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Abstract: The Revenue Management (RM), namely theing and the inventory
control of a perishable product, is usually usedingrove services marketing
efficiency. While booking a flight, the manager hasallocate seats to various fare
classes. Then, he has to assess the consequemceuofent decision on the future
stream of revenue, i.e. accept an certain incomasgrvation or wait for a possible
higher fare demand, but later. Since its practieeolnes omnipresent this last decade,
this paper presents some basics of Dynamic PrognagniDP) through the most
common model, the dynamic discrete allocation eksource ton fare classes. The
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optimizations, are studied in details.
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INTRODUCTION

For decades, we have learned to revere the latfeRBevenue Management
(RM). lts spirit of pricing and of inventory contres widely shared among various
industries, major companies and academic reseatchi®@venue maximization is
usually reached by comparing a current discourd faguest with an expected higher
fare request in the future. The well-known EMRS eld@elobaba, 1989), which is an
extension of Littlewood’s (1972) model, gives amtigic solution but assume that the
demand is static and will not evolve during the lking period. However, new low cost
carrier entrants, fare transparency from Interrsee fsearch engines and changing
customer purchasing patterns are the major forashipg airline revenue managers to
adapt their optimization models. In addition, usimgditional forecasting and
optimization models that assume fare class indegrered causes continuous erosion of
yield. Specially when there is excess capacity, dlmplus seats flows down the fare
structure, allowing high yield customers to buy dowater, this behavior affects
forecast,je expecting lower demand for high fare class inftitare, and leads revenue

managers to protect less seats for it.

Almost RM situations can usefully be modeled as d&wit Programming
problems (hereafter DP) because those modelstiékaccount future possible booking
decisions in assessing that current decision. M@medP allows to relax the early
birds hypothesis (low contribution customers baokadvance of the high contribution
ones). The optimal controls are then time-dependsné function of the remaining
capacity. Dynamic pricing is the special case whatee is the control used by the

managers.

Nonetheless, the practicing of Bellman equatio®6T) is relatively new in RM

since none of the pioneering papers usé. MRGill and Van Ryzin (1999) conclude

! The basics of Revenue Management can be fountkifeP(1989), Belobaba (1989) or Kimes
(1989) among others. For an overview, check Mc&ildl Van Ryzin (1999) or Bitran and Caldentey
(2003) and more recently Chiang, Chen and Xu (208Wm)ith et al (1992) report the experience of
American Airlines while implementing Revenue Managat in a worldwide scale.
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that: “Dynamic formulations of the revenue manageimgroblem are required to
properly model real world factors like cancellaspverbooking, batch bookings, and
interspersed arrivals. Unfortunately, DP formulasipparticularly stochastic ones, are
well known for their unmanageable growth in sizeewheal-world implementations are
attempted. Usually, the only hope for dynamic ofgation in these settings lies in
identification and exploitation of structural profes of optimal or near optimal
solutions.K nowledge that an optimal solution must be of a control-limit type or be
represented by a monotonic threshold curve can be invaluable in development of
implementable systems. The existing literature has already identifiedtsstructures in
special cases of the revenue management problewevieo, there are difficult areas

still requiring work.” (emphasis added).

The goal of this research is to review some DynaRicgramming models
dedicated to Revenue Management in order to pravitgid basis for future work. The
structure is the following. The first part, 81, faulates both the RM problematic and its
DP methodology. Then, the problem of setting bogkimits and prices using DP

approach is addressed in the second part, §2.

1 DyNAMIC PROGRAMMING OF REVENUE MANAGEMENT OPTIMIZATION

After reviewing the RM problem, a brief review dfet literature of DP models
applied to RM is presented in §1.1 and a mathemlatozmulation is in §1.2. As an
example, consider the following case. You are mengag hotel of two rooms for the
next weekend (the Friday and Saturday nights), mgayou have to sell 4 units of a
same resource, marketed through 3 products. Yorgehsl00 for a room per night,
except for the guests who stay for 2 consecutightai The latter costs $160. This is
Monday and you check on your web site the actu#éivipc in order to confirm
reservation. There are 2 requests for the Fridghitrat $100 each), 1 request for the

Saturday night (still at $100). In the same timeurytravel agent calls you to book 2
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couples for 2 nights (so the price would be $166hgaWhat should you do? The
Revenue Management can help to choose which rexgieestcept.

In order to maximize operating revenue, RM is thacpss by which a manager
controls the availability of a product or serviaearketed with a differential and
dynamic pricing. Controls can be effective by vagyprices, setting booking limits and
managing fencés This approach is in line with Talluri and Van RyZ2004), who
supported both price and quantity-based modelshbf RRost authors often define RM
as the application of control and pricing stratedie sell the right capacity to the right
customer, in the right place, at the right time ahdhe right price (Kimes, 1989). RM
has proven its potential impact on profitability the past (Smith, Leimkulher and
Darrow, 1992).

1.1 Literature review of DP models to RM optimization.

Dynamic programming addresses how to make optinegistbns over time
under uncertain conditions and to control a systdast RM situations can be analyze
assuming a discrete-state and a discrete time avénite-horizon modeling. The
methodological reference is the one of Bertsek@93)L Lee and Hersh (1993) is the
most popular reference with their model for dynamseat inventory control. Gallego
and Van Ryzin (1994) are commonly cited as thereefee in dynamic pricing model
using dynamic programming. The table 1 summaribesliterature according to four
criteria. (i) A paper could consider a single prcdg@at various price) or multiple
products (depending on purchase restrictions crgaddent demands for example). (ii)
A paper could consider a static policy (assumirgiret order of booking arrivals) or
allow for a dynamic policy (not assuming the ednitgls hypothesis). (iii) A paper could

2 n the previous example, one can easily see Hieafitst come first serve rule is not optimal for
the hotel. The fence of “stay at least two nighthgt can justify the discount rate and help taease
revenue, is not totally efficient. Only a bookinignit of one “Two nights” package or a bid price feach
night are optimal.
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consider various forms of demand process. (iv) pepaould consider either a single
resource for 1 te products or multiple resources (such as an airietevork of hubs

and spokes).

Table1: classification of literature

Product

Single Curry (1990); Wollmer (1992); Brumelle and McGill993);
Lee and Hersh (1993); Gallego and Van Ryzin (1984)an
and Mondshein (1995); Robinson (1995); Lautenbacret
Stidam (1999); Zhao and Zheng (2000); You (2001)

Gallego and Van Ryzin (1997); Talluri and Van Ry£ii998);

Multiple Feng and Xiao (2001); Kleywegt (2001); Bertsimasd an
Popescu (2003); El-Haber and El-Taha (2004); Bedsiand
De Boer (2005)

Policy
Static Curry (1990); Wollmer (1992); Brumelle and McGill993)
Dynamic Lee and Hersh (1993); Gallego and Van Ryzin (1994);

Robinson (1995); Gallego and Van Ryzin (1997); Uraland
Van Ryzin (1998); Liang (1999); You (1999); Lautesher
and Stidam (1999); Feng and Gallego (2000); Ferth>dao
(2001); Kleywegt (2001); You (2001); Bertsimas dmpescu
(2003); El-Haber and El-Taha (2004)

Both Bertsimas and De Boer (2005)
Demand

Deterministic Curry (1990); Wollmer (1992); Brumelle and McGill993);
Robinson (1995); Kleywegt (2001)

Stochastic Lee and Hersh (1993); Gallego and Van Ryzin (19&4)jego

and Van Ryzin (1997); Talluri and Van Ryzin (1998&ng and
Gallego (2000); Feng and Xiao (2001); You (2001grtBimas
and Popescu (2003); El-Haber and El-Taha (2004)

Both Bertsimas and De Boer (2005)
Non homogeneous Zhao and Zheng (2000)
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Resour ces

Single Wollmer (1992); Brumelle and McGill (1993); Lee ahlgrsh
(1993); Gallego and Van Ryzin (1994); Robinson &)99
Lautenbacher and Stidam (1999); Feng and GalleGo0)2
Zhao and Zheng (2000); Kleywegt (2001); You (2001);
Bertsimas and De Boer (2005)

Network Curry (1990); Bitran and Mondshein (1995); Gallegw Van
Ryzin (1997); Talluri and Van Ryzin (1998); You @9; Feng
and Xiao (2001); Bertsimas and Popescu (2003); &dd and
El-Taha (2004)

The way the behavior of customer is incorporatetheoptimization process is
the next challenge. The following of this part abBhborrows to Talluri and Van Ryzin
book (2004; p. 651).

1.2 A simple formulation of RM with a Dynamic Program

This paper choose a traditional RM problem by abersngn > 2 fare classes.
Demand for a single product is then consideredrelis@s well as capacity (assuming a
single resource to simplify). Dynamic models do assume the traditional hypothesis
of early birds. Demand can arrive in a non-striatréasing order of revenue values.
Demand is assumed independent between classevantinoe and also independent of
the capacity controls. Theclasses are indexed pyuch thap,> p>...> p>... > pn.

Multiple booking is not considerdd

Over time, thissystemevolves as a function of bottontrol decisionsand
random disturbanceaccording to aystem equatiomhe system generates rewards that

are a function of both the state and the contraisitens. The objective is to find a

% Usually, researchers consider that the time cadilided in small enough intervals such that
only one booking arrives. You (2001) develops a eh@tlowing for multiple booking.
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control policythat maximizes the total expected revenues frars#tling period. There
are T time-periods. Time, indexed hyuns reverse so that 1 is the last period artd
= T is the first period. By the way,ndicates the time remaining before the product is

consumed or loses its value. Applying basics oft®RM gives the following:

* X(t) is, as the state of a system, the remaining dpaanstrained between 0
and the full capacityC (both cancellation and overbooking are not

considered).

* w(t) is the random disturbance representing the coessrmemand to the

firm for productj. The probability of an arrival of clagsn the periodt is

Al'. The horizon is divided into decision periods that small enough so

n .
that no more than one customer arrives during padbd, thusZ/LJ <1.
j=1
* u(t) is the control decision, assumed discrete andtcained to a finite set
that may depend on tinteand the current stai€t). u(t) is then the quantity
u of demand to accept. In the simplest statemeistconstrained to be either
0 or 1. The amount accepted must be no more trerapacity remaining,

Sousx.

Few remarks must be written down. First, as theaganwaits for the demand
to realize to make his or her decision - accepte@ct an incoming booking request -
the random disturbance is observable. In other syaihe can build the control action

on perfect knowledge of the disturbahce

Second, passengers are allowed to arrive in amgr ¢noterspersed arrivals), in
contrast to static models which assume sequentiakibg classes or low-before-high

fares. Accepting this early-birds hypothesis letmshink in terms of thevumber of

* This assumption allows to greatly simplify botle tmathematical formulation and the optimal
control policies because the optimization problemld be spread in multiple subperiods optimization
problems that are independents between them. Sae&iTBand Van Ryzin (2004, p. 654) to understand
the full consequence of this assumption.
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booking asked per period.€. the booking limit) and only require the total derd for
each classD;. However, the optimal control would be “static”’eaming constant over
time (how much to protect or when to reject bookiag the manager never came back
on his or her decision. Another approach would hbgen to reason foonly one
booking request. The incoming requests are not ordered by prideome needs to
model the demand process and then the optimalataritanges every period according

to the remaining capacity — so “dynamic” means tiea¢ adjustment.

o g(x(t), u(t), w(t)) is a real-valued reward function, specifying thgenue in
periodt as a function of the parameters. The total revaswelditive and
terminal one is assumed to be zero whatever happemeely that the

remaining capacity after the last stage is no value
The objective is to maximize the total expectedermme for T periods
E{i gt(x(t),u(t),w(t))} by choosing T control decisiongr, ..., Uz, U;. This is a
t=1
Markovian control because the control depends onlthe current state and the current

time, and no other information is needed, suchasistory of the process up to time.

The collection {i, ..., Uy, us} is called a policy.

For a given initial statg(T) = x, the expected (total) revenue of a policy is:
T

VF(x) = E{Z g, (x(0), u (x(1)), W(t))} :
t=1

In other words, this is the total expected reveth&a can be generated when
there areT decision periods (remaining) ard products to sell. E[]] means the
expectation is estimated ovethe fare classes or products. The optimal potiepoted
u*, is one that maximized/;"'(x) and is simply writtenVr(x). The principle of
optimality, due to Bellman (1957), lies at the healr DP. It says that if a policy is
optimal for the original problem, then it must bgtimal for any subproblem of this
original problem as well. Let say that itf, u.1*, ..., ui*} is not optimal for the t-

subproblem and another polidy, yields a greater expected reward, then the optima
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of u* is contradicted. Because the policy%,..., U41*, U 4,..., 01} would produce a
strictly greater expected revenue than does theypat.

Applying this principle leads to use a recursivegadure for finding the optimal
policy. The following value functiol(x) is theunique solution to the recursion shown

in equation 1.1., for atland allx.

Once the value of the demand is observed, the \adlues chosen to maximize
the current period revenue plus the revenue to go,ppu + Vi1 (X - U) subject to the
constraintu [ {0,1}. This sentence leads to think in terms okV£ E[max{}] instead
of V(X) = max{E[]} as in traditional DP, due to the preus assumption about the
random disturbance. The value function enterindopet; Vi(X), is then the expected
value of this optimization (namely the maximum) lwiespect of the demand and is
given in the form of the Bellman equation:

Equation 1.1.: V,(X) = E[ rmr{l&f({piu +Vt_1(x—u)}}

With the boundaryy(x) = 0, whatever ix, andV;(0) = 0, whatever i$. This

means that the unsold inventory left the last dayseless and a sunk cost.

The motivation of Equation 1.1. uses the Bellmaniisciple of optimality. Since
Via(X - U) is the optimal expected value of the future rexegiven the statex(- u) in
the next periodt -1, the optimal value of thesubproblem should be the result of
maximizing the sum of the current expected rewduEand the expected reward for
thet - 1 subproblemE[V.1(x - U)]. This is the optimal solution for the perib@nd the
process can be restarted until reaciling
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2 APPLICATION OF DP To FIND OuT BOOKING LIMITS AND PRICING

ISSUES.

The RM problem is basically formulated as a margio@e, such that the
opportunity cost oexpected marginal value (hereafter EMV) becomes the cornerstone
of any model. The properties that any control mhat to be optimal are shown in
82.1. Nevertheless, there exists various contqmiesented in §82.2, as managers in
practice figure out few control types such as atrobimit type or threshold type.
There is also a close correspondence between DRIrand Belobaba’'s EMSR model

(see appendix A).

2.1 The expected marginal value as the key solution

The values/* that maximize the right-hand side of equation. fot eacht andx
form an optimal control policy for this model. Thelution can be found by evaluating
the EMV at period of thex™ unit of capacity.

Equation 1.2.AV,(X) =V,(X) -V,(x- 1)

The most important concerns how this marginal véleleaves with changes in
the capacity leftx and thet remaining periods. The expected marginal valu&;0f)

satisfied 0x, t:

() AVi(x+1) < AVy(X)

® There are different proofs of these statementsvever, the Talluri and Van Ryzin (2004, p.
38) proof is one of the clever. Hence, the seatation problem and the dynamic pricing problensfat
well-known sufficient conditions for an optimal ot to be monotonic. These problems translate ¢o th
existence of time-dependent controls. In other wpthe optimality value function is concave and-non
increasing, from which it follows that an optimalraission policy is monotonic in the state.
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EMV is decreasing irx, meaning that the opportunity cost of using ongemo
unit of the capacity increases when there aredesducts available. In other words, the

fewer products on hand the more the chance to lacsde.
(i) AV (X2 AVi(X)

EMV is increasing in time period left or is decriegsas time elapses, meaning
that the opportunity cost of using one more unithef capacity is higher when the time
to go is long than when it's short. In other wortte longer the remaining time the
more the chance to use the capacity efficientlg fitobability of a customer requesting

a full fare is high). The same conclusions applgantinuous modets

These two properties are intuitive and greatly simplify the control decisions
because the equation 1.1. can be rewritten with equation 1.2. (proof in appendix B).

Equation 1.3.: V,(X) =V, (X) + E[rg{gz}({pju —A\/t_l(x—u);O}}

The meaning of this equation is the following. Maue of the revenue to go
today (int) is equal to the revenue to go tomorrow (thatlisaaly optimized using a
recursive method) plus the expected maximum reveitiee decision to make (that is
the fare price net of the opportunity cost if pesil. The problem is formulated as a
backward-recursion dynamic program. In other woumds,optimal booking policy is
reached by the assessment of accepting a bookiugse relative to the decrease in
expected total revenue associated with removing proeluct from the available

inventory.

aV (X) I) w < O and (”
X

® Equation 1.2. becomeAV; (X) = a’— and ( i) 02:3/22)() >0
X
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2.2 Types of controls

Three types of controls can be derived, studyireggdign of value of the max
function. Needless to say that relaxing the hypgthef early birds implies that the
protection levels, the booking limits and the brites are time-dependent because the
random disturbance associated with the value fanalepends on the probability of an
arrival of clasg in the period. In order to an efficient optimization, the manageist
know the process of demand for each fare classtower(.e. the booking curve).

2.2.1 Protect levels and nested booking limits

First consider controlling the revenue throughhe accepty= 1) or reject§ =
0) decision of the current demand. Sidd&(x) is decreasing in, it follows thatpu -
AVi(x - U) is increasing ix. For a givent, it is optimal to keep accepting incoming
requests until the previous term becomes negativiteo upper bound mil; ; x} is

reached, whichever comes first.
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Figure 2-1: critical booking capacity

piu - AVia(X - U)

A
Pir1 - AVA(X)

Reject zone :  Accept zone

y* b1

Legend: for a givent, the decision to accept or reject a request watie jf+1
depends orx the level of capacity left. The critical bookingpacity separates the
accept zone and the reject zone.

The protection level;,* is the number of units to save for customers who
request, or will request in the future, clgser higher (i.ej, j - 1, ..., 1). It is the
maximum quantityx such that the fare level is too low to compenshagedpportunity

cost, justifying the reject decision.
Equation 2-1: yi* = max {X: pj+1 <AVi(¥)}, j=1,...,n-1.
The optimal control at the peridd 1 is
Equation 2-2: u*(t+1 ;X ; Djr1) = min{(x - y;*) " ; Dj+1 }-

The booking limith*;+ 1 is the quantity is excess of the protection lexely(*) if
positive or zero otherwise. This is the maximumcgpavailable for clags+ 1 booking
request. Those booking limits are nested, meanitay & class request can be
withdrawn in any of thg class and above (tn). By the way, this set of protected
classesj(j - 1, ..., 1) are proposed or “open” to customersdpeienied a request fare

class below. The policy then is “simply accept requests fasine, first serve until the
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capacity thresholdd*; is reached or the time ends, whichever come fifst: an

illustration, consider the case where 3 and p >, > ps. and the figure 2.2.

Figure 2-2 : Casewith 3 fare classes

Piu - AVi1(X - u)

N p1 - AVH(X)
/// p2 B AV((X)
Ps3 - AV((X)
—
C
y*2 b*3
............................... >
y*1 b*,
G- D>
b*41

2.2.2 The control by time thresholds

Second, consider controlling the revenue throyghe time left, to accepu(=
1) or reject § = 0) an incoming request. Based on previous prigsedf equation 1.2.,
one can show that the optimal policy is characeeriby time thresholds. During the
booking horizon, they are points in time before ebhiequests are rejecfednd after

which requests are accepteSinceAVi(x) is increasing i, it follows thatpju - AVi.1(X

" Because one expects to receive booking orders fi@nts willing to pay high fare (high
opportunity cost), justifying rejection.

8 Because it's too late to expect high fare requestsome (low opportunity cost), in such a
quantity to fulfill the capacity.
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- U) is decreasing in. Thus, it is optimal to keep refusing incoming uests (not

increasau in a static formulation) until the previous ter@cbmes positive.

Figure 2-3: critical timethreshold

Piu - AV¢.q(X - U)
A

. I >t
\T

Accept zonei Reject zone

Y B

Legend: For a given booking capacity a request for a seat of fare clasa
decision period is accepted if time remaining is short (less tNgnthe critical time
threshold) and rejected otherwise. The caps dethatiethe control is expressed on a
time axis instead of a quantity axis.

This proposition is also easy to understand with figure 2-1. SincAVy(X) is
increasing int, one should accept more booking for a giyamhen remaining time
lessens. In other words, as time elapses, the EbtVedses and the line lifts up. Then

the optimal protection levef*; will shift to the left (decrease). The nested ectibn

i i *t-1 *t *t+l
structure is kind of..< y*| " <y*, <y* " <.
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2.2.3 Bid prices

Finally, the optimal control can also be implementarough a table of bid
prices, defined asi.1(X) = AVy(X). A bid price is the minimum amount of money to
accept in exchange of a unit of capacity. Undednagsumptions (Gallego and Van
Ryzin, 1994, Talluri and Van Ryzin, 1998), the omi price patlTg(x) is decreasing in
x and increasing ih. Dynamic pricing is becoming a real challenge datines since
low cost carriers are introducing less restricta$. For example, Ryanair or Easyjet
are not able to be sure that the more price seasitassengers (low fare) book first.
Then they apply a dynamic pricing strategy for agk product without price

discrimination between their customers.

3 DISCUSSION AND CONCLUSION

The use of Dynamic Programming in Revenue Managerhelps to decide
whether to accept or reject an incoming bookingmestion with more realism than
older methods. There are two main points. One gitipa of DP in RM is to relax the
low-before-high fare order of arrival bookings.gdractice, the DP provides tloptimal
policy for the RM problem, by evaluating the whole trégossibilities and making at
each point in time the decision that would implygher future expected revenues,
processing backward recursion. The dark side isiticecase in the computation
difficulties according to the dimension of the peh. This means that for a single
product with 100 units to sell over a 200 time pds, the number of iterations is 100 x
200 = 20 000. But for three products using the seeseurce, this number becomes 100
x 200° = 800 millions. Saranathan and Zhao (2005) haatedlthe implementation of
DP in United Airlines and that the company expectsto 2 % increase in revenue ($
158 billions of 2005 turnover).
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The second interest of DP approach, and the manusvfor future research, is
that it allows RM to incorporate the consumer chait the optimization process. El-
Haber and El-Taha (2004) formulate a dynamic prnogneng model to solve the seat
inventory control problem for a two-leg airline twitealistic elements of consumer
behavior. Ahead of the Origin and Destination folaion, they consider cancellation,
no-shows and overbooking. Following Talluri and VRyzin (2003) work, Van Ryzin
and Vulcano (2006) consider a revenue managemetwork capacity control problem
in a setting where heterogeneous customers chaosegathe various products offered
by a firm (e.g., different fight times, fare classand/or routings). Customers may
therefore substitute if their preferred products ot offered, even buy up. Their choice
model is very general, simply specifying the praligbof purchase for each fare
product as a function of the set of fare produéfsred. Overall, the value of our paper
is to facilitate the understanding of more complkaxd probably more realistic, models

of Revenue Management.
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5 APPENDICES

5.1 Correspondence between DP and EMSR models

The recommendation about booking acceptance of D&eln is similar to the
one of EMSR models. For example, suppose theredsseat left to sell, and a potential
customer has just called and asked to make a agg@mfor a discount fare. The flight

will take off tomorrow. Thus T=1Ip =2 ( = 1 — full fare — to 2 — discount fare —), and

A= Pr{Dl > ]} is the probability of an arrival of clagsn the periodl before departure.

Since the potential discount customer hold the, life= P{D, =1} =1. Then equation

1.1. becomes:

Vi) = E[ufy@{pju V4 (x- u)}}

2

V(x) = Lg['?ﬁ( E{z pju:| = Ey{g-l)}(E[ Pt pzu] = Eg{g'f}{/ﬁ P+ A pzu}

=1

Then, the manager has to reject whilel,p @)+ p,(0)is greater
thanA, p, (0) + p,(@) . In other words, the policy is close fare clpssl whenA, > %
or when the probability of spoilage is lower thae tliscount rate offered to customers :

P{D, <1} =P =P This is the EMSR rule assuming there is only seat to sell next
1

period.
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5.2 Appendix B

%09 = E max{pu+Ve (x|

= ES{%{E[ p;ul + E[V,, (x— u)]}

= ma{ELpyul + EIV (- 0) =V (9 + Vi, (0]}

= max{ELpyu] + BNV, (¢ 1) ~Vo, (9] + EV,, (9]

The last term depends neither on the probabilitgrofarrival in period or the
decisionu made int. In other words, this means that the optimizabébrihe revenue
from t-1 to 1 depends on neither what have been doneebaty what happens today.
Moreover, this is the true reason why the modéligt assuming the demand is known
in t before the decision to make. This term is theraktpV,.1(X) and can be written out

of the E[] and the max functions.

V(9 =Ve (9 + B max{p,u-av,,(x-u} | QED
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