recall the abstract theorem from [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF] in the context of the CGL equation (1.2). Let us, as before, denote by P t (u, Γ) and P * t the transition function and the family of Markov operators, associated with equation (1.2) in the space of Borel measures in C 0 (K). Let u(t) be a trajectory of (1.2), starting from a point u ∈ C 0 (K). Let u ′ (t) be an independent copy of the process u(t), starting from another point u ′ , and defined on a probability space Ω ′ which is a copy of Ω. Then the stationary measure µ of eq. (1.2), constructed in Theorem 3.5, is unique and for any λ ∈ P(C 0 (K)) we have P * t λ ⇀ µ as t→∞.

We will derive from this that the Markov process, defined by eq. (1.2) in C 0 (K), is mixing: Theorem 4.2. There is an integer N = N (B * ) ≥ 1 such that if b s = 0 for |s| ≤ N , then there is a unique stationary measure µ ∈ P(C 0 (K)) for (1.2), and for any measure λ ∈ P(C 0 (K)) we have P * t λ ⇀ µ as t→∞.

The theorem is proved in the next section. Now we derive from it a corollary:

Corollary 4.3. Let f (u) be a continuous functional on C 0 (K) such that |f (u)| ≤ C f e c|u| 2 ∞ for u ∈ C 0 (K)
, where c < c * (c * > 0 is the constant in assertion (i) of Theorem 2.6). Then for any solution u(t) of (1.2) such that u(0) ∈ C 0 (K) is non-random, we have 

Ef (u(t)) → (µ, f ) as t → ∞.
|E(f N (u(t)) -f (u(t))| ≤ C f ∞ 0 (1 -ϕ N (r))e cr 2 ν t (dr) ≤ C f e (c-c * )N 2 ∞ 0 e c * r 2 ν t (dr) ≤ C 1 e (c-c * )N
(note that the r.h.s. goes to 0 when N grows to infinity). Similar, using Theorem 3.5 we find that |(µ, f N )-(µ, f )| → 0 as N → ∞. The established relations imply the claimed convergence.

Proof of Theorem 4.2

It remains to check that eq. (1.2) satisfies properties (i) and (ii) in Proposition 4.1 for suitable sets B m . For m ∈ N and L > 0 we define

B m,L := {u ∈ C 0 (K) : u ≤ 1 m , |u| ∞ ≤ L} (these are closed subsets of C 0 (K)). For u 0 , u ′ 0 ∈ B m,L consider solutions u = u(t, u 0 ), u ′ = u(t, u ′ 0 ),
defined on two independent copies Ω, Ω ′ of the probability space Ω, and consider the first hitting time τ (B m,L ) of the set B m,L by the pair (u(t), u ′ (t)) (this is a random variable on Ω × Ω ′ , see (4.1)). The proof of the following lemma is identical to that of Lemma 3.6.

Lemma 4.4. There is a constant L ′ > 0 such that for any m ∈ N we have

Ee γτ (B m,L ′ ) ≤ C(1 + |u 0 | 2 ∞ + |u ′ 0 | 2 ∞ ) for all u 0 , u ′ 0 ∈ C 0 (K),
where γ and C are suitable positive constants.

Let us choose L = L ′ in the definition of the sets B m,L in Proposition 4.1. Then the property (i) holds and it remains to establish (ii), where P t (u 0 , •) = D(u(t)) and P t (u ′ 0 , •) = D(u ′ (t)). From now on we assume that the solutions u and u ′ are defined on the same probability space. It turns out that it suffices to prove (4.2) with the norm • * L(C0(K)) replaced by • * L(H) . To show this we first estimate the distance between D(u(t)) and D(u ′ (t)) in the Kantorovich metrics

D(u(t)) -D(u ′ (t)) K(H) = sup{|(f, D(u(t))) -(f, D(u ′ (t)))| : Lip(f ) ≤ 1} in terms of d = D(u(t)) -D(u ′ (t)) * L(H)
, where t ≥ 0 is any fixed number. Without loss of generality, we can assume that the supremum in the definition of the Kantorovich distance is taken over f ∈ L(H) such that Lip(f ) ≤ 1 and f (0) = 0. By (2.18), E(e c u(t) + e c u ′ (t) ) ≤ C L .

(4.3)

Setting f R (u) = min{f (u), R} and using (4.3), the Cauchy-Schwarz and Chebyshev inequalities, we get

E|f (u(t)) -f R (u(t))| ≤ E( u(t) -R)I u(t) ≥R ≤ C ′ L e -c 2 R . A similar inequality holds for u ′ (t). Since f R L(H) ≤ R + 1, then E|f (u(t)) -f (u ′ (t))| ≤ 2C ′ L e -c 2 R + (R + 1)d. Optimising this relation in R, we find that E|f (u(t)) -f (u ′ (t))| ≤ C ′′ L √ d. Thus D(u(t)) -D(u ′ (t)) K(H) ≤ C ′′ L √ d,
By (3.2), the functions u(t) and u ′ (t) belong to C θ (K) for any θ ∈ (0, 1). The following interpolation inequality is proved at the end of this section.

Lemma 4.5. For any u ∈ C θ (K) we have

|u| ∞ ≤ C n,θ u 2θ n+2θ |u| n n+2θ C θ .
(4.4)

By the celebrated Kantorovich theorem (e.g. see in [START_REF] Dudley | Real Analysis and Probability[END_REF]), we can find random variables ξ and ξ ′ such that D

(ξ) = D(u(t)), D(ξ ′ ) = D(u ′ (t)) and E ξ -ξ ′ = D(u(t)) -D(u ′ (t)) K(H) ≤ C ′′ L √ d.
Using (4.4), (3.2), this estimate and the Hölder inequality, we find that

E|ξ -ξ ′ | ∞ ≤ CE ξ -ξ ′ 2θ n+2θ |ξ -ξ ′ | n n+2θ C θ ≤ (C ′′ L √ d) 2θ n+2θ C ′′′ L n n+2θ = CL d θ n+2θ .
Therefore, for any f such that f L(C0(K)) ≤ 1 we have

|(f, D(u(t))) -(f, D(u ′ (t)))| = |Ef (ξ) -f (ξ ′ )| ≤ E|ξ -ξ ′ | ∞ ≤ CL d θ n+2θ , which implies that D(u(t)) -D(u ′ (t)) * L(C0(K)) ≤ CL D(u(t)) -D(u ′ (t)) * L(H) θ n+2θ . (4.5)
Thus we have proved Lemma 4.6. Assume that

sup t≥Tm P t (u 0 , •) -P t (u ′ 0 , •) * L(H) ≤ δ m (4.6) for all u 0 , u ′ 0 ∈ B m,L , where δ m → 0. Then (4.2) holds for B m = B m,L with δ ′ m = C L δ θ n+2θ m .
So to prove Theorem 4.2 it remains to verify (4.6).

Proof of (4.6). In view of the triangle inequality we may assume that in (4.6) u ′ 0 = 0.

Step 1. In this step we prove that it suffices to establish (4.6) for solutions of an equation, obtained by truncating the nonlinearity in (1.2). For any ρ ≥ 0 and any continuous process {z(t) : t ≥ 0} with range in C 0 (K) we define the stopping time

τ z = inf t ≥ 0 : t 0 |z(τ )| 2 ∞ dτ -Kt ≥ ρ},
where K is the constant in Lemma 2.7 (as usual, inf ∅ = ∞). We set Ω z ρ = {τ z < ∞} and π z = P(Ω z ρ ). Then

π u ≤ Ce -γρ , π u ′ ≤ Ce -γρ (4.7)
for suitable C, γ > 0 and for any ρ > 0. Consider the following auxiliary equation:

v -∆v + i|v| 2 v + λP N (v -u) = η(t, x), v(0) = 0. (4.8)
Consider τ v and define Ω v ρ and π v as above. Define the stopping time

τ = min{τ u , τ u ′ , τ v } ≤ ∞,
and define the continuous processes û(t), û′ (t) and v(t) as follows: for t ≤ τ they coincide with the processes u, u ′ and v respectively, while for t ≥ τ they satisfy the heat equation ż -∆z = η.

Due to (4.7)

D(u(t)) -D(û(t)) * L + D(u ′ (t)) -D(û ′ (t)) * L ≤ 4P{τ < ∞} ≤ 8Ce -γρ + 4π v .
(4.9) So to estimate the distance between D(u(t)) and D(u ′ (t)) it suffices to estimate π v and the distance between D(û(t)) and D(û ′ (t)).

Step 2. Let us first estimate the distance between D(û(t)) and D(v(t)). Equations (1.2) and (4.8) imply that for t ≤ τ the difference w = vû satisfies

ẇ -∆w + i |v| 2 v -|û| 2 û + λP N w = 0, w(0) = -u 0 , where | |v| 2 v -|û| 2 û, w | ≤ C(|û| 2 ∞ + |v| 2 ∞ ) w 2 .
Taking the H-scalar product of the w-equation with 2w, we get that

d dt w 2 + 2 ∇w 2 + 2λ P N w 2 ≤ C(|û| 2 ∞ + |v| 2 ∞ ) w 2 , t ≤ τ. (4.10) Since ∇w 2 ≥ α N Q N w 2 , where Q N = id -P N , then 2 ∇w 2 + 2λ P N w 2 ≥ 2λ 1 w 2 , λ 1 := min{α N , λ}.
Choosing λ and N so large that λ 1 -CK ≥ 1 and applying to (4.10) the Gronwall inequality, we obtain that Step 3. To estimate the distance between D(v(t)) and D(û ′ (t)) notice that, without loss of generality, we can assume that the underlying probability space (Ω, F , P) is of the particular form: Ω is the space of functions u ∈ C(R + , C 0 (K)) that vanish at t = 0, P is the law of ζ defined by (1.3), and F is the completion of the Borel σ-algebra of Ω with respect to P. For any ω • ∈ Ω, define the mapping Φ : Ω→Ω by Φ(ω) t = ω tλ Replacing in this inequality r * by its value we get (4.4).

w 2 ≤ u 0 2 exp -2λ 1 t + C t 0 (|û| 2 ∞ + |v| 2 ∞ )
5 Some generalisations 1) Our proof, as well as that of [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF], applies practically without any change to equations (1.1), where ν > 0 and a ≥ 0. Indeed, scaling the time and u we achieve ν = 1 (the random force scales to another force of the same type). Now consider equation (1.1) with ν = 1 and a ≥ 0, and write the equation for ξ(r(t, x)). The integrand in the r.h.s. of eq. ( 2.3) gets the extra term -ξ ′ (r)ar 2 . Accordingly, the r.h.s. part g(t, x) of eq. (2.8) gets the non-positive term -ar 2 . Since the proof in Section 2 only uses that g ≤ 1 2r b 2 s |ϕ s | 2 , it does not change. In Sections 3-4, as well as in [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF], we only use results of Section 2 and the fact that the nonlinearity in the equation, as well as its derivatives up to order m, admit polynomial bounds. For the argument in Section 4 it is important that the nonlinearity's derivative grows no faster than C|u| 2 .

2) The proof of Theorem 2.2, given in [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF], applies with minimal changes if the Sobolev space H m (K) with m > n/2 (a Hilbert algebra) is replaced by the Sobolev space W 1,p (K) with p > n (a Banach algebra). It implies the assertions of the theorem with the norm • m replaced by the norm | • | W 1,p , under the condition that B 1 < ∞. The argument in Sections 2.1-3.2 remains true in this

  . The force η(t, x) is a random field of the formη(t, x) = ∂ ∂t ζ(t, x), ζ(t, x) = s∈N n b s β s (t)ϕ s (x). (1.3)Here b s are real numbers such thatB * := s∈N n |b s | < ∞,

  2) if D(ζ ′ ) = D(ζ) and (ii), (iii) of Definition 2.1 hold with ζ replaced by ζ ′ .

  For a closed subset B ⊂ C 0 (K) we set B = B × B ⊂ C 0 (K) × C 0 (K) and define the hitting time τ (B) := inf{t ≥ 0 : u(t) ∈ B, u ′ (t) ∈ B}, (4.1) which is a random variable on Ω × Ω ′ . The following result is an immediate consequence of Theorem 3.1.3 in [KS12]. Proposition 4.1. Let us assume that for any integer m ≥ 1 there is a closed subset B m ⊂ C 0 (K) and constants δ m > 0, T m ≥ 0 such that δ m →0 as m→∞, and the following two properties hold: (i) (recurrence) For any u, u ′ ∈ C 0 (K), τ (B m ) < ∞ almost surely. (ii) (stability) For any u, u ′ ∈ B m sup t≥Tm P t (u, •) -P t (u ′ , •) * L(C0(K)) ≤ δ m . (4.2)

Proof.

  For any N ≥ 1 consider a smooth function ϕ N (r), 0 ≤ ϕ N ≤ 1, such that ϕ N = 1 for |r| ≤ N and ϕ N = 0 for |r| ≥ N +1. Denote f N (u) = ϕ N (|u| ∞ )f (u). Then f N ∈ C b (C 0 (K)), so by Theorem 4.2 we have |Ef N (u(t)) -(µ, f N )| ≤ κ(N, t), where κ → 0 as t → ∞, for any N . Denote ν t (dr) = D(|u(t)| ∞ ), t ≥ 0. Due to (2.18),

t 0 χ 0 P

 00 s≤τ P N v(s)û(s) ds.Clearly, a.s. we have û′Φ(ω) (t) = vω (t) for all t ≥ 0.(4.13)Note that the transformation Φ is finite dimensional: it changes only the first N components of a trajectory ω t . Due to (4.11), almost surely∞ N w(s) 2 ds ≤ 1 2m 2 e 2Cρ .This relation, the hypothesis that b s = 0 for any |s| ≤ N, and the argument in Section 3.3.3 of[START_REF]Mathematics of Two-Dimensional Turbulence[END_REF], based on the Girsanov theorem, show thatΦ • P -P var ≤ C(ρ) m =: d(m, ρ). (4.14) Using (4.13), we get D(v(t)) = vt • P = û′ t • (Φ • P), where vt stands for the random variable ω→v ω (t). Therefore,D(v(t)) -D(û ′ (t)) * L(H) ≤ 2 D(v(t)) -D(û ′ (t)) var ≤ 2 Φ • P -P var ≤ 2 d(m, ρ). (4.15)Step 4. Now let us prove (4.6). We get from (4.7) and (4.14) thatπ v = PΩ v ρ = PΦ -1 (Ω û ρ ) = (Φ • P)Ω û ρ ≤ PΩ û ρ + d(m, ρ) ≤ Ce -γρ + d(m, ρ).Due to (4.9), (4.12), (4.15) and the last inequality we haveD(u(t)) -D(u ′ (t)) * L ≤ 12Ce -γρ + d(m, ρ, t) + 6 d(m, ρ) ≤ 12Ce -γρ + 1 m e Cρ-t + 6 m C(ρ) =: D m (t).Let us choose ρ = ρ(m), where ρ(m) → ∞ in such a way that 6 m C(ρ(m)) → 0, and next take T m = Cρ(m). Then for t ≥ T m we have D m (t) ≤ δ m → 0. This completes the proof. Proof of Lemma 4.5. Let us take any u ∈ C θ , u ≡ 0 and set M := |u| ∞ , U := |u| C θ . Take any x * ∈ K such that |u(x * )| = M . To simplify the notation, we suppose that x * = 0. Regarding u as an odd periodic function on R n we have |u(x)| ≥ M -|x| θ U ∀ x. The l.h.s of this inequality vanishes at |x| = (M/U ) 1/θ =: r * ≤ 1. Integrating the squared relation we get u 2 ≥ C r * 0 (Mr θ U ) 2 r n-1 dr = CU 2 r * 0 (r 2θ * r n-1 -2r θ * r n+θ-1 + r n+2θ-1 )dr = CU 2 r n+2θ *

  for t ≤ τ . Clearly for t ≥ τ we have (d/dt) w 2 ≤ -2 w 2 . Therefore

		w 2 ≤	1 m 2 exp (-2t + 2Cρ)		∀ t ≥ 0 a.s.	(4.11)
	So for any f ∈ L(H) such that f L ≤ 1 we get
	|E(f (û(t)) -f (v(t)))| ≤ E w 2 1 2 ≤	1 m	e Cρ-t =: d(m, ρ, t).
	Thus			
		D(û(t)) -D(v(t)) * L(H) ≤ d(m, ρ, t).	(4.12)
					ds
	≤	1 m 2 exp (-2(λ 1 -CK)t + 2Cρ) ≤	1 m 2 exp (-2t + 2Cρ) ,

The filtered probability space (Ω, F , {Ft}, P), as well as all other filtered probability space, used in this work, are assumed to satisfy the usual condition, see[START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF].

That result was introduced in [Shi06], based on ideas, developed in[START_REF] Kuksin | Coupling approach to white-forced nonlinear PDEs[END_REF] to establish mixing for the stochastic 2D NSE. It applies to various nonlinear stochastic PDEs, including the complicated CGL equation (1.1) where a = 0 and ν is complex number with a positive real part, see[START_REF]Ergodicity for a class of Markov processes and applications to randomly forced PDE's II[END_REF].

It depends on ω, as well as the set Q. All estimates below are uniform in ω.
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setup since it does not use the H m -norm. So to establish results of Section 3 one can use the W 1,p -solutions instead of H m -solutions.

3) Similar to 1) results of Sections 2.1-3.2 remain true for eq. (1.8). 

The W 1,p -argument as in 2) applies to eq. (1.2), (5.1) and proves an analogy of Theorem 2.2 with the • m -norm replaced by the | • | W 1,p -norm, under the assumption that B * , B 1 < ∞. The only difference is that now the assertion of Lemma 2.4 follows not from [START_REF]A stochastic nonlinear Schrödinger equation. I. A priori estimates[END_REF], but from the result of [START_REF] Kuksin | Hölder estimates for solutions of parabolic SPDEs[END_REF] (also see [START_REF] Krylov | On L p -theory of stochastic partial differential equations in the wole space[END_REF][START_REF] Mikulevicius | A note on Krylov's L p -theory for systems of SPDEs[END_REF]).

After that the proof goes without any changes compared to Sections 1-4 and establishes for equation (1.2), (5.1) analogies of the main results of this work (with the space C 0 (K) replaced by C 0 (O) and H 1 by H 1 0 (O)):

Theorem 5.1. Assume that B * < ∞. Then i) for any u 0 ∈ C 0 (O) problem (1.2), (1.5), (5.1) has a unique strong solution u such that u ∈ H(0, ∞) a.s. This solution defines in the space C 0 (O) a Fellerian Markov process.

ii) This process is mixing.

The first assertion remains true if in eq. (1.2) we replace the nonlinearity by ig r (|u| 2 )u, 0 < r < ∞. If r ≤ 1, then the second assertion is also true. It is unknown if the systems, corresponding to equations with r > 1, are mixing (this is a well known difficulty: it is unknown how to prove mixing for SPDEs without non-linear dissipation and with a conservative nonlinearity which grows at infinity faster that in the cubic way). 5) Lemmas 2.7, 4.4 and estimate (4.5) allow to apply to eq. (1.2) the methods, developed recently to prove exponential mixing for the stochastic 2d Navier-Stokes system (see in [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF] Theorems 3.1.7, 3.4.1 as well as discussion of this result). It implies that the Markov process, defined by eq. (1.2), is exponentially mixing, i.e. in Theorem 4.2 the distance P * t λµ * L converges to zero exponentially fast. See Section 4 of [START_REF]Mathematics of Two-Dimensional Turbulence[END_REF] for consequences of this result. Proof of this generalization is less straightforward than those in 1)-4) and will be presented elsewhere.