N

N

Management and semantic description of objects for the
future internet
Eric Renault, Wassim Drira, Houssem Medhioub, Djamal Zeghlache

» To cite this version:

Eric Renault, Wassim Drira, Houssem Medhioub, Djamal Zeghlache. Management and seman-
tic description of objects for the future internet. Ubiquitous and Future Networks (ICUFN),
2010 Second International Conference on, Jun 2010, Jeju Island, South Korea. pp.291 -296,
10.1109/ICUFN.2010.5547187 . hal-00694127

HAL Id: hal-00694127
https://hal.science/hal-00694127

Submitted on 18 May 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00694127
https://hal.archives-ouvertes.fr

Management and Semantic Description
of Objects for the Future Internet

Eric Renault, Wassim Drira, Houssem Medhioub and Djamal Zeghlache
Institut Télécom — Télécom SudParis
Samovar UMR INT-CNRS 5157

Evry, France

Abstract— By moving from its original host-centric architec-
ture to a new information-centric organization, the Internet will
be able to offer new services and applications to end users,
allowing for example the on-demand composition of a new service
from those already available online. However, this requires the
development of a Network of Information to offer users the
possibility to annotate, discover and access digital and real-world
objects in a convenient way. As such, this paper presents an
original architecture to support these new services based on three
underlying spaces: a storage space to keep data resilient, an index
space to allow efficient search and a communication space to
ensure an efficient transfer of data between the different entities.

INTRODUCTION

With about 1.5 billion people connected on a daily basis
and more than 4 billion expected over the next few years, the
Internet has become one of the most strategic infrastructure
for more than a decade with a key socio-economical role
leading innovation, economic growth and productivity at a
world-wide scale. This has been made possible with the devel-
opment of new technologies including wireless infrastructures
involving anywhere and anytime connectivity together with
the emergence of communicating objects like RFID tags
or real and virtual world objects, this moving the current
Internet toward an Internet of Things. New usages will appear
and applications will be significantly different. Many social-
economical branches will take benefits of this new services
like health care, education, energy management or proximity
services. However, this will become feasible only if efficient
solutions are provided to describe and access digital and real-
world objects. Organizations and institutions all around the
world are funding research and development projects to design
a new Internet that shall meet these new needs and demands.

One way to achieve this goal is to move the current Host-
centric organization of the Internet (based on a set of servers
that users are expected to get connect to) to an Information-
centric organization where users can focus on the description
of their digital and real-world objects rather than the way to
access them. This involves the development of a Network of
Information, i.e. a high-level virtual architecture that offers the
possibility to describe, index, search, manage and transparently
access objects.

This article presents the design of an original architecture
to support the description and the management of objects
for the Future Internet. After introducing both the object

model and the information model developed in the scope of
the Network of Information, the article first focusses on the
global architecture to show how the Future Internet could
be divided up into different spaces for storing, indexing and
communicating. Then, a detailed description of both index and
storage spaces is provided followed by the way the Network
of Information could be implemented on top of it. The last
part of the paper is devoted to the presentation of the research
directions we will pursue in the near future.

I. OBJECT AND INFORMATION MODELS

The work presented here has been built based on two
complementary models: on the one hand, the object model
aims at specifying the different kinds of objects managed by
the Network of Information; on the other hand, the information
model aims at allowing the description of objects provided by
end-users and applications. These two models are just provided
for reference to the reader as more information are available
at [2] and [3] for the object model and the information model
respectively.

A. Object model

The Network of Information is able to manage two different
types of objects: Information Objects on the one hand and Bit-
level Objects on the other hand. Fig. 1 shows the relationship
between the objects.

Semantic
10, o
s s search

1o \ /

10

Search
by I

~ o~

BO BO EOQ

Accesz to
object

Fig. 1. The object model.

A Bit-level Object (BO) is the digital representation of the
associated object. From the Network-of-Information point-of-
view, this is just a set of bits which meaning is only relevant

to the end-user and/or application. From the user perspective,
a Bit-level Object is typically a content like a web page, a
sound track, a movie, etc. It can also be a mean to access
non-digital objects like mobile phones or RFID tags or any
other relevant device which may be interested to be connected
to via the Fture Internet. In this case, the Bit-level Object can
be a process the user can use to access the associated non-
digital object.

An Information Object (10) contains the information related
to the object that are not part of the content. These information
may be of two different kinds :

o a Semantic Information Objects (10s) stores the semantic
description of an object, i.e. all the information the owner
of an object considers useful to understand and/or search
for the object.

e a Management Information Object (I0m) stores the in-
formation associated to the object that are relevant for its
management from the NetInf point of view.

If Semantic Information Objects are managed by users, Man-
agement Information Objects are managed by NetInf accord-
ing to the information provided by their owners.

Some digital objects may grow to a very large size (this is
typically the case of videos). As a result, more than one BO
can be associated to an object. This approach is very similar
to the concept of chunks as used in BitTorrent [4]. In the same
way, more than one Information Object can be associated to
a given set of BOs. There can be at the same time an IO
for the semantic description of the object and another one for
its management. Moreover, there can be concurrent semantic
descriptions for a single object, for example if two descriptions
are provided for two different kinds of users with two distinct
access rights and/or point of view.

A connection to the current Internet can be made to under-
stand BOs and IOs, and highlight the interest to separate them.
A web page available on the Internet is mainly composed
of the three following elements: the URI that indicates the
location of the page, the content that is to be intrepreted by
the web browser and a set of information used to describe the
content of the page (the meta tags of the HTML language),
this last element not being mandatory. In the scope of the
Object model, the content of the web page is BO, the URI is
the part of the IO and the meta tags are stored inside an
IOs.

B. Information model

Together with the object model as presented above, an In-
formation model has been developed. The Information model
is in charge of defining how Information Objects shall be
presented to and stored in NetInf. The one developed in the
scope of the Network of Information is called the Metalist
Model, as it aims at including lists of metadata. The Metalist
model includes a set of basic functionalities that allows an
easy-to-use management of 10s, whenever it is a Semantic or
a Management IO. Three ways have been identified to specify
metadata in an Information Object using the Metadata Model:

o a metadata can be provided in the Information Object
directly using the metadata label. In this case, the
value can be any information. It is possible to tag the
value using an attribute name. This is especially
interesting both to allow semantic searches by the user
and to help NetInf managing objects.

o a metadata (or a set of metadata) can be included from
another pre-existing metalist. This functionality has been
included in order to avoid users’ redundancy, ie. from
providing several times the same list of metadata for
a set of objects (for example, it makes it possible the
factorisation of the description of a set of pictures related
to a single subject) and thus to increase the consistency
of the description information.

« a metadata (or a set of metadata) can be included from
external metadata, ie. metadata that are not in the metalist
format. This can be the EXIF format [5] (the one used to
store pictures’ metadata in digital cameras) or any other
as long as a source-to-source translator is available to
automatically translate the metadata in the original format
to the metalist format.

The prototype is being developed in the scope of the
4WARD project [1] and will include the implementation of
the Metalist Model. XML was chosen as the support language.
The description of the Metalist Model provided above in this
section only aims at providing an idea of what functionalities
the Information Model can provide. For further information,
[3] presents the complete description of the Metalist Model.

II. GLOBAL ARCHITECTURE

The architecture of the Network of Information is based on
three distinct spaces (see Fig. 2):

o the Storage space aims at storing all digital information
related to the Future Internet. This can be objects directly,
assuming these objects are digital ones, or there can be
the digital mean to access real-world objects, for example
a process to access an RFID tag.

o the Index space aims at storing the 10g provided by end
users so that the search for objects is performed more
efficiently. In order to do so, an 1Og is preprocessed when
presented to the index space and only the preprocessed
version of the IOy is stored in the index space.

o the Communication space stores nothing (at least from the
Netlnf point of view). It aims at providing a convenient
mechanism to let the Network of Information, the Index
space, the Storage space and the end user exchanging
data. It can be based on any kind of protocol as long
as some basic functionalities like a PUT and a GET are
available.

Note that if BOs are stored in the storage space, IOs are
stored in both index and storage spaces using two different
formats. Before being stored in the index space, IOs are
processed in order to make them easier to search for. As such,
IOs are not stored literaly in the index space. Therefore, 10s
are also stored in the storage space in order to allow end users

User

application User

Uzer application

application

Network of Information

implementation

Storape
epace

Commnnication zpace

Fig. 2.

NetInf global architecture.

to refer to their description (for example to perform updates
if they do not have any personal storage device).

III. DESIGN AND IMPLEMENTATION

Considering the fast development of new technologies for
storing, indexing and communicating, it iS important to be
able to adapt. As a result, the implementation of NetInf
is not tightly coupled to these underlying spaces. Instead,
a set of basic functionalities that must be available in any
tools that would support either the index, the storage or the
communication space of NetInf have been identified.

In the following, only operations for both storage and index
spaces are specify. The communication space is assumed
to be TCP/IP. However, alternative communication spaces
like Generic Path [8] (the generic communication mechanism
developed in the scope of the 4WARD project) will be taken
into consideration in the future.

All operations presented in this section may return an error
code independently from their ability to return a value or not.
If no specific value should be returned by an operation, special
value OK indicates that no error occurred while processing.
In the following descriptions, no reference is made to errors
as the possibility for operations to return an error is implicit.

A. Storage space

The NetInf storage space aims at offering persistency to
Future Internet objects. These objects may be of two types:
on the one hand, BOs are storing the effective digital repre-
sentation of objects whether they are digital or real objects;
on the other hand, IOs are storing meta-information about the
objects themselves (these meta-information being managed by
Netlnf or the user himself). However, whatever the type of the
object (IO or BO), they are identified by an ID.

Note that depending upon the nature of the underlying
effective storage space, BOs presented to the storage space
may either be complete objects or parts of objects after the

original object has been divided up into chunks'. The ability
for both NetInf and the storage space to divide digital objects
into independant sub-parts may be of great help to optimize
performance when accessing objects.

Put (10 | BO) — ID | Error: This function aims at storing
an information object or a bit-level object. The value returned
by the function is the ID that has been associated to the object.

Get (ID) — IO | BO | Error: This is the opposite function
to the previous, i.e. it aims at retrieving the object that was
previously stored in the storage space. The ID previously
returned by the call to Put to store the object is provided as a
parameter and the object is returned to the caller.

Update (ID, I0 | BO) — OK | Error: The purpose of the
Update function is to modify the content of the object. The two
information required here are the identifier that was returned
by Put at the creation of the object and the new content for
the object.

Remove (ID) — OK | Error: The last operation that can be
performed on the storage space is the removal of an object. In
this case, the ID of the object is the only information required.

B. Index space

The goal of the NetInf index space is to preprocess object
descriptions to efficiently answer semantic users’ requests.
Descriptions of objects are not necessarily stored as is in
the index space. There may be stored; however, this is not a
prerequisite. As a result, an IOg like any other types of object
must be stored in the storage space.

Put (I0g, ID) — OK | Error: Operation Put aims at feeding
the index space with a new description. The first parameter is
the description of the object; the second parameter is the ID
of the object that holds the description in the storage space.
This is necessary to later return to users the description as it
was initially provided (and not after it has been preprocessed
by the index space).

Get (Request) — {ID} | Error: The second operation
proposed for the index space aims at performing a request
on the set of available descriptions. The caller must provide
a request that specifies the characteristics of the object(s) it
is looking for. The value returned by the function is the set
of description IDs that matches the set of criteria. Note that
several languages like XQuery [6] and TQL [7] are already
available to specify requests on a set of XML nodes.

Update (ID, I0s) — OK | Error: This function can be used
to update an object description. Both the description object ID
and the object description are required.

Remove (ID) — OK | Error: The purpose of the last
operation available on the index space is removing an object
description. This is performed after specifying the ID of the
description object.

'The term chunk is used here as a reference to BitTorrent for the better
understanding of the reader but no name has been officially specified in the
scope of the 4WARD project.

C. Network of Information

The NetInf API is the only one that can be seen by end users
and/or applications. As a result, it mainly aims at providing a
uniform access to data and metadata stored in the underlying
spaces.

Push (BO) — ID | Error (see Fig. 3): The goal of operation
Push is to store a bit-level object. Upon the reception of the
request, the object may be divided up into parts if it is too
large. Then, the part(s) is (are) sent to the storage space.
If there is any problem for any of the parts, the error code
returned by the storage space is returned to the caller after the
previously stored parts of the BO if any have been removed
(for the purpose of clarity, this last step is not indicated on
the diagram). After receiving the ID for all BOs, an IOy, is
created and stored in the storage space. Upon success, the ID
of the IO returned by the storage space is forwarded back to
the caller and an error code is returned instead after removing
everything in case of problem.

Storape Index NetInf User
! ! ! !
| Push(BO) 1
! PutHOL)
' D_Bodi] | Errl ' '
i i FET! i
e e ma
i i i i
: : Else, :
_ rdom | |
i ID_IOth | B2 , ,
i i = i
i Remove(]?jD_B QD ! i
i OK IiELrB ' '
! ! | Em
| | e
; ; . Dion |
| | =
: ! Endif :

Fig. 3. Implementation of Push.

Get (ID) — BO | Error (see Fig. 4): Operation Get aims
at retrieving the content of an object using its ID. The ID may
belong to two different kinds of objects. On the one hand, the
ID refers to an IOs. In this case, the object is retrived from the
storage space and returned to the caller. On the other hand,
the ID necessarily refers to an IOm. In order to be able to
return the BO or the set of BOs to the caller, NetInf first need
to get the content of the IO that stored the IDs associated
to all the BOs. The bit-level objects requested to the storage
space are then directly forwarded to the caller.

Publish (10s) — ID | Error (see Fig. 5): In the context
of Netlnf, publishing an object means that the description

Storage Index NetInf User
i i T
i i brfd belongs to 10s i
: Get{ID) | |
! 108 NErl } }
| | | 08 1Bl
i i Eissi(z‘.e. 1D belongs to ilOm)
. Get{ID) ! !
| IOm | Er2 i }
T T I I
| | H Err2 i
i i i Err2 i
i i ;E.ise i
| Gel(ID{ BOL]D i i
r T 1 I
BOi)}l Ere3
i ' | BOIBm3 |
i i Endif i
| | Endif i
Fig. 4. Implementation of Get.

of the object is made available. As a result, the first step
consists in storing the description in the storage space for
further references and then ask the index space to take into
account this new description.

Storape Index User

Publish(I0s)
L . S—

I
I
Put{Os) |
ID_I0% | Erl :

Put(I0sID_I08)
—

OK |En2
| E——

i

|

:

:

|

|

i

;
ID_I0s |En2 |
|

Fig. 5. Implementation of Publish.

Search (Request) — {IOg} | Error (see Fig. 6): The
Search operation in the NetInf level is very similar to the Get
operation at the index level. The only difference remains in
the value returned by the two operations. While at the index
space level the returned value is a list of 10g IDs, the value
returned by operation Search is the list of object descriptions.
As a result, for each element of the list of IDs returned by
the index space, a request is performed to the storage space in
order to return to the caller the description object as provided
by the user.

Storage Index NetInf User

i
i Search(request)

e - 1
I
i

Get{request)
K Erri

Frrl

I

i

! {ID_10s} | Erl
=
i

i [l B
I

Else

10s[i]}| Err2

{10s}

Erzdéf

I
Get(ID! 10s[i]) i
|
I

Fig. 6. Implementation of Search.

Update (ID, IOs | BO) — OK | Error (see Fig. 7): The aim
of the Update operation is typically to change the content of
the object. However, this object can be of two different types.
In any cases, the object stored in the storage space must be
updated. Moreover, if the object is an IOg then the published
description must be updated too. This is of course performed if
no error occurred when saving the object in the storage space.

Index Netlnf

Update(ID,object)

Storage User

Update(ID,object)

OK1)Enl

o5
o]

Errl

I

2
1]

]
1
1
i
i
i
]
1
1
1
1
1
1
|
Y ID belongs to fOs

Update(ID,object);
1
OK2 | Ear2

l

OK2 |En2

____.hm__
3

OKl1

|

&

ity s

Eiad,

Fig. 7. Implementation of Update.

Remove (ID, 105 | BO) — OK | Error (see Fig. 8):
The last operation is once again the Remove operation. Like
the Update operation, a distinction has to be made upon the
type of the object. If the ID belongs to an IOg, the object is
first removed from the index space and upon success is then
removed from the storage space. If the ID does not belong
to an IOg, this means that it belongs to an IOm. In the latter

case, the content of the object is first retrived in order to get the
information to remove the associated BOs. After all BOs have
been successfully removed, the object can finally be removed.

Storape Index NetInf User
i i i RemowveID) i
i i .‘jr.’ﬂ: belongs to 105 i
i i RemowveID) i i
! ! OKIEmrl | !
i i = i
; ; mn
| | T
| | Enctif |
i GetD) i i
g - g g
| — |
i i B
i i ndf i
i i .‘jr.’ﬂ: belongs to I0m i
i Remove(IjD_B QD i i
! OK IEmr3 ! !
i i 17 i
; ; mn
e e pic e
| | Enctif |
i Remoive(ID) i i
OK IEm4 .
| ORIEms |
i i i i

Fig. 8. Implementation of Remove.

IV. ON GOING WORK

The NetInf architecture as defined above could be suc-
cessfully implemented using various existing tools. For ex-
ample, several solutions have been developed to store digi-
tal information at a global scale. Therefore, BitTorrent [4],
OceanStore [9], Past [10], Pastry [11], PeerStore [12],
Tahoe [13] or Venti-DHash [14] are examples that could
be used to implement the storage space. In the same way,
various tools have been developed to index XML files. Some
interesting ones include BUS [15], eXist-db [16], Xindice [17]
and XISS [18].

Apart from showing the feasability of this approach, the
development of this framework is pursuing the following
objectives:

o Evaluate the performance of the proposed architecture.
The global response time for all the operations should

be very low as both indexing and searching XML native
databases and the distributed storage of digital informa-
tion have become very efficient over the past few years,
and the overhead involved by the implementation of the
both index space and storage space APIs is very low.

o Study the impact of security on the architecture. As
presented above, any user can access any object (except
if access rights have been provided at the storage space
level). Therefore, some studies were initiated in order to
identify the different kinds of access rights that should be
implemented. Note that introducing access rights to this
architecture is quite straightforward. In fact, any access
to an object is performed through an IOm. As a result, if
granted access rights are stored in the IO, it becomes
easier for NetInf to identify which users are allowed to
access objects.

o Study the impact of mobility on the architecture. In
the presentation above, it is considered that objects are
static. What about moving objects like mobile phones or
RFID tags. The location of these objects is a priority.
This can be achieve by moving the ID associated to
BOs to location information. However, the cost of such
an operation, not in term of develpment, but in term
of use shall be evaluated. Note that, similarly to the
security case, the IOm will be charge to store the mobility
information.

o Study the impact of heterogeneity on the architecture. It
has been assumed that a single index space and a single
storage space were used. However, for many reasons
that include security both to ensure redundancy and
confidentiality, several index spaces and/or storage spaces
could be used. Thanks to the use of the generic API
defined to access both index and storage spaces, this
should be quite straightforward to include. However, the
cost or the gain in term of performance is to be identified.

V. CONCLUSION

The Internet as designed today is limited in terms of
functionality. Especially, it limits the possibility to create
large scale applications with automatic discovery due to its
lacks of information about the available objects. The need for
an alternative Internet that would include the description of
objects together with the objects themselves has been clearly
identified.

This paper proposed an architecture that merges both the
ability to store objects at a very large scale, based on storage
components that are already available and functional, and the
ability to index these objects using efficient indexing tools.
Moreover, the paper presented an abstraction of both storage
and index spaces and showed how both spaces could cooperate
throughout the Network of Information to allow semantic
applications to end users.

For the near future, many studies are planed, based on the
proposed architecture. After evaluating the performance, the
impact of security, mobility and heterogeneity will be studied.

DISCLAIMER

This work has been supported by the IST 7th Framework
Programme Integrated Project 4WARD, which is partially
funded by the Commission of the European Union. The views
expressed in this paper are solely those of the authors and do
not necessarily represent the views of Institut Télécom (ex.
GET-INT) or the respective projects and sponsors.

SHORT BIBLIOGRAPHY

[11 The FP7 4WARD Project. http://www.4ward-project.eu/

[2] C. Dannewitz, K. Pentikousis, R. Rembarz, E. Renault, O. Strandberg
and J. Ubillos. Scenarios and Research Issues for a Network of Infor-
mation. MobiMedia’08, Oulu, Finland, July 2008.

[3] E. Renault and D. Zeghlache. The Metalist Model: A Simple and
Extensible Information Model for the Future Internet. Proceedings of
the 15th Open European Summer School and IFIP TC6.6 Workshop,
EUNICE - The Internet of the Future, LNCS 5733, pp 88-98, Barcelona,
Spain, September 2009.

[4] BitTorrent. http://www.bittorrent.com/

[5]1 Exchangeable Image File Format for Digital Still Cameras: Exif Ver-
sion 2.2. Standard of Japan Electronics and Information Technology
Industries Association, April 2002.

[6] XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/

[7] L. Cardelli and G. Ghelli. TQL: A query language for semistructured
data based on the ambient logic. Mathematical Structures in Computer
Science, 14(3):285-327, Cambridge Journals, June 2004.

[8] H. Wosner and F. Guillemin. The Generic Path: A Fresh View on
Connectivity in the Future Internet. AWARD Workshop at ICT Mobile
Summit, Stochholm, Sweden, June 2008.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.

Gummadi, S. Rhea, H. Weatherspoon, C. Wells, B. Zhao. OceanStore:

an architecture for global-scale persistent storage. Proceedings of the

ninth international conference on Architectural Support for Program-
ming Languages and Operating Systems, pp 190-201, Cambridge, MA,

November 2000.

A. Rowstron and P. Druschel. Storage management and caching in PAST,

a large-scale, persistent peer-to-peer storage utility. ACM Symposium

on Operating Systems Principles, pp 188-201, Banff, Canada, Octo-

ber 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object

location and routing for large-scale peer-to-peer systems. IFIP/ACM

International Conference on Distributed Systems Platforms, pp 329-350,

Heidelberg, Germany, November 2001.

M. Landers, H. Zhang and K.-L. Tan. PeerStore: Better Performance by

Relaxing in Peer-to-Peer Backup. Proceedings of the Fourth International

Conference on Peer-to-Peer Computing, pp 72-79, Zurich, Switzerland,

August 2004.

[13] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority filesystem.

Proceedings of the 4th ACM international workshop on Storage security

and survivability, pp 21-26, Alexandria, VI, 2008.

E. Sit, J. Cates and R. Cox. A DHT-based Backup System. Proceedings

of the Ist IRIS Student Workshop, 2003.

D. Shin, H. Jang and H. Jin. BUS: An Effective Indexing and Retrieval

Scheme in Structured Documents. Proceedings of the 3rd ACM Inter-

national Conference on Digital Libraries, pp 235-243, Pittsburgh, PA,

June 1998.

[16] W. Meier. eXist: An Open Source Native XML Database. Web, web-

services and database systems: NODe 2002 web- and database-related

workshops, LNCS 2593, pp 169-183, Erfurt, Germany, October 2002.

Apache Xindice. http://xml.apache.org/xindice/

Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path

Expressions. Proceedings of the 27th International Conference on Very

Large Data Bases, pp 361-370, Roma, Italy, September 2001.

[10]

(11]

[12]

[14]

[15]

(17]
[18]

