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Abstract

A number of recent studies suggest that human and animal mobility patterns
exhibit scale-free, Lévy-flight dynamics. However, current reaction-diffusion
epidemics models do not account for the superdiffusive spread of modern
epidemics due to Lévy flights. We have developed a SIR model to simulate the
spatial spread of a hypothetical epidemic driven by long-range displacements
in the infective and susceptible populations. The model has been obtained by
replacing the second-order diffusion operator by a fractional-order operator.
Theoretical developments and numerical simulations show that fractional-
order diffusion leads to an exponential acceleration of the epidemic’s front
and a power-law decay of the front’s leading tail. Our results indicate the
potential of fractional-order reaction-diffusion models to represent modern
epidemics.

Keywords: Fractional-order diffusion, Lévy flights, epidemics spatial
spread, front dynamics

1. Introduction1

The spread of epidemics caused by directly-transmitted pathogens is re-2

lated to the interactions between susceptible and infective individuals. The3

occurrence of such interactions is a direct consequence of the mobility pat-4

terns of individuals in their home range. Recent studies have shown that5
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mobility patterns for both humans and animals can be quite complex and6

exhibit a scale-free dynamics, characteristic of Lévy flights (see [3] for a re-7

view). Unlike ordinary Gaussian dispersion processes, Lévy flights are drawn8

from a probability distribution function with heavier tails than a Normal dis-9

tribution. Such an asymptotic behaviour means that large displacements are10

more likely. Lévy flights are therefore superdiffusive as they disperse par-11

ticles faster than a Gaussian random-walk. Lévy-flight patterns have been12

observed in the dispersion of bank notes [2], human mobility patterns de-13

rived from mobile phone data [18] as well as in the foraging patterns of a14

numbers of animal species [39, 40, 36, 23] although questions remain about15

the empirical evidence of some biological Lévy flights [15].16

The existence of Lévy-flight mobility patterns suggests that modern epi-17

demics cannot be represented by second-order reaction-diffusion models that18

implicitly assume a Gaussian dispersion process. Such models are only appli-19

cable when the infective and susceptible individuals travel short distances as20

compared to geographical distances. They lead to epidemic fronts that travel21

at a constant velocity and have been used, for instance, to model the spread22

of the Black Death in Europe in the 14th century [30]. Modern epidemics23

such as SARS or avian inflenza can spread around the world in a few weeks24

and seem to follow a non-Gaussian, scale-free dynamics [22, 37].25

It has been shown that for Lévy-flight dispersion, the density function26

representing the population is the solution of a fractional-order diffusion27

equation [6, 28]. Unlike integer-order derivatives that are local operators,28

fractional-order derivatives are non-local, integro-differential operators [31,29

33]. As such, they can be used to represent memory effects and long-range30

dispersion processes. In the last decade, fractional-order diffusion models31

have been an active field of research both from a theoretical and applied32

perspective. They have been proposed to model a wide range of problems33

in surface and subsurface hydrology [32, 11, 24], plasma turbulence [9, 10],34

finance [35, 27, 19, 4] and biology [13, 12].35

In epidemiology, fractional-order models have just been mentionned in a36

couple of studies. Brockmann et al. [2] have shown that the density of bank37

notes originating from a given city is solution of a space-time fractional diffu-38

sion equation and have suggested that an epidemic spread could be modelled39

by a similar equation. In a subsequent study [1], Brockmann has proposed a40

SIR model that includes fractional-order diffusion. Some preliminary results41

are presented in that study but the properties of the model solutions are not42

discussed in detail. The goal of the present study is therefore to discuss in43
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greater detail the properties of fractional-order epidemics model solutions.44

In particular, we consider the propagation of epidemic fronts and show that45

the use of a fractional-order diffusion term can lead to an acceleration of the46

front and thus a rapid spread of epidemics.47

2. Model description48

We shall consider a SIR model representing the spatial spread of an epi-49

demic with non-local diffusion. The model takes into account 3 population50

densities, the susceptibles S(x, t), the infectives I(x, t) and a removed class51

R(x, t). The spatial dynamics is assumed to be one-dimensional and is repre-52

sented by a Riesz/Weyl, fractional-order differential operator denoted −∞Dα
x ,53

where 1 < α ≤ 2 is the order of the spatial derivative. The fractional-order54

diffusivity is denoted Kα and has units of m
αs−1. The susceptible and infec-55

tive populations are assumed to exhibit the same spatial dispersion patterns56

and are thus characterised by the same values of α and Kα . The trans-57

mission from susceptibles to infectives and the disease-induced mortality are58

represented by a transmission-efficiency parameter r and a mortality-rate pa-59

rameter a, respectively. With these assumptions, the model equations read:60

∂S

∂t
= −rIS +Kα(−∞Dα

xS), (1)

∂I

∂t
= rIS − aI +Kα(−∞Dα

xI), (2)

∂R

∂t
= aI, (3)

where r, Kα and a are positive constants. The dynamics of the removed61

class being entirely driven by the infectives and having no influence on the62

other two classes, it will not be further considered in the remainder of this63

study. The model equations have to be supplemented by a set of initial and64

boundary conditions to obtain a unique solution. The precise expression of65

the initial and boundary conditions is not required at this stage. We will just66

assume that the epidemic wave is advancing into a uniform population with67

an initially homogeneous susceptibles density S.68

The Riesz/Weyl fractional-order operator −∞Dα
x is an integro-differential69

operator defined as follows:70

−∞Dα
xf(x) = F−1k

[
(ik)αf̂(k)

]
=

1

Γ(2− α)

∂2

∂x2

∫ x

−∞

f(y)

(x− y)α−1
dy, (4)
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where Γ(.) is Euler’s gamma function and F denotes the Fourier transform.71

When α = 2, the fractional-order derivative (4) reduces to a standard second-72

order derivative. Eq. (4) defines a “left-sided” operator as it only takes into73

account the values of the function f at the left-hand side of x. A right-sided74

operator (denoted xD
α
∞) can also be defined in a similar fashion (see for75

instance [33] for details). Combining left- and right-sided operators allows76

the definition of fractional-order derivative with arbitrary skewness. In this77

work, we only consider an asymmetric diffusion term in order to highlight the78

resulting different dynamics for left- and right-propagating epidemic waves.79

The origin of anomalous, non-local diffusion lies in the random displace-80

ments of the individuals constituting the population. If one assumes that81

these individuals follow a Gaussian diffusive process, i.e. the distribution82

of random displacements has a finite variance, then the density of individ-83

uals is solution of a second-order diffusion equation. That result is a direct84

consequence of the central limit theorem (CLT). However, if one does not85

assume that the distribution of random displacements has a finite variance,86

the standard version of the CLT cannot be applied anymore. Instead, the87

generalization due to Lévy-Gnedenko [17, 25] can be used. That version of88

the theorem does not rely on the assumption that the sum of all the fluctu-89

ations has a finite variance but instead assumes that it has a power-law tail90

distribution decreasing as |x|−(α+1) with 0 < α ≤ 2. In that case, the density91

of individuals tends towards a stable Lévy distribution with exponent α [16],92

which is solution of a diffusion equation of fractional order α (see [28] for93

details). Here we restrict ourselves to 1 < α ≤ 2. It is important to note94

that when α = 2, the Lévy distribution reduces to a Normal distribution and95

the corresponding differential equation is the classical second-order diffusion96

equation. Eqs. (1)-(3) are therefore a generalization of a standard SIR model97

describing the spatial spread of an epidemic, as described for instance in [29],98

and reduce to such a model when α = 2. With power-law tail distribution de-99

creasing as |x|−(α+1), one can see that the probability of large displacements100

(called Lévy flights) increases as the value of α decreases. Fig. 1 illustrates101

the random displacements of a single individual following a Lévy motion for102

different values of the exponent α.103

Before moving to the analysis of the solutions of Eqs. (1)-(2), let us first104

recast them in non-dimensional form. Following Murray [29], we introduce105

the following dimensionless variables:106

I∗ = I/S, S∗ = S/S, x∗ =
(

rS
Kα

)1/α
x, t∗ = rSt, λ = a

rS ,
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Figure 1: Trajectories of a random walker following a Lévy motion with different values
of the exponent α. Brownian motion is recovered when α = 2. Note the changes in the
range of the vertical axis (position) while the horizontal axis (time) remains the same.

which allow us to rewrite Eqs. (1)-(2) as follows:107

∂S

∂t
= −IS + −∞Dα

xS, (5)

∂I

∂t
= IS − λI + −∞Dα

xI, (6)

where we have dropped the “∗”. As mentionned by Murray [29], the dimen-108

sionless parameter λ is the ratio between the contagious time of the disease109

and the life expectancy. It is a key parameter that controls the development110

of the epidemic wave.111

3. Theoretical Analysis112

In this section, we investigate the spatial spread of an epidemic wave of113

infectives into a uniform population of susceptibles. In order to highlight the114

impact of the fractional-order diffusion operator −∞Dα
x on the dynamics of115

the epidemic wave, we consider both left- and right-propagating fronts. The116

following analysis shares similarities with the one performed by del Castillo117

Negrete et al. [8] for the fractional-order Fisher-Kolmogorov equation. For118

that equation and by using the same left-sided diffusion operator as here, they119

found that left-propagating fronts have a self-similar profile and move at a120

constant speed, while right-propagating fronts are accelerated and exhibit a121

algebraic (power-law) decay of the tail.122
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3.1. Left-propagating front123

For such a front, we look for a self-similar travelling-wave solution by124

setting125

I(x, t) = I(z), S(x, t) = S(z), z = x+ ct,

where c is the unknown positive wave speed. Note that the ”+” in the126

definition of z indicates that the wave is travelling to the left. Furthermore,127

we replace S(z) by 1− s(z), where s(z) is the deviation with respect to the128

initial susceptibles density. Eqs. (5)-(6) can then be expressed as:129

−c ds
dz

= −I(1− s)− −∞Dα
z s, (7)

c
dI

dz
= I(1− s)− λI + −∞Dα

z I. (8)

It can easily be seen that the Jacobian of the non-linear reaction term in130

Eqs. (7)-(8) only has real eigenvalues that reach their maximum value when131

s = 0. The front is thus driven by the region just ahead of it or, in other132

words, it is pulled by its leading edge. Such a front is thus referred to as a133

pulled front and its speed can be derived by performing a linear analysis in134

the leading edge region [5]. In our case, the leading edge is where I → 0 and135

s → 0 (see Fig. 2a for an illustration) and linearizing the equations in that136

region results in the following system:137

−c ds
dz

= −I − −∞Dα
z s, (9)

c
dI

dz
= (1− λ)I + −∞Dα

z I. (10)

Assuming a solution of the form (S(z), I(z)) = (Ŝ, Î)eκz, where κ is a138

parameter depending on the wave speed, and using the fact that −∞Dα
z e

κz =139

καeκz, one obtains the following system:140 (
cκ− κα −1

0 cκ− κα − (1− λ)

)(
Ŝ

Î

)
=

(
0
0

)
.

A non-trivial solution can only be obtained if141

(cκ− κα)2 − (1− λ)(cκ− κα) = 0,
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which results in the following dispersion relations:142

c(κ) = κα−1, (11)

c(κ) = κα−1 +
1− λ

κ
. (12)

As for the Fisher-Kolmogorov equation, we expect the front to propagate143

at the minimum wave speed for a ”sufficiently steep” initial condition. Re-144

lation (11) is thus discarded as it would result in a non-moving front. By145

minimizing relation (12) with respect to κ, one finds the minimum value146

of the left-propagating front speed cmin and the corresponding exponential147

decay rate κmin to be:148

cmin = α

(
1− λ

α− 1

)α−1
α

, κmin =

(
1− λ

α− 1

)1/α

. (13)

The former reduces to the classical result, c = 2
√
1− λ, when α = 2. Since149

we are assuming that 1 < α ≤ 2, cmin and κmin are both well defined. The150

existence of a left-propagating front in the fractional diffusion case is still151

conditional on λ < 1. Note that the more general method proposed by van152

Saarloos et al. [14, 38] leads to the same results (see Appendix A for details).153

The value of the front speed can also be obtained by using a more heuristic154

argument. Indeed, at the leading edge, the linearization of Eq. (6) is similar155

to the linearization of the fractional-order Fisher-Kolmogorov equation. The156

same approach as in [8] can thus be used to derive the speed of the I front,157

which leads to Eq. (13). Moreover, it is easily seen that without infectives158

there is no susceptibles front as the reaction term in Eq. (5) would vanish.159

This means that the susceptibles solution is driven by the infectives solution160

and thus both fronts travel at the same speed.161

3.2. Right-propagating front162

That case is a bit more complex as the velocity of the traveling wave is163

no more constant. One can thus not look for a self-similar solution. In what164

follows, we pursue the same approach as the one used by del Castillo Negrete165

et al. [8] for the fractional-order Fisher-Kolmogorov equation. Starting from166

Eq. (10), we can again linearize it at the leading edge, i.e. around S = 1167

(see Fig. 4a for an illustration), and obtain:168

∂I

∂t
= (1− λ)I + −∞Dα

xI. (14)
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Since the term (1−λ)I is responsible for the exponential growth or decay of169

the solution, one can assume a solution of the form I(x, t) = e(1−λ)tψ(x, t).170

Substituting this solution into (20), one finds a differential equation for ψ:171

∂ψ

∂t
= −∞Dα

xψ, (15)

with ψ(x, t = 0) = I(x, t = 0) = I0(x), the initial condition for the infectives172

population.173

The general solution of Eq. (15) can be expressed as174

ψ(x, t) =

∫ ∞

−∞
G(x− x0, t)I0(x0) dx0,

where G(x, t) = 1
t1/α

pα(
x

t1/α
) is the Green function of Eq. (15) and pα(η) =175

1
2π

∫∞
−∞ e

ikηe(ik)
α
dk is a skewed Lévy distribution with exponent α [26, 16].176

By considering a localized initial condition of the form I0(x < −l) = 0;177

I0(−l ≤ x < 0) = A and I0(x ≥ 0) = Ae−κx – where l and A are arbitrary178

positive and non-zero constants, respectively – one finds the relation179

ψ(x, t) = A

∫ ∞

xt−1/α

pα(η) dη + Ae−κx
∫ xt−1/α

−∞
pα(η)e

κt1/αη dη. (16)

As we look for the asymptotic behaviour, we consider solutions for large,180

fixed t and x → ∞. In that case, we can use the asymptotic behaviour of181

the Lévy distributions, i.e. pα(η) ∼ η−(α+1) as η → ∞. After some alge-182

braic manipulations (see Appendix B for details), one finds the asymptotic183

behaviour of I:184

I(x, t) = Ate(1−λ)t
((

l +
1

κ

)
x−(α+1) +

1 + α

κt1+1/α

∫ xt−1/α

−∞

eκ(t
−1/αη−x)

ηα+2
dη + . . .

)
.

The right-propagating front thus asymptotically decays as185

I(x, t) ∼ te(1−λ)tx−(α+1), (17)

which highlights an algebraic (power-law) decaying tail that totally differs186

from the exponential decay observed for the left-moving front and from clas-187

sical results obtained with second-order diffusion operators.188

The solution for the susceptibles population is obtained by assuming again189

that S(x, t) = 1 − s(x, t) where s(x, t) � 1. The following expression can190
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then be derived: s(x, t) = 1
1−λe

(1−λ)tψ(x, t), which leads to the asymptotic191

behaviour:192

1− S(x, t) ∼ te(1−λ)tx−(α+1). (18)

Just as for the left-propagating front, the susceptibles solution is entirely193

driven by the infectives solution, i.e. in the absence of infectives, there is no194

susceptibles front. As a result, the decay rate of the S front is the same as195

for the I front whatever the initial condition for S. In other words, even if S196

is initially nonzero over the entire domain, its decay rate will be of the form197

x−(α+1) rather than x−α, provided that I is initially confined. However, if198

I is not initially confined but greater than zero over the entire domain, the199

decay rate for both solutions will be of the form x−α (see Appendix B).200

The asymptotic front speed can be derived from either Eq. (17) or (18)201

by computing the Lagrangian trajectory of a point at the leading edge of202

the front. For instance, if we consider a point with a fixed value Ŝ ≈ 1, its203

position x̂ = x(t, Ŝ) can be expressed as204

x̂ ∼ (1− Ŝ)−1/(α+1)t1/(α+1)e
1−λ
α+1

t,

and the front speed, cR(t) =
dx̂
dt
, therefore reads205

cR(t) ∼ (1− Ŝ)−1/(α+1) t
1/(α+1)

α + 1
e

1−λ
α+1

t

(
1

t
+ 1− λ

)
,

∼ (1− λ)e
1−λ
α+1

t,

for large values of t. This highlights the exponential acceleration of right-206

propagating fronts.207

4. Numerical examples208

In this section, we present some numerical simulations that illustrate the209

theoretical results derived in the previous section. The model Eqs. (1)-(2)210

are solved on a finite domain [0, L], where L > 0, and the fractional-order211

derivative is thus defined as follows:212

0D
α
xf(x) =

1

Γ(2− α)

∂2

∂x2

∫ x

0

f(y)

(x− y)α−1
dy,

where 1 < α ≤ 2 and 0 ≤ x ≤ L, since model variables are now only defined213

on [0, L]. Solving the model equations on a finite domain has an impact on214
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the behavior of the solution as fractional-order derivatives take into account215

the global aspect of the solution, which is obviously modified when truncating216

the domain. One can still take into account the effect of an infinite domain217

by using the following equations:218

∂S

∂t
= −IS + 0D

α
x (S − S(0)− S ′(0)), (19)

∂I

∂t
= IS − λI + 0D

α
x (I − I(0)− I ′(0)), (20)

where S(0) = S(x = 0, t) and S ′(0) = S ′(x = 0, t), and the same for I.219

In Eqs. (19)-(20), the fractional-order derivative is now a so-called Caputo220

fractional derivative that can be defined as follows:221

C
0D

α
xf(x) =

1

Γ(2− α)

∫ x

0

f ′′(y)
(x− y)α−1

dy,

= 0D
α
x (f(x)− f(0)− f ′(0)).

By using some standard properties of the Caputo derivative, it can be shown222

that Eqs. (19)-(20) are equivalent to Eqs. (5)-(6) if one assumes constant223

density values for x ≤ 0, i.e. I(x < 0, t) = I(0) and S(x < 0, t) = S(0). One224

can then represent the effect of an infinite reservoir of susceptibles and/or225

infectives at the left-hand side of the domain by selecting an initial condition226

which is such that S(0) > 0 and/or I(0) > 0.227

Eqs. (19)-(20) are discretized with a continuous piecewise-linear finite-228

element scheme on a uniform grid whose resolution is equal to L/500. The229

finite element scheme is based on a Galerkin formulation that allows one to230

integrate the fractional-order diffusion term by parts and impose a vanishing231

fractional-order flux on the left boundary (see [20] for details). A zero-slope232

boundary condition is imposed on the right boundary. The diffusion term233

being entirely left-sided, the right boundary condition only has a local im-234

pact on the solution. The use of a zero-slope boundary condition allows the235

right-propagating front to smoothly leave the domain. Time integration is236

computed with a third-order Adams-Bashforth scheme.237

The following initial conditions are used for both left- and right-propagating238

fronts:239

S0(x) = 1− hS

(
1± tanh

(
x− x0
wSL

))
, (21)

I0(x) = hI exp

(
−(x− x0)

2

wIL2

)
, (22)
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where wS = 0.009, hS = 0.37, wI = 0.0003 and hI = 0.14. For a left-240

propagating front it takes the “+” sign and x0 = 9L/10, whereas for a241

right-propagating front, S0(x) takes the “−” sign and x0 = L/10 or 0. The242

dimensionless domain length is set to L = 105 for a right-propagating front243

and L = 60 for a left-propagating front. For all simulations, λ = 0.5.244

The time evolution of a left-propagating front is shown in Fig. 2. The top245

panel shows the evolution of both the susceptibles and infectives densities.246

The middle and bottom panels show a close-up view on the susceptibles and247

infectives density tail decay. The duration of the simulation is set to 30 di-248

mensionless time units and α = 1.2. As expected, both the susceptibles and249

infectives fronts propagate at the same speed and exhibit the same exponen-250

tially decaying tail, i.e. 1 − S and I ∼ exp
[(

1−λ
α−1
)1/α

x
]
. The front speed251

has been numerically estimated by computing the instantaneous speed of a252

point with density S = 0.99 (Fig. 3). The resulting time series highlights253

the convergence of the front speed towards the minimum speed cmin = 1.398,254

obtained from Eq. (13).255

The time evolution of a right-propagating front is shown in Fig. 4. We256

first consider a localized initial condition for the infectives by taking x0 =257

L/10. In that case, I(0) = 0 and there is no reservoir of infectives at the left-258

had side of the computational domain. However, S(0) > 0 and there is thus259

an infinite reservoir of susceptibles at the left-hand side. Such a situation260

is quite realistic as an epidemic usually starts with a confined population261

of infective individuals in contact with a broad population of susceptible262

individuals. The simulation duration and the value of α are the same as for263

the left-propagating front. As expected, both the susceptibles and infectives264

fronts accelerate and develop the same algebraic decaying tail, i.e. 1 − S265

and I ∼ x−(α+1). After an initial adjustment, the acceleration of the front266

leads to a rapid spread of the epidemic over the entire domain. It should be267

noted that the length of the domain is equal to 105 as compared to 60 for the268

left-progagating front simulation whereas the simulation duration remains269

the same. It should also be noted that infinite reservoir of susceptibles does270

not influence the rate of decay. The epidemic being driven by the infectives271

and not by the susceptibles density, the front dynamics entirely depends on272

the infectives density. Actually, even if there was no diffusion term in the273

S equation and thus if susceptible individuals were not moving, there would274

still be the same epidemic front.275

The acceleration of the right-propagating front is highlighted in the space-276
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Figure 2: (a) Left-propagating front profiles for the susceptibles and infectives densities
at different time instants obtained by solving Eqs. (19)-(20) with α = 1.2. The arrow
indicates the direction of propagation of the front. (b) and (c) Close-up views of the
susceptibles and infectives densities, respectively, highlighting the same exponentially de-

caying tail for both fronts, i.e. 1 − S and I ∼ exp

[(
1−λ
α−1

)1/α
x

]
, and the same front

speeds. The simulation duration is set to 30 and the time interval between front profiles
is set to 3.
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Figure 3: Time evolution of the left-propagating front instantaneous speed, taken as the
time derivative of the Lagrangian trajectory xf (t;S = 0.99), for α = 1.2. As expected,
the front speed converges towards the minimum front speed value cmin ≈ 1.398.

time diagram shown in Fig. 5. It shows the evolution of the position of the277

front leading edge defined as the Lagrangian trajectory xf (t) = x(t;S = 0.99)278

that corresponds to the position of a point in the front with density S = 0.99.279

The simulation duration is set to 60. It can be seen that the front eventually280

accelerates as soon as α < 2. The smaller the value of α, the sooner the281

acceleration takes place. Fig. 5 also shows that the numerical results are in282

good agreement with the asymptotic expansion, i.e. 1− S ∼ x−(α+1)e(1−λ)t.283

Although that might not be very realistic, one can still represent the effect284

of an infinite reservoir of infective individuals located at the left-hand side of285

the domain by considering an initial solution that does not vanish at x = 0.286

This is achieved by taking x0 = 0 in the initial conditions (21)-(22) such287

that I(0) > 0 and S(0) > 0. In that case, the front is expected to exhibit an288

algebraic decay rate of order −α rather than −(α+1) (see Appendix B). Fig.289

6 shows that such an asymptotic behavior is indeed observed as 1 − S and290

I ∼ x−α. These results are similar to those obtained by del Castillo Negrete291

et al. [8] for the fractional-order Fisher-Kolmogorov model for which they292

had also considered an initial condition that did not vanish at x = 0.293
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Figure 4: (a) Right-propagating front profiles for the susceptibles and infectives densities
at different time instants obtained by solving Eqs. (19)-(20) with α = 1.2. The arrow
indicates the direction of propagation of the front. (b) and (c) Close-up views of the sus-
ceptibles and infectives densities, respectively, highlighting the same power-law decaying
tail for both fronts, i.e. 1− S and I ∼ x−(α+1). The simulation duration is set to 30 and
the time interval between front profiles is set to 3.
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Figure 5: Time evolution of the epidemic front leading edge position, taken as the La-
grangian trajectory xf (t;S = 0.99), for different values of α. As soon as α < 2, the front
eventually accelerates leading to long-range spreading of the epidemic. The dashed line
corresponds to the analytical scaling result 1− S ∼ x−(α+1)e(1−λ)t.

5. Conclusions294

In this paper, we have proposed a fractional-order reaction-diffusion model295

to study the dynamics of epidemics in systems characterized by asymmet-296

ric Lévy flights with an exponent 1 < α ≤ 2. We have considered a to-297

tally skewed, left-sided diffusion operator and studied its impact on left- and298

right-propagating fronts. On the one hand, numerical and analytical results299

show that left-propagating fronts move at a constant velocity and have an300

exponentially decaying tail. The classical results for the front velocity are301

recovered when α = 2. On the other hand, right-propagating fronts acceler-302

ate exponentially and exhibit a power-law decaying tail. Both the infectives303

and susceptibles fronts have the same dynamics which is entirely driven by304

the infectives density. For an initially localized infectives density profile, the305

decay is of the form ∼ x−(α+1) while an infinitely-wide initial profile leads306

to a decay of the form ∼ x−α for both solutions. Obviously, for a symmet-307

ric fractional-order diffusion operator, both the left- and right-propagating308

fronts accelerate and have a power-law decaying tail.309

Our results show that a fractional-order reaction-diffusion epidemics model310

is able to represent the superdiffusive effect due to Lévy-flight mobility pat-311
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Figure 6: Right-propagating front profiles for the (a) susceptibles and (b) infectives density
at different time instants obtained by solving Eqs. (19)-(20) with α = 1.2 and taking
x0 = 0 in the initial conditions (21)-(22). The power-law decaying tail is the same for
both fronts, i.e. 1 − S and I ∼ x−α. The simulation duration is set to 24 and the time
interval between front profiles is set to 3.
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terns in the population. The superdiffusion of the infective population leads312

to a significantly increased overall reaction rate as both populations meet each313

other more often. As a result, an epidemic spreads much faster than predicted314

by classical Gaussian models. Our observations suggest that fractional-order315

reaction-diffusion models are better suited to represent modern epidemics and316

also highlight that the eradication or even containment of such epidemics is317

a daunting task.318

The model could be further improved by taking into account non-Markovian319

and truncated Lévy processes. Brockmann et al. [2] have shown that the320

dispersion of bank notes is not only non-Gaussian but also non-Markovian.321

The non-Markovian effect and the associated subdiffusion can be included322

in our model by replacing the first-order time derivative with a fractional-323

order time derivative of order less than 1 (see [28] for details). Numerical324

methods have recently been proposed to discretize the space-time fractional325

diffusion equation [34, 21] and could be applied in a non-Gaussian and non-326

Markovian epidemics models. Furthermore, the study by Gonzalez et al. on327

human mobility patterns derived from mobile phone data suggests that these328

patterns follow a truncated Lévy-flight motion [18]. The effect of truncation329

on superdiffusive fronts propagation has been studied by del Castillo Negrete330

[7] for a Fisher-Kolmogorov model and should be considered for epidemics331

models as well.332
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Appendix A. Alternative derivation of the left-moving front speed336

In this section, we present a more general derivation of Eqs. (13) based on337

the approach proposed by van Saarloos et al. [14, 38]. In those studies, the338

authors define an asymptotic spreading speed, that they denote v∗, towards339

which the front eventually converges if it evolves from a sufficiently steep340

initial state. That speed is obtained by linearizing the model equations about341

the unstable state (S = 1 and I = 0 in our case). More specifically, v∗ ∈ R342

is given by the largest ”dynamically relevant” solution of the saddle points343
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equations344 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 = S(k∗, ω∗),
v∗ =

dω(k)

dk
|k∗ ,

v∗ =
Im ω∗

Im k∗
,

solved for (k∗, ω∗, v∗) where S(k, ω) = 0 is the characteristic equation ob-345

tained by assuming a Fourier mode solution of the form ei(kx−ωt) (k and346

ω ∈ C) in the linearization about the unstable state ahead of the front.347

In our case, the characteristic equation reads:348

S(k, ω) = (−iω − (ik)α)2 − (1− λ)(−iω − (ik)α) = 0

and has two solutions: ω = i(ik)α and ω = i(ik)α + i(1 − λ). The former is349

rejected as it leads to v∗ = 0. The latter corresponds to a non-oscillating,350

uniformly translating front if k∗ and ω∗ are purely imaginary, which can only351

be achieved if k∗ = −iκ∗ (κ∗ ∈ R
+). In that case,352

v∗ =
dω(k)

dk
|k∗ = −α(κ∗)α−1,

=
Im ω∗

Im k∗
=
(κ∗)α + (1− λ)

−κ∗ ,

which leads to353

v∗ = −α
(
1− λ

α− 1

)α−1
α

, κ∗ =
(
1− λ

α− 1

)1/α

.

As expected, these correspond to Eqs. (13) and highlight that only a left-354

propagating front can travel at a constant speed as v∗ = −cmin < 0. More-355

over, van Saarloos et al. have shown that the front speed algebraically relaxes356

towards that constant speed if the initial state is steeper than eκ
∗x.357

Appendix B. Asymptotic behaviour of the right-moving front358

In this section, we provide more details on the derivation of Eq. (17).359

Let us first consider the first integral in Eq. (16) and look at the limit for360

xt−1/α →∞ with a fixed t. In that case, we can use the asymptotic behaviour361
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of the Lévy distribution: pα(η) ∼ η−(α+1) to obtain:362

∫ (x+l)t−1/α

xt−1/α

pα(η) dη, ∼
∫ (x+l)t−1/α

xt−1/α

1

ηα+1
dη,

=
−1
α

[
1

ηα

](x+l)t−1/α

xt−1/α

,

=
−t
α
x−α

(
(1 +

l

x
)−α − 1

)
,

∼ tlx−(α+1), (B.1)

where we have used a first-order binomial-series approximation.363

For the second integral, one needs to set a cutoff Ω with 1� Ω < xt−1/α,364

so that pα(η) = η−(α+1) holds. Integration by parts then leads to365

e−κx
∫ xt−1/α

−∞
pα(η)e

κt1/αη dη

∼ e−κx
∫ xt−1/α

Ω

1

ηα+1
eκt

1/αη dη,

= e−κx
[

1

ηα+1

eκt
1/αη

κt1/α

]η=xt−1/α

η=Ω

− e−κx
∫ xt−1/α

Ω

−α + 1

ηα+2

eκt
−1/αη

κt1/α
dη,

∼ e−κx
(

1

xα+1t−1−1/α
eκt

1/αxt−1/α

κt1/α

)
+ t

(1 + α)

κt1+1/α

∫ xt−1/α

Ω

eκ(t
−1/αη−x)

ηα+2
dη,

= t

(
x−(α+1)

κ
+
(1 + α)

κt1+1/α

∫ xt−1/α

Ω

eκ(t
−1/αη−x)

ηα+2
dη

)
. (B.2)

In fact, the integral from −∞ to Ω contains pα(η) that decays exponentially366

at minus infinity. The exponential in the integrand is bounded on this do-367

main. We can thus consider that the integral is bounded and not dependant368

on x. The integrand in the last expression is bounded by 1
η2+α when x→∞369

and thus, the third term is at most of order x−(α+1).370

From (B.1) and (B.2), we see that the tail of the right-propagating front371

behaves like ψ ∼ tx−(α+1) for large values of x and t. Note that this behaviour372

is preserved in the limit where l → 0. However, in the limit where l → ∞,373

the asymptotic behaviour becomes ψ ∼ tx−α. That case would represent the374
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effect of an infinite initial reservoir of infective individuals on the epidemic375

front propagation. In the study by del Castillo Negrete et al. [8] for the376

fractional-order Fisher-Kolmogorov equation, non-localized initial conditions377

are considered, i.e. l → ∞, and an algebraic decay rate of order −α is378

observed.379
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