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Abstract: The Revenue Management (RM), namely the pricing and the inventory 
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efficiency. While booking a flight, the manager has to allocate seats to various fare 
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higher fare demand, but later. Since its practice becomes omnipresent this last decade, 
this paper presents some basics of Dynamic Programming (DP) through the most 
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optimizations, are studied in details. 
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INTRODUCTION 

 

For decades, we have learned to revere the letters of Revenue Management 

(RM). Its spirit of pricing and of inventory control is widely shared among various 

industries, major companies and academic researchers. Revenue maximization is 

usually reached by comparing a current discount fare request with an expected higher 

fare request in the future. The well-known EMRS model (Belobaba, 1989), which is an 

extension of Littlewood’s (1972) model, gives an heuristic solution but assume that the 

demand is static and will not evolve during the booking period. However, new low cost 

carrier entrants, fare transparency from Internet fare search engines and changing 

customer purchasing patterns are the major forces pushing airline revenue managers to 

adapt their optimization models. In addition, using traditional forecasting and 

optimization models that assume fare class independence causes continuous erosion of 

yield. Specially when there is excess capacity, the surplus seats flows down the fare 

structure, allowing high yield customers to buy down. Later, this behavior affects 

forecast, ie expecting lower demand for high fare class in the future, and leads revenue 

managers to protect less seats for it. 

Almost RM situations can usefully be modeled as Dynamic Programming 

problems (hereafter DP) because those models take into account future possible booking 

decisions in assessing that current decision. Moreover, DP allows to relax the early 

birds hypothesis (low contribution customers book in advance of the high contribution 

ones). The optimal controls are then time-dependent as a function of the remaining 

capacity. Dynamic pricing is the special case where price is the control used by the 

managers. 

Nonetheless, the practicing of Bellman equations (1957) is relatively new in RM 

since none of the pioneering papers use DP1. McGill and Van Ryzin (1999) conclude 

                                                 

1 The basics of Revenue Management can be found in Pfeifer (1989), Belobaba (1989) or Kimes 
(1989) among others. For an overview, check McGill and Van Ryzin (1999) or Bitran and Caldentey 
(2003) and more recently Chiang, Chen and Xu (2007). Smith et al. (1992) report the experience of 
American Airlines while implementing Revenue Management in a worldwide scale. 
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that: “Dynamic formulations of the revenue management problem are required to 

properly model real world factors like cancellations, overbooking, batch bookings, and 

interspersed arrivals. Unfortunately, DP formulations, particularly stochastic ones, are 

well known for their unmanageable growth in size when real-world implementations are 

attempted. Usually, the only hope for dynamic optimisation in these settings lies in 

identification and exploitation of structural properties of optimal or near optimal 

solutions. Knowledge that an optimal solution must be of a control-limit type or be 

represented by a monotonic threshold curve can be invaluable in development of 

implementable systems. The existing literature has already identified such structures in 

special cases of the revenue management problem; however, there are difficult areas 

still requiring work.” (emphasis added). 

The goal of this research is to review some Dynamic Programming models 

dedicated to Revenue Management in order to provide a solid basis for future work. The 

structure is the following. The first part, §1, formulates both the RM problematic and its 

DP methodology. Then, the problem of setting booking limits and prices using DP 

approach is addressed in the second part, §2. 

 

1 DYNAMIC PROGRAMMING OF REVENUE MANAGEMENT OPTIMIZATION 

 

After reviewing the RM problem, a brief review of the literature of DP models 

applied to RM is presented in §1.1 and a mathematical formulation is in §1.2. As an 

example, consider the following case. You are managing a hotel of two rooms for the 

next weekend (the Friday and Saturday nights), meaning you have to sell 4 units of a 

same resource, marketed through 3 products. You charge $100 for a room per night, 

except for the guests who stay for 2 consecutive nights. The latter costs $160. This is 

Monday and you check on your web site the actual activity in order to confirm 

reservation. There are 2 requests for the Friday night (at $100 each), 1 request for the 

Saturday night (still at $100). In the same time, your travel agent calls you to book 2 
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couples for 2 nights (so the price would be $160 each). What should you do? The 

Revenue Management can help to choose which requests to accept. 

In order to maximize operating revenue, RM is the process by which a manager 

controls the availability of a product or service, marketed with a differential and 

dynamic pricing. Controls can be effective by varying prices, setting booking limits and 

managing fences2. This approach is in line with Talluri and Van Ryzin (2004), who 

supported both price and quantity-based models of RM. Most authors often define RM 

as the application of control and pricing strategies to sell the right capacity to the right 

customer, in the right place, at the right time and at the right price (Kimes, 1989). RM 

has proven its potential impact on profitability in the past (Smith, Leimkulher and 

Darrow, 1992). 

 

1.1 Literature review of DP models to RM optimization. 

 

Dynamic programming addresses how to make optimal decisions over time 

under uncertain conditions and to control a system. Most RM situations can be analyze 

assuming a discrete-state and a discrete time over a finite-horizon modeling. The 

methodological reference is the one of Bertsekas (1995). Lee and Hersh (1993) is the 

most popular reference with their model for dynamic seat inventory control. Gallego 

and Van Ryzin (1994) are commonly cited as the reference in dynamic pricing model 

using dynamic programming. The table 1 summarizes the literature according to four 

criteria. (i) A paper could consider a single product (at various price) or multiple 

products (depending on purchase restrictions or independent demands for example). (ii) 

A paper could consider a static policy (assuming a strict order of booking arrivals) or 

allow for a dynamic policy (not assuming the early birds hypothesis). (iii) A paper could 

                                                 

2 In the previous example, one can easily see that the first come first serve rule is not optimal for 
the hotel. The fence of “stay at least two nights”, that can justify the discount rate and help to increase 
revenue, is not totally efficient. Only a booking limit of one “Two nights” package or a bid price for each 
night are optimal. 
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consider various forms of demand process. (iv) A paper could consider either a single 

resource for 1 to n products or multiple resources (such as an airline network of hubs 

and spokes). 

 

 

Table 1 : classification of literature 

 Product 

Single 
 
 
 
 

Multiple 

Curry (1990); Wollmer (1992); Brumelle and McGill (1993); 
Lee and Hersh (1993); Gallego and Van Ryzin (1994); Bitran 
and Mondshein (1995); Robinson (1995); Lautenbacher and 
Stidam (1999); Zhao and Zheng (2000); You (2001) 

Gallego and Van Ryzin (1997); Talluri and Van Ryzin (1998); 
Feng and Xiao (2001); Kleywegt (2001); Bertsimas and 
Popescu (2003); El-Haber and El-Taha (2004); Bertsimas and 
De Boer (2005) 

 Policy 

Static 

Dynamic 
 
 
 
 
 

Both  

Curry (1990); Wollmer (1992); Brumelle and McGill (1993) 

Lee and Hersh (1993); Gallego and Van Ryzin (1994); 
Robinson (1995); Gallego and Van Ryzin (1997); Talluri and 
Van Ryzin (1998); Liang (1999); You (1999); Lautenbacher 
and Stidam (1999); Feng and Gallego (2000); Feng and Xiao 
(2001); Kleywegt (2001); You (2001); Bertsimas and Popescu 
(2003); El-Haber and El-Taha (2004) 

Bertsimas and De Boer (2005) 

 Demand 

Deterministic 
 

Stochastic 
 
 
 

Both 

Non homogeneous 

Curry (1990); Wollmer (1992); Brumelle and McGill (1993); 
Robinson (1995); Kleywegt (2001) 

Lee and Hersh (1993); Gallego and Van Ryzin (1994); Gallego 
and Van Ryzin (1997); Talluri and Van Ryzin (1998); Feng and 
Gallego (2000); Feng and Xiao (2001); You (2001); Bertsimas 
and Popescu (2003); El-Haber and El-Taha (2004) 

Bertsimas and De Boer (2005) 

Zhao and Zheng (2000) 
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 Resources 

Single 
 
 
 
 

Network 

Wollmer (1992); Brumelle and McGill (1993); Lee and Hersh 
(1993); Gallego and Van Ryzin (1994); Robinson (1995); 
Lautenbacher and Stidam (1999); Feng and Gallego (2000); 
Zhao and Zheng (2000); Kleywegt (2001); You (2001); 
Bertsimas and De Boer (2005) 

Curry (1990); Bitran and Mondshein (1995); Gallego and Van 
Ryzin (1997); Talluri and Van Ryzin (1998); You (1999); Feng 
and Xiao (2001); Bertsimas and Popescu (2003); El-Haber and 
El-Taha (2004) 

 

The way the behavior of customer is incorporated in the optimization process is 

the next challenge. The following of this part almost borrows to Talluri and Van Ryzin 

book (2004; p. 651). 

 

1.2 A simple formulation of RM with a Dynamic Program 

 

This paper choose a traditional RM problem by considering n > 2 fare classes. 

Demand for a single product is then considered discrete as well as capacity (assuming a 

single resource to simplify). Dynamic models do not assume the traditional hypothesis 

of early birds. Demand can arrive in a non-strict increasing order of revenue values. 

Demand is assumed independent between classes and over time and also independent of 

the capacity controls. The n classes are indexed by j such that p1> p2>…> pj>… > pn. 

Multiple booking is not considered3. 

Over time, this system evolves as a function of both control decisions and 

random disturbances according to a system equation. The system generates rewards that 

are a function of both the state and the control decisions. The objective is to find a 

                                                 

3 Usually, researchers consider that the time can be divided in small enough intervals such that 
only one booking arrives. You (2001) develops a model allowing for multiple booking. 
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control policy that maximizes the total expected revenues from the selling period. There 

are T time-periods. Time, indexed by t, runs reverse so that t = 1 is the last period and t 

= T is the first period. By the way, t indicates the time remaining before the product is 

consumed or loses its value. Applying basics of DP to RM gives the following: 

• x(t) is, as the state of a system, the remaining capacity constrained between 0 

and the full capacity C (both cancellation and overbooking are not 

considered). 

• w(t) is the random disturbance representing the consumer's demand to the 

firm for product j. The probability of an arrival of class j in the period t is 

j
tλ . The horizon is divided into decision periods that are small enough so 

that no more than one customer arrives during each period, thus 1
1

≤∑
=

n

j

j
tλ . 

• u(t) is the control decision, assumed discrete and constrained to a finite set 

that may depend on time t and the current state x(t). u(t) is then the quantity 

u of demand to accept. In the simplest statement, u is constrained to be either 

0 or 1. The amount accepted must be no more than the capacity remaining, 

so u≤x.  

Few remarks must be written down. First, as the manager waits for the demand 

to realize to make his or her decision - accept or reject an incoming booking request - 

the random disturbance is observable. In other words, s/he can build the control action 

on perfect knowledge of the disturbance4. 

Second, passengers are allowed to arrive in any order (interspersed arrivals), in 

contrast to static models which assume sequential booking classes or low-before-high 

fares. Accepting this early-birds hypothesis leads to think in terms of the number of 

                                                 

4 This assumption allows to greatly simplify both the mathematical formulation and the optimal 
control policies because the optimization problem could be spread in multiple subperiods optimization 
problems that are independents between them. See Talluri and Van Ryzin (2004, p. 654) to understand 
the full consequence of this assumption. 
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booking asked per period (i.e. the booking limit) and only require the total demand for 

each class, Dj. However, the optimal control would be “static”, meaning constant over 

time (how much to protect or when to reject booking) as the manager never came back 

on his or her decision. Another approach would have been to reason for only one 

booking request. The incoming requests are not ordered by price but one needs to 

model the demand process and then the optimal control changes every period according 

to the remaining capacity – so “dynamic” means real time adjustment.  

• gt(x(t), u(t), w(t)) is a real-valued reward function, specifying the revenue in 

period t as a function of the parameters. The total revenue is additive and 

terminal one is assumed to be zero whatever happens; namely that the 

remaining capacity after the last stage is no value.  

The objective is to maximize the total expected revenue for T periods 

( )







∑

=

T

t
t twtutxgE

1

)(),(),( by choosing T control decisions uT, …, u2, u1. This is a 

Markovian control because the control depends only on the current state and the current 

time, and no other information is needed, such as the history of the process up to time. 

The collection {uT, …, u2, u1} is called a policy. 

For a given initial state x(T) = x, the expected (total) revenue of a policy is: 

( )






= ∑
=

T

t
ttT twtxutxgExV

1

)()),((),()(µ . 

In other words, this is the total expected revenue that can be generated when 

there are T decision periods (remaining) and x products to sell. E[] means the 

expectation is estimated over j, the fare classes or products. The optimal policy, denoted 

u*, is one that maximizes VT
u*(x) and is simply written VT(x). The principle of 

optimality, due to Bellman (1957), lies at the heart of DP. It says that if a policy is 

optimal for the original problem, then it must be optimal for any subproblem of this 

original problem as well. Let say that if {ut* , ut-1* , …, u1* } is not optimal for the t-

subproblem and another policy, û, yields a greater expected reward, then the optimality 
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of u* is contradicted. Because the policy {uT* ,…, ut+1* , û t,…, û1} would produce a 

strictly greater expected revenue than does the policy u*. 

Applying this principle leads to use a recursive procedure for finding the optimal 

policy. The following value function Vt(x) is the unique solution to the recursion shown 

in equation 1.1., for all t and all x. 

Once the value of the demand is observed, the value of u is chosen to maximize 

the current period t revenue plus the revenue to go, or pj.u + Vt-1 (x - u) subject to the 

constraint u ∈ {0,1}. This sentence leads to think in terms of V(x) = E[max{}] instead 

of V(x) = max{E[]} as in traditional DP, due to the previous assumption about the 

random disturbance. The value function entering period t, Vt(x), is then the expected 

value of this optimization (namely the maximum) with respect of the demand and is 

given in the form of the Bellman equation: 

Equation 1.1.:  
{ }

( ){ }




 −+= −∈

uxVupExV tj
u

t 1
 .1,0

max)(  

With the boundary V0(x) = 0, whatever is x, and Vt(0) = 0, whatever is t. This 

means that the unsold inventory left the last day is useless and a sunk cost. 

The motivation of Equation 1.1. uses the Bellman's principle of optimality. Since 

Vt-1(x - u) is the optimal expected value of the future revenue given the state (x - u) in 

the next period, t -1, the optimal value of the t-subproblem should be the result of 

maximizing the sum of the current expected reward E[pju] and the expected reward for 

the t - 1 subproblem, E[Vt-1(x - u)]. This is the optimal solution for the period t and the 

process can be restarted until reaching T. 
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2 APPLICATION OF DP TO FIND OUT BOOKING LIMITS AND PRICING 

ISSUES. 

 

The RM problem is basically formulated as a marginal one, such that the 

opportunity cost or expected marginal value (hereafter EMV) becomes the cornerstone 

of any model. The properties that any control must hold to be optimal are shown in 

§2.1. Nevertheless, there exists various controls, presented in §2.2, as managers in 

practice figure out few control types such as a control-limit type or threshold type. 

There is also a close correspondence between DP model and Belobaba’s EMSR model 

(see appendix A). 

 

2.1 The expected marginal value as the key solution 

 

The values u* that maximize the right-hand side of equation 1.1. for each t and x 

form an optimal control policy for this model. The solution can be found by evaluating 

the EMV at period t of the xth unit of capacity. 

Equation 1.2.: )1()()( −−=∆ xVxVxV ttt  

The most important concerns how this marginal value behaves with changes in 

the capacity left x and the t remaining periods. The expected marginal value of Vt(x) 

satisfies5 ∀x, t : 

(i) ∆Vt(x+1) ≤ ∆Vt(x) 

                                                 

5 There are different proofs of these statements. However, the Talluri and Van Ryzin (2004, p. 
38) proof is one of the clever. Hence, the seat allocation problem and the dynamic pricing problem satisfy 
well-known sufficient conditions for an optimal policy to be monotonic. These problems translate to the 
existence of time-dependent controls. In other words, the optimality value function is concave and non-
increasing, from which it follows that an optimal admission policy is monotonic in the state. 
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EMV is decreasing in x, meaning that the opportunity cost of using one more 

unit of the capacity increases when there are less products available. In other words, the 

fewer products on hand the more the chance to loose a sale. 

(ii) ∆Vt+1(x)≥ ∆Vt(x) 

EMV is increasing in time period left or is decreasing as time elapses, meaning 

that the opportunity cost of using one more unit of the capacity is higher when the time 

to go is long than when it’s short. In other words, the longer the remaining time the 

more the chance to use the capacity efficiently (the probability of a customer requesting 

a full fare is high). The same conclusions apply in continuous models6. 

These two properties are intuitive and greatly simplify the control decisions 

because the equation 1.1. can be rewritten with equation 1.2. (proof in appendix B). 

Equation 1.3.:   
{ }

{ }




 −∆−+= −∈− 0);(max)()( 1

1,0
1 uxVupExVxV tj

u
tt  

The meaning of this equation is the following. The value of the revenue to go 

today (in t) is equal to the revenue to go tomorrow (that is already optimized using a 

recursive method) plus the expected maximum revenue of the decision to make (that is 

the fare price net of the opportunity cost if positive). The problem is formulated as a 

backward-recursion dynamic program. In other words, an optimal booking policy is 

reached by the assessment of accepting a booking request relative to the decrease in 

expected total revenue associated with removing one product from the available 

inventory. 

 

 

 

                                                 

6 Equation 1.2. becomes 
x

xV
xV j

j ∂
∂

=∆
)(

)(  and (i) 0
)(

2

2

<
∂

∂
x

xVt  and (ii) 0
)(

2

2

>
∂

∂
t

xVt . 
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2.2 Types of controls 

 

Three types of controls can be derived, studying the sign of value of the max 

function. Needless to say that relaxing the hypothesis of early birds implies that the 

protection levels, the booking limits and the bid prices are time-dependent because the 

random disturbance associated with the value function depends on the probability of an 

arrival of class j in the period t. In order to an efficient optimization, the manager must 

know the process of demand for each fare class over time (i.e. the booking curve). 

 

2.2.1 Protect levels and nested booking limits  

 

First consider controlling the revenue through u, the accept (u = 1) or reject (u = 

0) decision of the current demand. Since ∆Vt(x) is decreasing in x, it follows that pju - 

∆Vt(x - u) is increasing in x. For a given t, it is optimal to keep accepting incoming 

requests until the previous term becomes negative or the upper bound min{Dj ; x} is 

reached, whichever comes first.  
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Figure 2-1: critical booking capacity 

Legend: for a given t, the decision to accept or reject a request with fare j+1 
depends on x the level of capacity left. The critical booking capacity separates the 
accept zone and the reject zone. 

 

The protection level yj* is the number of units to save for customers who 

request, or will request in the future, class j or higher (i.e. j, j - 1, …, 1). It is the 

maximum quantity x such that the fare level is too low to compensate the opportunity 

cost, justifying the reject decision.  

Equation 2-1:   yj* = max {x : pj+1 < ∆Vt(x)},  j = 1,…, n-1. 

 The optimal control at the period t + 1 is  

Equation 2-2:   u*( t+1 ; x ; Dj+ 1) = min{(x - yj*)
+ ; Dj+ 1 }. 

The booking limit b* j+ 1 is the quantity is excess of the protection level (x - yj*) if 

positive or zero otherwise. This is the maximum space available for class j + 1 booking 

request. Those booking limits are nested, meaning that a class j request can be 

withdrawn in any of the j class and above (to n). By the way, this set of protected 

classes (j, j - 1, …, 1) are proposed or “open” to customers being denied a request fare 

class below j. The policy then is “simply accept requests first come, first serve until the 

pju  - ∆Vt-1(x - u) 

C

x 

Reject zone Accept zone 

yj* b* j+ 1 

pj+ 1  - ∆Vt(x) 
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capacity threshold b* j is reached or the time ends, whichever come first. For an 

illustration, consider the case where n = 3 and p1 > p2 > p3. and the figure 2.2. 

Figure 2-2 : Case with 3 fare classes 

 

2.2.2 The control by time thresholds 

 

Second, consider controlling the revenue through t, the time left, to accept (u = 

1) or reject (u = 0) an incoming request. Based on previous properties of equation 1.2., 

one can show that the optimal policy is characterized by time thresholds. During the 

booking horizon, they are points in time before which requests are rejected7 and after 

which requests are accepted8. Since ∆Vt(x) is increasing in t, it follows that pju - ∆Vt-1(x 

                                                 

7 Because one expects to receive booking orders from clients willing to pay high fare (high 
opportunity cost), justifying rejection. 

8 Because it's too late to expect high fare requests to come (low opportunity cost), in such a 
quantity to fulfill the capacity. 

 Pju  - ∆Vt-1(x - u) 

C

x 

y*2 b*3 

p3  - ∆Vt(x) 

p2  - ∆Vt(x) 

p1  - ∆Vt(x) 

y*1 b*2 

b*1 
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- u) is decreasing in t. Thus, it is optimal to keep refusing incoming requests (not 

increase u in a static formulation) until the previous term becomes positive. 

 

Figure 2-3: critical time threshold 

Legend: For a given booking capacity x, a request for a seat of fare class j in 
decision period t is accepted if time remaining is short (less than Yj*, the critical time 
threshold) and rejected otherwise. The caps denote that the control is expressed on a 
time axis instead of a quantity axis. 

 

This proposition is also easy to understand with the figure 2-1. Since ∆Vt(x) is 

increasing in t, one should accept more booking for a given j when remaining time 

lessens. In other words, as time elapses, the EMV decreases and the line lifts up. Then 

the optimal protection level y* j will shift to the left (decrease). The nested protection 

structure is kind of ...***... 11 <<<< +− t
j

t
j

t
j yyy  

 

 

 

Pju  - ∆Vt-1(x - u) 

T 

t 

Reject zone Accept zone 

Yj* B* j+ 1 
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2.2.3 Bid prices 

 

Finally, the optimal control can also be implemented through a table of bid 

prices, defined as πj+ 1(x) = ∆Vt(x). A bid price is the minimum amount of money to 

accept in exchange of a unit of capacity. Under mild assumptions (Gallego and Van 

Ryzin, 1994; Talluri and Van Ryzin, 1998), the optimal price path πj(x) is decreasing in 

x and increasing in t. Dynamic pricing is becoming a real challenge for airlines since 

low cost carriers are introducing less restricted fares. For example, Ryanair or Easyjet 

are not able to be sure that the more price sensitive passengers (low fare) book first. 

Then they apply a dynamic pricing strategy for a single product without price 

discrimination between their customers. 

 

 

3 DISCUSSION AND CONCLUSION 

 

The use of Dynamic Programming in Revenue Management helps to decide 

whether to accept or reject an incoming booking reservation with more realism than 

older methods. There are two main points. One proposition of DP in RM is to relax the 

low-before-high fare order of arrival bookings. In practice, the DP provides the optimal 

policy for the RM problem, by evaluating the whole tree of possibilities and making at 

each point in time the decision that would imply higher future expected revenues, 

processing backward recursion. The dark side is the increase in the computation 

difficulties according to the dimension of the problem. This means that for a single 

product with 100 units to sell over a 200 time periods, the number of iterations is 100 x 

200 = 20 000. But for three products using the same resource, this number becomes 100 

x 2003 = 800 millions. Saranathan and Zhao (2005) had related the implementation of 

DP in United Airlines and that the company expects a 1 to 2 % increase in revenue ($ 

158 billions of 2005 turnover). 
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The second interest of DP approach, and the main avenue for future research, is 

that it allows RM to incorporate the consumer choice in the optimization process. El-

Haber and El-Taha (2004) formulate a dynamic programming model to solve the seat 

inventory control problem for a two-leg airline with realistic elements of consumer 

behavior. Ahead of the Origin and Destination formulation, they consider cancellation, 

no-shows and overbooking. Following Talluri and Van Ryzin (2003) work, Van Ryzin 

and Vulcano (2006) consider a revenue management, network capacity control problem 

in a setting where heterogeneous customers choose among the various products offered 

by a firm (e.g., different fight times, fare classes and/or routings). Customers may 

therefore substitute if their preferred products are not offered, even buy up. Their choice 

model is very general, simply specifying the probability of purchase for each fare 

product as a function of the set of fare products offered. Overall, the value of our paper 

is to facilitate the understanding of more complex, and probably more realistic, models 

of Revenue Management. 
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5 APPENDICES 

 

5.1 Correspondence between DP and EMSR models 

 

The recommendation about booking acceptance of DP models is similar to the 

one of EMSR models. For example, suppose there is one seat left to sell, and a potential 

customer has just called and asked to make a reservation for a discount fare. The flight 

will take off tomorrow. Thus T = 1, n = 2 (j = 1 – full fare – to 2 – discount fare –), and 

{ }1Pr 1
1
1 ≥= Dλ  is the probability of an arrival of class 1 in the period 1 before departure. 

Since the potential discount customer hold the line, { } 11Pr 2
2
1 =≥= Dλ . Then equation 

1.1. becomes : 
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Then, the manager has to reject while )0()1( 211 pp +λ is greater 

than )1()0( 211 pp +λ . In other words, the policy is close fare class j = 1 when 
1

2
1 p

p>λ , 

or when the probability of spoilage is lower than the discount rate offered to customers : 

{ }
1

21
1 1Pr

p

pp
D

−=< . This is the EMSR rule assuming there is only one seat to sell next 

period. 
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5.2 Appendix B 
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The last term depends neither on the probability of an arrival in period t or the 

decision u made in t. In other words, this means that the optimization of the revenue 

from t-1 to 1 depends on neither what have been done before nor what happens today. 

Moreover, this is the true reason why the model is built assuming the demand is known 

in t before the decision to make. This term is then equal to Vt-1(x) and can be written out 

of the E[] and the max functions. 
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