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Abstract

The Brenier optimal map and Knothe–Rosenblatt rearrangement are

two instances of a transport map, that is to say a map sending one mea-

sure onto another. The main interest of the former is that it solves the

Monge–Kantorovich optimal transport problem, while the latter is very

easy to compute, being given by an explicit formula.

A few years ago, Carlier, Galichon, and Santambrogio showed that the

Knothe rearrangement could be seen as the limit of the Brenier map when

the quadratic cost degenerates. In this paper, we prove that on the torus

(to avoid boundary issues), when all the data are smooth, the evolution

is also smooth, and is entirely determined by a pde for the Kantorovich

potential (which determines the map), with a subtle initial condition. The

proof requires the use of the Nash–Moser inverse function theorem.

This result generalizes the ode discovered by Carlier, Galichon, and

Santambrogio when one measure is uniform and the other is discrete, and

could pave to way to new numerical methods for optimal transportation.
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1 Introduction

Although optimal transport theory has far-reaching applications, in Velds as di-

verse as continuum mechanics, statistics or image processing, its underlying

problem is quite simple: how to send one probabilitymeasure onto another, while

minimizing some cost of transportation? Let us denote by µ and ν those two mea-

sures, deVned respectively on X and Y . They could for instance represent the

respective distributions of the production of some goods, and the needs for them,

and the problem would then be to determine how to organize the supply so that

the total cost of transportation is as small as possible.

What we are looking for is a map T : X → Y telling us where to send what

is in x; but T will be suitable only if, for any measurable set A ⊂ Y , the goods

sent by T in Amatch the needs of the same region, that is to say if µ(T−1(A)) =
ν(A). If this condition is satisVed, ν is said to be the push-forward of µ by T , and
we write ν = T#µ. Let us denote by c(x, y) the cost for going from x to y, then
the total cost of transportation we want to minimize is

∫

X
c(x, T (x)) dµ(x). (1)

Notice however that an optimal map may well not exist, and worse, there might

even be no map transporting µ onto ν at all, e.g. if µ is discrete and ν is uniform.

The problem of Vnding a map T minimizing (1), and such that ν = T#µ, was
Vrst studied by Monge [1] in the 18th century. In the 1940s, Kantorovich [2]

introduced the following relaxation of Monge’s problem: Instead of sending all

that is in x to a unique destination y = T (x), he allowed himselft to split the

mass. Any strategy for sending µ onto ν can then be represented by a measure γ
on X × Y , such that γ(A×B) gives the share of the goods to be moved from A
to B. A plan γ is suitable if it matches the production and the needs, i.e. if

γ(A× Y ) = µ(A), γ(X ×B) = ν(B).

This simply means that µ and ν must be the marginals of γ. Let us denote by

Γ(µ, ν) the set of all such suitable plans. The total cost of transportation with the

plan γ is ∫

X×Y
c(x, y)dγ(x, y). (2)

The Monge–Kantorovich problem consists in Vnding γ ∈ Γ(µ, ν) minimizing (2).

It is indeed a relaxation of the Monge problem, since if T : X → Y sends µ onto

ν , then the push-forward γ := (x, T (x))#µ of µ by x 7→ (x, T (x)) is in Γ(µ, ν),
and the costs (1) and (2) are equal.

At the end of the 1980s, Brenier [3, 4] discovered the optimal transport map for

the Monge problem to exist as the gradient of a convex function and to be unique,

at least when X = Y = R
N , for the cost c(x, y) = 1

2 |x − y|2, if µ is absolutely

continuous and if µ and ν have Vnite second order moments. His result was then
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extended to measures deVned on the torus TN by Cordero-Erausquin [5], or more

generally on a Riemannian manifold by McCann [6]. While on R
N the optimal

map is T (x) = ∇ϕ(x) with ϕ convex, on the torus TN the optimal map can be

written as T (x) = x−∇ψ(x) with ψ : TN → R
N such that ϕ : x 7→ 1

2x
2 −ψ(x)

deVnes a convex function on R
N . More generally, on a Riemannian manifold

T (x) = expx(−∇ψ(x)) for some map ψ, called the Kantorovich potential be-

cause it is linked to a dual formulation for the relaxed problem.

Being able to compute the optimal map T , or the underlying potential ψ, is
obviously of huge interest. When the measures are discrete, if there is a solution

to the Monge problem, it can be obtained for instance with the auction algorithm.

In the continuous case, the solution is also easy to compute in dimension 1, for if
µ and ν are absolutely continuous, and if F , G stand for their respective cumu-

lative distributions, i.e. F (x) := µ((−∞, x]) and G(y) := ν((−∞, y]), then the

optimal transport map is T = G−1 ◦ F .
Unfortunately when the dimension isN > 1, there is no such easy formula, and

it is much more complicated to compute Brenier’s map—although not impossible.

Among the most notable methods, we could cite the one due to Benamou and Bre-

nier [7], relying on a dynamic formulation of the Monge–Kantorovich problem,

in which one tries to minimize the average kinetic energy of the particles during

their transportation. On the other hand, Angenent, Haker, and Tannenbaum [8]

proposed a steepest descent method, starting from a transport map (for instance,

the Knothe–Rosenblatt rearrangement) and letting it evolve so as to reduce the

associated transport cost. A couple of years later, Leoper and Rapetti [9] used

the characterization of the optimal transport map through the existence of a con-

vex potential, to compute Brenier’s map starting from any potential and, with a

Newton algorithm, altering it so as to Vnally get the optimal potential.

Our hope here is that the results presented in this paper might lead to yet

another approach for computing Brenier’s map. Our starting point is a direct

connexion, proved by Carlier, Galichon, and Santambrogio [10] a few years ago

but hinted beforehand by Brenier, between the optimal transport map and the

Knothe–Rosenblatt rearrangement. This leads us to believe it might be possible

to compute Brenier’s map starting from the rearrangement (as in the paper by

Angenent, Haker, and Tannenbaum [8]), and then proceedingwith a continuation

method (as in the work by Loeper and Rapetti [9]).

This so-called Knothe–Rosenblatt rearrangement, which is also build so as to

send one measure onto another, was Vrst introduced by Rosenblatt [11] and

Knothe1 [13]. It can be deVned for absolutely continuous probability measures

on R
2 or on T

2 = R
2/Z2 (in higher dimension, the construction is analogous) as

follows: To begin with, let us denote by f , g the densities of µ, ν . Then, take the

1Interestingly, Knothe used this rearrangement to prove the isoperimetric inequality, for which

it is well suited. . . but in fact not as much as Brenier’s map, which Figalli, Maggi, and Pratelli [12]

used more recently to prove sharp isoperimetric inequalities.
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Vrst marginals, which we denote by µ1and ν1; their respective densities are

f1(x1) =

∫
f(x1, x2) dx2 and g1(y1) =

∫
g(y1, y2) dy2.

DeVne R1 as the optimal transport map between µ1 and ν1. Next, consider the

disintegration of µ and ν with respect to µ1 and ν1, that is to say two family of

probabilities measures {µ2
x1

} and {ν2
y1

} such that the densities of µ2
x1

and ν2
y1

are

f2
x1

(x2) =
f(x1, x2)

f1(x1)
and g2

y1
(y2) =

g(y1, y2)

g1(y1)
.

For any x1 let R2(x1, ·) be the optimal transport map between µ2
x1

and ν2
R1(x1).

Then the rearrangement is R(x1, x2) := (R1(x1), R2(x1, x2)). It is not diXcult

to check that it sends µ onto ν .
What Carlier, Galichon and Santambrogio proved is that, if in Monge’s problem

the cost is, for instance, replaced with

ct(x, y) =
1

2

d∑

k=1

tk−1|xk − yk|2,

then, when the two measures are absolutely continuous, as t goes to 0, the
corresponding optimal transport maps Tt converge in L2 to the rearrangement

R. When the initial measure µ is uniform and the Vnal measure ν is discrete,

ν =
∑
aiδyi

, they could also establish an ode governing the evolution of the

Kantorovich potential ψt, at least when the Vrst coordinates of the yi are distinct.

Thus, the following questions arise: in the continuous case, is it also possible

to Vnd a diUerential equation satisVed by ψt? and if the answer is yes, is there

uniqueness, that is to say, given the proper initial condition for t = 0, is ψt

the only solution to this equation? As we are going to see, the answer to both

question is positive, at least, to discard boundary issues, on the torus. More

precisely, we have the following:

Theorem. Let At be the (1, t, . . . , tN−1) diagonal matrix, and µ, ν two probabil-

ity measures on T
N = R

N/TN with smooth, strictly positive densities f, g. The

optimal transport map for the cost

ct(x, y) =
1

2

N∑

k=1

tk−1d(xk, yk)2,

d standing for the usual distance on T
1, is then Tt(x) = x − A−1

t ∇ψt(x), where
the Kantorovich potential ψt is chosen so that

∫
ψt = 0. The map t 7→ ψt is smooth

from (0,+∞) to C ∞(T2), with At −D2ψt > 0 at all times, and satiVes

div

(
f
[
I −A−1

t D2ψt

]−1 (
A−1

t ∇ψ′
t −A−1

t A′
tA

−1
t ∇ψt

))
= 0. (3)
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Moreover, ψ is the unique solution of (3) such that, if we write for t 6= 0,

ψt(x1, . . . , xN ) = ψ1
t (x1) + tψ2

t (x1, x2) + . . . + tN−1ψN
t (x1, . . . , xN ), (4)

with

∀x1, . . . , xk−1,

∫
ψk

t (x1, . . . , xk−1, z) dz = 0,

then t 7→ (ψ1
t , . . . , ψ

N
t ) is C 2 on [0,∞), and the Knothe–Rosenblatt rearrangement

R = (R1, . . . , RN ) is given by

Rk(x1, . . . , xk) = xk − ∂kψ
k
0 (x1, . . . , xk).

The Vrst point is obtained by noticing that, at least when t stays away from 0,
ψt is the unique solution to a Monge–Ampère equation F(At, ψt) = 0, where

F(A,u)(x) := f(x) − g
(
x−A−1∇u(x)

)
det

(
I −A−1D2u(x)

)
,

is deVned on a proper subset of S
++
N × C 2(TN ), and then proving that we can

apply the implicit function theorem. As it is well-known, the invertibility of the

diUerential DuF in (t, ψt) is equivalent to the existence and uniqueness of the

solution to a strictly elliptic equation, so the argument is rather straightforward.

For small times, because of the degeneracy of At, we need the decomposi-

tion (4), which leads us to introduce another operator, namely

G(t, u1, u2, . . . , uN ) := F
(
At,

∑
tk−1uk

)
,

deVned on a good subset of [0,+∞)×C 2(T1)×C 2(T2)×· · ·×C 2(TN ), in such

a way that (ψ1
t , . . . , ψ

N
t ) is the only (u1, . . . , uN ) such that G(t, u1, . . . , uN ) = 0.

Unfortunately, a loss of regularity for the solutions (v1, . . . , vN ) of the equation

DuG(t, ψ1, . . . , ψN )(v1, . . . , vN ) = q

prevents us from applying the implicit function theorem once more. We cir-

cumvent this diXculty by using the smoothness of the Kantorovich potential ψt,

which allows us to deVne G on a subset of [0,+∞) × C ∞(T1) × · · · × C ∞(TN ),
so that to have an inVnite source of regularity, and then by using the Nash–Moser

version of the implicit function theorem.

We do not know if there is an equivalent result on R
N . To be able to construct

the Knothe rearrangement, compactness is required, but in R
N this comes with a

boundary. The problem is that the rearrangement is more easily contented with

sets whose shapes are somewhat compatible with the axis, e.g. the square, but

known regularity results for Brenier’s map fail to apply in that kind of setting.

Acknowledgements. This work is part of a phd thesis supervised by Luigi

Ambrosio (sns, Pisa) and Filippo Santambrogio (Univ. Paris–Sud), whom the au-

thor would like to thank warmly for their advice and support. Financial support

for this thesis is provided in part by the Franco–Italian University through the

“Vinci” program. Much of this paper is also the result of an extended stay in Pisa

in Fall 2011, which was made possible thanks to the ens–sns exchange program.
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2 General quadratic costs on the torus

Given two probability measures µ, ν on the torus TN = R
N/ZN , we want to

study the evolution with t of the optimal transport map for the cost

ct(x, y) =
1

2

N∑

k=1


∏

i<k

λi(t)


 d(xk, yk)2, (5)

where d : T1 ×T
1 → [0,+∞) is the usual distance on T

1, the λi : R → [0,+∞)
are smooth and such that λi(t) = 0 if and only if t = 0. For t > 0, this is a kind
of quadratic cost on the torus. Notice that, more generally, we can deVne a cost

given any positive-deVnite symmetric matrixA ∈ S
++
N as follow: Vrst, consider

c̃ : RN × R
N → [0,+∞) deVned by

c̃(x, y)2 := inf
k∈ZN

1

2
A(x− y − k)2,

and then take induced map c : T
N × T

N → [0,+∞). This is equivalent to

changing the usual metric on T
N with the one induced by A in the canonical set

of coordinates, and then taking half the resulting squared distance as the cost.

An interesting property of such a cost c is that in this case the so-called c-
transform of a function u : T

N → R is strongly connected to the Legendre

transform (for the scalar product induced by A) of x 7→ 1
2Ax

2 − u(x), deVned
on R

N (we then see u as a periodic function on R
N ). Let us recall that the c-

transform of u is the map uc : TN → R deVned by

uc(y) = inf
x∈TN

{c(x, y) − u(x)} .

This is interesting, because McCann [6] showed that, under suitable assumptions,

the optimal transport map T can be written as T (x) = expx(−∇ψ(x)), for some

function ψ such that ψcc = ψ. A map u such that ucc = u is called c-concave.

Lemma 1. A function u : TN → R is c-concave if and only if

v :

{
R

N → R

x 7→ 1
2Ax

2 − u(x)

is convex and lower semi-continuous. If u is C 2 and such that A− D2u > 0, then
x 7→ x−A−1∇u(x) induces a diUeomorphism T

N → T
N .

Proof. If u is c-concave, then v is convex and lower semi-continuous, for it can
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be written as a Legendre transform:

v(x) =
1

2
Ax2 − ucc(x)

=
1

2
Ax2 − inf

y∈TN

{c(x, y) − uc(y)}

= sup
y∈RN

{
1

2
Ax2 − c̃(x, y) + uc(y)

}

= sup
y∈RN

sup
k∈Z2

{
1

2
Ax2 −

1

2
A(x− y − k)2 + uc(y)

}

= sup
y∈RN

{
〈Ax, y〉 −

[
1

2
Ay2 − uc(y)

]}
.

Conversely, if v is convex and lower semi-continuous, then it is equal to its double

A-Legendre transform:

v(x) = sup
y∈RN

{
〈Ax, y〉 − sup

z∈RN

[〈Az, y〉 − v(z)]

}
.

Therefore,

u(x) =
1

2
Ax2 − sup

y∈RN

{
〈Ax, y〉 − sup

z∈R2

[〈Az, y〉 − v(z)]

}

= inf
y∈RN

{
1

2
A(x− y)2 −

1

2
Ay2 + sup

z∈R2

[〈Az, y〉 − v(z)]

}

= inf
y∈RN

{
1

2
A(x− y)2 − inf

z∈R2

[
1

2
A(y − z)2 − u(z)

]}
,

that is to say u(x) = ucc(x).
If u is C 2 and such thatA−D2u > 0, then by compactness A−D2u ≥ εI for

some ε > 0. Thus, v being convex with a super-linear growth, ∇v : RN → R
N

is a diUeomorphism, and so is the map T : x 7→ x − A−1∇u(x). Notice that,

if k ∈ Z
N , then T (x + k) = T (x) + k, therefore T induces a diUeomorphism

T
N → T

N .

In the next proposition, we start from the existence and uniqueness of the Kan-

torovich potential for such a generalized cost (this comes from McCann [6]), and

then apply the results of CaUarelli [14] to get its smoothness, in the exact same

way as Cordero-Erausquin [5] did. (More general results regarding the regularity

of the Kantorovich potential, and thus, of the optimal transport map, on arbirary

products of spheres have been recently obtained by Figalli, Kim, and McCann

[15].)

Proposition 2. Let µ and ν be two probability measures on T
N with smooth,

strictly positive densities, and let c be the quadratic cost on T
N × T

N induced by a

deVnite-positive symmetric matrix A.
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Then there is a unique c-concave function ψ : TN → R with
∫
ψ = 0 such that

T : TN → T
2 deVned by T (x) := x−A−1∇ψ(x) sends µ onto ν .

The function ψ is a Kantorovich potential, it is smooth, and the application ϕ :
x 7→ 1

2Ax
2 − ψ(x) is a smooth, strictly convex function on R

N .

The transport map T is optimal for the cost c. There is no other optimal transport

plan but the one it induces.

Of course in this proposition, instead of T (x) := x − A−1∇ψ(x) we should

have written T (x) = x − π(A−1∇ψ(x)), where π : R
N → T

N is the usual

projection.

Proof. Let us denote by ∇A the gradient for the metric induced by A. Then ac-

cording to McCann [6], there is a Lipschitz function ψ : T
N → R that is c-

concave and such that T : x 7→ expx[−∇Aψ(x)] pushes µ forward to ν . It

is uniquely deVned if the condition
∫
ψ(x) dx = 0 is added, and moreover it

is optimal for the Monge–Kantorovich problem. Notice that here on the torus,

expx[−∇Aψ(x)] = x−A−1∇ψ(x).
For any x ∈ R

N , let ϕ(x) := 1
2Ax

2 − ψ(x). Then T (x) = A−1∇ϕ(x) sends
µ onto ν , seen as periodic measures on R

N . Moreover, according to Lemma 1,

ϕ is a convex function. Now, let V be a open, convex subset of RN , and deVne

U = (∇ϕ)−1(V ); then ∇ϕ sends µ|U onto A#ν|V , and both measures are still

absolutely continuous with smooth, bounded, strictly positive densities. There-

fore we are entitled to apply the results of CaUarelli [14], and thus we get that ϕ
is strictly convex and smooth on U . As U is arbitrary, ϕ is strictly convex and

smooth on R
2. Thus, ψ is also smooth, and T is a diUeomorphism.

3 PDE satisVed for positive times

Let µ and ν be two probability measures on T
N with smooth, strictly positive

densities f and g. According to Proposition 2, for any A ∈ S
++
N , we have a

smooth Kantorovich potential ΨA : TN → R. What can we say of the regularity

of Ψ : A 7→ ΨA?

As x 7→ x−A−1∇ΨA(x) sends µ onto ν , the following Monge–Ampère equa-

tion is satisVed:

f(x) = g
(
x−A−1∇ΨA(x)

)
det

(
I −A−1D2ΨA

)
.

For u ∈ C 2(TN ) such that A−D2u > 0 and
∫
u = 0, we set

F(A,u) = f − g
(
id −A−1∇u

)
det

(
I −A−1D2u

)
.

Thanks to the characterization of c-concave functions from Lemma 1, and to

Proposition 2, we have

Lemma 3. For any u ∈ C 2(TN ) such that A − D2u > 0 and
∫
u = 0, we can

have F(A,u) = 0 if and only if u = ΨA.
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We are now going to prove that we can apply the implicit function theorem.

In the following, for any function space X we denote with a ⋄ subscript the

space formed by the elements of X having a zero mean value, e.g. C 2
⋄ is the

space of all u ∈ C 2 such that
∫
u = 0.

Lemma 4. The operator F is smooth. For any A ∈ S
++
N , if u ∈ C 2

⋄ (TN ) is such
that A−D2u > 0, if v ∈ C 2

⋄ (T2), then

DuF(A,u)v = div

(
(f − F(A,u))

[
A−D2u

]−1
∇v

)

=
1

detA
div

(
g
(
id −A−1∇u

) [
Co
(
A−D2u

)]T
∇v

)
.

We denote by MT the transposed matrix of M , and by Co(M) its comatrix,

that is to say the matrix formed by the cofactors.

Proof. The smoothness of F is obvious. By substitution, for any ξ ∈ C ∞,

∫
ξ
(
x−A−1∇u(x)

)
[f(x) − F(A,u)(x)] dx =

∫
ξ(y)g(y) dy.

Therefore, if we conveniently set TAu(x) := x−A−1∇u(x) and diUerentiate the
previous equation with respect to u along the direction v, we get

−

∫ 〈
∇ξ(TAu), A−1∇v

〉
(f − F(A,u)) −

∫
ξ(TAu)DuF(A,u)v = 0.

Since ∇[ξ ◦ TAu] = [DTAu]T∇ξ(TAu), we have

〈
∇ξ(TAu), A−1∇v

〉
=
〈

∇[ξ ◦ TAu], [DTAu]−1A−1∇v
〉

=
〈

∇[ξ ◦ TAu], [I −A−1D2u]−1A−1∇v
〉
,

and this yields

∫
ξ(TAu)DuF(A,ψA)v =

∫
ξ(TAu) div

(
[I −A−1D2u]−1A−1∇v

)
,

and thus, since ξ ◦ TAu is arbitrary, we get the Vrst equality. Then, we can easily

obtain the second expression using the formulaM−1 = [CoM ]T/det(M).

Lemma 5. Let ε > 0 and A ∈ S
++
N . If u ∈ C 2

⋄ (TN ) is such that A− D2u > ε,
then for any q ∈ [H1

⋄ (TN )]∗, there is a unique v ∈ H1
⋄ (TN ) such that

DuF(A,u)v = q. (6)

Moreover, ‖v‖H1 ≤ Cε‖q‖(H1
⋄

)∗ .
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Proof. As A − D2u > ε, the lowest eigenvalue of Co (A−D2u) is bounded by

εN−1. Since g > δ for some δ > 0, for any ξ ∈ C ∞(TN ),

εN−1
∫

|∇ξ|2 ≤

∫
〈[Co (A−D2u)]T∇ξ,∇ξ〉

≤
1

δ

∫
g
(
id −A−1∇u

)
〈[Co (A−D2u)]T∇ξ,∇ξ〉,

and thus ∫
|∇ξ|2 ≤ −

1

δεN−1

∫
ξDuF(A,u)ξ. (7)

Therefore, thanks to the existence of a Poincaré inequality on H1
⋄ (TN ), the map

(ξ, η) 7→
∫
ηDuF(A,u)ξ induces a coercive, continuous bilinear form on H1

⋄ .

We are thus entitled to apply the Lax–Milgram theorem, which yields the ex-

istence and the uniqueness, for every q ∈ (H1
⋄ )∗, of a v ∈ H1

⋄ satisfying (6).

Moreover, (7) immediately gives us ‖v‖H1 ≤ 1
δεN−1 ‖q‖(H1

⋄
)∗ .

The regularity of the solutions to an elliptic equation is well known. However,

as in the following we will need some very precise estimates to apply the Nash–

Moser theorem, let us give a proof of the following result:

Lemma 6. Under the same assumptions, and with the same notations, for any

n ≥ 1, if u ∈ C n+2
⋄ and q ∈ Hn−1

⋄ satisfy ‖u‖C 3+‖q‖(H1
⋄

)∗ ≤ M , then v ∈ Hn+1
⋄ ,

and

‖v‖Hn+1 ≤ Cε,M,n {‖q‖Hn−1 + ‖u‖C n+2} . (8)

Proof. We proceed by induction. Let n ≥ 1, u ∈ C n+2
⋄ and q ∈ Hn

⋄ such that

A − D2u > ε and ‖u‖C 3 + ‖q‖(H1
⋄

)∗ ≤ M . We assume that we already know

that the corresponding solution v is in Hn
⋄ , and that

‖v‖Hn ≤ Cε,M,n−1 {‖q‖Hn−2 + ‖u‖C n+1} . (9)

Notice that we do have such an inequality for n = 1, according to the previous

lemma, but with ‖q‖(H1
⋄

)∗ instead of ‖q‖H−1 . Let us now show that it implies

v ∈ Hn+1
⋄ and

‖v‖Hn+1 ≤ Cε,M,n {‖q‖Hn−1 + ‖u‖C n+2} .

First, we set BAu := (f − F(A,u))[A−D2u]−1, so that Equation (6) becomes

DuF(A,u)v = div(BAu∇v). (10)

Then, for h ∈ R
2 and ξ ∈ H1, we also deVne

τhξ(x) := ξ(x+ h) and δhξ(x) :=
ξ(x+ h) − ξ(x)

h
.

Notice then that δh(ηξ) = ηδhξ + (δhη)τhξ, and ‖δhξ‖L2 ≤ ‖ξ‖H1 .

10



Let ν ∈ N
2 be a 2-index, with |ν| := ν1 + ν2 = n− 1, and let h ∈ R

2 be small

enough. We can apply the operator δh to Equation (10), and we then obtain

div(BAu∇δhv) = δhq − div [(δhBAu)∇τhv]

Then, by diUerentiating this with respect to ν , we get

div(BAu∇δh∂νv) = δh∂νq −
∑

0≤α≤ν

(
ν

α

)
div [(δh∂ν−αBAu) ∇τh∂αv] .

−
∑

0≤α<ν

(
ν

α

)
div [(∂ν−αBAu) ∇δh∂αv] . (11)

Now, Lemma 5 tells us that this implies

‖δh∂νv‖H1 ≤ Cε‖δh∂νq‖(H1
⋄

)∗

+Cε

∑

0≤α≤ν

(
ν

α

)
‖div [(δh∂ν−αBAu) ∇τh∂αv]‖(H1

⋄
)∗

+ Cε

∑

0≤α<ν

(
ν

α

)
‖div [(∂ν−αBAu) ∇δh∂αv]‖(H1

⋄
)∗ .

Since this boundary is uniform in h, it is enough to ensure v ∈ Hn+1 and

‖v‖Hn+1 ≤ C



‖q‖Hn−1 +

∑

0≤k≤n−1

(1 + ‖u‖C n−k+2)‖v‖Hk+1



 .

Notice that, when n > 1, the following Landau–Kolmogorov inequalities hold

‖u‖C n−k+2 ≤ Ck,n‖u‖
1− k

n−1

C 3 ‖u‖
k

n−1

C n+2,

‖v‖Hk+1 ≤ Ck,n‖v‖
k

n−1

H1 ‖v‖
1− k

n−1

Hn .

They are quite classical and can be easily proved by induction from

‖ξ‖C 1 ≤
√

2‖ξ‖C 0‖ξ‖C 2 and ‖ξ‖H1 ≤
√

‖ξ‖L2‖ξ‖H2 ,

for ξ smooth enough satisfying
∫
ξ = 0. Since a1−tbt ≤ (1 − t)a+ tb, we get

‖u‖C n−k+2‖v‖Hk+1 ≤
k

n− 1
‖u‖C 3‖v‖Hn +

(
1 −

k

n− 1

)
‖u‖C n+2‖v‖H1 ,

and therefore

‖v‖Hn+1 ≤ C {‖q‖Hn−1 + (1 + ‖u‖C 3)‖v‖Hn + ‖u‖C n+2‖v‖H1} .

This last inequality still holds when n = 1. In any case, as ‖v‖H1 ≤ Cε‖q‖H−1

and ‖u‖C 3 + ‖q‖H−1 ≤ M , using our assumption (9), we get

‖v‖Hn+1 ≤ Cε,M,n {‖q‖Hn−1 + ‖u‖C n+2} .

This is exactly what we wanted.
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Lemma 7. Under the same assumptions, for any q ∈ C
n,α
⋄ (TN ), there is a unique

v ∈ C
n+2,α
⋄ (TN ) such that

DuF(A,u)v = q.

Proof. If q ∈ C
n,α
⋄ , then q ∈ Hn

⋄ , and thus according to the previous lemmas,

there is v ∈ Hn+2
⋄ such thatDuF(A,u)v = q in (H1

⋄ )∗. But since
∫
q = 0, given

the particular form of DuF(A,u)v given by Lemma 4, such an equality in fact

holds inH−1. Thus, locally, in a weak sense,

DuF(A,u)v = q.

Then, we can locally use the theory of regularity for the solutions to a strictly

elliptic equation in R
N to get existence and uniqueness of v ∈ C n,α (cf. for

instance Gilbarg & Trudinger [16], Chapter 6).

Theorem 8. For any A ∈ S
++
N , let ΨA be the Kantorovich potential between

the probability measure µ and ν , which are still assumed to have smooth, strictly

positive densities. Then, for any n ≥ 0 and α ∈ (0, 1), the following map

Ψ :

{
S

++
N −→ C n+2,α(TN )
A 7−→ ΨA

is C
1.

Proof. We denote by Ω be the set of all (A,u) ∈ S
++
N × C

n+2,α
⋄ (TN ) such that

A−D2u > 0. Then Ω is open, the operator F : Ω → C
n,α
⋄ (TN ), deVned by

F(A,u) = f − g
(
id −A−1∇u

)
det

(
I −A−1D2u

)
,

is smooth and, according Lemma 7, DuF(A,ψA) : C
n+2,α
⋄ (TN ) → C

n,α
⋄ (TN ) is

a bijection. From the Banach–Schauder theorem, we deduce it is an isomorphism.

Since F(A,ΨA) = 0, according to the implicit function theorem, there is a C 1

map Φ deVned in a neighborhood of A such that B − D2ΦB > 0 and, for any

u ∈ C
n+2,α
⋄ , F(B,u)) = 0 if and only if u = ΦB . According to Lemma 3, it

implies ΦB = ΨB . Thus, globally, Ψ = Φ is a C 1 map S
++
N → C

n,α
⋄ (TN ).

We are now going to apply this result to the cost c deVned by (5), that is to say

the cost induced by the matrix

At :=




1
λ1(t)

λ1(t)λ2(t)
. . . ∏

λi(t)



,

where λ1, . . . , λN−1 : R → [0,+∞) are assumed to be such that λk = 0 if and

only if t = 0.
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Theorem 9. If λ1, . . . , λN−1 are smooth, the map ψ : t 7→ ΨAt
isC 1, and satisVes:

div

{
f
[
At −D2ψt

]−1 (
∇ψ′

t −A′
tA

−1
t ∇ψt

)}
= 0. (12)

Moreover, if u : (0,+∞) → C n+2,α(TN ) is C 1 and satisVes, for all t ∈ (0,+∞),

At −D2u > 0 and div

{
f
[
At −D2ut

]−1 (
∇u′

t −A′
tA

−1
t ∇ut

)}
= 0, (13)

and if ut0
= ψt0

for some t0 > 0, then u = ψ.

Proof. If ψt := ΨAt
, for all t > 0, we have F(At, ψt) = 0. If we diUerentiate with

respect to t, we get

DuF(At, ψt)ψ
′
t +DAF(At, ψt)A

′
t = 0.

We have seen in Lemma 4 that

DuF(At, ψt)ψ
′
t = div

(
f
[
At −D2ψt

]−1
∇ψ′

t

)
.

On the other hand,

DAF(At, ψt)A
′
t = − div

(
f
[
At −D2ψt

]−1
A′

tA
−1∇ψt

)
.

We thus get (12).

If u : (0,+∞) → C n+2,α(TN ) is C 1 and satisVes (13), with ut0
= ψt0

for some

t0 > 0, then F(At, ut) must be constant and equal to F(AT0
, ut0

) = 0. Thus,
according to Lemma 3, ut = ΨAt

.

4 Initial condition in dimension 2

Due to the very technical nature of the proofs, the following sections will only

deal with the dimension 2, to ease the exposition. In the last section, we shall

explain what changes in higher dimensions.

Let λ : R → [0,+∞) be a smooth function such that λt = 0 if and only if

t = 0. From now on, we will only consider the cost induced by

At =

(
1 0
0 λt

)
.

For t 6= 0, let ψt be the associated Kantorovich potential between the probability

measures µ, ν , assuming they have the same properties as before (that is, strictly

positive and smooth densities), and let Tt be the corresponding optimal transport

map. Then, according to Theorem 9, t 7→ ψt and t 7→ Tt are C 1 on R \ {0}.
Moreover, Carlier, Galichon, and Santambrogio [10] proved:
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Theorem 10 (C.–G.–S.). As t → 0, the map Tt converges to the Knothe–Rosenblatt

rearrangement R in L2(T2, µ;T2).

Let us denote by ψ1
0 and ψ2

0(x1, ·) the Kantorovich potentials for respectively

R1 and R2(x1, ·). Indeed, recall that R
1 sends the Vrst part µ1 of the disintegra-

tion of µ onto the Vrst part ν1 of the disintegration of ν , and that R2(x1, ·) sends
the second part µ1

x2
onto ν2

R1(x1), in an optimal way for the squared distance on

the 1-dimensional torus T1; hence these transport maps come from some poten-

tials. We have:

R(x) =

(
x1 − ∂1ψ

1
0(x1)

x2 − ∂2ψ
2
0(x1, x2)

)
=: x− ∂ψ0(x).

The Carlier–Galichon–Santambrogio theorem suggests some connexion exists

between ψt and (ψ1
0 , ψ

2
0). Since Tt = id − A−1

t ∇ψt, let us follow our instinct

and set

ψt(x1, x2) = ψ1
t (x1) + λtψ

2
t (x1, x2),

and, to ensure uniqueness, require

∫
ψ1

t (x1) dx1 = 0 and

∫
ψ2

t (x1, x2) dx2 = 0.

Notice that ψ1
t and ψ2

t are then uniquely determined, and are smooth, since

ψ1
t (x1) =

∫
ψt(x1, x2) dx2 and ψ2

t (x) =
1

λt

(
ψt(x) − ψ1

t (x1)
)
.

Let us denote by E the set of all (t, u1, u2) ∈ R × C ∞(T1) × C ∞(T2) such that

∫
u1(x1) dx1 = 0 and

∫
u2(x1, x2) dx2 = 0,

and by Ω the open subset of E formed by the (t, u1, u2) such that:

• either t 6= 0, and then At −D2(u1 + λtu
2) > 0;

• or t = 0, and then 1 − ∂1,1u
1 > 0 and 1 − ∂2,2u

2 > 0.

Then, thanks to Lemma 1, we can deVne an operator G : Ω → C ∞(T2) by

setting, when t 6= 0,

G(t, u1, u2) := F(At, u
1 + λtu

2),

where F is the operator introduced in Section 3:

F(A,u) = f − g
(
id −A−1∇u

)
det

(
I −A−1D2u

)
.

Since, according to Lemma 3, F(At, ut) = 0 if and only if ut = ψt, we have
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Lemma 11. For any (t, u1, u2) ∈ Ω, G(t, u1, u2) = 0 if and only if u1 = ψ1
t and

u2 = ψ2
t .

Now, we are going to extend G for t = 0. Notice indeed that

A−1∇(u1 + λtu
2) =

(
∂1u

1 + λt∂1u
2

∂2u
2

)

and A−1D2(u1 + λtu
2) =

(
∂1,1u

1 + λt∂1,1u
2 λt∂1,2u

2

∂1,2u
2 ∂2,2u

2

)
,

therefore we can smoothly extend G. If we conveniently set ∂u := (∂1u
1, ∂2u

2),
then R = id − ∂ψ0, and

G(0, u1, u2) = f − g (id − ∂u) det (I −D∂u) . (14)

Alas, we cannot do the same as in the previous section and apply the implicit

function theorem, for if we solve DuG(0, ψ1
0 , ψ

2
0)(v1, v2) = q, then a priori the

solution v2 is not smooth enough. Indeed, as we will see later, if q ∈ Hn, then

v1 ∈ Hn+2, but we can only get v2 ∈ Hn. However, we can circumvent this dif-

Vculty by considering C ∞ functions, so as to have an inVnite source of smooth-

ness, and use the Nash–Moser implicit function theorem instead of the “classical”

implicit function theorem.

Before stating our next result, let us recall some deVnitions from the Nash–

Moser theory. For more details, see for instance Hamilton [17].

Let X and Y be two Fréchet spaces, endowed each one with a family of in-

creasingly stronger semi-norms, denoted by {‖ · ‖X
n }n≥0 and {‖ · ‖Y

n }n≥0. For

instance, you can think of C ∞(T2), with the norms ‖ · ‖n = ‖ · ‖C n or equiva-

lently ‖ · ‖n = ‖ · ‖Hn . A map ϕ : U → Y is said to be “tame” if it is deVned

on an open set U ⊂ X , if it is continuous, and if, in a neighborhood V of every

point, one can Vnd r ≥ 0, b ≥ 0 and a sequence (Cn)n≥b of positive constants

such that the following “tame estimate” is satisVed:

∀x ∈ V,∀n ≥ b, ‖ϕ(x)‖Y
n ≤ Cn

(
1 + ‖x‖X

n+r

)
.

Notice that r, b, Cn can depend on V , but V cannot change with n. The map ϕ is

“smooth tame” if it is smooth and if all its Gâteaux derivativeDkϕ : U ×X → Y
are tame.

The Nash–Moser theorem holds for some Fréchet spaces, the so-called “tame

spaces” deVned as follows. If E is a Banach space, the space of exponentially

decreasing sequences in E is deVned as:

Σ(E) :=

{
(un) ∈ EN ; ∀n ∈ N, ‖u‖Σ(E)

n :=
∞∑

k=0

enk‖uk‖E < ∞

}
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A Fréchet spaceX is said to be “tame” is there is a Banach space E and two tame

linear maps Φ : X → Σ(E) and Ψ : Σ(E) → X such that Ψ ◦ Φ = idX . For

instance, C ∞(T2) is a tame space. IfX and Y are tame, then so is their cartesian

product X × Y .

Theorem 12 (Nash–Moser). Let X and Y be two tame spaces. Let U ⊂ X be an

open subset and Φ : U → Y be a smooth tame map. We assume that, for any u ∈ U
and any q ∈ Y , there is a unique v ∈ X such that DΦ(u)v = q. If the inverse
operator S : U × Y → X is a smooth tame map, then Φ is locally invertible, and

the local inverse maps are smooth tame.

Corollary 13 (implicit function). Let X,Y,Z be three tame spaces, and U ⊂ X
and V ⊂ Y be open subsets. We assume Φ : U × V → Z is a smooth tame map

such that Φ(u0, v0) = 0 for some (u0, v0) ∈ U × V . If, for any u ∈ U , v ∈ V
and q ∈ Z , there is a unique w ∈ Y such that DvΦ(u, v)w = q, and if the inverse

operator S : U × V × Z → Y is a smooth tame map, then there is a smooth tame

map ψ deVned in a neighborhood of u0 and taking values in a neighborhood of v0

such that Φ(u, v) = 0 if and only if v = ψ(u).

Recall that we denote with a ⋄ subscript the sets of maps with zero mean value:

C ∞
⋄ is thus the set formed by the smooth functions u such that

∫
u = 0. WhenX

is a 2-variable function space, we also denote by a “∗, ⋄” subscript, as in C ∞
∗,⋄(T2)

the set formed by the ξ ∈ X such that
∫
ξ(·, x2) dx2 = 0.

Theorem 14. For all (t, u1, u2) ∈ Ω, for any q ∈ C ∞
⋄ (T2), there is a unique

(v1, v2) ∈ C ∞
⋄ (T1) × C ∞

∗,⋄(T2) such that

DuG(t, u1, u2)(v1, v2) = q, (15)

Moreover, the inverse operator

S :

{
Ω × C ∞

⋄ (T2) → C ∞
⋄ (T1) × C ∞

∗,⋄(T2)(
(t, u1, u2), q

)
7→ (v1, v2)

is smooth tame.

Proof. We will show the existence of (v1, v2) in Section 5. We also report the

proof of the existence of a tame estimate for the inverse operator S to Section 6.

Let us now show S is continuous.

If (tk, u
1
k, u

2
k, qk) ∈ Ω converges towards (t, u1, u2, q) ∈ Ω, for each k let

(v1
k, v

2
k) be the corresponding inverse. Thanks to the tame estimate from Sec-

tion 6, v1
k and v2

k are bounded in all the spaces Hn. Hence, compact embeddings

provide convergence, up to an extraction, to some v1, v2 as strongly as we want,

which, sinceDG is continuous, must be the solution ofDG(t, u1, u2)(v1, v2) = q.
All the derivative DkS are also tame, since they basically give the solution to

the same kind of equation as (15). Indeed, by diUerentiating (15), we get

DuGDS = Dq −D(DuG),

and then we can apply the results of Section 6 once more.
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Corollary 15. The map

{
R → C ∞

⋄ (T1) × C ∞
∗,⋄(T2)

t 7→ (ψ1
t , ψ

2
t )

is smooth.

Proof. This is a consequence of Corollary 13, Theorem 14, and Lemma 11.

Theorem 16. The curve in C ∞
⋄ (T2) formed by the Kantorovich potentials (ψt) is

the only smooth curve deVned on R such that, for t 6= 0,

At −D2ψt > 0 and div

(
f
[
At −D2ψt

]−1 (
∇ψ̇t − ȦtA

−1
t ∇ψt

))
= 0, (16)

and that can be decomposed into two smooth curves (ψ1
t ) and (ψ2

t ) such that

ψt(x1, x2) = ψ1
t (x1) + λtψ

2
t (x1, x2),

with ψ1
0 and ψ2

0 being the Kantorovich potentials for the Knothe rearrangement.

Proof. Let ut = u1
t + λtu

2
t be such a curve, and let us check that ut = ψt.

Since u1
0 and u2

0 are the Kantorovich potentials for the Knothe rearrangement,

(0, u1
0, u

2
0) ∈ Ω, and as At − D2ψt > 0 for t 6= 0, (t, u1

t , u
2
t ) is always in Ω. For

t 6= 0, (16) is equivalent to

DuF(t, ut)u̇t +DtF(t, ut) = 0,

and therefore

DuG(t, u1
t , u

2
t )(u̇1

t , u̇
2
t ) +DtG(t, u1

t , u
2
t ) = 0.

By assumption, G(0, u1
0, u

2
0) = 0. Integrating in time, we get G(t, u1, u2) = 0.

Therefore, according to Lemma 11, u1
t = ψ1

t and u2
t = ψ2

t , i.e. ut = ψt.

5 Proof of the invertibility

We recall that

F(A,u) = f − g
(
id −A−1∇u

)
det

(
I −A−1D2u

)
,

and

G(t, u1, u2) := F(At, u
1 + λtu

2) with At :=

(
1 0
0 λt

)
. (17)

We want to prove the invertibility of DuG(t, u1, u2). The Vrst lemma will con-

sider the case t 6= 0, the second one the case t = 0.

Lemma 17. For any (t, u1, u2) ∈ Ω with t 6= 0, for any q ∈ C ∞
⋄ (T2), there is a

unique (v1, v2) ∈ C ∞
⋄ (T1) × C ∞

∗,⋄(T2) such that

DuG(t, u1, u2)(v1, v2) = q. (18)
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Proof. Let (t, u1, u2) ∈ Ω with t 6= 0, and let q ∈ C ∞
⋄ (T2). Then, if we set

ut := u1 + λtu
2, Lemma 6 tells us that there is a unique vt ∈ C ∞

⋄ (T2) such that

div

((
f − G(t, u1, u2)

) [
I −A−1

t D2ut

]−1
A−1

t ∇vt

)
= q. (19)

Let us deVne

v1(x1) :=

∫
vt(x1, x2) dx2 and v2(x1, x2) :=

1

λt

(
vt(x1, x2) − v1(x1)

)
.

Then, by construction, (v1, v2) is the unique pair solving (18).

Lemma 18. For any (0, u1, u2) ∈ Ω, for any q ∈ C ∞
⋄ (T2), there is a unique

(v1, v2) ∈ C ∞
⋄ (T1) × C ∞

∗,⋄(T2) such that

DuG(0, u1, u2)(v1, v2) = q.

Proof. Writing ∂u = (∂1u
1, ∂2u

2) and ∂v = (∂1v
1, ∂2v

2), we want to solve

DuG(0, u1, u2)(v1, v2) = q.

By substitution, for any ξ ∈ C ∞, Equation (14) yields

∫
ξ (x− ∂u(x))

[
f(x) − G(0, u1, u2)(x)

]
dx =

∫
ξ(y)g(y) dy.

Therefore, if we diUerentiate the previous equation with respect to u along the

direction v, we get

−

∫
〈∇ξ(id − ∂u), ∂v〉

(
f − G(0, u1, u2)

)

−

∫
ξ(id − ∂u)DuG(0, u1, u2)(v1, v2) = 0.

Since ∇[ξ ◦ (id − ∂u)] = [I −D∂u]T∇ξ(id − ∂u), we have

〈∇ξ(id − ∂u), ∂v〉 =
〈

∇[ξ ◦ (id − ∂u)], [I −D∂u]−1∂v
〉

and this yields

DuG(0, u1, u2)(v1, v2) = div
((
f − G(0, u1, u2)

)
[I −D∂u]−1 ∂v

)
.

Notice then that

(
f − G(0, u1, u2)

)
[I −D∂u]−1 = g (id − ∂u)

(
1 − ∂2,2u

2 0
∂1,2u

2 1 − ∂1,1u
1

)
,
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thus,

DuG(0, u1, u2)(v1, v2)

= ∂1

[
g (x− ∂u(x))

(
1 − ∂2,2u

2(x)
)
∂1v

1(x1)
]

+ ∂2 [. . .] .

Therefore, if DuG(0, u1, u2)(v1, v2) = q, integrating with respect to x2 yields

∫
∂1

[
g (x− ∂u(x))

(
1 − ∂2,2u

2(x)
)
∂1v

1(x1)
]

dx2 =

∫
q(x) dx2,

that is to say

∂1

[{∫
g (x− ∂u(x))

(
1 − ∂2,2u

2(x)
)

dx2

}
∂1v

1(x1)

]
=

∫
q(x) dx2. (20)

But there is a smooth map Q : T1 → R such that ∂1Q(x1) =
∫
q(x1, x2) dx2,

since
∫
q(x) dx = 0, and it is unique if we require Q(0) = 0. Thus, taking a

primitive of (20), there is a c ∈ R such that:

[∫
g (x− ∂u(x))

(
1 − ∂2,2u

2(x)
)

dx2

]

︸ ︷︷ ︸
G(x1)

∂1v
1(x1) = Q(x1) + c.

Since G(x1) > 0, we get

∂1v
1 =

Q+ c

G
,

and this yields the unique possible value for c since the integral w.r.t. x1 of the

right hand side must be zero. Combined with the condition
∫
v1 dx1 = 0, we

thus have completely characterized v1.

Now, let us do the same for v2. We have to solve the equation

∂2

[
g (id − ∂u)

(
1 − ∂1,1u

1
)
∂2v

2
]

= q − ∂1

[
g (id − ∂u)

(
1 − ∂2,2u

2
)
∂1v

1
]

− ∂2

[
g (id − ∂u) ∂1,2u

2∂1v
1
]
,

and this is exactly the same kind of equation as (20). If we Vx x1 ∈ T
1, the same

reasoning can be applied here, and thus we get v2.

6 Proof of the tame estimates

Our aim here is to show that, locally on (t, u1, u2) ∈ Ω and q ∈ C ∞
⋄ (T2), for any

n ∈ N, there is a constant Cn > 0 such that, if

DuG(t, u1, u2)(v1, v2) = q (21)
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for some (v1, v2) ∈ C ∞
⋄ (T1) × C ∞

∗,⋄(T2), then

‖v1‖Hn+2 + ‖v2‖Hn ≤ Cn

(
1 + |t| + ‖u1‖Hn+3 + ‖u2‖Hn+3 + ‖q‖Hn

)
.

In fact, we will prove something slightly stronger:

‖v1‖Hn+2 + ‖∂2v
2‖Hn ≤ Cn

(
‖u1‖C n+3 + ‖u2‖C n+3 + ‖q‖Hn

)
. (22)

Indeed than, since
∫
v2(x1, x2) dx2 = 0, we have a Poincaré inequality, which

implies ‖v2‖Hn ≤ cn‖∂2v
2‖Hn . Notice also that (22) would by itself prove there

is uniqueness.

Lemma 19. LetM,ε > 0. There are C = C(M,ε) and τ = τ(M,ε) such that, if

(t, u1, u2) ∈ Ω and q ∈ C ∞
⋄ (T2) satisfy

0 < |t| < τ, 1−∂1,1u
1−λt∂1,1u

2 > ε, ‖q‖L2 +‖u1‖C 3 +‖u2‖C 3 ≤ M, (23)

if (v1, v2) ∈ C ∞
⋄ (T1) × C ∞

⋄ (T2) is a solution of (21), then

‖∂2v
2‖L2 ≤ C. (24)

Proof. We set ut := u1 + λtu
2 and also vt := v1 + λtv

2. Then, by assumption,

DuF(At, ut)vt = q.

By choosing τ appropriately, we can ensure that (23) implies At − D2ut > ε, so
that we are entitled to apply Lemma 6 and get

‖vt‖H2 ≤ Cε,N,1 {‖q‖L2 + ‖ut‖C 3} ≤ C. (25)

We now set

Bt :=
(
f − G(t, u1, u2)

) [
I −A−1

t D2ut

]−1
A−1

t

=
f − G(t, u1, u2)

det(At −D2ut)

[
Co (At −D2ut)

]T

=
g(id −A−1

t ∇ut)

detAt

[
Co (At −D2ut)

]T

so that, according to (17) and Lemma 4, Equation (21) becomes

div(Bt∇vt) = q.

Notice that

Co (At −D2ut) =

(
λt − λt∂2,2u

2 λt∂1,2u
2
t

λt∂1,2u
2
t 1 − ∂1,1u

1
t

)
,
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therefore we can write Bt = Ut + Vt/λt with

Ut := g(id −A−1
t ∇ut)

(
1 − ∂2,2u

2 ∂1,2u
2

∂1,2u
2 0

)
, (26)

Vt := g(id −A−1
t ∇ut)

(
0 0
0 1 − ∂1,1ut

)
. (27)

Thus,

q = div(Bt∇vt) = div(Ut∇vt) +
1

λt
div(Vt∇vt).

As ∂2v
1 = 0, we have Vt∇v

1 = 0. Since vt = v1 + λtv
2, we get

div(Ut∇vt) + div(Vt∇v
2) = q,

that is to say

∂2

[
g(id −A−1

t ∇ut)(1 − ∂1,1ut)∂2v
2
]

= q − div(Ut∇vt). (28)

Since g > δ for some δ, and as we have assume 1 − ∂1,1ut > ε, allowing the

constant C to change from line to line we get

‖∂2v
2‖2

L2 ≤
C

δε

∫
g(id −A−1∇ut)(1 − ∂1,1ut)|∂2v

2|2

≤ C

∫
[q − div(Ut∇vt)] v

2

≤ C (‖q‖L2 + ‖Ut∇vt‖H1) ‖v2‖L2

However, since
∫
v2(x1, x2) dx2 = 0, we have ‖v2‖L2 ≤ C‖∂2v

2‖L2 . Therefore,

‖∂2v
2‖L2‖v2‖L2 ≤ C‖∂2v

2‖2
L2 ≤ C (‖q‖L2 + ‖Ut∇vt‖H1) ‖v2‖L2 .

Thus, since ‖Ut‖C 1 ≤ C(1 + ‖u1‖C 3 + ‖u2‖C 3) ≤ C as we can see from (26),

‖∂2v
2‖L2 ≤ C {‖q‖L2 + ‖vt‖H2} .

Then, using (25), we get the result.

We now proceed by induction to get an estimate for any order n ∈ N.

Lemma 20. Under the same assumptions than in the previous lemma, for any n ∈
N, there is a constant Cn = Cn(M,ε) such that

‖∂2v
2‖Hn ≤ Cn

(
‖q‖Hn + ‖u1‖C n+3 + ‖u2‖C n+3

)
. (29)
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Proof. Let us assume (29) has been proved for some n ∈ N, and let us show it

holds even for n+ 1. Let ν ∈ N
2 be such that |ν| := ν1 + ν2 = n+ 1. Recall (28),

that is to say

∂2

[
g(id −A−1∇ut)(1 − ∂1,1ut)∂2v

2
]

= q − div(Ut∇vt).

We already know from Lemma 7 that vt = v1 + λtv
2 is smooth, therefore, if we

diUerentiate this equation with respect to ν , we get

∂2

[
g(id −A−1∇ut)(1 − ∂1,1ut)∂2∂νv

2
]

= −
∑

0≤α<ν

(
ν

α

)
∂2

[
∂ν−α

{
g(id −A−1∇ut)(1 − ∂1,1ut)

}
∂2∂αv

2
]

+ ∂νq − ∂ν div(Ut∇vt).

On the other hand, since g > δ and 1 − ∂1,1ut > ε, we have

‖∂2∂νv
2‖2

L2 ≤
1

δε

∫
g(id −A−1∇ut)(1 − ∂1,1ut)|∂2∂νv

2|2

≤ −
1

δε

∫
∂2

[
g(id −A−1∇ut)(1 − ∂1,1ut)∂2∂νv

2
]
∂νv

2.

Thus,

‖∂2∂νv
2‖2

L2

≤
∑

0≤α<ν

(
ν

α

)∫ [
∂ν−α

{
g(id −A−1∇ut)(1 − ∂1,1ut)

}
∂2∂αv

2
]
∂2∂νv

2

−
1

δε

∫
[∂νq − ∂ν div(Ut∇vt)] ∂νv

2,

and therefore

‖∂2∂νv
2‖2

L2

≤
∑

0≤α<ν

C
∥∥∥∂ν−α

{
g(id −A−1∇ut)(1 − ∂1,1ut)

}
∂2∂αv

2
∥∥∥

L2

∥∥∥∂2∂νv
2
∥∥∥

L2

+ C ‖∂νq − ∂ν div(Ut∇vt)‖L2

∥∥∥∂νv
2
∥∥∥

L2
.

As ‖∂νv
2‖L2 ≤ c‖∂2∂νv

2‖L2 , we get

‖∂2∂νv
2‖L2 ≤ C

∑

0≤k≤n

∥∥∥g(id −A−1∇ut)(1 − ∂1,1ut)
∥∥∥

C n+1−k

∥∥∥∂2v
2
∥∥∥

Hk

+ C {‖q‖Hn+1 + ‖Ut∇vt‖Hn+2} . (30)
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On the one hand, using the same Landau–Kolmogorov inequalities and the same

trick than in the proof of Lemma 6, for 0 ≤ k ≤ n, we get

∥∥∥g(id −A−1∇ut)(1 − ∂1,1ut)
∥∥∥

C n+1−k

∥∥∥∂2v
2
∥∥∥

Hk

≤ cn

(∥∥∥g(id −A−1∇ut)(1 − ∂1,1ut)
∥∥∥

C n+1

∥∥∥∂2v
2
∥∥∥

L2

+
∥∥∥g(id −A−1∇ut)(1 − ∂1,1ut)

∥∥∥
C 1

∥∥∥∂2v
2
∥∥∥

Hn

)
.

Recall we have assumed (29) holds true for n, therefore, using (23), we get

∥∥∥g(id −A−1∇ut)(1 − ∂1,1ut)
∥∥∥

C n+1−k

∥∥∥∂2v
2
∥∥∥

Hk

≤ cn

(
1 + ‖q‖Hn + ‖u1‖C n+3 + ‖u2‖C n+3

)
. (31)

On the other hand,

‖Ut∇vt‖Hn+2 = ‖Dn+1(Ut∇vt)‖H1

≤ C {‖Ut‖C n+2‖∇vt‖H1 + ‖Ut‖C 1‖∇vt‖Hn+2} ,

which, since ‖u1‖C 3 + ‖u2‖C 3 ≤ M , implies

‖Ut∇vt‖Hn+2 ≤ C
{(

1 + ‖u1‖C n+4 + ‖u2‖C n+4

)
‖vt‖H2 + ‖vt‖Hn+2

}
.

Then, using Lemma 6 we get

‖Ut∇vt‖Hn+2 ≤ cn

(
‖q‖Hn + ‖u1‖C n+4 + ‖u2‖C n+4

)
. (32)

Bringing together (30), (31), and (32), we get the estimate we sought.

Lemma 21. The result of Lemma 20 still stands for t = 0, with the same constants.

Proof. Let (0, u1, u2) ∈ Ω and q ∈ C ∞
⋄ (T2) such that

1 − ∂1,1u
1 > ε, ‖q‖L2 + ‖u1‖C 3 + ‖u2‖C 3 ≤ M, (33)

Let τ be the constant given by Lemma (20). Then, since (s, u1, u2) ∈ Ω for s
small enough, with 0 < |s| < τ , we can proceed by approximation. Indeed, if

(v1
s , v

2
s) is the solution to

DuG(s, u1, u2)(v1
s , v

2
s ) = q,

where u1, u2, q have been all Vxed, then all the Hn norms of v1
s , v

2
s are bounded

according to Lemma 20. Up to an extraction, there is convergence, which by

compact embedding is as strong as we want. But the convergence can only be

towards the solution of

DuG(0, u1, u2)(v1, v2) = q,

hence estimate (29) is still valid for the limit.
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7 Higher dimensions

The diXculty in extending those results in higher dimensions only come from the

technical nature of Sections 5 and 6. We are now going to explain what changes

in higher dimension.

Setting and notations

We consider λ1, . . . , λN−1 : R → [0,+∞), assumed to be smooth and such that

λk = 0 if and only if t = 0. We then deVne At by

At :=




1
λ1(t)

λ1(t)λ2(t)
. . . ∏

λi(t)



.

The decomposition of the Kantorovich potential ψt becomes

ψt(x1, . . . , xN ) = ψ1
t (x1) + λ1ψ

2
t (x1, x2) + . . .+

(
∏

i<N

λi

)
ψN

t (x1, . . . , xN ).

where ψk
t depends only on the k Vrst variables x1, . . . , xk , and is such that

∀x1, . . . , xk−1,

∫
ψk

t (x1, . . . , xk−1, yk) dyk = 0.

For convenience, we set

ψ̂k
t := ψk

t + λkψ
k+1
t + . . .+


 ∏

k≤i<N

λi


ψN

t ,

so that we have

ψ̂1
t := ψt, ψ̂k

t = ψk
t + λkψ̂

k+1
t , ψ̂N

t = ψN
t ,

and

∀x1, . . . , xk−1,

∫
· · ·

∫
ψ̂k

t (x1, . . . , xk−1, yk, . . . , yN ) dyk . . . dyN = 0.

For instance, if d = 3, we have

ψt = ψ1
t + λ1ψ

2
t + λ1λ2ψ

3
t and





ψ̂1
t = ψ1

t + λ1ψ
2
t + λ1λ2ψ

3
t

ψ̂2
t = ψ2

t + λ2ψ
3
t

ψ̂3
t = ψ3

t .
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Let us denote by E the set of all (t, u1, . . . , uN ) ∈ R ×
∏

C ∞(Tk) such that

∀k ∈ {1, . . . , N},

∫
uk dxk = 0.

Then, if (t, u1, . . . , uN ) ∈ E, we set

ûN := uN , ûk := uk + λkû
k+1, u := û1,

and this is consistent with the previous notation. Notice that

∇u =




∂1û
1

λ1∂2û
2

λ1λ2∂3û
3

...∏
λk∂N û

N




and A−1∇u = ∂û =




∂1û
1

∂2û
2

∂3û
3

...

∂N û
N



,

and thus,

A−1D2u = D∂û =




∂1,2û
1 0 · · · 0

∂1,2û
2 ∂2,2û

2 . . .
...

...
...

. . . 0
∂1,N û

N ∂2,N û
N · · · ∂N,N û

N



. (34)

We deVne Ω as the open subset of E formed by the (t, u) such that:

• either t 6= 0, and then At −D2u > 0;

• or t = 0, and then 1 − ∂k,ku
k > 0 for all k.

Invertibility

We want to solve, for (0, u) ∈ Ω, the equationDuG(0, u)v = q. Since for t > 0,

DuG(t, u)v = div

(
(f − G(t, u))

[
I −A−1D2u

]−1
A−1∇v

)
,

which, when replacing A−1D2u and A−1∇v withD∂û and ∂v̂, becomes

DuG(t, u)v = div
(
(f − G(t, u)) [I −D∂û]−1 ∂v̂

)
,

and since, when t = 0, we have ûk = uk and ∂û = ∂u, what we would like to

solve is

q = DuG(0, u)v = div
(
(f − G(0, u)) [I −D∂u]−1 ∂v

)
.

The trick is to integrate with respect to xk+1, . . . , xN to get an equation on

v1, . . . , vk . If v1, . . . , vk−1 have already been found, [I − D∂u]−1 being lower

triangular thanks to (34), the resulting equation on vk is of the same kind as the

one we have dealt with in Section 5. The same reasoning can thus be applied.
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Tame estimate

As in the 2-dimensional case, we need only to Vnd a tame estimate when t 6= 0
for the solution (v1, . . . , vN ) of

q = div(B∇v) with B :=
g(id −A−1∇u)

detA

[
Co (A−D2u)

]T
.

First, notice that by integrating with respect to xN , we are reduced to theN−1
dimensional case. Therefore, we can proceed by induction onN .

So let us assume we already have a tame estimate for v1, . . . , vN−1. To get an

estimate for vN = v̂N , we will Vnd one for each v̂k , this time by induction on

k. Since v̂1 = v satisVes a nice strictly elliptic equation, and thus comes with a

tame estimate, we need only to show how to get one for v̂k if we have one for

v̂1, . . . , v̂k−1.

The key lies in the following decomposition of the matrixB: for any k,

B = B1 +
1

λ1
B2 +

1

λ1λ2
B2 + . . .+

1

λ1 · · · λk−2
Bk−1 +

1

λ1 · · ·λk−1
B̂k,

where the coeXcients (bi
α,β) of Bi are zero except when min(α, β) = i, and

where the coeXcients (b̂k
α,β) of B̂k are zero except for min(α, β) ≥ k :

Bi =




bi
i,i · · · bi

i,N
...

bi
N,i



, B̂k =




b̂k
k,k · · · b̂k

k,N
...

...

b̂k
N,k · · · b̂k

N,N



,

the point being that all the coeXcients bi
α,β , b̂

k
α,β can be bounded in C n by the

norms of the ui in C n+2 uniformly in t, at least for small t. Indeed, if such a

decomposition exists, since

v = v1 + λ1v
2 + . . .+ λ1 · · ·λi−2v

i−1 + λ1 · · ·λi−1v̂
i,

with ∂iv
j = 0 if i > j, which implies ∂iv = λ1 · · ·λi−1∂iv̂

i, we have

div(B∇v) =



∑

i<k

1

λ1 · · ·λi−1
div(Bi∇v)


+

1

λ1 · · ·λk−1
div(B̂k∇v),

and thus

div(B∇v) =


∑

i<k

div(Bi∇v̂i)


+ div(B̂k∇v̂k). (35)

On the one hand, the matrix B̂k is symmetric and non-negative, and we can work

on an open subset of Ω such that

∀ξ ∈ R
N , ε



∑

i≥k

|ξi|
2


 ≤ 〈B̂kξ, ξ〉.
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On the other hand, since

∀x1, . . . , xk−1,

∫
· · ·

∫
v̂k(x1, . . . , xN ) dxk . . . dxN = 0,

we have a Poincaré inequality:

∥∥∥v̂k
∥∥∥

2

L2
≤ C

∑

i≥k

∥∥∥∂iv̂
k
∥∥∥

2

L2
.

Therefore,

∥∥∥v̂k
∥∥∥

2

L2
≤
C

ε

∫
〈B̂k∇v̂k,∇v̂k〉 ≤

C

ε

∥∥∥div(B̂k∇v̂k)
∥∥∥

L2

∥∥∥v̂k
∥∥∥

L2
,

and this shows how we can deduce a L2 estimate for v̂k from (35) and a series of

estimates for v̂i, i < k. Estimates for the norms Hn, n > 0, easily follow, by the

same reasoning as in Section 6.

Thus, all we need is the decomposition

B = B1 +
1

λ1
B2 +

1

λ1λ2
B2 + . . .+

1

λ1 · · ·λN−1
BN ,

with

Bi =




bi
i,i · · · bi

i,N
...

bi
N,i



.

Remember that

B :=
g(id −A−1∇u)

detA

[
Co (A−D2u)

]T
,

and detA = λ1 (λ1λ2) · · · (λ1 · · ·λN−1), therefore all we have to do is to show

how in Co (A−D2u) we can gather the λk so as to get the decomposition we

seek. Since ∂i,ju = λ1 · · ·λmax (i,j)−1∂i,jû
max (i,j),

[
Co (A−D2u)

]
i,j

=
∑

σ∈Sn

σ(i)=j

∏

1≤k≤N
k 6=i

(A−D2u)k,σ(k)

=
∑

σ∈Sn

σ(i)=j

∏

1≤k≤N
k 6=i

λ1 · · ·λmax(k,σ(k))−1

(
δk,σ(k) − ∂k,σ(k)û

max(k,σ(k))
)
.

Thus, if i ≤ j, we set ωα,β = λα · · · λmax(α,β)−1

(
δα,β − ∂α,βû

max(α,β)
)
, and
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then we get

[
Co (A−D2u)

]
i,j

=
∑

σ∈Sn

σ(i)=j

ε(σ)
∏

1≤k≤N
k 6=i

λ1 · · · λk−1ωk,σ(k)

=
∑

σ∈Sn

σ(i)=j

ε(σ)

λ1 · · ·λi−1



∏

1≤k≤N

λ1 · · ·λk−1






∏

1≤k≤N
k 6=i

ωk,σ(k)


 ,

that is to say,

[
Co (A−D2u)

]
i,j

=
detA

λ1 · · ·λi−1

∑

σ∈Sn

σ(i)=j

ε(σ)
∏

1≤k≤N
k 6=i

ωk,σ(k).

Since we have assume i ≤ j, this is exactly what we wanted.
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