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Abstract

In 1998, Reed conjectured that for any graph G, χ(G) ≤ ⌈ω(G)+∆(G)+1
2

⌉,
where χ(G), ω(G), and ∆(G) respectively denote the chromatic number,

the clique number and the maximum degree of G. In this paper, we study

this conjecture for some expansions of graphs, that is graphs obtained

with the well known operation composition of graphs.

We prove that Reed’s Conjecture holds for expansions of bipartite graphs,

for expansions of odd holes where the minimum chromatic number of the

components is even, when some component of the expansion has chro-

matic number 1 or when a component induces a bipartite graph. More-

over, Reed’s Conjecture holds if all components have the same chromatic

number, if the components have chromatic number at most 4 and when

the odd hole has length 5. Finally, when G is an odd hole expansion, we

prove χ(G) ≤ ⌈ω(G)+∆(G)+1
2

⌉+ 1.

1 Introduction

We consider here simple and undirected graphs. For terms which are not defined
we refer to Bondy and Murty [2].

The chromatic number of a graph G, denoted by χ(G), is the minimum
number of colors required to a proper colouring of the graph, that is to colour
the vertices of G so that no two adjacent vertices receive the same colour ;
the size of the largest clique (independent set) in G is called the clique number
(independence number) of G, and denoted by ω(G) (α(G)) ; the maximum degree
of G, denoted ∆(G) is the maximum number of neighbours of a vertex over all
vertices of G.

Bounding the chromatic number of a graph in terms of others graphs pa-
rameters attracted much attention in the past. For example, it is well know
that for any graph G we have ω(G) ≤ χ(G) ≤ ∆(G) + 1. This upper bound
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was reduced to ∆(G) by Brooks [3] in 1941 for connected graphs which are not
complete graphs neither odd cycles.

In 1998 Reed [9] stated the following Conjecture also known as Reed’s Con-
jecture:

Conjecture 1 [9] For any graph G, χ(G) ≤ ⌈ω(G)+∆(G)+1
2 ⌉.

This conjecture has been stated true for some restrictions of the graph pa-

rameters. Hence Conjecture 1 holds true when χ(G) > ⌈ |V (G)|
2 ⌉ (see [8]), when

χ(G) ≤ ω(G) + 2 [5], when α(G) = 2 [6, 7] or when ∆(G) ≥ |V (G)| − α(G)− 4
(see [7]).

Some classes of graphs also verify Conjecture 1. That’s trivially the case
for perfect graphs (a graph G is said to be perfect if χ(H) = ω(H) for every
induced subgraph H of G), for graphs with disconnected complement [8] for
almost split graphs (an almost-split graph is a graph that can be partitioned
into a maximum independent set and a graph having independence number at
most 2) or particular classes of triangle free graphs [7] and for classes defined
with forbidden configurations such that (2K2, C4)-free graphs, odd hole free
graphs [1] or some particular classe of P5-free graphs [1].

The well known operation composition of graphs, also called expansion in [1]
is defined as follows :

Given a graphH on n vertices v0 . . . vn−1 and a familly of graphs G0 . . . Gn−1,
an expansion of H , denoted H(G0 . . . Gn−1) is obtained from H by replacing
each vertex vi of H with Gi for i = 0 . . . n − 1 and joining a vertex x in Gi

to a vertex y of Gj if and only if vi and vj are adjacent in H . The graph Gi,
i = 0 . . . n− 1 is said to be the component of the expansion associated to vi.

In [1], Aravind et al proved that Conjecture 1 holds true for full expansions
and independent expansions of odd holes, that is expansions H(G1 . . . Gn) of
odd holes where all the Gi’s are either complete graphs or edgeless graphs.
Moreover, they ask for proving Conjecture 1 for graph expansions whenever
every component of the expansion statifies Conjecture 1.

In this paper, we consider Conjecture 1 for expansion of bipartite graphs,
namely bipartite expansions and odd hole expansions. We use for this a colour-
ing algorithm of bipartite expansions that we extend to odd hole expansions,
this allows us to compute the chromatic number of those graphs. We prove that
Conjecture 1 holds for a bipartite expansion (Theorem 9).

Moreover, Conjecture 1 holds for odd hole expansions when the minimum
chromatic number of the components is even (Corollary 17), when some com-
ponent of the expansion has chromatic number 1 (Theorem 18), or when a
component induces a bipartite graph (Theorem 19). It is also the case if all
components have the same chromatic number (Theorem 20), if the components
have chromatic number at most 4 (Theorem 23), and when the odd hole has
length 5 (Theorem 25). In addition, if G is an odd hole expansion we have

χ(G) ≤ ⌈ω(G)+∆(G)+1
2 ⌉+ 1 (Theorem 26).

These results improve the result of Aravind et al on full and independent
expansions of odd holes.

The present section ends with some notations and preliminary results. Sec-
tion 2 is devoted to the colouring of bipartite expansions and its consequences
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on Conjecture 1 for such graphs while in Section 3 we consider the colouring
of odd hole expansions and its implications on Conjecture 1 are considered in
Section 4.

1.1 Notations and preliminary results

Given a graph G and X a subset of its vertex set, we denote G[X ] the subgraph
of G induced by X . The degree of a vertex v in the graph G is denoted dG(v) or
d(v) when no confusion is possible. For an expansion H(G0 . . .Gn−1) of some
graph H , we will assume in the following that the vertices of H are weighted
with the chromatic number of their associated component while an edge of
H is weighted with the sum of the weights of its endpoints. Moreover, for
i = 0, . . . n− 1, we will denote χi as the chromatic number of Gi, while Vi is for
the vertex set of Gi, ∆i is the maximum degree of Gi, and ωi its clique number.

Lemma 2 Let H be an induced subgraph of some graph G such that

χ(H) = χ(G). If χ(H) ≤ ⌈ω(H)+∆(H)+1
2 ⌉ then χ(G) ≤ ⌈ω(G)+∆(G)+1

2 ⌉.

Proof Since H is an induced subgraph of G, ω(H) ≤ ω(G) and ∆(H) ≤ ∆(G).

Thus χ(G) = χ(H) ≤ ⌈ω(H)+∆(H)+1
2 ⌉ ≤ ⌈ω(G)+∆(G)+1

2 ⌉. �

Theorem 3 [8] If G is disconnected then χ(G) ≤ ⌈ω(G)+∆(G)+1
2 ⌉

Lemma 4 Let G = H(G0 . . . Gn−1) be an odd hole expansion that is a minimum
counter-example of Conjecture 1 (if any). For i ∈ {0 . . . n}, Gi is connected.

Proof Without loss of generality assume that the subgraph induced by G0 is
not connected. Let X1 and X2 be two subset of V (G0) inducing a connected
component and suppose that we need at most χj colors (j = 1, 2) to color Xj

with χ1 ≤ χ2. Let G
′

be the subgraph obtained from G by deleting X1. Since

G
′

satisfies Conjecture 1 by hypothesis, we have χ(G
′

) ≤ ⌈∆(G
′

)+ω(G
′

)+1
2 ⌉. We

can then color the vertices of X1 by using the colors appearing in X2 since
χ1 ≤ χ2. Since ω(G) ≥ ω(G

′

) and ∆(G) ≥ ∆(G
′

), we have

χ(G) = χ(G
′

) ≤ ⌈ω(G
′

)+∆(G
′

)+1
2 ⌉ ≤ ⌈ω(G)+∆(G)+1

2 ⌉, a contradiction. �

2 Coloring of bipartite expansion

Notations 5 Let H be a bipartite graph with n vertices: v0, . . . , vn−1 and
H(G0 . . . Gn−1) be an expansion of H. Without loss of generality we assume
that v0 and v1 are adjacent and are such that the edge v0v1 has maximum weight
in H.
Let Γ0 be a set of χ0 colors and Γ1 be a set of χ1 other colors.
A given index i ∈ {0, . . . n − 1} will have a prefered index in {0, 1}, say p(i),
defined as follows : p(i) = 0 whenever vi and v0 are vertices of the same class
of the bipartition otherwise p(i) will be defined to be 1. Moreover we define the
index p′(i) such that {p(i), p′(i)} = {0, 1}.
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When H(G0 . . .Gn−1) is a bipartite expansion, according to the above no-
tations, Gi (0 ≤ i ≤ n− 1) will be colored by using preferably the set of colors
Γp(i).

More precisely Gi will be colored by using Min(χi, χp(i)) colors of Γp(i) and
Max(0, χi − χp(i)) colors of Γp′(i) (see Theorem 6).

Theorem 6 Let H(G0 . . . Gn−1) be a bipartite expansion.
For i ∈ {0 . . . n− 1},

if χi ≤ χp(i) then Gi can be colored by using χi colors of Γp(i)

otherwise Gi can be colored by using the χp(i) colors of Γp(i) together with
χi − χp(i) colors of Γp′(i).

Proof Let us colour the vertices of G0 with the χ0 colors of Γ0. In the
same way we colour the vertices of G1 by using the χ1 colors of Γ1 (recall that
Γ0 ∩ Γ1 = ∅).

For i ∈ {2 . . . n− 1}, we color the graph Gi as follows : when χi ≤ χp(i) we
can use the χi first colors in Γp(i) to colour Gi ; and when χi > χp(i) we color
the vertices of Gi by using the χp(i) colors of Γp(i) and the χi −χp(i) last colors
of Γp′(i).

We claim that the resulting coloring is a proper coloring of H(G0, . . . , Gn−1).
Indeed let vivj be an edge of H . Let us remark first that we do not have

χi > χp(i) and χj > χp(j) since χi + χj ≤ χ0 + χ1 by hypothesis, moreover,
since vi and vj are adjacent we have p(i) = p′(j) and p(j) = p′(i).

case 1 χi ≤ χp(i) and χj ≤ χp(j)

The colors used in Gi are only colors of Γp(i) and those of Gj are only colors
of Γp(j) = Γp′(i) and these two sets of colours are disjoint.

case 2 χi ≤ χp(i) and χj > χp(j)

The colours used in the coloring of Gi are only the χi first colors of Γp(i). In
order to color Gj , we use all the χp(j) colours of Γp(j) and we need to use the
last χj −χp(j) colors of Γp′(j). Since χi +χj ≤ χ0 +χ1 = χp(j) +χp(i), we have
χj − χp(j) ≤ χp(i) − χi. Hence the set of colors of Γp(i) used in order to achieve
the colouring of Gj is disjoint from the set of colors used in Gi.

case 3 χi > χp(i) and χj ≤ χp(j) The same argument works. �

From Theorem 6 and according to Notations 5, since χ(H) ≥ χ0 + χ1, we
have:

Corollary 7 Let G = H(G0 . . . Gn−1) be a bipartite expansion, χ(G)) = χ0 +
χ1.

Remark 8 Let us remark that the coloring given in Theorem 6 has the follow-
ing property: |Γi| = χi for i ∈ {0 . . . n− 1}.

Theorem 9 Any expansion of a bipartite graph satisfies Conjecture 1.

Proof Let H(G0 . . . Gn−1) be an expansion of a bipartite graph H . According
to Notations 5 and by Theorem 3, the subgraph induced by V (G0) ∪ V (G1),
say G′, verifies Conjecture 1. Moreover χ(G′) = χ0 + χ1 and by Corollary 7
χ(G) = χ(G′). The result follows from Lemma 2. �
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3 Odd hole expansions coloring

By Theorem 3, an expansion of triangle verifies Conjecture 1. In what follows
C2k+1 denotes an odd hole of length 2k + 1 (k ≥ 2) and all indexes are taken
modulo 2k+ 1. Moreover, the vertex set of C2k+1 is {v0, . . . v2k} and vivj is an
edge if and only if j = i+ 1.

Theorem 10 below provides a proper coloring for odd hole expansions.

Theorem 10 Let G = C2k+1(G0 . . .G2k) be an expansion of an odd hole. As-
sume that the edge v0v1 has maximum weight in H.
Let i be an index in {3 . . .2k − 1}.

If χ0 + χ1 ≥ χi−1 + χi + χi+1 then χ(G) ≤ χ0 + χ1

else if χi−1 > χp(i−1) and χi+1 > χp(i+1) then χ(G) ≤ χ0 + χ1 + ⌊χi+1
2 ⌋

else χ(G) ≤ χ0 + χ1 + ⌊χi−1+χi+χi+1−χ0−χ1+1
2 ⌋.

Proof

Let H ′ be the bipartite graph whose vertex set is V (C2k+1) − {vi}. As-
sume that the coloring described in Theorem 6 has been applied to the ex-
pansion H ′(G0, G1 . . . Gi−1, Gi+1 . . . G2k). Observe that the notations p(i) and
p′(i) are not defined in C2k+1(G0 . . .G2k), however in the following we will
use this notations as meant in H ′(G0, G1 . . .Gi−1, Gi+1 . . . G2k), thus we have
p(i− 1) = p′(i+ 1) and p′(i− 1) = p(i+ 1).

Let us now consider the coloring of Gi.
According to the coloring of Gi−1 and those of Gi+1 four cases may occur.
Case 1 : χi−1 ≤ χp(i−1) and χi+1 ≤ χp(i+1). The coloring of Gi−1 uses χi−1

colors of Γp(i−1) and none in the set Γp′(i−1) while the coloring of Gi+1 needs
only χi+1 colors in Γp(i+1) ; consequently there are χ0+χ1−χi−1−χi+1 colors
free in Γ0 ∪ Γ1 for the coloring of Gi.

Case 2 : χi−1 ≤ χp(i−1) and χi+1 > χp(i+1). We have the same coloring
for Gi−1 as in Case 1. But the subgraph Gi+1 is colored with all the colors of
Γp(i+1) together with χi+1 − χp(i+1) colors of Γp′(i+1), once again there are in
Γp′(i+1) at least χp′(i+1) − χi−1 − (χi+1 − χp(i+1)) free colors for the coloring of
Gi.

Case 3 :χi−1 > χp(i−1) and χi+1 ≤ χp(i+1). We color Gi−1 with the χp(i−1)

colors of Γp(i−1) and with χi−1 − χp(i−1) colors of Γp′(i−1). The subgraph Gi+1

being colored with χi+1 colors in Γp(i+1). Thus there are χp′(i−1) − χi+1 −
(χi−1 − χp(i−1)) unused colors in Γp′(i−1).

Case 4 : χi−1 > χp(i−1) and χi+1 > χp(i+1). In this case Gi−1] can be colored
with all the colors in Γp(i−1) and χi−1−χp(i−1) colors of Γp′(i−1). Moreover the
coloring of Gi+1 is done with the colors of Γp(i+1) and χi+1−χp(i+1) additionnal
colors of Γp′(i+1). All colors of Γ0∪Γ1 are used in this colorings, but just observe
that χi < Min(χ0, χ1).

Suppose first χ0 + χ1 ≥ χi−1 + χi + χi+1.
In this situation Case 4 cannot occur and there are enough free colors in

Γ0 ∪ Γ1 for the coloring of Gi. Hence χ(G) ≤ χ0 + χ1.
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From now on χ0 + χ1 < χi−1 + χi + χi+1.

Assume now χi−1 > χp(i−1) and χi+1 > χp(i+1). Recall that χi < χ0 and
χi < χ1. Let a = ⌊χi

2 ⌋ and Γ be a set of a additionnal colors. The coloring of
Gi− 1 uses χp(i−1) colors of Γp(i−1), let use replace a of those colors with the
colors of Γ. We also replace a colors of Γp(i+1) with the same colors of Γ. Thus
2a colors are left for the coloring of Gi, that is χi or χi − 1 according to the
parity of χi. Hence in this case the whole graph can be colored with at most
|Γ0|+ |Γ1|+ a+ 1 colors, that is χ(G) ≤ χ0 + χ1 + ⌊χi+1

2 ⌋.

Finally, assume χi−1 ≤ χp(i−1) or χi+1 ≤ χp(i+1). Recall that there are
χ0 + χ1 − χi−1 − χi+1 colors free in Γ0 ∪ Γ1 for the coloring of Gi. Since
χ0 + χ1 ≥ χi + χi−1 it is clear that χi+1 ≥ χi−1+χi+χi+1−χ0−χ1

2 . Similarly

χi−1 ≥ χi−1+χi+χi+1−χ0−χ1

2 . Let us state a = ⌊χi−1+χi+χi+1−χ0−χ1

2 ⌋ and Γ be
a set of a additionnal colors. We replace, in the coloring of Gi−1,

:

a
:::::::

number
::

of
:

a
colors of Γp(i−1) with the colors of Γ as well as a colors of Γp(i+1) in the coloring
of Gi+1. Hence we have 2a more colors for the coloring of Gi. It follows that
the whole graph can be colored with the colors of Γ0 ∪ Γ1 ∪ Γ and possibly an
additionnal color according to the parity of χi+1 + χi + χi−1 − χ0 − χ1. Thus
in this case χ(G) ≤ χ0 + χ1 + ⌊χi−1+χi+χl+1−χ0−χ1+1

2 ⌋. �

Theorem 11 gives the chromatic number for odd hole expansions.

Theorem 11 Let G = C2k+1(G0 . . . G2k) be an expansion of an odd hole. We
assume that the edge v0v1 has maximum weight in C2k+1.

Let l be an index such that χl−1 + χl + χl+1 = Min

3≤i≤2k−1

{χi−1 + χi + χi+1}

If χ0 + χ1 ≥ χl−1 + χl + χl+1 then χ(G) = χ0 + χ1

else χ(G) = χ0 + χ1 + ⌊χl−1+χl+χl+1−χ0−χ1+1
2 ⌋.

Proof Since χ(G) ≥ χ0 + χ1, by Theorem 10 we can suppose that χ0 + χ1 <
χl−1 + χl + χl+1.

In addition χl−1 ≤ χp(l−1) or χl+1 > χp(l+1). Otherwise, since χl−1 >
χp(l−1) we have l − 1 > 2 and then χl−2 < χp(l−2) = χp(l+1) < χl+1. It follows
that χl +χl−1 +χl−2 < χl+1 +χl +χl−1, a contradiction with the choice of the
index l.

Hence by Theorem 10 we have χ(G) ≤ χ0+χ1+⌊χl−1+χl+χl+1−χ0−χ1+1
2 ⌋ and

there is a coloring of G using colors in Γ0∪Γ1∪Γ where Γ0, Γ1 and Γ are disjoint
sets of colors such that |Γ0| = χ0, |Γ1| = χ1 and |Γ| = ⌊χl−1+χl+χl+1−χ0−χ1+1

2 ⌋.
Since the sum χl+1 + χl + χl−1 is minimum, Theorem 10 cannot provide a
coloring using less colors.

Assume now χ(G) < |Γ0| + |Γ1| + |Γ|. We can suppose that an optimal
coloring of G uses the set Γ0 ∪ Γ1 ∪ Γ′ as set of colors where Γ′ ∩ (Γ0 ∪ Γ1) = ∅
and |Γ′| < |Γ|. In a such coloring the number of unused colors for the coloring
of Xl+1 and Xl−1 is at most χ0 + χ1 + |Γ′| − χl+1 − χl−1.
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Thus χl ≤ χ0 + χ1 + |Γ′| − χl+1 − χl−1 and then

χl + χl+1 + χl−1 − χ0 − χ1 ≤ |Γ′| < ⌊
χl + χl+1 + χl−1 − χ0 − χ1 + 1

2
⌋,

a contradiction with the fact that χl+χl+1+χl−1−χ0−χ1 is a positive integer. �

4 Applications

In [1] Aravind et al observed that the complete or independent expansions of
an odd hole satisfy Conjecture 1. We give below improvements of this results.

Corollary 12 Conjecture 1 holds for an odd hole expansion when, in the con-
ditions of Theorem 10, we have χ(A) = ω(A) for A ∈ {G0, G1, Gl}.

Proof By Theorem 11 we know that χ(G) ≤ χ0+χ1+χl−1+χl+χl+1+1
2 . By

assumption we have χ0 + χ1 = ω(G0) + ω(G1) ≤ ω(G), moreover if v is a
vertex of a maximum clique in Gl, d(v) ≥ ω(Gl) − 1 + |Vl+1| + |Vl−1| then
∆ ≥ χl + χl+1 + χl−1 − 1. The result follows. �

Corollary 13 Let G = C2k+1(G0 . . . G2k) be an expansion of an odd hole. Let
p = min

0≤i≤2k
χi. Assume that the edge vivi+1 has maximum weight in C2k+1 for

some i ∈ {0, . . . 2k}. Then χ(G) ≤ χi + χi+1 + ⌊p+1
2 ⌋.

Proof

By Theorem 10, we may assume for j ∈ {i+ 3, i+ 4 . . . i− 2}

χ(G) ≤ χi + χi+1 + ⌊
χj−1 + χj + χj+1 − χi − χi+1 + 1

2
⌋. (1)

Moreover, there is an index l ∈ {i + 2, . . . i − 1} such that χl = p, otherwise
χi = p or χi+1 = p. Suppose without loss of generality χi+1 = p. But now,
since χi−1 > χi+1 we have χi−1 + χi > χi + χi+1, a contradiction, since the
edge vivi+1 has maximum weight in C2k+1.

If l ≥ i + 4, we apply (1) with j = l − 1, since χl−1 + χl−2 ≤ χi + χi+1 we

get χ(G) ≤ χi + χi+1 + ⌊χl−2+χl−1+χl−χi−χi+1+1
2 ⌋ ≤ χi + χi+1 + ⌊χl+1

2 ⌋.
If l = i+2 or l = i+3, we apply (1) with j = l+1, since χl+1+χl+2 ≤ χi+χi+1

we get χ(G) ≤ χi + χi+1 + ⌊χl+2+χl+1+χl−χi−χi+1+1
2 ⌋ ≤ χi + χi+1 + ⌊χl+1

2 ⌋. In

both cases, it follows χ(G) ≤ χi + χi+1 + ⌊p+1
2 ⌋. �

Corollary 14 Let G = C2k+1(G0 . . . G2k) be an expansion of an odd hole. Let
vivi+1 be an edge of maximal weight in C2k+1. Assume that χ(G) = χi+χi+1+
q+1 for some integer q ≥ 0. If G[Vi ∪Vi+1] has a vertex of maximum degree in
Vi (resp. Vi+1) then either Conjecture 1 holds for G or Vi−1 (resp.Vi+2) induces
a graph on at most 2q + 1 vertices.
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Proof Assume that G is a counter-example to Conjecture 1. For convenience
we note G′ = G[Vi ∪ Vi+1].

Let v be a vertex of maximum degree in G′, suppose that v ∈ Vi and Vi−1

has at least 2q + 2 vertices.
We have ∆(G) ≥ dG′(v) + |Vi−1| ≥ ∆(G′)+ 2q+2 and ω(G) ≥ ω(G′). Thus

⌈ω(G)+∆(G)+1
2 ⌉ ≥ ⌈ω(G′)+∆(G′)+1+2q+2

2 ⌉ = ⌈ω(G′)+∆(G′)+1
2 ⌉+ q + 1.

Since by Theorem 3, G′ verifies Conjecture 1, ⌈ω(G′)+∆(G′)+1
2 ⌉ ≥ χi + χi+1.

Hence by Corollary 13, ⌈ω(G)+∆(G)+1
2 ⌉ ≥ χi + χi+1 + q + 1 = χ(G), a contra-

diction. �

Corollary 15 Let G = C2k+1(G0 . . . G2k) be an expansion of an odd hole and
let p = min

0≤i≤2k
χi. If the edge vivi+1 has maximum weight in C2k+1 then Con-

jecture 1 holds for G or χ(G) = χi + χi+1 + ⌊p+1
2 ⌋.

Proof We know by Corollary 13 that χ(G) ≤ χi+χi+1+ ⌊p+1
2 ⌋. Assume that

G is a counter-example to Conjecture 1 and χ(G) 6= χi + χi+1 + ⌊p+1
2 ⌋. Thus,

we have χ(G) ≤ χi + χi+1 + ⌊p

2⌋.
Assume without loss of generality that v ∈ Vi+1 is a vertex with maximum
degree in G

′

= G[Vi ∪ Vi+1]. By Theorem 3, G
′

satisfies Conjecture 1.

Hence ⌈ω(G
′

)+∆(G
′

)+1
2 ⌉ ≥ χi + χi+1 = χ(G

′

). Since Gi+2 has at least p

vertices, we have ∆(G) ≥ d(v) ≥ |Vi|+∆i+1 + p ≥ ∆(G
′

) + p, which leads to

⌈ω(G)+∆(G)+1
2 ⌉ ≥ ⌈ω(G

′

)+∆(G
′

)+p+1
2 ⌉ ≥ ⌈ω(G

′

)+∆(G
′

)+1
2 ⌉+ ⌊p

2⌋.

Hence ⌈ω(G)+∆(G)+1
2 ⌉ ≥ χ(G), a contradiction. �

Theorem 16 Let G = C2k+1(G0 . . . G2k) be an expansion of an odd hole of
length 2k + 1 and let p = min

0≤i≤2k
χi. Let vivi+1 be an edge of maximal weight

in C2k+1 and assume that v ∈ Vi+1 is a vertex of maximum degree in G
′

=
G[Vi ∪ Vi+1]. If G does not satisfy Conjecture 1 then Vi+2 induces a complete
graph on p vertices and vi+3vi+4 is an edge of maximal weight in C2k+1.

Proof Assume that G does not satisfy Conjecture 1 and Vi+2 does not induce a
complete graph on p vertices. By Corollary 15, we have χ(G) = χi+χi+1+⌊p+1

2 ⌋.
We may assume that |Vi+2| ≥ p+1 otherwise Vi+2 would induce a complete

graph on p vertices, a contradiction.
We have ∆(G) ≥ dG′(v) + |Vi+2| ≥ ∆(G

′

) + p+ 1 and ω(G) ≥ ω(G
′

).

Hence ⌈ω(G)+∆(G)+1
2 ⌉ ≥ ⌈ω(G

′

)+∆(G
′

)+p+2
2 ⌉ ≥ ⌈ω(G

′

)+∆(G
′

)+1
2 ⌉ + ⌊p+1

2 ⌋ =
χ(G), a contradiction.

Assume now that χi+3+χi+4 ≤ χi+χi+1−1. By Theorem 11 we have χ(G) ≤
χi + χi+1 + ⌊χi+2+χi+3+χ4−χi−χi+1+1

2 ⌋ which leads to χ(G) ≤ χi + χi+1 + ⌊p

2⌋.

Moreover, ∆(G) ≥ dG′(v) + |Vi+2| ≥ ∆(G
′

) + p and ω(G) ≥ ω(G
′

). Hence,

⌈ω(G)+∆(G)+1
2 ⌉ ≥ ⌈ω(G

′

)+∆(G
′

)+p+1
2 ⌉ ≥ ⌈ω(G

′

)+∆(G
′

)+1
2 ⌉ + ⌊p

2⌋ ≥ χ(G), a con-
tradiction. Henceforth vi+3vi+4 is an edge of maximum weight in C2k+1 as
claimed. �
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Corollary 17 Let G = C2k+1(G0 . . . G2k) be an expansion of an odd hole. Let
p = min

0≤i≤2k
χi. If p is even then Conjecture 1 holds for G.

Proof Let us write C2k+1 = v0 . . . v2k. Suppose the edge vivi+1 has max-
imum weight in C2k+1. Let G′ = G[Vi ∪ Vi+1] and v be a vertex of maxi-
mum degree in G′. Assume without loss of genenality v ∈ Vi+1. Since p is
even,⌊p+1

2 ⌋ = ⌊p

2⌋ and from Corollary 15 we have: χ(G) = χi + χi+1 + ⌊p

2⌋.
In addition, by Theorem 16, Vi+2 induces a complete graph on p vertices.

Thus, ∆(G) ≥ dG′(v) + |Vi+2| ≥ ∆(G
′

) + p. Consequently,⌈ω(G)+∆(G)+1
2 ⌉ ≥

⌈ω(G
′

)+∆(G
′

)+p

2 ⌉ ≥ ⌈ω(G
′

)+∆(G
′

)+1
2 ⌉+ ⌊p

2⌋ = χ(G), a contradiction. �

Theorem 18 If G = C2k+1(G0 . . . G2k) is an expansion of an odd hole such
that χi = 1 for some i ∈ {0 . . . 2k} then Conjecture 1 holds for G.

Proof Suppose that G is a counter-example to Conjecture 1.
Assume, without loss of generality that v0v1 has maximum weight. By

Corollary 13 we have χ(G) ≤ χ0 + χ1 + 1. If χ(G) = χ0 + χ1 then G satisfies
Conjecture 1 by Lemma 2, a contradiction. Hence χ(G) = χ0 + χ1 + 1 and by
Theorem 16 we can suppose that V2k is reduced to a single vertex v.

We consider an optimal coloring of the bipartite expansion G − v, such a
coloring requires precisely χ0 + χ1 colors and we can assume that this optimal
coloring have been obtained via the algorithm described in the previous section
(expansion of bipartite graphs). We denote Γi the set of colors used for the
coloring of Gi, i = 0 . . . 2k − 1. When i is even, 0 is the preferred index for the
coloring of Gi and, 1 is its preferred index when i is odd. Let us remark that,
for this coloring, when i ∈ {0 . . .2k}, Γi ∩ Γi+1 = ∅, Γi ⊆ Γ0 ∪ Γ1, and |Γi| = χi

(see Remark 8). We get an optimal coloring of the whole graph G by giving a
new color to the vertex v.

Claim 1 v2k−1v2k−2 is an edge of maximum weight, moreover Γ1 ⊆ Γ2k−1 and
Γ2k−2 ⊆ Γ0.

Proof Suppose χ2k−1 < χ1. Since |Γ2k−1| = χ2k−1, some color a of Γ1 does
not appear in Γ2k−1. This color could be given to v, a contradiction. Hence,
χ2k−1 ≥ χ1, Γ1 ⊆ Γ2k−1 and, consequently, Γ2k−2 ⊆ Γ0.

If χ2k−2 < χ0 then some color a ∈ Γ0 \ Γ2k−2 does not appear in Γ2k−1.
Choose any color b ∈ Γ1 and change the color of the vertices of G2k−1, with
that color, in a. Hence b is now available to color v, a contradiction.

It follows χ2k−1 + χ2k−2 ≥ χ0 + χ1, that is the edge v2k−1v2k−2 has maxi-
mum weight. �

Claim 2 Let a be a color in Γ2k−1 ∩ Γ1 and b be a color in Γ2k−2. Then the
subgraph Gab of G induced by these two colors is connected.

Proof Let us remark that, by the definition of the expansion of an hole, it
is sufficient to prove that Gab contains a vertex of color b of G0. Assume to
the contrary that Gab is not connected. That is, the set of vertices colored
with b in G0 is not contained in the connected component of Gab containing

9



the vertices of color a in G2k−1. We can thus exchange the two colors a and b
on the component containing the vertices of color a in G2k−1. Since a does no
longer appear in the neighborhood of v, we can give this color to v and we get
a χ0 + χ1 coloring of G, a contradiction.

�

Claim 3 For any i (0 ≤ i ≤ 2k− 1), Γi ⊆ Γ0 when i is even and Γ1 ⊆ Γi when
i is odd.

Proof Let a be any color in Γ2k−1 ∩ Γ1 and b any color in Γ2k−2. Since by
Claim 2, Gab is connected, a shortest path in this subgraph joining a vertex in
G0 to a vertex in G2k−1 must contain an edge between Gi and Gi+1 for any
index i (0 ≤ i ≤ 2k − 2). Hence, when i is even Gi contains a vertex colored
with b (0 ≤ i ≤ 2k − 2) while for i odd Gi contains a vertex colored with a
(1 ≤ i ≤ 2k − 1). Since, by Claim 1, Γ1 ⊆ Γ2k−1 and Γ2k−2 ⊆ Γ0, the claim
follows. �

Claim 4 For any even index i ( 2 ≤ i ≤ 2k − 2), Γi ⊆ Γi−2.

Proof Assume that some color a of Γi does not appear in Γi−2 and let b be any
color in Γ1 ∩ Γ2k−1. Let Gab be the subgraph of G induced by these two colors
and let Q be the connected component of Gab containing the vertices colored
with b in G2k−1. Since Γi−2 ⊆ Γ0 by Claim 3 and a 6∈ Γi−2, Q does not contain
any vertex in Γi−2. Hence Q does not contain any vertex colored with a in G0

and Gab is not connected, a contradiction with Claim 2. �

Claim 5 For an odd index i ( 1 ≤ i ≤ 2k−1), vi−1vi is an edge with maximum
weight.

Proof Since Γ1 ⊆ Γi and Γi−1 ⊆ Γ0 by Claim 3, let us prove that Γ0−Γi−1 ⊆ Γi.
Assume that some color a ∈ Γ0−Γi−1 does not appear in Γi. Let b be any color
in Γ2k−2 (recall that Γ2k−2 ⊆ Γ0 by Claim 1) and let Gab be the subgraph
induced by these two colors. Since a does not appear in Γi ∪ Γi−1 but appears
in Γ2k−1 by Claim 1, the connected component Q of Gab containing the vertices
of color a in G2k−1 is distinct from the component containing the vertices of
color a in G0.

Let us now exchange the colors a and b on Q. In this new coloring of G, let
Q

′

be the connected component of the subgraph induced by the colors a and c
where c is any color in Γ1. Since a is always lacking in the sets of color Γi as
well as in Γi−1, Q′ does not contain any vertex colored with a in G0. We can
thus proceed to a new exchange of colors a and c on Q′ . The color /c

:

a is now
available to coloring v, a contradiction.

But now, since χi = |Γi| = |Γ1|+ |Γ0| − |Γi−1| and χi−1 = |Γi−1|, we have
χi+χi−1 = χ0+χ1, in other words vi−1vi is an edge with maximum weight. �

Claim 6 For any odd index i ( 1 ≤ i ≤ 2k − 3), Γi ⊆ Γi+2.
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Proof Obvious by virtue of Claims 5 and 4. �

Claim 7 For any index i (0 ≤ i ≤ 2k − 1), Gi has at least two vertices

Proof Assume to the contrary that Gi is reduced to a single vertex for some
i ∈ {0, . . . 2k − 1}.

If i is even then, by Claim 5, vivi+1 has maximum weight and the unique
vertex in Gi has maximum degree in G[Vi ∪ Vi+1]. Consequently, by Theorem
16, Gi−1 is reduced to a single vertex. But now, by Claim 6, Γ1 ⊆ Γi−1, that
means χ1 = 1 since |Γi−1| = 1. By Claim 4, |Γi+2| = |Γi+4| = . . . |Γ2k−2| = 1.
In addition, v0v2k has maximum weight, it follows |V2k−1| = 1. Let us set
Γ2k−2 = {a} and Γ2k−1 = Γ1 = {b}, of course a ∈ Γ0.

We claim that Γ0 = {a}. Assume, on the contrary, that in Γ0 there is a color,
say c, distinct from a. The subgraph Gbc induced by the vertices of G colored
with b and c is not connected since c /∈ Γ2k−2. In this conditions, we could
exchange the colors b and c on the component of Gbc which contains vertices of
V0 and use the color c for the coloring of the vertex v, a contradiction.

Hence, |Γ0| = 1 = χ0 and χ0 + χ1 = 2. In other words for 0 ≤ i ≤ 2k, Vi is
a stable set and G is an empty expansion of an odd hole, a contradiction (see [1]).

When i is odd, the edge vivi−1 having maximum weight in Γ2k+1 by Claim
5, Gi+1 is reduced to a single vertex by Theorem 16 and the above reasoning
holds.

�

To end our proof assume first that k ≥ 3. An edge vivi−1 with i odd being
of maximum weight in H by Claim 5, one of Gi+1 or Gi−2 must be reduced to
a single vertex by Theorem 16, a contradiction with Claim 7.

Hence from now on k = 2. Let G′ = G[V0 ∪ V1]. By Claim 7, |Vi| ≥ 2 for
i = 0 . . . 4. Moreover, ∆1 ≥ 1, otherwise the edge v0v4 would have maximum
weight in C2k+1 and |V3| = 1 by Theorem 16, a contradiction with Claim 7.

Assume that |V2| ≥ |V1| and let w be a vertex of maximum degree in G1.
We have

∆ ≥ d(w) ≥ |V0|+ |V2|+∆1 ≥ |V0|+ |V2|+ 1 ≥ ∆0 + |V1|+ 2 = ∆(G′) + 2.

Consequently ⌈ω(G)+∆(G)+1
2 ⌉ ≥ ⌈ω(G′)+∆(G′)+1

2 ⌉ + 1 and by Theorem 3,

⌈ω(G′)+∆(G′)+1
2 ⌉+ 1 ≥ χ0 + χ1. Hence ⌈ω(G)+∆(G)+1

2 ⌉ ≥ χ0 + χ1 + 1, a contra-
diction since χ0 + χ1 + 1 is precisely the chromatic number of G.

Hence we must suppose that |V2| < |V1|. Since v2v3 is an edge of maximum
weight in C2k+1 with v in the neighborhood of G4 in the expansion, we could
have chosen this edge as the edge v0v1. With the same reasoning we should
obtain that |V1| < |V2|, a contradiction. �

Theorem 19 If G = C2k+1(G0 . . . G2k) is an expansion of an odd hole such
that Gi induces a bipartite graph for some i ∈ {0 . . . 2k} then Conjecture 1 holds
for G.

11



Proof Assume that G is a counter-example to Conjecture 1. By Corol-
lary 13, χ(G) ≤ χi + χi+1 + 1 when vivi+1 is an edge with maximum weight.
When χ(G) = χi + χi+1, we have a contradiction with Lemma 2. When
χ(G) = χi + χi+1 + 1, one component of G must be reduced to a single vertex
by Corollary 14, a contradiction with Theorem 18. �

Theorem 20 If G = C2k+1(G0 . . . G2k) is an expansion of an odd hole such
that χi = q ≥ 1 for all i ∈ {0 . . . 2k} then Conjecture 1 holds for G.

Proof Assume to the contrary that G is a counter-example to Conjecture 1.
Since every edge of H has maximum weight, for every i ∈ {0 . . . 2k} Vi−2 or Vi+1

induces a complete graph on exactly q vertices, by the hypothesis and Theorem
16. Hence, it is not difficult to see that at least two components, say V0 and V1,
are isomorphic to Kq. We have thus ω ≥ 2q and ∆ ≥ 3q− 1 (a vertex in V1 has
q neighbors in V0, q − 1 in V1 and at least q neighbors in V2) which leads to

⌈
ω(G) + ∆(G) + 1

2
⌉ ≥ ⌈

5q

2
⌉.

By Theorem 11 we have χ(G) ≤ ⌈ 5q
2 ⌉, a contradiction. �

Theorem 21 If G = C2k+1(G0 . . . G2k) is an expansion of an odd hole such
that χi ≤ 3 for all i ∈ {0 . . .2k} then Conjecture 1 holds for G.

Proof Assume that G is a counter-example to Conjecture 1. If some compo-
nent has chromatic number at most 2, we have a contradiction with Theorem
19. Hence we must suppose that each component has chromatic number 3, a
contradiction with Theorem 20 �

The following lemma will be useful in the next theorem. Its proof is standard
and left to the reader.

Lemma 22 Let K be a graph with chromatic number 4.

• if K has 5 vertices then K contains a K4

• if ω(K) = 2 then K has at least 8 vertices.

Theorem 23 If G = C2k+1(G0 . . . G2k) is an expansion of an odd hole such
that χi ≤ 4 for all i ∈ {0 . . .2k} then Conjecture 1 holds for G.

Proof Assume that G is a counter-example to Conjecture 1. If some component
has chromatic number at most 2, we have a contradiction with Theorem 19.
Hence we must suppose that each component has chromatic number 3 or 4. If
no component has chromatic number 4, we have a contradiction with Theorem
20 as well as if every component has chromatic number 4. Hence we can suppose
that at least one component has chromatic number 3 and at least one component
has chromatic number 4. This forces immediately χ0 + χ1 = 7 or 8. Let us
remark also that ω ≥ 4.

We have χ(G) = 9 or χ(G) = 10 and, obviously, ⌈ω(G)+∆(G)+1
2 ⌉ ≥ 9 as soon

as ω(G) + ∆(G) ≥ 16 and ⌈ω(G)+∆(G)+1
2 ⌉ ≥ 10 as soon as ω(G) + ∆(G) ≥ 18.
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Claim 1 Every component has at most 7 vertices

Proof Assume to the contrary that some component Vi has at least 8 vertices.
If ∆i+1 ≥ 3 then ∆ ≥ 14. Hence ω(G) + ∆(G) ≥ 18 and Reed’s conjecture
holds for G, a contradiction. If ∆i+1 ≤ 2 then Vi+1 must be isomorphic to a
a triangle by Brook’s Theorem. We have thus ω(G) ≥ 5 and ∆(G) ≥ 13 and
Reed’s conjecture holds for G, a contradiction. �

From now on, we can consider that any component has at most 7 vertices
and hence, by Lemma 22, any 4−chromatic component contains a triangle.

Claim 2 No two components with chromatic number 4 are consecutive

Proof Assume to the contrary that for two consecutive components, Vi and
Vi+1, are such that χi = 4 and χi+1 = 4. If these two components are isomorphic
to a K4 then any vertex in these components has degree at least 10. Since a
maximum clique of G in this case has at least 8 vertices, we have ω +∆ ≥ 18.

If only one component is isomorphic to a K4 (without loss of generality say
that Vi induces a K4), then ∆i+1 ≥ 4 by Brook’s theorem and a vertex of
maximum degree in Vi+1 has at least 11 neighbors. Since a maximum clique of
G in this case has at least 7 vertices, we have ω +∆ ≥ 18.

If no component is isomorphic to a K4 then ∆i and ∆i+1 are greater than
4 by Brook’s theorem. Moreover Vi and Vi+1 contain at least 5 vertices each.
A vertex of maximum degree in Xi has hence at least 12 neighbors. Since a
maximum clique of G in this case has at least 6 vertices, we have ω +∆ ≥ 18.

In each case we have a contradiction since G satisfies Reed’s conjecture.
�

We can thus suppose that no two consecutive components have chromatic
number 4. In that case we can remark that χ(G) = 9. To end our proof, it is
thus sufficient to show that ω(G) + ∆(G) ≥ 16.

Without loss of generality, assume that χ0 = 4. By Claim 2 we have χ2p = 3
and χ1 = 3.

If V0 induces a K4 then either V2p or V1 contain a triangle and hence ω ≥ 7
or have no triangle and V2p and V1 contain at least 4 vertices each. In the first
case a vertex in V0 has at least 9 neighbors and ω(G) + ∆(G) ≥ 16. In the
second case we have ω(G) ≥ 5 and a vertex in V0 has at least 11 neighbors. We
get then ω(G) + ∆(G) ≥ 16.

Assume now that V0 does not induce a K4 then ∆0 ≥ 4 by Brook’s theorem.
If V2p or V1 contain a triangle then ω ≥ 6 and a vertex of maximum degree in
V0 has at least 10 neighbors. We get then ω(G) + ∆(G) ≥ 16.

If V2p and V1 contain no triangle, these two sets must have at least 4 vertices
by Brook’s theorem and a vertex of maximum degree in V0 has at least 12
vertices. Since ω ≥ 5 in that case, we get then ω(G) + ∆(G) ≥ 17.

In each case we have a contradiction since G satisfies Reed’s conjecture.
�

Claim 1 in the proof of Theorem 23 suggests that Reed’s conjecture holds
asymptotically for expansions of odd cycles.
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Theorem 24 For every k ≥ 1 and every p ≥ 1, any expansion of an odd cycle
C2k+1 where each component has chromatic number at most p and with at least
(2k + 1)(5p− 9) + 1 vertices satisfies Conjecture 1.

Proof By Theorem 23, we can suppose that p ≥ 5. Moreover, by Theorem
19, we can suppose that each component has chromatic number at least 3 and
hence the maximum degree of each component must be at least 2. Let G =
C2k+1(G0, G1 . . . G2k) and assume that χi ≤ p (i = 0 . . . 2k). By Corollary 13
we have χ(G) ≤ ⌈ 5p

2 ⌉.
Suppose that some component Vi (i = 0 . . . 2k) contains at least 5p− 9 ver-

tices. Then a vertex in Vi+1 has degree at least 5p−4. Since obviously ω(G) ≥ 4

we have thus ⌈ω(G)+∆(G)+1
2 ⌉ ≥ ⌈ 5p+1

2 ⌉. Hence G satisfies Conjecture 1 and the
result follows. �

Theorem 25 If G is a C5-expansion then Conjecture 1 holds for G.

Proof Let G = C5(G0, G1, G2, G3, G4) and assume by contradiction that G
does not satisfy Conjecture 1. Let p = minχ(Gi) i = 0, . . . , 4, by Theorem 19
we have p ≥ 3.

We suppose that χ(G0)+χ(G1) is maximum among the pairs of consecutive
components of G and we denote G′ = G[V0 ∪ V1]. By Theorem 16, G4 or G2

induce a complete graph on p vertices. We assume that G4 is this component
and there is a vertex in V0 whose degree in G′ is maximum. Moreover, Theorem
16 implies that χ2 + χ3 = χ0 + χ1.

By Corollary 15 we have χ(G) = χ0 + χ1 + ⌊p+1
2 ⌋.

We claim now that |V2| < |V1| or G1 is isomorphic to a C2s+1 with s ≥ 2
(and henceforth p = 3). Assume to the contrary that |V2| ≥ |V1|. Let w be
a vertex of maximum degree in G1. By Theorem 3 we have χ(G0) + χ(G1) ≤

⌈ω(G
′

)+∆(G
′

)+1
2 ⌋. Since d(w) = ∆(G1)+ |V0|+ |V2| ≥ ∆(G

′

)+∆(G1)+1 we have

∆(G) ≥ ∆(G
′

) + ∆(G1) + 1. By Brook’s Theorem [3] we have χ(G1) ≤ ∆(G1)
or G1 is an odd chordless cycle. When χ(G1) ≤ ∆(G1), we get

⌈
ω(G) + ∆(G) + 1

2
⌉ ≥ ⌈

ω(G
′

) + ∆(G
′

) + p+ 1 + 1

2
⌉. (2)

Which leads to ⌈ω(G)+∆(G)+1
2 ⌉ ≥ χ(G0) + χ(G1) + ⌊p+1

2 ⌋ = χ(G), a contradic-
tion.

If G1 is isomorphic to a C2s+1 with s ≥ 2 we have ω(G
′

) = ω(G0) + 2,
ω(G) ≥ ω(G0) + 3 and ∆(G) ≥ ∆(G

′

) + 3. Hence

⌈
ω(G) + ∆(G) + 1

2
⌋ ≥ ⌈

ω(G
′

) + 1 +∆(G
′

) + 3 + 1

2
⌋. (3)

Which leads to ⌈ω(G)+∆(G)+1
2 ⌋ ≥ χ(G0) + χ(G1) + 2 ≥ χ(G), a contradiction.

If G[V2 ∪ V3] contains a vertex of maximum degree in V2, by Theorem 16,
G1 is a complete graph on p vertices, a contradiction with |V2| < |V1|. Hence a
vertex of maximum degree in G[V2 ∪V3] must be a vertex of G3. By application
of the above technique we can thus prove that |V1| < |V2| or G2 is isomorphic
to a C2s+1 with s ≥ 2. In the first case, we get a contradiction with |V2| < |V1|.
In the latter case, we can conclude as above.
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�

Theorem 26 If G = C2k+1(G0 . . .G2k) is an expansion of an odd hole then

χ(G) ≤ ⌈ω(G)+∆(G)+1
2 ⌉+1.

Proof We consider an optimal colouring of G. Let us denote p = min
0≤i≤2k

χi.

If p is even we have χ(G) ≤ ⌈ω(G)+∆(G)+1
2 ⌉ (Corollary 17). Consequently, in

the following, we suppose that p is odd.
Let j ∈ {0, . . . 2k} such that χj = p. We choose some colour used for the

colouring of Gj , say cj and we denote Sj as the set of vertices of Gj being
coloured with cj .

We set G′
j = G[Vj − Sj ] and for i 6= j we set G′

i = Gi.
G′ = C2k+1(G

′
0, . . . G

′
2k) is an odd expansion such that the minimum chro-

matic number of its components is p− 1. Since p− 1 is even, again by Corollary

17, we have χ(G′) ≤ ⌈ω(G′)+∆(G′)+1
2 ⌉ and consequently χ(G′) ≤ ⌈ω(G)+∆(G)+1

2 ⌉.
But now, given an optimal colouring of G′, we can obtain an optimal colour-

ing of G with only one additionnal colour (for the vertices of Sj). In other
words, χ(G) ≤ χ(G′) + 1. The result follows.

�

In a further paper [4], we will use the above results in order to extend a number
of the results given in [1].
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