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SUMMARY

A probabilistic damage model is developed to study crack initiation and growth in quasi-brittle
materials. Two different thresholds are considered to describe these mechanisms. A Weibull model
is used to account for the randomness of crack initiation(s) and then a fracture mechanics based
threshold is considered to model crack propagation. The model is integrated in a finite element code via
a nonlocal damage approach. A regularization operator based on a stress regularization is introduced.
Both damage thresholds are checked using the ‘regularized’ stress field to avoid mesh dependence.
The interaction between propagating cracks and potential initiation sites is accounted for. Copyright
c⃝ 2000 John Wiley & Sons, Ltd.

key words: Brittle materials; Crack networks; Damage mechanics; Nonlocal model; Probabilistic

approach; Weibull model

1. INTRODUCTION

Accurate modeling of damage and cracking of quasi-brittle materials such as concrete and rock
is of great interest in different engineering applications. These materials exhibit important
heterogeneities on their mechanical parameters because of their natural components. Their
failure has usually a random character. The failure stress is scattered and the average level
decreases with the volume of the sample. The effect of this scatter on the damage probability
needs to be taken into account.

The description of strain localization is another crucial condition for simulating a damaged
region with continuum models. In numerical simulations with standard softening models the
strain field localizes in a band with a thickness of one element [1]. Every mesh refinement
modifies the global response of the structure. The results exhibit a pathological dependence
on the mesh fineness, the orientation of elements and in a more general form on the spatial
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discretization. As an extreme case, it can be shown that for a very fine discretization the
predicted fracture energy approaches zero [1, 2], which is unrealistic from a physical point
of view. The corresponding mathematical problem has been identified as a loss of ellipticity
of the mechanical problem [3, 4, 5]. As early as 1976, Hillerborg et al. proposed a Fictitious
Crack Model [6], which provides a mesh-independent energy release upon crack propagation.
This concept was adapted by Bažant and Oh [7] to a smeared crack formulation in which the
fracture energy is smeared out over the area where the damaged zone localizes.

Different regularization schemes have been used to avoid the ill-posedness of the
mathematical description at a certain level of accumulated damage. Nonlocal damage
models [8, 9] provide a suitable framework to have mesh objective results when dealing with the
post-localized behavior. Nonlocal principals have also been used to provide enhanced plasticity
models [10, 11]. The higher-order deformation gradients are used to include a nonlocal effect
regularizing strain localization, and thus removing the sensitivity of the model to spatial
discretizations [12, 13].

The main idea of nonlocal models is to consider that the behavior of each material point
depends on the state of surrounding points. Let us assume that damage is governed by strains.
In conventional local models, damage is usually related to a scalar measure of the local
strain state. As an example, in a nonlocal model, damage is related to a weighted volume
average of this equivalent strain through a regularization operator. The choice of such a
regularization operator does not rely on physical observations. The implicit gradient enhanced
scheme proposed by Peerlings et al. [14, 15] provides a regularization of the strain by resorting
to a minimum square method and reads for a domain Ω

R (ϵϵϵ) = min
ϵϵϵ

∫
Ω

(
1

2
(ϵϵϵ− ϵϵϵ)

2
+

1

2
(ℓc∇∇∇ϵϵϵ)2

)
dΩ (1)

where ϵϵϵ and ϵϵϵ are strain and regularized strain tensors respectively, ℓc a characteristic length,
and ∇∇∇ the gradient operator. The gradient term introduces the interaction between each
material point and its neighborhood. Minimizing the integral of Equation (1) is equivalent to
solving the following differential equation

ϵϵϵ− ℓ2c∆ϵϵϵ = ϵϵϵ (2)

where ∆ denotes the Laplacian operator, with the following boundary conditions

(∇∇∇ ϵϵϵ) · n = 0 (3)

with n a vector normal to the boundary. It can be noted that such regularization scheme will
increase the strain level in a point in the vicinity of the damaged zone and limits the strain
gradient. This procedure will enlarge the band of strain localization. Some modified versions
include a projector canceling out the contribution of the completely damaged elements to the
regularization procedure to prevent a physically non-realistic enlargement of the localization
band [16].

The effect of a statistical description of the continuum on the behavior of a nonlocal model
at and after the onset of localization has already been studied [17, 18]. The considered studies
were performed using a nonlocal model based on a regularized strain. The material macro-scale
heterogeneity is described based on the framework of the random field theory [19]. It has been
shown that a stochastic description of the damage threshold does not solve the difficulties
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A NONLOCAL CRACKING MODEL FOR HETEROGENEOUS MATERIALS 3

associated with strain localization and the use of a nonlocal scheme is necessary. Two internal
lengths associated respectively with the internal length scale of the nonlocal continuum and
the correlation length of the random field must be considered. The authors pointed out the
proper modeling of the relationship between these internal lengths and their experimental
identification as an important issue [17].

The statistical theory of strength proposed by Weibull [20] is largely used to describe the
random nature of the failure of quasi-brittle materials. However it is shown that the classical
Weibull theory cannot be used for situations where the failure of the structure is caused by a
stable propagation of a macrocrack [21]. More particularly, the stress field used to calculate
the failure probability in each point must take into account the stress redistribution due to
the presence of macrocracks and reflect the localization of strains occurring prior to failure. A
nonlocal Weibull theory was proposed by Bažant and Xi for improving this shortcoming [22].
In this setting, an average stress value is used in the fracture-process zone around the crack
tip. The local (i.e., Cauchy’s) stress is used elsewhere. An extension of the proposed analytical
solution to a finite element nonlocal damage model is also proposed. Considering the elastic
analysis of fracture, the nonlocal strains are used to calculate the average stresses in the process
zone as follows [22, 23]

Pf = exp

[
−
∫
Ω

n∑
i=1

(
⟨Eεi(x)− σu⟩

σ0

)m
dΩ(x)

Ωr

]
(4)

where Pf denotes the failure probability, n number of dimension (n = 1, 2 or 3), E Young’s
modulus, ε(x) nonlocal strain, σu, σ0 and m Weibull parameters, and Ωr a reference volume.
As it can be seen, the product of Eε(x) is considered as a nonlocal measure of the stress field
in this setting.

Two other alternatives of nonlocal averaging are also proposed by Bažant and Novák [23].
The first one consists in considering only some measures of damage or inelastic strains [8, 9] for
the nonlocal constitutive model. The inelastic stress defined as ‘the elastic stress corresponding
to the given strain minus the actual stress for the same strain according to the given stress-
strain diagram’ [23] is subjected to spatial averaging. The second one consists in spatially
averaging the inelastic strain, representing the difference of the current strain and the elastic
strain corresponding to the same stress [23]. A uniform weighting function that vanishes out
of a certain representative volume is used for averaging the nonlocal variables. More recently,
this formalism is used by Bažant [24] to derive the probability distribution of the size effect
on the nominal strength of heterogeneous quasi-brittle materials.

It is worth noting that the aforementioned works are based on the failure probability defined
as the crack initiation probability. Even though an example is presented [22] in which the
asymptotic stress field around a crack tip is used to fit the averaging functions, no link is made
to the stress intensity factor (SIF) calculation or crack propagation. Fracture mechanics is a
powerful tools for describing the propagation of initiated cracks. Different numerical schemes
are used to model crack propagation, which is based upon fracture mechanics principles. Among
them, the double noding technique [25, 26], local or general remeshing [27, 28], boundary
elements [29], cohesive zone models [30] and the extended finite element method [31] can be
mentioned. The models based on the traditional finite element method require mesh refinement
in order to model the singularity of the stress field around the crack tip and to calculate
correctly the value of stress intensity factors. However, the numerical description of propagating
cracks remains a scientific and technical challenge.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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In the present paper a new nonlocal damage model is proposed. The model aims at simulating
crack initiation and propagation within a heterogeneous material. Crack initiation follows
a Poisson-Weibull process. A local brittle damage model is introduced. It provides results
following the weakest link hypothesis. The propagation of the initiated cracks is then modeled
through fracture mechanics principles. The stress intensity factor is considered as the governing
parameter for crack growth. It will be shown that the use of a simple local damage model with
a nonlocal gradient enhanced regularization enables for the simulation of brittle failure of
weakest link type, and provides mesh-objective results for crack initiation. In this view, a
new regularization scheme based on a stress regularization operator is proposed. The stress
gradient regularization scheme is very close to the deformation regularization proposed by
Peerlings et al. [14, 15]. However, the proposed stress gradient regularization is a more realistic
modeling of damage localization since no regularization is performed on the strain field. The
regularization yields results that are independent of the spatial discretization with respect to
the Weibull distribution properties. The developed model calculates the initiation probability
of each element following a Poisson-Weibull model while accounting for the stress redistribution
due to the presence of the propagating cracks. Furthermore, it will be shown that with the
stress gradient enhancement of a simple local damage model the stress intensity factor and
crack opening displacement are evaluated correctly without mesh refinement around tips of
crack networks. A unique variable, i.e., the regularized stress will be used for evaluating crack
initiation and propagation.

2. DESCRIPTION OF THE NONLOCAL MODEL

The main idea of the present approach is to use the same parameter for evaluating two different
thresholds for crack initiation and propagation. The inception of propagation on an existing
defect is considered as crack initiation. Once a crack has initiated, its growth is governed by a
regularized stress intensity factor. A gradient enhanced stress is used to check initiation and
propagation. The considered regularized stress is obtained by solving the following equation

σσσ − ℓ2c∆σσσ = σσσ (5)

where σσσ is the regularized stress tensor and σσσ Cauchy’s stress tensor. Furthermore, natural
boundary conditions are considered

(∇∇∇ σσσ) · n = 0. (6)

Equation (5) is a Helmholtz’s equation. Considering the introduced boundary conditions (6),
the regularized field has been shown to correspond to that obtained by using a nonlocal model
with Green’s function as a weight function [32]. In the present model, the regularized stress is
used for both the crack initiation and growth. The main objective of this section is to introduce
both thresholds and to compare them.

2.1. CRACK INITIATION THRESHOLD

Crack initiation is described by an inverse Weibull law [20]. The Weibull model evaluates the
initiation probability of a considered domain (e.g., finite element) under few assumptions.
Let us consider that crack inception can only occur at initial defects represented by random
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Prepared using nmeauth.cls



A NONLOCAL CRACKING MODEL FOR HETEROGENEOUS MATERIALS 5

locations and initiation stress levels. The density of defects that may initiate a crack λt is
expressed by a power law function of the loading level characterized by a maximum principal
stress σI

λt (σI) = λ0

(
σI
σ0

)m

(7)

where m stands for Weibull modulus, and σm
0 /λ0 is a scale parameter. A small value of m

corresponds to a very heterogeneous material. Conversely, high Weibull moduli lead to more
deterministic values. The probability of finding Nd critical defects (i.e., the defects that may
initiate a crack) in a considered domain Ω of size |Ω| is described by a Poisson distribution

PNd
(Ω, σI) =

[|Ω|λt (σI)]Nd

Nd!
exp [−|Ω|λt (σI)] (8)

By making the weakest link hypothesis for crack initiation, the initiation probability of a
domain is written as a function of the probability of finding at least one critical defect in this
domain [33]

Pi (|Ω|, σI) = PNd≥1 (Ω, σI) = 1− PNd=0 (Ω, σI) = 1− exp [−|Ω|λt (σI)] (9)

By substituting the definition of the total defect density (7) in the expression of the initiation
probability (9), a threshold value of the regularized stress for crack initiation is obtained. In
the present model, a crack will initiate in a considered domain (i.e., in a finite element e) of
size |Ωe| if the regularized maximum principal stress reaches the initiation threshold

Si =
σ0

(λ0|Ωe|)
1
m

[− ln (1− Pi)]
1
m (10)

where Pi ∈ [0; 1]. This threshold can be compared with the regularized maximum principal
stress only if the initial defect size is less than characteristic length ℓc. Furthermore, crack
initiation is considered to occur at the center of the element, and the crack propagation
direction is normal to that of the maximum eigen regularized stress. It is worth noting that the
introduced crack initiation threshold leads to the same behavior for a domain independently
to its spatial discretization. Let us consider a domain Ω uniformly stressed, and a set of n
independent sub-domains Ωi such that ∪n

i=1Ωi = Ω. For a given loading level, the probability
for the first crack to initiate in the union of the n independent sub-domains Ωi and in the
domain Ω are equal. This equality is obtained by

Pi (| ∪n
i=1 Ωi|, σI) = 1−

n∏
i=1

PNd=0 (|Ωi|, σI) = 1− exp

[
−

n∑
i=1

|Ωi|λt (σI)

]
= Pi (|Ω|, σI) . (11)

2.2. CRACK GROWTH THRESHOLD

Let us consider the 2-dimensional case of a crack in an elastic medium submitted to a far
field loading. In that case, Westergaard’s solution [34] (i.e., the asymptotic solution in the
vicinity of the crack tip) gives a good approximation of the stress field. The stress field given
by Westergaard’s solution is expressed in a basis located at the crack tip (figure 1)

σσσ (r, θ) =
KI√
2πr

fI (θ) +
KII√
2πr

fII (θ) (12)
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where KI and KII denote the stress intensity factors corresponding to modes I and II, and
fI and fII associated tensors. Tensors fI and fII read

fI (θ) =

 cos θ
2

(
1− sin θ

2 sin
3θ
2

)
sin θ

2 cos
θ
2 cos

3θ
2 0

sin θ
2 cos

θ
2 cos

3θ
2 cos θ

2

(
1− sin θ

2 sin
3θ
2

)
0

0 0 fI33

 (13)

for mode I with fI33 = 0 under plane stress hypothesis and fI33 = 2 ν cos θ/2 under plane
strain hypothesis, and ν is Poisson’s ratio,

fII (θ) =

 − sin θ
2

(
2 + cos θ

2 cos
3θ
2

)
cos θ

2

(
1− sin θ

2 sin
3θ
2

)
0

cos θ
2

(
1− sin θ

2 sin
3θ
2

)
sin θ

2 cos
θ
2 cos

3θ
2 0

0 0 fII33

 (14)

for mode II with fII33 = 0 under plane stress hypothesis and fII33 = −2 ν sin θ/2 under plane
strain hypothesis.

0

y

x

Figure 1. Definition of a basis at the crack tip.

Let us consider Helmholtz’ Equation (5) and turn it into its integral form that has an
analytical solution for infinite plane problems [35]. For an infinite 2D medium, the regularized
stress for a given point P is written in a cylindrical coordinate system as

σσσ(P ) =
1

2π

∫ ∞

0

∫ π

−π

σσσ (r, θ)

ℓ2c
Kbζ

(
r

ℓc

)
rdrdθ (15)

where Kbζ is modified second order Bessel function

Kb0 (ar) =

∫ ∞

0

cos art√
1 + t2

dt (16)

for ζ = 0 [36]. Modified second order Bessel function plays the role of a weight function in this
formulation. For a point P at the tip of a crack with a sufficiently small characteristic length,
Equation (12) becomes

σσσ(P ) (KI ,KII) =
II∑
i=I

[
Ki

(2π)
3
2 ℓ2c

∫ ∞

0

Kb0

(
r

ℓc

)
r

1
2 dr

∫ π

−π

fff i (θ) dθ

]
. (17)
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so that

σσσ(P ) (KI ,KII) =
Γ2

(
3
4

)
5π

1√
πℓc

 4KI 4KII 0
4KII 6KI 0
0 0 0

+ σ33e3 ⊗ e3 (18)

where σ33 = −ν (σ11 + σ22) under plane strain condition, σ33 = 0 under plane stress condition,
and Γ denotes Euler (Gamma) function of the second kind. Equation (18) shows that the
proposed operator provides a regularized stress at the crack tip corresponding to Westergaard’s
asymptotic solution. This solution is relevant when the characteristic length is small compared
to the crack length. It is worth noting that the proposed formulation allows us to calculate
directly the stress intensity factor without any mesh refinement. Therefore a natural transition
is made from a damage mechanics based model for crack initiation to a fracture mechanics
based description for crack propagation. Furthermore, both models use the same variable,
namely, the regularized stress.

In order to describe crack growth in the opening mode, the following crack growth threshold
is compared to the maximum principal stress

Sg =
6Γ2

(
3
4

)
5π

Kc√
πℓc

(19)

where Kc is the fracture toughness of the studied material. Furthermore, crack growth is
assumed to occur at an existing crack tip and its direction is perpendicular to the regularized
maximum eigen stress direction.

For a pure mode I loading case, the given threshold is equivalent to

Kc ≤ KI (20)

when the characteristic length ℓc is small compared to the crack length. It is to be noted that
the introduced threshold is a mixed mode criterion because for a mixed mode loading the
regularized maximal principal stress is

σI =
6Γ2

(
3
4

)
5π

1√
πℓc

[
5KI +

√
K2

I + 16K2
II

]
6

. (21)

The introduced threshold is therefore equivalent to the following criterion

Kc ≤

[
5KI +

√
K2

I + 16K2
II

]
6

≈ KI +
2

3
KII . (22)

2.3. LOCAL CONSTITUTIVE LAW

A simple damage law describing a perfectly brittle behavior of an isotropic material is used as
a local damage law. It is derived by using Helmholtz’ state potential [37]

ρψe =
1

2
(1− d) ϵϵϵ : C : ϵϵϵ (23)

where C is the elasticity tensor of the virgin material, ρ the mass density, and d the damage
variable. From the state potential, the elasticity law is obtained

σσσ = ρ
∂ψe

∂ϵϵϵ
= (1− d) C : ϵϵϵ. (24)

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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8 N. GUY, D. M. SEYEDI, F. HILD

The thermodynamic force associated with the damage variable d is defined as

Y = −ρ∂ψe

∂d
=

1

2
ϵϵϵ : C : ϵϵϵ. (25)

Damage growth is driven by

d = H (⟨σI − Si⟩+ ⟨σI − Sg⟩) when ḋ ≥ 0 (26)

where H denotes Heaviside step function, σI the maximal principal stress, Si and Sg the
initiation and crack growth thresholds.

2.4. THRESHOLD COMPARISON

The initiation threshold was introduced by considering that a crack initiation stress is
associated with each initial defects. In order to compare the initiation threshold with the crack
growth threshold, let us consider that the most critical defect in a considered domain has a
threshold stress corresponding to a crack of half length a, which is orientated perpendicular
to the eigen stress direction. In that case, the initiation threshold is expressed as

Si =
Kc√
πa

(27)

Assuming that the characteristic length is greater than a leads to

Si =
Kc√
πa

≥ Kc√
πℓc

>
6Γ

(
3
4

)
5π

Kc√
πℓc

= Sg. (28)

A characteristic length greater than the size of the largest initial crack (or defect) provides
a crack initiation threshold greater than or equal to the crack growth threshold. It is worth
noting that this condition is not initially satisfied because of the conservative nature of a
two parameter Weibull law. Using a two-parameter Weibull law (i.e., without threshold) is
equivalent to considering the possibility of having initial cracks (i.e., defects) of any size, even
larger than the characteristic length. In the proposed setting, the characteristic length stands
for a micro-structural parameter that is the size of the largest initial crack modeling a defect.

3. NUMERICAL IMPLEMENTATION

The finite element method is used to solve the global problem using the discretization described
in sub-section 3.1. A Newton-Raphson scheme is chosen. The constitutive law is solved
implicitly [38] and the damage field is considered uniform in each element. The numerical
model is introduced in Code Aster [39].

3.1. SPATIAL DISCRETIZATION OF THE FIELD EQUATIONS

A specific finite element, initially developed for a strain gradient enhancement model [40],
is adapted for the spatial discretization. As shown in Figure 2 the regularized stress field is
added as nodal degrees of freedom (DOFs). The introduced finite element is thus quadratic
for the displacement field and linear for the regularized stress. P2 and P1 shape functions

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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u

u, σσ

Figure 2. Nodal unknowns for two types of elements.

are used for displacement and regularized stress fields, respectively. Two types of unknowns
are defined on the corner nodes and only displacements are calculated at middle nodes. A
triangular element has thus 21 DOFs for a plane problem. Two sets of shape functions and
derivatives are associated with displacement (N and B) and regularized stress (N̂ and B̂). A
detailed description of the shape functions and integration points can be found in Ref. [41].

Two equations govern the global problem, namely, classical equilibrium and those
corresponding to the calculation of regularized stress. The integral formulation of the problem
reads

∀u∗ ∈ Vad,

∫
Ω

σσσ : ϵϵϵ (u∗) dΩ =

∫
G

u∗ ·T dG+

∫
Ω

u∗ · fV dΩ (29)

where Vad is the space of admissible displacements, T the tractions, fV the body forces and

∀sss∗ ∈
[
H1 (Ω)

]6
,

∫
Ω

(
sss∗σσσ +∇∇∇sss∗ · ℓ2cσσσ

)
dΩ =

∫
Ω

sss∗σσσ dΩ. (30)

In the following, σσσ, ϵϵϵ et σσσ stand for vector forms of stress, strain and regularized stress tensors,
u denotes the displacement vector. The global resolution consists in minimizing a residual
force associated with displacements that can be calculated for each element as

Fu = Fint +DTλλλ− Fext (31)

where Fint =
∫
Ω
BTσσσ dΩ is the resultant of the internal forces, Fext =

∫
Γ
NTT dΓ is the

resultant of the external loads with T the nodal forces. Operator D is defined so that Du = ud,
with ud the prescribed displacements, and λλλ Lagrange multiplier corresponding to Dirichlet
boundary conditions. A regularized stress residual is also minimized

Fσ = Kσσσσσ − Fσ (32)

where Fσ =
∫
Ω
N̂Tσσσ dΩ and Kσσ =

∫
Ω

(
N̂T N̂+ ℓ2cB̂

T B̂
)

dΩ. The following tangent matrix

is used for minimizing the above mentioned residuals

K =

[ ∂Fu

∂u
∂Fu

∂σσσ
∂Fσ

∂u
∂Fσ

∂σσσ

]
(33)

with
∂Fu

∂u
=

∫
Ω

BT ∂σσσ

∂ϵϵϵ
B dΩ (34)

∂Fu

∂σσσ
=

∫
Ω

BT ∂σσσ

∂σσσ
N̂ dΩ = 0 (35)

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 N. GUY, D. M. SEYEDI, F. HILD

∂Fσ

∂u
=

∫
Ω

−N̂T ∂σσσ

∂ϵϵϵ
B dΩ (36)

∂Fσ

∂σσσ
=

∫
Ω

(
N̂T N̂+ ℓ2cB̂

T B̂
)

dΩ (37)

After global inversion, displacements and regularized stresses are known on the associated
nodes. In the proposed setting, the growth of the state of each element is evaluated by taking
into account the regularized stresses, the geometry of the element and its neighborhood. A
constant damage field per element is considered. When a damage variable is calculated for each
element (and constant for all Gauss points of the element), the terms ∂σσσ/∂ϵϵϵ are calculated
for each Gauss point. Finally, the global matrix is assembled. Since the damage variable has
a binary nature, the material is described either by an elastic behavior with initial rigidity or
by a completely damaged material with a residual rigidity, which is negligible compared to
the initial rigidity (d = 1 − 10−6). The residual rigidity is introduced since it is impossible
to invert the global matrix using a null rigidity with conventional methods. It can be noted
that if damage does not change during a loading step, the global problem in displacement or
regularized stress is linear. The tangent matrix is thus updated at each Newton iteration and
not for the elastic prediction at the beginning of a time step.

3.2. NUMERICAL CRACK DESCRIPTION

Each undamaged element can be damaged in two different situations during the cracking
process. An element may be located in the direct neighborhood of a crack tip. In that case, the
element is marked and the crack propagation threshold will be considered for that element.
Conversely, i.e., there is no propagating crack in the direct neighborhood of the element, the
initiation threshold is considered. Consequently, the geometrical position of crack tips and
their corresponding elements are stored during the calculation.

Figure 3 shows the developed procedure for defining the neighboring elements during
initiation (Figure 3(a)) and propagation phases (Figure 3(b)). Let us consider that the applied
load is sufficient for initiating a macrocrack in element Ael. A crack will initiate at the center
of the element, and the damage variable for the considered element will be d = 1. Let us
define nIApt as a vector corresponding to the direction of the maximum principal ‘regularized’
stress σIApt at point Apt when the failure threshold is reached. It is assumed that the initiated
crack propagates perpendicular to nIApt . Two crack tips are defined, namely, Bpt and Cpt that
are the intersections between a line ∆Ael

with the element edges. Line ∆Ael
is defined as the

segment that passes by Apt and is perpendicular to vector nIApt . Each crack tip is located on
a neighboring element, i.e., Bel and Cel. These neighboring elements are thus subjected to the
propagation threshold and not the initiation one because their failure is associated with crack
propagation.

As shown in Figure 3(b), if the propagation threshold is reached on one of the crack tips Dpt

located on element Del, the damage variable in this element will be d = 1. The crack tip will
move along a line ∆Del

. Line ∆Del
passes by Dpt and is perpendicular to nIDpt , which is the

direction associated with the maximum principal regularized stress σIDpt at point Dpt when
the failure threshold is reached. The crack tip moves to Ept in element Eel. The developed
method for the treatment of neighboring elements enables us to handle several cracks at the
same time. Each crack direction may also change during the propagation due to structural
effects or to the interaction with other cracks. The calculations are performed based on the
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Figure 3. Numerical discretization of crack initiation (a) and growth (b).

nodal values of the regularized stress for each element. The strain is estimated at Gauss points
from the nodal values of displacements each time that the damage variable is updated. The
tangent behavior is then evaluated at the Gauss points.

In this method, a finite element is marked for propagation if and only if it is marked during
previous Newton iterations. Each crack tip may thus induce the failure of one element during
each iteration. The material behavior is implemented in an implicit manner to ensure the
stability of converged states. During each time step, a crack tip may cause the failure of as
much elements that is necessary for reaching equilibrium. The unstable propagation of the
macrocracks thus can be simulated by the present model. A time step subdividing criterion
based on the damage growth on the whole structure is also introduced. Applying this criterion
does not allow for the initiation of more than one crack during each Newton iteration. This
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12 N. GUY, D. M. SEYEDI, F. HILD

function enables us, for stable crack propagation conditions, to obtain results independent of
the time step selected by the user.

4. COMPARISON OF NONLOCAL AND USUAL THRESHOLDS

In Section 2.2 a crack growth threshold that is equivalent to a critical stress intensity factor
when the characteristic length ℓc becomes small with respect to the crack length is proposed.
In this part, a simulation aims at comparing the nonlocal threshold associated with crack
growth with the Weibullian initiation threshold and a stress intensity factor based threshold.
The objectives are to estimate the accuracy of the nonlocal threshold associated with crack
growth for characteristic lengths that are small compared to the crack length, and to evaluate
the influence of this threshold for longer characteristic lengths. The analysis is based on the
case of a beam of width 2b and of infinite (i.e., very large) length that contains a central
crack of length 2a and is submitted to a horizontal stress of σ∞. The treated case is described
in Figure 4. For the considered case, an approximate analytical solution exists. The stress

Figure 4. Schematic of the considered theoretical case.

intensity factor is estimated as [42]

KIa ≈ σ∞

√
πa

cos
(
πa
2b

) . (38)

For the numerical simulations, half of the domain is meshed. The vertical displacements are
set to zero on the lower edge (i.e., on the horizontal plane of symmetry). The horizontal
displacements are set to zero on the left edge and the right edge is submitted to a horizontal
stress. The half crack is modeled by a line of broken elements (i.e., elements where d = 1). For
a given characteristic length, a stress intensity factor is deduced from the nonlocal threshold

KI(ℓc) ≈
5π

6Γ2
(
3
4

)σI

√
πℓc (39)

with σI the maximum principal regularized stress at the crack tip (see Section 3.2). In
order to compare the ‘nonlocal based’ stress intensity factor to the usual one, the ratio
RI(ℓc) = KIa/KI(ℓc) is introduced.

The results of simulations performed for three characteristic lengths ℓc of 20 mm, 40 mm
and 80 mm are shown in Figure 5. As shown in Figures 5(a) and 5(b) the nonlocal stress
intensity factor tends to be equal to the usual stress intensity factor when the characteristic
length decreases. The results obtained for a characteristic length ℓc = 20 mm are close to the
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Figure 5. Stress intensity factors (a) and difference between analytical and nonlocal estimations
(b) as functions of normalized crack lengths for different characteristic lengths. The proposed

approximation (40) is also drawn (b).

analytical solution. Furthermore, for each characteristic length the nonlocal stress intensity
factor tends to be equal to the usual stress intensity factor when the crack length increases.
It also appears that the value of the maximum principal regularized stress is larger for lower
characteristic lengths. For each case, an approximation of RI(ℓc) is plotted in Figure 5(b).
This approximation reads

RI(ℓc) = 1− exp

[
−
(
a

ℓc

) 2
3

]
, (40)

and gives a good estimation of the characteristic length effect when a ≥ ℓc. Further, the
nonlocal threshold associated with crack growth is such that

lim
a/ℓc→0

KI(ℓc) =
5π

6Γ2
(
3
4

)σ∞√
πℓc. (41)

Considering the approximations (40) and (41) an estimation of the nonlocal threshold
associated with crack growth is plotted in Figure 6. In order to compare different thresholds, the
usual stress intensity factor threshold and some examples of Weibull-based threshold describing
crack initiation are plotted in Figure 6. Micro and macro scales are defined in Figure 6. The
numerical strategy proposed in Section 3 is such that the microcracks (i.e., cracks with a ≤ ℓc)
are not described by the damage field but associated with a Weibull threshold. The threshold
of microcrack initiation is always greater than the minimum initiation threshold plotted in
Figure 6 because the microcracks are assumed to be small (i.e., a ≤ ℓc). Furthermore, in the
developed numerical strategy, the macrocracks (i.e., cracks with a ≥ ℓc) are represented by
the damage field. When a crack initiates, the crack description changes and crack growth is
then simulated by considering the nonlocal propagation threshold that tends to be equal to
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Figure 6. Change of the considered thresholds with normalized crack (or defect) size.

the usual stress intensity factor threshold as the crack grows. The numerical treatment of the
threshold change is described in Section 3.2.

The crack opening displacement is another parameter to be checked. If the crack of Figure 4
is located in an infinite plate, its opening displacement ∆ux is calculated by resorting to the
analytical solution proposed by Muskhelishvili [34]

∆ux =
4σ∞a

E

√
1−

(
a

y

)2

(42)

where y denotes the coordinate of each point on the crack mouth from the crack center. The
crack opening at its center can be also calculated as a function of the applied stress and
crack geometry (i.e., a/b ratio) [42]. The crack opening calculated by the model is compared
to the two solutions for a large plate (a/b = 0.14) on figure 7. A very good agreement is
observed between the model prediction and the analytical results. Such accurate results are
important in view of coupling the developed model with an external flow simulator for coupled
hydromechanical applications.

5. SIMULATION RESULTS

In this section, two parts presenting simulations using the introduced model are described. The
first one aims at validating the independence of the developed model to spatial discretizations.
This property is studied with a particular attention since it has been the main reason for using a
nonlocal formulation. The second part aims at demonstrating the ability of the numerical model
to describe the formation and propagation of a crack network by considering simultaneously
both initiation and growth of several cracks.
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Ref. [42]

Numerical simulation

Ref. [34]

Figure 7. Comparison between the simulated and analytical crack opening displacement (a/b =
0.14, ℓc = 20 mm).

5.1. VALIDATION OF SPATIAL DISCRETIZATION INDEPENDENCE

In Section 2, it has been assumed that thresholds based on the regularized stress describe crack
initiation and growth without a spatial discretization dependence. The aim of this section is
to validate this characteristic of the model.

5.1.1. CRACK INITIATION The crack initiation threshold is studied considering the failure
stress obtained for a domain of volume V submitted to a uniform tensile stress for various
discretizations. For each considered volume, the initiation threshold is defined with respect
to an inverse Weibull law (Equation (10)). For the different studied cases, the considered
domain is divided into 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 elements. For each
spatial discretization, several calculations are performed by considering different numbers of
random selections for the inverse Weibull law (i.e., 10, 100, 1,000 and 10,000 realizations).
The numerical results in terms of normalized mean failure stress and standard deviation of
the initiation stress for a set of simulations are plotted in Figure 8. The mean initiation stress
is normalized with respect to the value σi associated with a Weibull model

σi =
σ0

(V λ0)
1/m

Γ

(
1 +

1

m+ 1

)
(43)

and the standard deviation is normalized by

σi =
σ0

(V λ0)
1/m

√
Γ

(
1 +

2

m+ 1

)
− Γ2

(
1 +

1

m+ 1

)
. (44)

The convergence is faster for the mean initiation stress than the corresponding standard
deviation. These results are compared with those given by the Weibull model. The results do
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Figure 8. Normalized mean (a) and standard deviation (b) of the initiation stress as functions of the
number of elements for the numerical model and the number of random selections. The straight solid

line corresponds to initiations described by a Weibull model.

not depend on spatial discretization thanks to the volume effect accounted for in Equation (10).
It is also a direct consequence of the weakest link concept described by Equation (11), an
underlying hypothesis used in a Weibull model. Furthermore, it can be seen that the numerical
results converge to the analytical results when the number of considered random selections
increases. These results show that the main influence is given by the number of realizations,
and to get a reliable estimate of statistical parameters (e.g., number of initiated cracks, size
of propagating cracks), a convergence study is desirable.

5.1.2. CRACK GROWTH In this section, the propagation of a single crack is simulated
using different spatial discretizations. The chosen meshes allow to show that the results depend
neither on the size nor on the shape and orientation of the the spatial discretization. However,
the damage field depends on the spatial discretization because it is constant in each finite
element. The effect of the spatial discretization is evaluated by considering both global and
local criteria. The local criterion relies on the study of the crack tip position and the global
one on the study of the elastic energy stored in the structure.

The studied case is shown in Figure 9. The considered domain is a square that has an
edge length of l = 1 m and contains a vertical crack with an initial length of ai = l/3. The
initial crack is modeled by a set of broken elements (i.e., elements with d ≈ 1). The vertical
displacements are set to zero on the lower boundary and the lateral boundaries are submitted
to a horizontal displacement that varies linearly with the height. On the left boundary, the
horizontal displacement reads ux (x = 0, y) = −cud (1− y/l) with c characterizing the loading
level that is 0 at the initial state and 1 for the maximum loading. The horizontal displacement
applied to the right boundary reads ux (x = l, y) = −ux (x = 0, y). We consider ud = 0.2 mm.
The elastic parameters are E = 20 GPa for Young’s modulus, and ν = 0, 25 for Poisson’s
ratio. The characteristic length is ℓc = 0.1 m and the material toughness Kc = 1 MPa

√
m.

The studied crack is submitted to a mode I loading because of the chosen boundary conditions.
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Figure 9. Schematic of the studied case.

Crack growth is globally stable (i.e., the numerical sample failure is quasi-brittle). Figure 10
shows some of the simulation input and results, namely, two different meshes (M1 and M4, the
corresponding horizontal displacement and damage fields for a loading level such that c = 1.
The first three considered meshes (M1, M2 and M3) are of same shape but the element sizes
are different. The length of an element edge is l/123 for the coarsest mesh, l/165 for the middle
one and l/201 for the finest. For the fourth mesh, the elements are tilted at 45◦ in the area
where the crack is assumed to grow; the length of the element edge in that area is l/165. The
horizontal displacement and damage fields shown in Figure 10 are very close for two of the
meshes. For the first simulation, the length of the damaged area is equal to that of the crack,
and the width of this area is equal to the element size. For the mesh containing tilted elements,
the damaged area has a zigzagged shape that corresponds to the mesh shape. However the
horizontal displacement field is very similar to the other ones.

To compare the results, the change of the crack length with the applied load is shown in
Figure 11. The crack length a is deduced from the coordinate of the crack tip position given by
the numerical model. The crack length appears to be independent of the spatial discretization.
The observed differences are directly related to the time step of the calculation. For the first
three simulations and for every loading step, the abscissa of the crack tip is equal to 0.5 m
with an uncertainty of 1 µm. For the fourth case, the abscissa of the position of the crack tip
ranges between 0.5 ± 8 × 10−6 m for all steps. It is to be noted that the use of a tilted mesh
does not significantly affect the direction of crack growth. For the simulation with the tilted
mesh, the maximum distance between the crack tip and the plane of symmetry is 8 µm, which
represents 1.3 % of the length of an element.

In order to characterize the global response of the structure, the elastic energy of the
structure at equilibrium is calculated. This quantity is evaluated instantaneously for each
loading step without taking into account the structure history. The elastic energy of the
structure Ω reads

Eelas =
1

2

∫
Ω

ϵϵϵ : C : ϵϵϵ dΩ. (45)

The change of the elastic energy with the load level is shown in Figure 12. Once again the
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Figure 10. Meshes, horizontal displacement and damage fields for c = 1 and for two of the simulations
corresponding to the case shown in Figure 9

.

results are independent of the spatial discretization. The change of the elastic energy is stair-
shaped because crack growth is incremental.
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Figure 12. Change of elastic energy stored in the structure with a load increase from c = 0 to c = 1
for different meshes.

5.2. SIMULATION OF A CRACK NETWORK FORMATION

In this section the ability of the damage model to describe the formation of a crack network
and subsequent growth is demonstrated. A rectangle of height h = 1 m and length l = 4 × h
is meshed. Plane strain conditions are considered. As shown in Figure 13, the model is
submitted to a vertical compressive stress of σv = 10 MPa. A horizontal displacement, set
to ux (x = 0, y) = −cud1 (1− y/l) + ud2 (y/l) is applied to the left side of the model. The
parameter c characterizes the displacement level. It is equal to 0 for the initial state and
to 1 at the end of loading. The horizontal displacement of the right side is expressed as
ux (x = l, y) = −ux (x = 0, y). The case ud1 = ud2 = 0.01 m is considered. Young’s modulus
and Poisson’s ratio are E = 16 GPa and ν = 0.15, respectively. The characteristic length is
ℓc = 0.1 m and the material toughness is Kc = 0.21 MPa

√
m. The considered Weibull modulus

ism = 6, and the scale parameter is σm
0 /λ0 = 7.3×1035 Pamm3. Simulations are performed for

nine random selections. Some of the results are shown in Figure 14. As shown in Figure 14(a)
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Figure 13. Schematic representation of the studied case.

the applied load leads to the initiation and growth of a crack network made of vertical cracks.
The cracks initiate close to the lower edge and grow almost vertically. The location of crack
initiation is affected by the material heterogeneity and by the regularized stress field shape.
The initiation location is close to the lower edge where the principal regularized stress has the
highest value, at least before the initiation of the first crack. The crack network quickly reaches
a saturation state (i.e., a state in which no new cracks initiate). As shown in Figure 14(a) the
first initiated crack is short. Figure 14(b) shows that the cracks that initiate just after the first
one reach a length almost equal to that of the previously initiated cracks. Once saturation
is reached, the degradation is only due to crack growth (Figure 14(c)). The influence of the
cracks on the horizontal displacement field is observed in Figure 14(d). The cracks are not
exactly straight, since the growth of each crack is influenced by the other ones.

The change of the crack number Nb with the applied load for the nine studied cases and
the average crack length a are plotted in Figure 15. The results are very close for the nine
considered cases (Figure 15(a)). The crack network saturation is always reached when 11, 12,
or 13 cracks are formed (i.e., 11 cracks in 2 cases, for 12 in 6 cases and for 13 cracks in 1 case).
For the nine considered random selections, the first initiation occurs when c ≈ 0.16, and the
saturation is reached for c ≈ 0.30. It can be seen in Figure 15(b) that the cracks continue to
propagate even when no new crack initiates.

6. SUMMARY AND PERSPECTIVES

A new nonlocal model that can be used to describe crack network formation and growth in
the opening mode within a heterogeneous material is developed. Two different thresholds,
both of them based on the value of regularized stress, are introduced for crack initiation
and propagation. A regularization operator based on the stress gradient enhancement, which
considers a characteristic length, is used to obtain a nonlocal framework.

A probabilistic damage mechanics threshold is used for crack initiation and a fracture
mechanics based one for crack propagation. A natural transition between the two thresholds
is performed through a ‘consistency’ criterion. Furthermore, the maximum size of the existing
defects is considered as a ‘microstructural’ length that controls the characteristic length of
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Figure 14. Finite element state for different loading levels c = 0.16 (a), c = 0.25 (b), c = 1 (c) and
horizontal displacement field for c = 1 (d).
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Figure 15. Change of the number of propagating cracks Nb with the applied load c for each random
selection, and average value (a). Change of the average normalized length of propagating cracks a/h

(b).

the model. The threshold associated with crack initiation is based on a Weibull probabilistic
model and takes into account scale effects and material heterogeneity. In this setting the onset
of propagation of pre-existing cracks is considered as the crack initiation. The characteristic
length must be greater than the size of heterogeneities to model. The crack propagation
threshold is equivalent to a usual stress intensity factor criterion for small characteristic lengths
compared to the crack length. The propagation threshold is expressed in terms of regularized
stress by considering the stress field at the crack tip given by Westergaard’s solution.

The developed method enables us to calculate the stress intensity factor in a crack network
without any mesh refinement. An implicit time discretization scheme that ensures the stability
of the converged states is used. The fact that the introduced regularization operator ensures
mesh objectivity of the obtained results has been validated on a simple case by considering
both local and global criteria. The ability of the model to describe the formation of a crack
network has finally been demonstrated.

The developed model can also be extended to mode II crack propagation. Further, since a
simple damage variable is introduced and because crack opening displacements are found to
be in good agreement with fracture mechanics solution, the model can easily be coupled with
a flow simulator to provide a hydro-mechanical damage model.
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