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In tolerance analysis, it is necessary to check that the cumulative defect limits specified for the component parts of a product are compliant with the functional requirements expected of the product. Cumulative defect limits can be modelled using a calculated polytope, the result of a set of intersections and Minkowski sums of polytopes. This article presents a method to be used to determine from which vertices of the operands the vertices of the Minkowski sum derive and to which facets of the operands each facet of the Minkowski sum is oriented.

Introduction

Minkowski sums can be used in many applications. Some of the most important ones that should be mentioned are for determining the envelope volume generated by displacement between two solids, whether in geometric modelling, robotics or for simulating shapes obtained by digitally controlled machining [START_REF] Elber | Offsets, sweeps, and Minkowski sums[END_REF].

In geometric tolerancing Fleming established in 1988 [START_REF] Fleming | Geometric relationships between toleranced features[END_REF] the correlation between cumulative defect limits on parts in contact and the Minkowski sum of finite sets of geometric constraints. For examples of modelling dimension chains using Minkowski sums of finite sets of constraints, see [START_REF] Giordano | Clearance Space and Deviation Space[END_REF], [START_REF] Roy | Representation and interpretation of geometric tolerances for polyhedral objects. II.: Size, orientation and position tolerances[END_REF], [START_REF] Davidson | A new mathematical model for geometric tolerances as applied to round faces[END_REF] and [START_REF] Pierre | Integration of thermomechanical strains into tolerancing analysis[END_REF]. In tolerance analysis, it is necessary to check that the cumulative defect limits specified for the component parts of a product are compliant with the functional requirements expected of the product. Defect limits can be modelled by tolerance zones constructed by offsets on nominal models of parts [START_REF] Requicha | Toward a theory of geometric tolerancing[END_REF]. Cumulative defect limits can be modelled using a calculated polytope, the result of a set of intersections and Minkowski sums of polytopes. A functional requirement can be qualified by a functional polytope, in other words a target polytope. It is then necessary to verify whether the calculated polytope is included in the functional polytope [START_REF] Teissandier | Operations on polytopes: application to tolerance analysis[END_REF], see fig. 1.

To optimise the filling of the functional polytope (see fig. 1), it is crucial to know.

-from which vertices of the four operands the vertices of the calculated polytope derive, -from which facets of the four operands the normals of the facets of the calculated polytope derive. 
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Fig. 1. Verification of inclusion of 3-polytope [START_REF] Barki | Contributing vertices-based Minkowski sum computation of convex polyhedra[END_REF] The purpose of this article is to determine the Minkowski sum of 3-dimension polytopes and apply this effectively in order to optimise the filling of the functional polytope. Our approach is based on polytope properties, most of which are described in [START_REF] Gritzmann | Minkowski addition of polytopes: computational complexity and applications to Gröbner bases[END_REF] and [START_REF] Ziegler | Lectures on polytopes[END_REF].

Several different approaches have been proposed in the literature to determine the Minkowski sum, most of which relate to 3-dimension geometrical applications.

For example, [START_REF] Wu | Improvements to algorithms for computing the Minkowski sum of 3-polytopes[END_REF] improves the concept of slope diagrams introduced by [START_REF] Ghosh | A unified computational framework for Minkowski operations[END_REF] to determine facets of connection. The same principle is used by [START_REF] Barki | Contributing vertices-based Minkowski sum computation of convex polyhedra[END_REF] who proposes an algorithm called a Contributing Verticesbased Minkowski Sum.

Some properties of polytopes

Two dual definitions for polytopes

A polytope  is a bounded intersection of many finitely closed half-spaces in some n  (see fig. 2) [START_REF] Ziegler | Lectures on polytopes[END_REF]. This is the h-representation of a polytope [START_REF] Fukuda | From the zonotope construction to the Minkowski addition of convex polytopes[END_REF].

In this article, a system of inequalities for m half-spaces H  has been chosen to define a polytope  as eq. 1:
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A polytope  is a convex hull of a finite set of points in some n  (see fig. 2) [START_REF] Ziegler | Lectures on polytopes[END_REF], [START_REF] Fukuda | From the zonotope construction to the Minkowski addition of convex polytopes[END_REF].

Let us consider  , a finite set of points in some n  (see fig. 2):

  conv =   .
This is the v-representation of a polytope [START_REF] Fukuda | From the zonotope construction to the Minkowski addition of convex polytopes[END_REF].

Convex hull of a finite set points in  2 Intersection of many finitely closed halfspaces in  2 A polytope of dimension k is denoted a k -polytope in n  with  

n k  .
A 0-polytope is a vertex, a 1-polytope is an edge and a 2-polytope is a 2-face.

Primal cone and dual cone

A cone is a non-empty set of vectors that with any finite set of vectors also contains all their linear combinations with non-negative coefficients [START_REF] Ziegler | Lectures on polytopes[END_REF].   
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There is an equivalent definition with half-spaces such that the border contains the origin (see fig. 3):
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Every vertex v of a polytope  has an associated primal cone and dual cone.

In 3-dimension, the boundary of the primal cone

 

PrimalCone v consists of the vertex v , the facets pi f of  converging at the vertex v and the edges pij e converging at the vertex v so that an edge pij e forms a common boundary between adjacent facets pi f and pj f (see fig. 3).

Let us consider an objective function of the shape: ( , , ) . 

DualCone( ) [START_REF] Ziegler | Lectures on polytopes[END_REF], [START_REF] Fukuda | From the zonotope construction to the Minkowski addition of convex polytopes[END_REF]. The dual cone associated with a face of dimension i has a dimension    this cone is 3-dimension given that the dimension of vertex v is 0. It consists of the vertex v , facets dij f that converge at v with their normals being respectively edges pij e and edges di e converging in v and these are in turn normal to facets pi f . Fig. 4b shows the primal cone and the dual cone associated with the vertex v of polytope  .

F is called the dual cone of polytope  in F . It is called the normal cone of polytope  in F
n i  in n  [9].

Fan and normal fan

A fan in n  is a family   1 ,...., k C C  
of polyhedral cones with the following properties:  each non-empty face of a cone in  is also a cone in  ,  the intersection of two cones in  is a face common to the two cones.

The fan  is complete if and only if:

1 k n i i C     [10].
For any facet F of polytope  , the set of dual cones DualCone( )

F partitions n  .
The set of dual cones defines a fan, which we will call the normal fan [START_REF] Gritzmann | Minkowski addition of polytopes: computational complexity and applications to Gröbner bases[END_REF], [START_REF] Ziegler | Lectures on polytopes[END_REF].

The normal fan associated with polytope  is:   N  .

Let 1  and 2  be two fans of n  . Then the common refinement of 1  and 2  [10] is:
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To determine the common refinement of two fans 1  and 2  a normal fan has to be determined which consists of the set of all the intersections of the dual cones of the two fans 1  and 2  considered two by two.

Minkowski sum by operations on dual cone

Problems in determining the Minkowski sum for two polytopes

Properties of dual cones

The definition of a Minkowski sum is given in equation ( 6) [START_REF] Fukuda | From the zonotope construction to the Minkowski addition of convex polytopes[END_REF].
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In 1-dimension, this consists of adding together variables with boundaries at certain intervals. For 2 and 3 dimensions, the Minkowski sum consists of carrying out a sweep from a reference point on one operand at the boundary of the other operand [START_REF] Wu | Improvements to algorithms for computing the Minkowski sum of 3-polytopes[END_REF], [START_REF] Barki | Contributing vertices-based Minkowski sum computation of convex polyhedra[END_REF].

In 2  , the edges of the polytope sum are translations of the edges of the two operand polytopes [START_REF] Wu | Improvements to algorithms for computing the Minkowski sum of 3-polytopes[END_REF], [START_REF] Barki | Contributing vertices-based Minkowski sum computation of convex polyhedra[END_REF]. In 3  , certain facets of the polytope sum are translations of the facets of the two operand polytopes. However, other facets are created, which we will call facets of connection. Thus it is not possible to deduce the facets of the polytope sum knowing only the facets of the operand polytopes. This property is illustrated in fig. 5 and discussed in [START_REF] Wu | Improvements to algorithms for computing the Minkowski sum of 3-polytopes[END_REF], [START_REF] Barki | Contributing vertices-based Minkowski sum computation of convex polyhedra[END_REF]. The work of [START_REF] Wu | Improvements to algorithms for computing the Minkowski sum of 3-polytopes[END_REF], [START_REF] Barki | Contributing vertices-based Minkowski sum computation of convex polyhedra[END_REF] can be further justified. The following property developed in [START_REF] Gritzmann | Minkowski addition of polytopes: computational complexity and applications to Gröbner bases[END_REF], and also mentioned in [START_REF] Ziegler | Lectures on polytopes[END_REF] and [START_REF] Fukuda | From the zonotope construction to the Minkowski addition of convex polytopes[END_REF], shows that the normal fan   N  of polytope  , the Minkowski sum of polytopes  and  , is the common refinement of the two normal fans of polytopes  and  :
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According to [START_REF] Davidson | A new mathematical model for geometric tolerances as applied to round faces[END_REF], determining the common refinement of two normal fans is based only on intersections of dual cones considered two by two. It is therefore not possible to create new edges in 2dimension when determining the normal fan   N  . This is the reason why there is no facet of connection in the Minkowski sum for two polytopes. In 3-dimension, new edges can be created. According to (4) and the properties of the dual cones cited in §2.2, these new edges are normals to the facets of connection of the polytope sum.

In this article we propose a method to construct facets of the polytope sum  based solely on intersections of dual cones on operands  and  .

We can then determine: the Minkowski vertices of  , the dual cones associated with the vertices of  and the normal fan   N  . From the vertices of  and the respective dual cones, the facets of  can be defined.

Finally, using the proximity of the dual cones in the normal fan   N  , the ordered edges defining the limits of the support hyperplane will be determined in order to define each facet of  .

Determining the vertices of the Minkowski sum of polytopes

Let the points of a face of polytope  maximising the objective function characterised by the vector be α :

  S( , ) : . max .     y α x α x α y    (8) 
Let us consider the following property:

Let a be a vertex of  and DualCone( ) a the associated dual cone.

We have:

      DualCone , a S     α α a  (9) 
Let  ,  and  be three polytopes such that: + =    . Let a and b be two vertices of  and  respectively. Let us consider the following property:

      is a vertex of : S( , ) et S( , )      a b γ 0 γ a γ b    (10) 
This property expresses the fact that if the same objective function reaches its maximum at  in a single vertex a and at  in a single vertex b then    a b is a vertex of  .

Any vertex of      is the sum of a vertex of  and a vertex of  according to Ewald's 1.5

theorem [START_REF] Ewald | Combinatorial Convexity and Algebraic Geometry[END_REF].

Using the previous properties, we can deduce eq. 11: which should be at least equal to 3.

                Let us

Proposal for an algorithm

From eq. 11, we are able to formulate an algorithm to determine the vertices of the Minkowski sum. In addition, determining   DualCone( ) DualCone( ) a b  for all the vertices of  and  gives the common refinement of  and  according to eq. 5 and hence we can deduce the normal fan   N  .

Require: two 3-polytopes  and 

Ensure: determination of , v C L , DualCone,C L and   N  with + =    1: 0 k  2:
for each vertex of Polytope  is characterised by its list of vertices , v A L and its list of facets ,

i a A with , f A L do   DualCone i a 4: f o r each vertex of j b B with , f B L do   DualCone j b ; compute ij I =     DualCone DualCone i j a b  5: if dimension of 3 ij I  then 1 k k   ; compute k i j   c a b ; add k c in , v C L ; add   =DualCone ij k I c
f A L . Let i a be the i th vertex of , v A L . We have: , 1 v A i n   where , v A
n is the number of vertices of  .

In the same way, polytope  is characterised by , The fig. 7 presents the algorithm to determine the vertices of the Minkowski sum of 3-polytopes.

Determining the facets of the Minkowski sum of polytopes

Properties of dual cones

We shall go straight to eq. 4 developed in [START_REF] Ziegler | Lectures on polytopes[END_REF]. From the two properties described earlier, an algorithm can be formulated to search for the facet edges of a 3  polytope when its vertices, its normal fan and the dual cones associated respectively with polytope vertices are known. From property 1 [START_REF] Ghosh | A unified computational framework for Minkowski operations[END_REF] in the normal fan of a polytope, the edge common to the dual cones associated with the primal vertices of the same facet can be identified. From property 2 (13), we can turn around this common edge and identify the vertices of this facet in order. 

Proposal for an algorithm

Discussion of the proposed method

The determination method proposed in this article is based solely on intersections of pairs of dual cones associated with searches for common edges and faces of dual cones in a normal fan. Using this algorithm, , In addition, the normal for each facet of  is characterised by an edge in the normal fan   N  . Thus the translated facets can be differentiated from the facets of connection.

Each normal of the facets of connection is generated by the intersection of two dual cones and more precisely by the intersection of two faces of dual cones. In this way, we can identify the facets of operands  and  from which the normals of the facets of connection derive.

The normals of facets that are different from the facets of connection derive either from operand  , or operand  . The method proposed here gives complete traceability of the vertices and facets of polytope  from the vertices and facets of operands  and  . In tolerance analysis, this traceability is used to optimise the filling of a functional polytope by a calculated polytope.

The proofs of properties ( 11), ( 12) and ( 13) are detailed in [START_REF] Teissandier | Algorithm to calculate the Minkowski sums of 3-polytopes based on normal fans[END_REF]. These algorithms are currently being developed in the topological structure of an OpenCASCADE distribution [START_REF]Open CASCADE Technology[END_REF].

The intersection algorithm used in this work is the OpenCASCADE 6.2 distribution algorithm.

Conclusion and future research

We have shown how to determine the Minkowski sum for two 3  polytopes from intersections of polyhedral cones and using the properties of the common edge and common face between dual cones in a normal fan. The algorithms for determining the vertices and the facets have been described. Ultimately, this method will be applied in a tolerance analysis procedure in an environment that can be multi-physical [START_REF] Pierre | Integration of thermomechanical strains into tolerancing analysis[END_REF]. Work is currently underway on a method to determine the intersection of two polyhedral cones so that this can be generalised for n dimension polytopes. It will allow to transpose the algorithms of this article in a n dimension according to the property computing common refinement [START_REF] Requicha | Toward a theory of geometric tolerancing[END_REF]. This work will be described in a later publication.
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 22 Fig. 2 Definitions of a 2-polytope in 2  [10].
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 3 Fig. 3 Cone 3  and primal cone of a  3 polytope.

     and polytope  together define the function ( , , ) p x y z . The objective function is maximal on one face F (2-face, edge or vertex) of  . Let d be a normal to the objective function oriented towards the exterior of polytope  (see fig. 4a). The set of objective functions that reach their maximum in F is characterised by a polyhedral cone DualCone( ) F defined by the set of normals d , thus in 3  [10]:
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 4 Fig. 4 Definition of a dual cone -Dual cone and primal cone attached to a vertex.
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 5 Fig. 5 Minkowski sum of 3  polytopes.
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 6 Fig. 6 Intersection of dual cones generating a vertex. Fig. 11 Intersection of dual cones not generating vertex.
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 7 Fig. 7 Determining the vertices of the Minkowski sum of 3-polytopes.
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  is the number of vertices of  .Polytope  is characterised by its list of vertices , be the k th dual cone of  associated with k c of DualCone,C L .
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 8 Fig. 8 Determining the facets of the Minkowski sum of 3-polytopes.
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 24 be the list of facets of  .We represent as Cl f the l th facet of , be the list of support hyperplanes for  .Let Cl h be the l th hyperplane of , list of the edges of facet Cl f . Two consecutive edges of , of edges of Cl f ).The fig.8bpresents the algorithm to determine the facets of the Minkowski sum of 3-polytopes. Fig.8cshows stages 7 to 18 of the algorithm for determining the edges of a facet cl f of polytope  of vertices be more precise, fig.8cshows the determination of the first edge, bounded by 1 , the last vertex in the outline of cl f whereshows the determinations of the edges bounded by:

  of dual cones have to be calculated in order to determine the vertices of polytope  and the normal fan   N  .In addition, it is necessary to carry out , f c n searches for a common edge among the dual cones in the normal fan   N  . Finally, for a common face between dual cones to determine the edges of polytope  . Each search for a common face is carried out in a sub-set of dual cones in the normal fan   N  which share an edge. Each vertex of polytope  is the sum of two vectors associated respectively with two vertices of polytopes  and  . From the , of dual cones it is possible to determine from which vertices of operands  and  the vertices of  derived.