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Introduction

We consider here simple and undirected graphs. For terms which are not defined we refer to Bondy and Murty [START_REF] Bondy | Graph Theory[END_REF].

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors required to a proper colouring of the graph, that is to colour the vertices of G so that no two adjacent vertices receive the same colour ; the size of the largest clique (independent set) in G is called the clique number (independence number) of G, and denoted by ω(G) (α(G)) ; the maximum degree of G, denoted ∆(G) is the maximum number of neighbours of a vertex over all vertices of G.

Bounding the chromatic number of a graph in terms of others graphs parameters attracted much attention in the past. For example, it is well know that for any graph G we have ω(G) ≤ χ(G) ≤ ∆(G) + 1. This upper bound ⌉ (see [START_REF] Rabern | A note on Reed's conjecture[END_REF]), when χ(G) ≤ ω(G) + 2 [START_REF] Gernet | A computerized system for graph theory, illustrated by partial proofs for graph-coloring problems[END_REF], when α(G) = 2 [START_REF] King | Claw-free graphs and two conjectures on ω, ∆, and χ[END_REF][START_REF] Kohl | Some results on Reed's conjecture about ω, δ and χ with respect to α[END_REF] or when ∆(G) ≥ |V (G)|α(G) -4 (see [START_REF] Kohl | Some results on Reed's conjecture about ω, δ and χ with respect to α[END_REF]).

Some classes of graphs also verify Conjecture 1. That's trivially the case for perfect graphs (a graph G is said to be perfect if χ(H) = ω(H) for every induced subgraph H of G), for graphs with disconnected complement [START_REF] Rabern | A note on Reed's conjecture[END_REF] for almost split graphs (an almost-split graph is a graph that can be partitioned into a maximum independent set and a graph having independence number at most 2) or particular classes of triangle free graphs [START_REF] Kohl | Some results on Reed's conjecture about ω, δ and χ with respect to α[END_REF] and for classes defined with forbidden configurations such that (2K 2 , C 4 )-free graphs, odd hole free graphs [START_REF] Aravind | Bounding χ in terms of ω and ∆ for some classes of graphs[END_REF] or some particular classe of P 5 -free graphs [START_REF] Aravind | Bounding χ in terms of ω and ∆ for some classes of graphs[END_REF].

The well known operation composition of graphs, also called expansion in [START_REF] Aravind | Bounding χ in terms of ω and ∆ for some classes of graphs[END_REF] is defined as follows :

Given a graph H on n vertices v 0 . . . v n-1 and a familly of graphs G 0 . . . G n-1 , an expansion of H, denoted H(G 0 . . . G n-1 ) is obtained from H by replacing each vertex v i of H with G i for i = 0 . . . n -1 and joining a vertex x in G i to a vertex y of G j if and only if v i and v j are adjacent in H. The graph G i , i = 0 . . . n -1 is said to be the component of the expansion associated to v i .

In [START_REF] Aravind | Bounding χ in terms of ω and ∆ for some classes of graphs[END_REF], Aravind et al proved that Conjecture 1 holds true for full expansions and independent expansions of odd holes, that is expansions H(G 1 . . . G n ) of odd holes where all the G i 's are either complete graphs or edgeless graphs. Moreover, they ask for proving Conjecture 1 for graph expansions whenever every component of the expansion statifies Conjecture 1.

In this paper, we consider Conjecture 1 for expansion of bipartite graphs, namely bipartite expansions and odd hole expansions. We use for this a colouring algorithm of bipartite expansions that we extend to odd hole expansions, this allows us to compute the chromatic number of those graphs. We prove that Conjecture 1 holds for a bipartite expansion (Theorem 9).

Moreover, Conjecture 1 holds for odd hole expansions when the minimum chromatic number of the components is even (Corollary 17), when some component of the expansion has chromatic number 1 (Theorem 18), or when a component induces a bipartite graph (Theorem 19). It is also the case if all components have the same chromatic number (Theorem 20), if the components have chromatic number at most 4 (Theorem 23), and when the odd hole has length 5 (Theorem 25). In addition, if G is an odd hole expansion we have

χ(G) ≤ ⌈ ω(G)+∆(G)+1 2 ⌉ + 1 (Theorem 26).
These results improve the result of Aravind et al on full and independent expansions of odd holes.

The present section ends with some notations and preliminary results. Section 2 is devoted to the colouring of bipartite expansions and its consequences on Conjecture 1 for such graphs while in Section 3 we consider the colouring of odd hole expansions and its implications on Conjecture 1 are considered in Section 4.

Notations and preliminary results

Given a graph G and X a subset of its vertex set, we denote G[X] the subgraph of G induced by X. The degree of a vertex v in the graph G is denoted d G (v) or d(v) when no confusion is possible. For an expansion H(G 0 . . . G n-1 ) of some graph H, we will assume in the following that the vertices of H are weighted with the chromatic number of their associated component while an edge of H is weighted with the sum of the weights of its endpoints. Moreover, for i = 0, . . . n -1, we will denote χ i as the chromatic number of G i , while V i is for the vertex set of G i , ∆ i is the maximum degree of G i , and ω i its clique number.

Lemma 2 Let H be an induced subgraph of some graph G such that

χ(H) = χ(G). If χ(H) ≤ ⌈ ω(H)+∆(H)+1 2 ⌉ then χ(G) ≤ ⌈ ω(G)+∆(G)+1 2 ⌉. Proof Since H is an induced subgraph of G, ω(H) ≤ ω(G) and ∆(H) ≤ ∆(G). Thus χ(G) = χ(H) ≤ ⌈ ω(H)+∆(H)+1 2 ⌉ ≤ ⌈ ω(G)+∆(G)+1 2 ⌉. Theorem 3 [8] If G is disconnected then χ(G) ≤ ⌈ ω(G)+∆(G)+1 2 ⌉ Lemma 4 Let G = H(G 0 . . . G n-1
) be an odd hole expansion that is a minimum counter-example of Conjecture 1 (if any). For i ∈ {0 . . . n}, G i is connected.

Proof Without loss of generality assume that the subgraph induced by G 0 is not connected. Let X 1 and X 2 be two subset of V (G 0 ) inducing a connected component and suppose that we need at most χ j colors (j = 1, 2) to color X j with χ 1 ≤ χ 2 . Let G ′ be the subgraph obtained from G by deleting X 1 . Since

G ′ satisfies Conjecture 1 by hypothesis, we have χ(G ′ ) ≤ ⌈ ∆(G ′ )+ω(G ′ )+1 2 
⌉. We can then color the vertices of X 1 by using the colors appearing in X 2 since

χ 1 ≤ χ 2 . Since ω(G) ≥ ω(G ′ ) and ∆(G) ≥ ∆(G ′ ), we have χ(G) = χ(G ′ ) ≤ ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ ≤ ⌈ ω(G)+∆(G)+1 2 
⌉, a contradiction.

Coloring of bipartite expansion

Notations 5 Let H be a bipartite graph with n vertices: v 0 , . . . , v n-1 and H(G 0 . . . G n-1 ) be an expansion of H. Without loss of generality we assume that v 0 and v 1 are adjacent and are such that the edge v 0 v 1 has maximum weight in H. Let Γ 0 be a set of χ 0 colors and Γ 1 be a set of χ 1 other colors. A given index i ∈ {0, . . . n -1} will have a prefered index in {0, 1}, say p(i), defined as follows : p(i) = 0 whenever v i and v 0 are vertices of the same class of the bipartition otherwise p(i) will be defined to be 1. Moreover we define the index p ′ (i) such that {p(i), p ′ (i)} = {0, 1}.

When H(G 0 . . . G n-1 ) is a bipartite expansion, according to the above notations, G i (0 ≤ i ≤ n -1) will be colored by using preferably the set of colors Γ p(i) .

More precisely G i will be colored by using M in(χ i , χ p(i) ) colors of Γ p(i) and M ax(0, χ iχ p(i) ) colors of Γ p ′ (i) (see Theorem 6).

Theorem 6 Let H(G 0 . . . G n-1 ) be a bipartite expansion. For i ∈ {0 . . . n -1}, if χ i ≤ χ p(i) then G i can be colored by using χ i colors of Γ p(i)
otherwise G i can be colored by using the χ p(i) colors of Γ p(i) together with

χ i -χ p(i) colors of Γ p ′ (i) .
Proof Let us colour the vertices of G 0 with the χ 0 colors of Γ 0 . In the same way we colour the vertices of G 1 by using the χ 1 colors of Γ 1 (recall that

Γ 0 ∩ Γ 1 = ∅).
For i ∈ {2 . . . n -1}, we color the graph G i as follows : when χ i ≤ χ p(i) we can use the χ i first colors in Γ p(i) to colour G i ; and when χ i > χ p(i) we color the vertices of G i by using the χ p(i) colors of Γ p(i) and the χ iχ p(i) last colors of Γ p ′ (i) .

We claim that the resulting coloring is a proper coloring of H(G 0 , . . . , G n-1 ). Indeed let v i v j be an edge of H. Let us remark first that we do not have χ i > χ p(i) and χ j > χ p(j) since χ i + χ j ≤ χ 0 + χ 1 by hypothesis, moreover, since v i and v j are adjacent we have p(i) = p ′ (j) and p(j) = p ′ (i).

case 1 χ i ≤ χ p(i) and χ j ≤ χ p(j) The colors used in G i are only colors of Γ p(i) and those of G j are only colors of Γ p(j) = Γ p ′ (i) and these two sets of colours are disjoint.

case 2 χ i ≤ χ p(i) and χ j > χ p(j)

The colours used in the coloring of G i are only the χ i first colors of Γ p(i) . In order to color G j , we use all the χ p(j) colours of Γ p(j) and we need to use the last χ jχ p(j) colors of Γ p ′ (j) . Since χ i + χ j ≤ χ 0 + χ 1 = χ p(j) + χ p(i) , we have χ jχ p(j) ≤ χ p(i)χ i . Hence the set of colors of Γ p(i) used in order to achieve the colouring of G j is disjoint from the set of colors used in G i . case 3 χ i > χ p(i) and χ j ≤ χ p(j) The same argument works.

From Theorem 6 and according to Notations 5, since χ(H) ≥ χ 0 + χ 1 , we have:

Corollary 7 Let G = H(G 0 . . . G n-1 ) be a bipartite expansion, χ(G)) = χ 0 + χ 1 .
Remark 8 Let us remark that the coloring given in Theorem 6 has the following property:

|Γ i | = χ i for i ∈ {0 . . . n -1}.

Theorem 9 Any expansion of a bipartite graph satisfies Conjecture 1.

Proof Let H(G 0 . . . G n-1 ) be an expansion of a bipartite graph H. According to Notations 5 and by Theorem 3, the subgraph induced by

V (G 0 ) ∪ V (G 1 ), say G ′ , verifies Conjecture 1. Moreover χ(G ′ ) = χ 0 + χ 1 and by Corollary 7 χ(G) = χ(G ′ ).
The result follows from Lemma 2.

Odd hole expansions coloring

By Theorem 3, an expansion of triangle verifies Conjecture 1. In what follows C 2k+1 denotes an odd hole of length 2k + 1 (k ≥ 2) and all indexes are taken modulo 2k + 1. Moreover, the vertex set of C 2k+1 is {v 0 , . . . v 2k } and v i v j is an edge if and only if j = i + 1.

Theorem 10 below provides a proper coloring for odd hole expansions.

Theorem 10 Let G = C 2k+1 (G 0 . . . G 2k
) be an expansion of an odd hole. Assume that the edge v 0 v 1 has maximum weight in H.

Let i be an index in {3 . . . 2k -1}.

If χ 0 + χ 1 ≥ χ i-1 + χ i + χ i+1 then χ(G) ≤ χ 0 + χ 1 else if χ i-1 > χ p(i-1) and χ i+1 > χ p(i+1) then χ(G) ≤ χ 0 + χ 1 + ⌊ χi+1 2 ⌋ else χ(G) ≤ χ 0 + χ 1 + ⌊ χi-1+χi+χi+1-χ0-χ1+1 2 ⌋.

Proof

Let H ′ be the bipartite graph whose vertex set is V (C 2k+1 ) -{v i }. Assume that the coloring described in Theorem 6 has been applied to the expansion

H ′ (G 0 , G 1 . . . G i-1 , G i+1 . . . G 2k ).
Observe that the notations p(i) and p ′ (i) are not defined in C 2k+1 (G 0 . . . G 2k ), however in the following we will use this notations as meant in

H ′ (G 0 , G 1 . . . G i-1 , G i+1 . . . G 2k ), thus we have p(i -1) = p ′ (i + 1) and p ′ (i -1) = p(i + 1). From now on χ 0 + χ 1 < χ i-1 + χ i + χ i+1 .
Assume now χ i-1 > χ p(i-1) and χ i+1 > χ p(i+1) . Recall that χ i < χ 0 and χ i < χ 1 . Let a = ⌊ χi 2 ⌋ and Γ be a set of a additionnal colors. The coloring of Gi -1 uses χ p(i-1) colors of Γ p(i-1) , let use replace a of those colors with the colors of Γ. We also replace a colors of Γ p(i+1) with the same colors of Γ. Thus 2a colors are left for the coloring of G i , that is χ i or χ i -1 according to the parity of χ i . Hence in this case the whole graph can be colored with at most

|Γ 0 | + |Γ 1 | + a + 1 colors, that is χ(G) ≤ χ 0 + χ 1 + ⌊ χi+1 2 ⌋.
Finally, assume χ i-1 ≤ χ p(i-1) or χ i+1 ≤ χ p(i+1) . Recall that there are

χ 0 + χ 1 -χ i-1 -χ i+1 colors free in Γ 0 ∪ Γ 1 for the coloring of G i . Since χ 0 + χ 1 ≥ χ i + χ i-1 it is clear that χ i+1 ≥ χi-1+χi+χi+1-χ0-χ1 2 . Similarly χ i-1 ≥ χi-1+χi+χi+1-χ0-χ1 2 . Let us state a = ⌊ χi-1+χi+χi+1-χ0-χ1
2 ⌋ and Γ be a set of a additionnal colors. We replace, in the coloring of G i-1 , : a :::::::

number :: of : a colors of Γ p(i-1)
with the colors of Γ as well as a colors of Γ p(i+1) in the coloring of G i+1 . Hence we have 2a more colors for the coloring of G i . It follows that the whole graph can be colored with the colors of Γ 0 ∪ Γ 1 ∪ Γ and possibly an additionnal color according to the parity of

χ i+1 + χ i + χ i-1 -χ 0 -χ 1 . Thus in this case χ(G) ≤ χ 0 + χ 1 + ⌊ χi-1+χi+χ l+1 -χ0-χ1+1 2 ⌋.
Theorem 11 gives the chromatic number for odd hole expansions.

Theorem 11 Let G = C 2k+1 (G 0 . . . G 2k
) be an expansion of an odd hole. We assume that the edge v 0 v 1 has maximum weight in C 2k+1 .

Let l be an index such that χ l-1

+ χ l + χ l+1 = M in 3≤i≤2k-1 {χ i-1 + χ i + χ i+1 } If χ 0 + χ 1 ≥ χ l-1 + χ l + χ l+1 then χ(G) = χ 0 + χ 1 else χ(G) = χ 0 + χ 1 + ⌊ χ l-1 +χ l +χ l+1 -χ0-χ1+1 2 ⌋.
Proof Since χ(G) ≥ χ 0 + χ 1 , by Theorem 10 we can suppose that χ 0 + χ 1 < χ l-1 + χ l + χ l+1 .

In addition χ l-1 ≤ χ p(l-1) or χ l+1 > χ p(l+1) . Otherwise, since χ l-1 > χ p(l-1) we have l -1 > 2 and then χ l-2 < χ p(l-2) = χ p(l+1) < χ l+1 . It follows that χ l + χ l-1 + χ l-2 < χ l+1 + χ l + χ l-1 , a contradiction with the choice of the index l.

Hence by Theorem 10 we have

χ(G) ≤ χ 0 +χ 1 +⌊ χ l-1 +χ l +χ l+1 -χ0-χ1+1 2 
⌋ and there is a coloring of G using colors in Γ 0 ∪Γ 1 ∪Γ where Γ 0 , Γ 1 and Γ are disjoint sets of colors such that

|Γ 0 | = χ 0 , |Γ 1 | = χ 1 and |Γ| = ⌊ χ l-1 +χ l +χ l+1 -χ0-χ1+1 2 ⌋.
Since the sum χ l+1 + χ l + χ l-1 is minimum, Theorem 10 cannot provide a coloring using less colors.

Assume now χ(G) < |Γ

0 | + |Γ 1 | + |Γ|. We can suppose that an optimal coloring of G uses the set Γ 0 ∪ Γ 1 ∪ Γ ′ as set of colors where Γ ′ ∩ (Γ 0 ∪ Γ 1 ) = ∅ and |Γ ′ | < |Γ|.
In a such coloring the number of unused colors for the coloring of X l+1 and X l-1 is at most

χ 0 + χ 1 + |Γ ′ | -χ l+1 -χ l-1 . Thus χ l ≤ χ 0 + χ 1 + |Γ ′ | -χ l+1 -χ l-1 and then χ l + χ l+1 + χ l-1 -χ 0 -χ 1 ≤ |Γ ′ | < ⌊ χ l + χ l+1 + χ l-1 -χ 0 -χ 1 + 1 2 ⌋,
a contradiction with the fact that χ l +χ l+1 +χ l-1 -χ 0 -χ 1 is a positive integer.

Applications

In [START_REF] Aravind | Bounding χ in terms of ω and ∆ for some classes of graphs[END_REF] Aravind et al observed that the complete or independent expansions of an odd hole satisfy Conjecture 1. We give below improvements of this results.

Corollary 12 Conjecture 1 holds for an odd hole expansion when, in the conditions of Theorem 10, we have

χ(A) = ω(A) for A ∈ {G 0 , G 1 , G l }.
Proof By Theorem 11 we know that χ(G) ≤ χ0+χ1+χ l-1 +χ l +χ l+1 +1

2

. By assumption we have

χ 0 + χ 1 = ω(G 0 ) + ω(G 1 ) ≤ ω(G), moreover if v is a vertex of a maximum clique in G l , d(v) ≥ ω(G l ) -1 + |V l+1 | + |V l-1 | then ∆ ≥ χ l + χ l+1 + χ l-1 -1. The result follows. Corollary 13 Let G = C 2k+1 (G 0 . . . G 2k ) be an expansion of an odd hole. Let p = min 0≤i≤2k χ i . Assume that the edge v i v i+1 has maximum weight in C 2k+1 for some i ∈ {0, . . . 2k}. Then χ(G) ≤ χ i + χ i+1 + ⌊ p+1 2 ⌋. Proof
By Theorem 10, we may assume for j ∈ {i + 3, i + 4 . . . i -2}

χ(G) ≤ χ i + χ i+1 + ⌊ χ j-1 + χ j + χ j+1 -χ i -χ i+1 + 1 2 ⌋. (1) 
Moreover, there is an index l ∈ {i + 2, . . . i -1} such that χ l = p, otherwise χ i = p or χ i+1 = p. Suppose without loss of generality χ i+1 = p. But now, since χ i-1 > χ i+1 we have

χ i-1 + χ i > χ i + χ i+1 , a contradiction, since the edge v i v i+1 has maximum weight in C 2k+1 . If l ≥ i + 4, we apply (1) with j = l -1, since χ l-1 + χ l-2 ≤ χ i + χ i+1 we get χ(G) ≤ χ i + χ i+1 + ⌊ χ l-2 +χ l-1 +χ l -χi-χi+1+1 2 ⌋ ≤ χ i + χ i+1 + ⌊ χ l +1 2 ⌋. If l = i+2 or l = i+3, we apply (1) with j = l+1, since χ l+1 +χ l+2 ≤ χ i +χ i+1 we get χ(G) ≤ χ i + χ i+1 + ⌊ χ l+2 +χ l+1 +χ l -χi-χi+1+1 2 ⌋ ≤ χ i + χ i+1 + ⌊ χ l +1 2 ⌋. In both cases, it follows χ(G) ≤ χ i + χ i+1 + ⌊ p+1 2 ⌋.
Corollary 14 Let G = C 2k+1 (G 0 . . . G 2k ) be an expansion of an odd hole. Let v i v i+1 be an edge of maximal weight in

C 2k+1 . Assume that χ(G) = χ i + χ i+1 + q + 1 for some integer q ≥ 0. If G[V i ∪ V i+1
] has a vertex of maximum degree in V i (resp. V i+1 ) then either Conjecture 1 holds for G or V i-1 (resp.V i+2 ) induces a graph on at most 2q + 1 vertices.

Proof Assume that G is a counter-example to Conjecture 1. For convenience we note

G ′ = G[V i ∪ V i+1 ].
Let v be a vertex of maximum degree in G ′ , suppose that v ∈ V i and V i-1 has at least 2q + 2 vertices.

We have

∆(G) ≥ d G ′ (v) + |V i-1 | ≥ ∆(G ′ ) + 2q + 2 and ω(G) ≥ ω(G ′ ). Thus ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+1+2q+2 2 ⌉ = ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ + q + 1. Since by Theorem 3, G ′ verifies Conjecture 1, ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ ≥ χ i + χ i+1 . Hence by Corollary 13, ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ χ i + χ i+1 + q + 1 = χ(G), a contra- diction.
Corollary 15 Let G = C 2k+1 (G 0 . . . G 2k ) be an expansion of an odd hole and let p = min

0≤i≤2k χ i . If the edge v i v i+1 has maximum weight in C 2k+1 then Con- jecture 1 holds for G or χ(G) = χ i + χ i+1 + ⌊ p+1 2 ⌋.
Proof We know by Corollary 13 that χ(G) 

≤ χ i + χ i+1 + ⌊ p+1 2 ⌋. Assume that G is a counter-example to Conjecture 1 and χ(G) = χ i + χ i+1 + ⌊ p+1 2 ⌋. Thus, we have χ(G) ≤ χ i + χ i+1 + ⌊ p 2 ⌋. Assume without loss of generality that v ∈ V i+1 is a vertex with maximum degree in G ′ = G[V i ∪ V i+1 ]. By Theorem 3, G ′ satisfies Conjecture 1. Hence ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ ≥ χ i + χ i+1 = χ(G ′ ). Since G i+2 has at least p vertices, we have ∆(G) ≥ d(v) ≥ |V i | + ∆ i+1 + p ≥ ∆(G ′ ) + p, which leads to ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+p+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ + ⌊ p 2 ⌋. Hence ⌈ ω(G)+∆(G)+1
that v ∈ V i+1 is a vertex of maximum degree in G ′ = G[V i ∪ V i+1 ].
If G does not satisfy Conjecture 1 then V i+2 induces a complete graph on p vertices and v i+3 v i+4 is an edge of maximal weight in C 2k+1 .

Proof Assume that G does not satisfy Conjecture 1 and V i+2 does not induce a complete graph on p vertices. By Corollary 15, we have χ(G) = χ i +χ i+1 +⌊ p+1 2 ⌋. We may assume that |V i+2 | ≥ p + 1 otherwise V i+2 would induce a complete graph on p vertices, a contradiction.

We have

∆(G) ≥ d G ′ (v) + |V i+2 | ≥ ∆(G ′ ) + p + 1 and ω(G) ≥ ω(G ′ ). Hence ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+p+2 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ + ⌊ p+1 2 ⌋ = χ(G), a contradiction. Assume now that χ i+3 +χ i+4 ≤ χ i +χ i+1 -1. By Theorem 11 we have χ(G) ≤ χ i + χ i+1 + ⌊ χi+2+χi+3+χ4-χi-χi+1+1 2 ⌋ which leads to χ(G) ≤ χ i + χ i+1 + ⌊ p 2 ⌋. Moreover, ∆(G) ≥ d G ′ (v) + |V i+2 | ≥ ∆(G ′ ) + p and ω(G) ≥ ω(G ′ ). Hence, ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+p+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ + ⌊ p 2 ⌋ ≥ χ(G), a con- tradiction. Henceforth v i+3 v i+4 is an edge of maximum weight in C 2k+1 as claimed.
Corollary 17 Let G = C 2k+1 (G 0 . . . G 2k ) be an expansion of an odd hole. Let p = min 0≤i≤2k χ i . If p is even then Conjecture 1 holds for G.

Proof Let us write C 2k+1 = v 0 . . . v 2k . Suppose the edge v i v i+1 has max- imum weight in C 2k+1 . Let G ′ = G[V i ∪ V i+1 ]
and v be a vertex of maximum degree in G ′ . Assume without loss of genenality v ∈ V i+1 . Since p is even,⌊ p+1 2 ⌋ = ⌊ p 2 ⌋ and from Corollary 15 we have: χ(G) = χ i + χ i+1 + ⌊ p 2 ⌋. In addition, by Theorem 16, V i+2 induces a complete graph on p vertices. Thus,

∆(G) ≥ d G ′ (v) + |V i+2 | ≥ ∆(G ′ ) + p. Consequently,⌈ ω(G)+∆(G)+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+p 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ + ⌊ p 2 ⌋ = χ(G), a contradiction. Theorem 18 If G = C 2k+1 (G 0 . . . G 2k
) is an expansion of an odd hole such that χ i = 1 for some i ∈ {0 . . . 2k} then Conjecture 1 holds for G.

Proof Suppose that G is a counter-example to Conjecture 1. Assume, without loss of generality that v 0 v 1 has maximum weight. By Corollary 13 we have χ(G) ≤ χ 0 + χ 1 + 1. If χ(G) = χ 0 + χ 1 then G satisfies Conjecture 1 by Lemma 2, a contradiction. Hence χ(G) = χ 0 + χ 1 + 1 and by Theorem 16 we can suppose that V 2k is reduced to a single vertex v.

We consider an optimal coloring of the bipartite expansion Gv, such a coloring requires precisely χ 0 + χ 1 colors and we can assume that this optimal coloring have been obtained via the algorithm described in the previous section (expansion of bipartite graphs). We denote Γ i the set of colors used for the coloring of G i , i = 0 . . . 2k -1. When i is even, 0 is the preferred index for the coloring of G i and, 1 is its preferred index when i is odd. Let us remark that, for this coloring, when i ∈ {0 . . . 2k}, Γ i ∩ Γ i+1 = ∅, Γ i ⊆ Γ 0 ∪ Γ 1 , and |Γ i | = χ i (see Remark 8). We get an optimal coloring of the whole graph G by giving a new color to the vertex v.

Claim 1 v 2k-1 v 2k-2 is an edge of maximum weight, moreover Γ 1 ⊆ Γ 2k-1 and Γ 2k-2 ⊆ Γ 0 . Proof Suppose χ 2k-1 < χ 1 . Since |Γ 2k-1 | = χ 2k-1
, some color a of Γ 1 does not appear in Γ 2k-1 . This color could be given to v, a contradiction. Hence,

χ 2k-1 ≥ χ 1 , Γ 1 ⊆ Γ 2k-1 and, consequently, Γ 2k-2 ⊆ Γ 0 .
If χ 2k-2 < χ 0 then some color a ∈ Γ 0 \ Γ 2k-2 does not appear in Γ 2k-1 . Choose any color b ∈ Γ 1 and change the color of the vertices of G 2k-1 , with that color, in a. Hence b is now available to color v, a contradiction.

It follows

χ 2k-1 + χ 2k-2 ≥ χ 0 + χ 1 , that is the edge v 2k-1 v 2k-2 has maxi- mum weight.
Claim 2 Let a be a color in Γ 2k-1 ∩ Γ 1 and b be a color in Γ 2k-2 . Then the subgraph G ab of G induced by these two colors is connected.

Proof Let us remark that, by the definition of the expansion of an hole, it is sufficient to prove that G ab contains a vertex of color b of G 0 . Assume to the contrary that G ab is not connected. That is, the set of vertices colored with b in G 0 is not contained in the connected component of G ab containing the vertices of color a in G 2k-1 . We can thus exchange the two colors a and b on the component containing the vertices of color a in G 2k-1 . Since a does no longer appear in the neighborhood of v, we can give this color to v and we get a χ 0 + χ 1 coloring of G, a contradiction.

Claim 3 For any

i (0 ≤ i ≤ 2k -1), Γ i ⊆ Γ 0 when i is even and Γ 1 ⊆ Γ i when i is odd.
Proof Let a be any color in Γ 2k-1 ∩ Γ 1 and b any color in Γ 2k-2 . Since by Claim 2, G ab is connected, a shortest path in this subgraph joining a vertex in G 0 to a vertex in G 2k-1 must contain an edge between G i and G i+1 for any index i (0 ≤ i ≤ 2k -2). Hence, when i is even G i contains a vertex colored with b (0 ≤ i ≤ 2k -2) while for i odd G i contains a vertex colored with a (1 ≤ i ≤ 2k -1). Since, by Claim 1, Γ 1 ⊆ Γ 2k-1 and Γ 2k-2 ⊆ Γ 0 , the claim follows.

Claim 4 For any even index

i ( 2 ≤ i ≤ 2k -2), Γ i ⊆ Γ i-2 .
Proof Assume that some color a of Γ i does not appear in Γ i-2 and let b be any color in Γ 1 ∩ Γ 2k-1 . Let G ab be the subgraph of G induced by these two colors and let Q be the connected component of G ab containing the vertices colored with b in G 2k-1 . Since Γ i-2 ⊆ Γ 0 by Claim 3 and a ∈ Γ i-2 , Q does not contain any vertex in Γ i-2 . Hence Q does not contain any vertex colored with a in G 0 and G ab is not connected, a contradiction with Claim 2.

Claim 5 For an odd index

i ( 1 ≤ i ≤ 2k -1), v i-1 v i is an edge with maximum weight. Proof Since Γ 1 ⊆ Γ i and Γ i-1 ⊆ Γ 0 by Claim 3, let us prove that Γ 0 -Γ i-1 ⊆ Γ i .
Assume that some color a ∈ Γ 0 -Γ i-1 does not appear in Γ i . Let b be any color in Γ 2k-2 (recall that Γ 2k-2 ⊆ Γ 0 by Claim 1) and let G ab be the subgraph induced by these two colors. Since a does not appear in Γ i ∪ Γ i-1 but appears in Γ 2k-1 by Claim 1, the connected component Q of G ab containing the vertices of color a in G 2k-1 is distinct from the component containing the vertices of color a in G 0 .

Let us now exchange the colors a and b on Q. In this new coloring of G, let Q ′ be the connected component of the subgraph induced by the colors a and c where c is any color in Γ 1 . Since a is always lacking in the sets of color Γ i as well as in Γ i-1 , Q′ does not contain any vertex colored with a in G 0 . We can thus proceed to a new exchange of colors a and c on Q′. The color / c : a is now available to coloring v, a contradiction. But now, since

χ i = |Γ i | = |Γ 1 | + |Γ 0 | -|Γ i-1 | and χ i-1 = |Γ i-1 |, we have χ i +χ i-1 = χ 0 +χ 1 , in other words v i-1 v i is an edge with maximum weight. Claim 6 For any odd index i ( 1 ≤ i ≤ 2k -3), Γ i ⊆ Γ i+2 .
Proof Obvious by virtue of Claims 5 and 4.

Claim 7

For any index i (0 ≤ i ≤ 2k -1), G i has at least two vertices Proof Assume to the contrary that G i is reduced to a single vertex for some i ∈ {0, . . . 2k -1}.

If i is even then, by Claim 5, v i v i+1 has maximum weight and the unique vertex in G i has maximum degree in G[V i ∪ V i+1 ]. Consequently, by Theorem 16, G i-1 is reduced to a single vertex. But now, by Claim 6,

Γ 1 ⊆ Γ i-1 , that means χ 1 = 1 since |Γ i-1 | = 1. By Claim 4, |Γ i+2 | = |Γ i+4 | = . . . |Γ 2k-2 | = 1. In addition, v 0 v 2k has maximum weight, it follows |V 2k-1 | = 1. Let us set Γ 2k-2 = {a} and Γ 2k-1 = Γ 1 = {b}, of course a ∈ Γ 0 .
We claim that Γ 0 = {a}. Assume, on the contrary, that in Γ 0 there is a color, say c, distinct from a. The subgraph G bc induced by the vertices of G colored with b and c is not connected since c / ∈ Γ 2k-2 . In this conditions, we could exchange the colors b and c on the component of G bc which contains vertices of V 0 and use the color c for the coloring of the vertex v, a contradiction.

Hence, |Γ 0 | = 1 = χ 0 and χ 0 + χ 1 = 2. In other words for 0 ≤ i ≤ 2k, V i is a stable set and G is an empty expansion of an odd hole, a contradiction (see [START_REF] Aravind | Bounding χ in terms of ω and ∆ for some classes of graphs[END_REF]).

When i is odd, the edge v i v i-1 having maximum weight in Γ 2k+1 by Claim 5, G i+1 is reduced to a single vertex by Theorem 16 and the above reasoning holds.

To end our proof assume first that k ≥ 3. An edge v i v i-1 with i odd being of maximum weight in H by Claim 5, one of G i+1 or G i-2 must be reduced to a single vertex by Theorem 16, a contradiction with Claim 7.

Hence from now on k = 2. Assume that |V 2 | ≥ |V 1 | and let w be a vertex of maximum degree in G 1 . We have

Let G ′ = G[V 0 ∪ V 1 ]
∆ ≥ d(w) ≥ |V 0 | + |V 2 | + ∆ 1 ≥ |V 0 | + |V 2 | + 1 ≥ ∆ 0 + |V 1 | + 2 = ∆(G ′ ) + 2. Consequently ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ + 1 and by Theorem 3, ⌈ ω(G ′ )+∆(G ′ )+1 2 ⌉ + 1 ≥ χ 0 + χ 1 . Hence ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ χ 0 + χ 1 + 1, a contra- diction since χ 0 + χ 1 + 1 is precisely the chromatic number of G.
Hence we must suppose that 

|V 2 | < |V 1 |. Since v 2 v 3 is

Proof

Assume that G is a counter-example to Conjecture 1. By Corollary 13, χ(G) ≤ χ i + χ i+1 + 1 when v i v i+1 is an edge with maximum weight. When χ(G) = χ i + χ i+1 , we have a contradiction with Lemma 2. When χ(G) = χ i + χ i+1 + 1, one component of G must be reduced to a single vertex by Corollary 14, a contradiction with Theorem 18.

Theorem 20 If G = C 2k+1 (G 0 . . . G 2k
) is an expansion of an odd hole such that χ i = q ≥ 1 for all i ∈ {0 . . . 2k} then Conjecture 1 holds for G.

Proof Assume to the contrary that G is a counter-example to Conjecture 1. Since every edge of H has maximum weight, for every i ∈ {0 . . . 2k} V i-2 or V i+1 induces a complete graph on exactly q vertices, by the hypothesis and Theorem 16. Hence, it is not difficult to see that at least two components, say V 0 and V 1 , are isomorphic to K q . We have thus ω ≥ 2q and ∆ ≥ 3q -1 (a vertex in V 1 has q neighbors in V 0 , q -1 in V 1 and at least q neighbors in V 2 ) which leads to

⌈ ω(G) + ∆(G) + 1 2 ⌉ ≥ ⌈ 5q 2 ⌉.
By Theorem 11 we have χ(G) ≤ ⌈ 5q 2 ⌉, a contradiction.

Theorem 21 If G = C 2k+1 (G 0 . . . G 2k
) is an expansion of an odd hole such that χ i ≤ 3 for all i ∈ {0 . . . 2k} then Conjecture 1 holds for G.

Proof Assume that G is a counter-example to Conjecture 1. If some component has chromatic number at most 2, we have a contradiction with Theorem 19. Hence we must suppose that each component has chromatic number 3, a contradiction with Theorem 20

The following lemma will be useful in the next theorem. Its proof is standard and left to the reader.

Lemma 22 Let K be a graph with chromatic number 4. Theorem 24 For every k ≥ 1 and every p ≥ 1, any expansion of an odd cycle C 2k+1 where each component has chromatic number at most p and with at least (2k + 1)(5p -9) + 1 vertices satisfies Conjecture 1.

• if K has 5 vertices then K contains a K 4 • if ω(K) = 2 then K has at least 8 vertices. Theorem 23 If G = C 2k+1 (G 0 . . . G 2k ) is
Proof By Theorem 23, we can suppose that p ≥ 5. Moreover, by Theorem 19, we can suppose that each component has chromatic number at least 3 and hence the maximum degree of each component must be at least 2. Let G = C 2k+1 (G 0 , G 1 . . . G 2k ) and assume that χ i ≤ p (i = 0 . . . 2k). By Corollary 13 we have χ(G) ≤ ⌈ 5p 2 ⌉. Suppose that some component V i (i = 0 . . . 2k) contains at least 5p -9 vertices. Then a vertex in V i+1 has degree at least 5p-4. Since obviously ω(G) ≥ 4 we have thus ⌈ ω(G)+∆(G)+1 We suppose that χ(G 0 ) + χ(G 1 ) is maximum among the pairs of consecutive components of G and we denote

G ′ = G[V 0 ∪ V 1 ]
. By Theorem 16, G 4 or G 2 induce a complete graph on p vertices. We assume that G 4 is this component and there is a vertex in V 0 whose degree in G ′ is maximum. Moreover, Theorem 16 implies that χ 2 + χ 3 = χ 0 + χ 1 .

By Corollary 15 we have χ(G) = χ 0 + χ 1 + ⌊ p+1 In the latter case, we can conclude as above.

2 ⌉

 2 ≥ χ(G), a contradiction. Theorem 16 Let G = C 2k+1 (G 0 . . . G 2k ) be an expansion of an odd hole of length 2k + 1 and let p = min 0≤i≤2k χ i . Let v i v i+1 be an edge of maximal weight in C 2k+1 and assume

. By Claim 7 ,

 7 |V i | ≥ 2 for i = 0 . . . 4. Moreover, ∆ 1 ≥ 1, otherwise the edge v 0 v 4 would have maximum weight in C 2k+1 and |V 3 | = 1 by Theorem 16, a contradiction with Claim 7.

  an edge of maximum weight in C 2k+1 with v in the neighborhood of G 4 in the expansion, we could have chosen this edge as the edge v 0 v 1 . With the same reasoning we should obtain that|V 1 | < |V 2 |, a contradiction. Theorem 19 If G = C 2k+1 (G 0 . . . G 2k) is an expansion of an odd hole such that G i induces a bipartite graph for some i ∈ {0 . . . 2k} then Conjecture 1 holds for G.

2 ⌉ ≥ 9

 29 an expansion of an odd hole such that χ i ≤ 4 for all i ∈ {0 . . . 2k} then Conjecture 1 holds for G.Proof Assume that G is a counter-example to Conjecture 1. If some component has chromatic number at most 2, we have a contradiction with Theorem 19. Hence we must suppose that each component has chromatic number 3 or 4. If no component has chromatic number 4, we have a contradiction with Theorem 20 as well as if every component has chromatic number 4. Hence we can suppose that at least one component has chromatic number 3 and at least one component has chromatic number 4. This forces immediately χ 0 + χ 1 = 7 or 8. Let us remark also that ω ≥ 4.We have χ(G) = 9 or χ(G) = 10 and, obviously, ⌈ ω(G)+∆(G)+1 as soon as ω(G) + ∆(G) ≥ 16 and ⌈ ω(G)+∆(G)+1 2 ⌉ ≥ 10 as soon as ω(G) + ∆(G) ≥ 18.

2 ⌉ ≥ ⌈ 5p+1 2 ⌉

 22 . Hence G satisfies Conjecture 1 and the result follows.Theorem 25 If G is a C 5 -expansion then Conjecture 1 holds for G. Proof Let G = C 5 (G 0 , G 1 , G 2 , G 3 , G 4) and assume by contradiction that G does not satisfy Conjecture 1. Let p = min χ(G i ) i = 0, . . . , 4, by Theorem 19 we have p ≥ 3.

+1 2 ⌋. 2 ⌉ 2 ⌋

 222 We claim now that |V 2 | < |V 1 | or G 1 is isomorphic to a C 2s+1 with s ≥ 2 (and henceforth p = 3). Assume to the contrary that |V 2 | ≥ |V 1 |. Let w be a vertex of maximum degree in G 1 . By Theorem 3 we have χ(G 0 ) + χ(G 1 ) ≤ ⌈ ω(G ′ )+∆(G ′ )Since d(w) = ∆(G 1 )+|V 0 |+|V 2 | ≥ ∆(G ′ )+∆(G 1 )+1 we have ∆(G) ≥ ∆(G ′ ) + ∆(G 1 ) + 1. By Brook's Theorem [3] we have χ(G 1 ) ≤ ∆(G 1 ) or G 1 is an odd chordless cycle. When χ(G 1 ) ≤ ∆(G 1 ), we get ⌈ ω(G) + ∆(G) Which leads to ⌈ ω(G)+∆(G)+1 ≥ χ(G 0 ) + χ(G 1 ) + ⌊ p+1 2 ⌋ = χ(G), a contradiction. If G 1 is isomorphic to a C 2s+1 with s ≥ 2 we have ω(G ′ ) = ω(G 0 ) + 2, ω(G) ≥ ω(G 0 ) + 3 and ∆(G) ≥ ∆(G ′ ) + 3. ≥ χ(G 0 ) + χ(G 1 ) + 2 ≥ χ(G), a contradiction. If G[V 2 ∪ V 3 ] contains a vertex of maximum degree in V 2 ,by Theorem 16, G 1 is a complete graph on p vertices, a contradiction with |V 2 | < |V 1 |. Hence a vertex of maximum degree in G[V 2 ∪ V 3 ] must be a vertex of G 3 . By application of the above technique we can thus prove that |V 1 | < |V 2 | or G 2 is isomorphic to a C 2s+1 with s ≥ 2. In the first case, we get a contradiction with |V 2 | < |V 1 |.

Let us now consider the coloring of G i .According to the coloring of G i-1 and those of G i+1 four cases may occur. Case 1 : χ i-1 ≤ χ p(i-1) and χ i+1 ≤ χ p(i+1) . The coloring of G i-1 uses χ i-1 colors of Γ p(i-1) and none in the set Γ p ′ (i-1) while the coloring of G i+1 needs only χ i+1 colors in Γ p(i+1) ; consequently there are χ 0 + χ 1χ i-1χ i+1 colors free in Γ 0 ∪ Γ 1 for the coloring of G i .Case 2 : χ i-1 ≤ χ p(i-1) and χ i+1 > χ p(i+1) . We have the same coloring for G i-1 as in Case 1. But the subgraph G i+1 is colored with all the colors of Γ p(i+1) together with χ i+1χ p(i+1) colors of Γ p ′ (i+1) , once again there are inΓ p ′ (i+1) at least χ p ′ (i+1)χ i-1 -(χ i+1χ p(i+1) ) free colors for the coloring of G i .Case 3 :χ i-1 > χ p(i-1) and χ i+1 ≤ χ p(i+1) . We color G i-1 with the χ p(i-1) colors of Γ p(i-1) and with χ i-1χ p(i-1) colors of Γ p ′ (i-1) . The subgraph G i+1 being colored with χ i+1 colors in Γ p(i+1) . Thus there areχ p ′ (i-1)χ i+1 -(χ i-1χ p(i-1) ) unused colors in Γ p ′ (i-1) .Case 4 : χ i-1 > χ p(i-1) and χ i+1 > χ p(i+1) . In this case G i-1 ] can be colored with all the colors in Γ p(i-1) and χ i-1χ p(i-1) colors of Γ p ′ (i-1) . Moreover the coloring of G i+1 is done with the colors of Γ p(i+1) and χ i+1χ p(i+1) additionnal colors of Γ p ′ (i+1) . All colors of Γ 0 ∪Γ 1 are used in this colorings, but just observe that χ i < M in(χ 0 , χ 1 ).Suppose first χ0 + χ 1 ≥ χ i-1 + χ i + χ i+1 .In this situation Case 4 cannot occur and there are enough free colors in Γ 0 ∪ Γ 1 for the coloring of G i . Hence χ(G) ≤ χ 0 + χ 1 .

Claim 1 Every component has at most 7 vertices

Proof Assume to the contrary that some component V i has at least 8 vertices. If ∆ i+1 ≥ 3 then ∆ ≥ 14. Hence ω(G) + ∆(G) ≥ 18 and Reed's conjecture holds for G, a contradiction. If ∆ i+1 ≤ 2 then V i+1 must be isomorphic to a a triangle by Brook's Theorem. We have thus ω(G) ≥ 5 and ∆(G) ≥ 13 and Reed's conjecture holds for G, a contradiction.

From now on, we can consider that any component has at most 7 vertices and hence, by Lemma 22, any 4-chromatic component contains a triangle.

Claim 2 No two components with chromatic number 4 are consecutive

Proof Assume to the contrary that for two consecutive components, V i and V i+1 , are such that χ i = 4 and χ i+1 = 4. If these two components are isomorphic to a K 4 then any vertex in these components has degree at least 10. Since a maximum clique of G in this case has at least 8 vertices, we have ω + ∆ ≥ 18.

If only one component is isomorphic to a K 4 (without loss of generality say that V i induces a K 4 ), then ∆ i+1 ≥ 4 by Brook's theorem and a vertex of maximum degree in V i+1 has at least 11 neighbors. Since a maximum clique of G in this case has at least 7 vertices, we have ω + ∆ ≥ 18.

If no component is isomorphic to a K 4 then ∆ i and ∆ i+1 are greater than 4 by Brook's theorem. Moreover V i and V i+1 contain at least 5 vertices each. A vertex of maximum degree in X i has hence at least 12 neighbors. Since a maximum clique of G in this case has at least 6 vertices, we have ω + ∆ ≥ 18.

In each case we have a contradiction since G satisfies Reed's conjecture.

We can thus suppose that no two consecutive components have chromatic number 4. In that case we can remark that χ(G) = 9. To end our proof, it is thus sufficient to show that ω(G) + ∆(G) ≥ 16.

Without loss of generality, assume that χ 0 = 4. By Claim 2 we have χ 2p = 3 and χ 1 = 3.

If V 0 induces a K 4 then either V 2p or V 1 contain a triangle and hence ω ≥ 7 or have no triangle and V 2p and V 1 contain at least 4 vertices each. In the first case a vertex in V 0 has at least 9 neighbors and ω(G) + ∆(G) ≥ 16. In the second case we have ω(G) ≥ 5 and a vertex in V 0 has at least 11 neighbors. We get then ω(G) + ∆(G) ≥ 16.

Assume now that V 0 does not induce a K 4 then ∆ 0 ≥ 4 by Brook's theorem. If V 2p or V 1 contain a triangle then ω ≥ 6 and a vertex of maximum degree in V 0 has at least 10 neighbors. We get then ω(G) + ∆(G) ≥ 16.

If V 2p and V 1 contain no triangle, these two sets must have at least 4 vertices by Brook's theorem and a vertex of maximum degree in V 0 has at least 12 vertices. Since ω ≥ 5 in that case, we get then ω(G) + ∆(G) ≥ 17.

In each case we have a contradiction since G satisfies Reed's conjecture.

Claim 1 in the proof of Theorem 23 suggests that Reed's conjecture holds asymptotically for expansions of odd cycles.

Proof We consider an optimal colouring of G. Let us denote p = min 0≤i≤2k χ i .

If p is even we have χ(G) ≤ ⌈ ω(G)+∆(G)+1 2 ⌉ (Corollary 17). Consequently, in the following, we suppose that p is odd.

Let j ∈ {0, . . . 2k} such that χ j = p. We choose some colour used for the colouring of G j , say c j and we denote S j as the set of vertices of G j being coloured with c j .

We set G ′ j = G[V j -S j ] and for i = j we set

) is an odd expansion such that the minimum chromatic number of its components is p -1. Since p -1 is even, again by Corollary 17, we have

But now, given an optimal colouring of G ′ , we can obtain an optimal colouring of G with only one additionnal colour (for the vertices of S j ). In other words, χ(G) ≤ χ(G ′ ) + 1. The result follows.

In a further paper [START_REF] Fouquet | Reed's conjecture for graphs with few P 5 's[END_REF], we will use the above results in order to extend a number of the results given in [START_REF] Aravind | Bounding χ in terms of ω and ∆ for some classes of graphs[END_REF].