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A FASTER PSEUDO-PRIMALITY TEST

JEAN-MARC COUVEIGNES, TONY EZOME, AND REYNALD LERCIER

Abstract. We propose a pseudo-primality test using cyclic extensions of Z/nZ. For every
positive integer k 6 logn, this test achieves the security of k Miller-Rabin tests at the cost
of k1/2+o(1) Miller-Rabin tests.

1. Introduction

Pseudo-primality tests. The most commonly used algorithm for prime detection is the so
called Miller-Rabin test. It is a Monte Carlo probabilistic test of compositeness, also called
a pseudo-primality test (see Papadimitrou’s book [14, page 254] for the definition of a Monte
Carlo algorithm). A pseudo-primality test is a process based on a mathematical statement,
the compositeness criterion, which gives a forecast (prime or composite) about a given integer
n. From the compositeness criterion, one constructs for every odd integer n, a finite set Wn

of witnesses, and a map
Pn : Wn → {composite,prime}

which provides information about the compositeness of n from witnesses x in Wn. When n is
prime Pn(x) = prime for every witness x in Wn. So there are only good witnesses in that case.
If n is composite, x is a witness in Wn, and Pn(x) = prime we say that x is a bad witness.
The test picks a random witness x in Wn and evaluates Pn(x). Two important characteristics
of a pseudo-primality test are the run-time complexity n 7→ T (n) of the algorithm evaluating
Pn, and the density n 7→ µ(n) of bad witnesses.

To be quite rigorous, we do not need to be able to evaluate Pn in deterministic time T (n).
We are content with a Las Vegas probabilistic algorithm that on input n, runs in time T (n),
and returns with probability > 1/2 at least one of the following two things

• a proof that n is composite,
• the value of Pn at a random (with uniform probability) element in Wn.

If this is the case, we say that the test P has complexity n 7→ T (n) and density n 7→ µ(n).
See [14, page 256] for the definition of a Las Vegas algorithm.

The Miller-Rabin test. We assume n is odd. The set Wn of witnesses for the Miller-Rabin
test is (Z/nZ)∗. The associated map

MRn : (Z/nZ)∗ → {composite,prime}

is defined by MRn(x) = prime if and only if xm = 1 or xm2i = −1 for some 0 6 i < k. Here
m is the largest odd divisor of n − 1 and n − 1 = m2k. We call MRn a Miller-Rabin map.
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It is clear that if n is prime then MR(x) = prime for every x in Wn. In case n is composite,
the density µMR(n) of bad witnesses is bounded from above by 1/4 (see [15, Theorem 2.1]).
It will be important for us that this density is actually bounded from above by 21−t (see [15,
proof of Theorem 2.1]) where t is the number of prime divisors of n. The complexity TMR(n)

is bounded from above by (log n)2+o(1) using fast exponentiation and fast arithmetic. If we
run k independent Miller-Rabin tests, the probability of missing a composite number is 6 4−k

and the complexity is k(log n)2+o(1).

A faster pseudo-primality test. In this article we prove the following theorem.

Theorem 1 (A faster test). There exist a function ε : R → R in the class o(1) and a
probabilistic algorithm (described in Section 5.1) that takes as input an odd integer n and an
integer λ such that 1 6 λ 6 log n, runs in time

T = (log n)2+ε(n)λ
1
2

+ε(λ),

an returns prime always if n is prime, and with probability

6 2−λ

if n is composite.

This algorithm achieves the security of λ/2 Miller-Rabin tests at the cost of λ1/2+o(1) such
tests. The two main ingredients of our test are the product of pseudo-primality tests and a
primality criterion involving an extension of the ring Z/nZ.

Products. We introduce the associative composition law

∨ : {composite,prime} × {composite, prime} → {composite,prime}

with table

∨ composite prime

composite composite composite
prime composite prime

Let r > 2 be an integer and let Pin : W i
n → {composite, prime} be r pseudo-primality tests.

One defines the product test

Pn = ∨16i6rP
i
n

as

Pn : Wn = W 1
n ×W 2

n × · · · ×W r
n

// {composite, prime}
(x1, . . . , xr)

� // ∨16i6rP
i
n(xi).

A witness for P is an r-uple of witnesses, one for each of the r tests P1
n, . . . , Prn. For

n composite, a witness is bad if and only if all its r coordinates are bad witnesses. So the
density of bad witnesses is the product of all the densities for every tests. And the complexity
is bounded by the sum of all r complexities, times dlog2 re + 1. This last factor is natural
when chaining Las Vegas algorithms. In order to make sure that the resulting algorithm still
succeeds with probability > 1/2 we must repeat a little bit every step. As a special case, we
consider the r-th power ∨rP of a single test P with complexity T and density µ. The density
of bad witnesses for ∨rP is equal to µr, and its complexity is r × T × (dlog2 re+ 1).
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A compositeness criterion. The test in Theorem 1 is based on the following compositeness
criterion.

Theorem 2 (Compositeness criterion). Let n > 2 be an integer. Let S ⊃ Z/nZ be a faithful,
finite, associative, commutative Z/nZ-algebra with unit. Let σ be an Z/nZ-endomorphism of
S. Let Ω ⊂ S be a subset of S such that the smallest Z/nZ-subalgebra of S containing Ω and
stable under the action of σ is S itself. Assume ωn = σ(ω) for every ω in Ω. If n is prime,
then for every x in S we have xn = σ(x).

Proof. Let T be the subset of S consisting of all x such that xn = σ(x). Clearly T contains Ω.
If n is prime, then T contains Z/nZ and is stable under addition, multiplication, and action
of σ. So T = S and we have xn = σ(x) for every x in S.

�

Theorem 2 provides a compositeness criterion since the existence of an x in S such that
xn 6= σ(x) implies that n is not a prime. We call the associated pseudo-primality test a
Galois test. The set Wn of witnesses is the group S∗ of units in S. The map Pn is defined by
Pn(x) = prime if σ(x) = xn and Pn(x) = composite otherwise. In that situation, we call Pn
a Galois map. In case n is composite, those x in S for which

xn = σ(x) (1)

are the bad witnesses.

Plan. We will show in Section 2 that one can bound from above the density of bad witnesses
among the units of the algebra S in Theorem 2, at least when S is a cyclic extension of
Z/nZ. We will use the Galois module structure of the unit group of such an extension. The
resulting pseudo-primality test is presented an analyzed in Section 3. Section 4 explains how
to efficiently construct the cyclic Z/nZ-algebras required by our test. Theorem 1 is proven
in Section 5.1. Implementation details are given in Section 5.2. We present the results of our
experiments in Section 6.

Context. There exist many (families of) algorithms for prime detection. A recent survey
can be found in Schoof’s article [15]. The first polynomial time deterministic algorithm for
distinguishing prime numbers from composite numbers is due to Agrawal, Kayal and Saxena
[2]. An improvement of this algorithm, due to Lenstra and Pomerance [12], has determin-

istic complexity (log n)6+o(1). This is the best known unconditional result for deterministic

algorithms. There exists a deterministic algorithm with complexity (log n)4+o(1) under the
generalized Riemann hypothesis, as observed by Miller in [13]. Dan Bernstein has found

[5] a Las Vegas probabilistic algorithm with complexity (log n)4+o(1). See also Avanzi and
Mihăilescu [4]. The correctness and running time of this algorithm does not depend on the
truth of any unproved conjecture. It is unconditional.

Notation. In this paper, the notation Θ stands for a positive absolute constant. Any state-
ment containing this symbol becomes true if the symbol is replaced in every occurrence by
some large enough real number. Similarly, the notation ε(x) stands for a real function of the
real parameter x alone, belonging to the class o(1).
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2. Cyclic extensions of Z/nZ

Let n > 3 be an odd integer and set R = Z/nZ. A cyclic extension of R is a Galois
extension S of R in the sense of [8, Chapter III], with finite cyclic Galois group G. We denote
by d the order of G, and let σ be a generator of it. The Galois property implies [8, Chapter
III, Corollary 1.3] that S is a projective R-module of constant rank d. Since R is semi-local
we deduce [6, II.5.3, Proposition 5] that S is free of rank d. The sub-algebra SG consisting of
elements in S fixed by σ is R itself [8, Chapter III, Proposition 1.2]. And S is a separable R-
algebra in the sense that it is projective as a module over S⊗RS. We deduce [3, Theorem 2.5.]
that S is an unramified extension of R. And S is a free R[G]-module of rank 1. Equivalently
there exists a normal basis [7, Theorem 4.2.]. In this section we study the group of units of
such an algebra and count the solutions to Equation (1) in it. In Paragraph 2.1 we localize
at a prime p and we study the Frobenius action on the residue algebra. We decompose the
unit group as a direct product. The p-part is studied in Paragraph 2.2, and the prime to
p-part is studied in Paragraph 2.3. In Paragraph 2.4 we deduce an estimate for the number
of bad witnesses. We refer to the book by DeMeyer and Ingraham [8] for general properties
of Galois extensions, and to Lenstra [10, 11] for their use in the context of primality testing.

2.1. The structure of S∗ as a Z[G]-module. We write n =
∏
p p

vp the prime decomposition
of n. If p and q are two distinct primes dividing n, then pvpS + qvqS = S. Furthermore, the
intersection of all pvpS for p dividing n is zero. So S is isomorphic to the product∏

p|n

S/pvpS =
∏
p|n

Sp,

and this decomposition is an isomorphism of Z[G]-modules. So we can and will assume now
that n = pv is a prime power.

We set L = S/pS and K = R/pR = Z/pZ. Since pS ∩ R = pR, the ring L is a faithful
K-algebra. The R-automorphism σ : S → S induces a K-automorphism of L that we call
σ also. The K-algebra L has dimension d and is Galois with group G [11, Proposition 2.7.].
From K = LG we deduce [6, Chapitre 5, paragraphe 1, numéro 9, proposition 22] that L is
integral over K. Let p be a prime ideal in L. The intersection p∩K is a prime ideal in K, so it
is equal to 0. Since 0 is maximal in K, the ideal p is maximal in L [6, Chapitre 5, paragraphe
2, numéro 1, Proposition 1]. Thus L is a ring of dimension 0. Since L is noetherian, it is
an artinian ring [6, Chapitre 4, paragraphe 2, numéro 5, Proposition 9]. The automorphism
σ acts transitively on the set of prime ideals in L [6, Chapitre 5, paragraphe 2, numéro 2,
Théorème 2]. We denote by GZ (resp. GT ) the decomposition group (resp. inertia group) of
all these prime ideals. The Galois property [8, Proposition 1.2] implies that the inertia group
is trivial. Let f be the order of GZ . We check that d = fm where m is the number of prime
ideals in L. Let p0, p1, . . . , pm−1 be all these prime ideals. They are pairwise comaximal: for
i 6= j we have pi + pj = L. The radical of L is

N =
⋂

06i6m−1

pi =
∏

06i6m−1

pi = 0,

because L is unramified over K. So the map

L −→
∏

06i6m−1

L/pi
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is an isomorphism of Z[GZ ]-modules. For every i in {0, 1, . . . ,m − 1}, the decomposition
group GZ is isomorphic to the group of K-automorphisms of the residue field Mi = L/pi
[6, Chapitre 5, paragraphe 2, numéro 2, Théorème 2]. The Frobenius automorphism Φi of
Mi = L/pi is the reduction modulo pi of some power σzim of σ generating GZ . Especially,
for every a in L, one has σz0m(a) = ap mod p0 for some integer z0. We let σ act on the above
congruence and deduce that z0 = z1 = · · · = zd−1 mod f because σ acts transitively on the
set of primes. So there exists a prime to f integer z such that for every element x in L we
have

xp = σzm(x) .

We set

U = {x ∈ S|x ≡ 1 mod p}.
This is a subgroup of the group S∗ of units in S, and even a Z[G]-module. We have an exact
sequence of Z[G]-modules

1→ U→ S∗ → (S/pS)∗ → 1.

While the group U is a p-group, the group (S/pS)∗ = L∗ has order prime to p. So U is
the p-Sylow subgroup of S∗. We denote by V the product of all q-Sylow subgroups of S∗ for
q 6= p. Then

S∗ = U× V (2)

and this decomposition is an isomorphism of Z[G]-modules because both U and V are char-
acteristic subgroups of S∗. Furthermore, V is isomorphic to (S/pS)∗ as a Z[G]-module. We
study either factors separately.

2.2. The structure of U. The two maps

Log : U // pS

x � // Log(x) = −
∑
k>1

(1− x)k

k

and

Exp : pS // U
x � // Exp(x) = 1 +

∑
k>1

xk

k!

are well defined. They are indeed polynomial maps (recall that p is odd). In particular, both
maps are equivariant for the action of G. So Log is an isomorphism between the Z[G]-modules
(U,×) and (pS,+). And Exp is the reciprocal map.

2.3. The structure of V. Let p be a prime in S above p. We set M = S/p. Recall that

pS =
∏

06k6m−1

σk(p),

and there exists a prime to f integer z such that for every element x in S we have

xp = σzm(x) mod p.

Let 1 6 t 6 f − 1 be the inverse of z modulo f . Note that if f = 1, we have z = t = 0. We
turn Mm into a Z[G]-module by setting

σ.(x0, x1, . . . , xm−1) = (x1, x2, . . . , xm−1, x
pt

0 ). (3)
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The map

S/pS // (S/pS)m

x � //
(
σk(x) mod p

)
06k6m−1

is an isomorphism of Z[G]-module between S/pS and Mm. So V and (M∗)m are isomorphic
as Z[G]-modules.

2.4. Counting bad witnesses. We now show that in many cases one can bound from above
the density of bad witnesses among the units of S.

Theorem 3 (Density of bad witnesses). Let A > 2 and B > 3 be two real numbers. Let n > 3
be an integer. Assume that every prime dividing n is bigger than or equal to B. Assume that
n is not a prime power. Let S ⊃ Z/nZ be a cyclic (Z/nZ)-algebra of dimension d. Let σ be
a generator of the Galois group G. Assume that n has a prime power divisor pv satisfying

v log p >
A log n

d
. (4)

Then the density

µS =
#{x ∈ S∗|σ(x) = xn}

#S∗

of bad witnesses among the units of S is such that

µS 6 p
− vd

2
(1− 2

A
− 4

B
) 6 n−

A
2

(1− 2
A
− 4

B
). (5)

Proof. We count the solutions to Equation (1) in S∗. Since S is isomorphic to the product of
all Sp for p a prime dividing n, we fix such a prime p and count the solutions to Equation (1)
in S∗p . Using the decomposition in Equation (2) we then reduce to counting solutions in the
subgroups U and V.

If x ∈ U is a solution to Equation (1) then xn
d

= x. Since U is a p-group and p divides n
we deduce that x = 1.

According to Section 2.3, the R[G]-module V is isomorphic to [(S/pS)∗]m where m is the
number of prime ideals in S above p, and p is one of them, and the action of G is given by
Equation (3). It is clear that any solution x to Equation (1) in the latter R[G]-module is
characterized by its first coordinate x0 and this coordinate must be a |nm − pt|-th root of
unity in the field S/pS. Since the latter field has cardinality pf we deduce that the number
of solutions to Equation (1) in V is

gcd(nm − pt, pf − 1).

The density of bad witnesses is thus

µS =
∏
p|n

gcd(nm − pt, pf − 1)

(pf − 1)mp(v−1)d
, (6)

where the integers f,m, v and t depend on p. This density is bounded from above by any
term in the product (6). So let p be a prime divisor of n such that v log p > A logn

d . Let m be
the number of prime ideals in S above p.

We first assume that m > 2, so p splits in S. Then the density of bad witnesses is bounded
from above by 1/(pf − 1)m−1p(v−1)d. We check that

N − 1 > N (1− 2
B

), (7)



A FASTER PSEUDO-PRIMALITY TEST 7

for every integer N > B. So pf − 1 > pf(1− 2
B

). Since m− 1 > m/2, we find

µS 6 1/p
d
2

(1− 2
B

)+(v−1)d.

The result follows.
We now assume that m = 1, so p is inert in S and f = d. We first prove the following

inequality

gcd(n− pt, pd − 1) 6 np
d
2 . (8)

Indeed, if 1 6 t 6 d
2 , Inequality (8) is granted because 1 6 |n − pt| 6 max(n, pt) 6 npt. In

case d
2 < t 6 d − 1, we call w the unique integer in [1, d[ that is congruent to −t modulo d.

We have

gcd(n− pt, pd − 1) = gcd(npw − 1, pd − 1). (9)

Since w 6 (d − 1)/2, the right hand side of (9) is bounded from above by np
d
2 as was

to be shown. So Inequality (8) holds true in either case, and Inequality (5) follows using
Equation (6), Equation (4), and Inequality (7).

�

3. An efficient pseudo-primality test

A consequence of Theorem 3 is that a compositeness criterion as Theorem 2, when im-
plemented with a cyclic (Z/nZ)-algebra of dimension d, is efficient, provided n has a large
prime power divisor pv. On the other hand, we saw in Section 1 that the Miller-Rabin test is
efficient when n has many prime divisors. Combining these two tests we can construct a new
probabilistic pseudo-primality test that takes advantage of either situation.

Fix two real numbers A and B such that A > 2 and B > 4A/(A− 2). In particular B > 4.
Set C = 1− 2/A− 4/B and note that C is positive.

Let n be a positive integer. We assume n is not a prime power, and every prime dividing
n is bigger than or equal to B. We choose two positive integers r and d and we construct
a pseudo-primality test which is the product of r Miller-Rabin tests and a Galois test of
dimension d. We let δ = log(d/A)/ log log n so

d = A(log n)δ.

We let ρ = log(2A−1r log 2)/(log log n) so

r =
A(log n)ρ

2 log 2
.

We assume (
1− A

d

)
(log n)δ+ρ 6 C log n, (10)

or equivalently

dr

(
1− A

d

)
6
A2C log n

2 log 2
.

We call P1 : ((Z/nZ)∗)r → {composite, prime} the product of r Miller-Rabin maps. And
P2 : S∗ → {composite, prime} a Galois map as in Theorem 2, associated with a cyclic algebra
of dimension d. We set P = P1 ∨ P2. The density of bad witnesses for P is bounded from
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above by the densities of bad witnesses for P1 and P2. Let pv be the largest prime power
dividing n. We set π = log(v log p)/ log log(n), so

log pv = (log n)π.

The number t of prime divisors of n satisfies

t > (log n)/(v log p) = (log n)1−π.

If

δ + π > 1,

then v log p > A logn
d , and, according to Theorem 3, the density of bad witnesses for P2 is

bounded from above by

p−
vd
2

(1− 2
A
− 4

B
) = exp(−A

2
(1− 2

A
− 4

B
)(log n)δ+π). (11)

On the other hand, the density of bad witnesses for every Miller-Rabin test is 6 2−t+1. The
density of bad witnesses for r such tests is at most

2−r(t−1) 6 exp(−A
2

(1− 1

t
)(log n)1+ρ−π). (12)

Although we do not know the value of π, we can deduce from Equations (11) and (12) an
upper bound for the density of bad witnesses of the product test P = P1 ∨ P2.

If π lies in [0, 1 − δ[ then Equation (11) gives nothing and Equation (12) gives an upper
bound

exp(−A
2

(1− A

d
)(log n)ρ+δ),

for the density of bad witnesses for P1.
If π lies in [1− δ, 1] then Equation (11) gives an upper bound

exp(−A
2

(1− 2

A
− 4

B
) log n),

for the density of bad witnesses for P2. Using Inequality (10) we find the upper bound

exp(−A
2

(1− A

d
)(log n)ρ+δ),

in that case.
This discussion is illustrated in Figure 1 where the continuous line is the exponent of log n

in Equation (12), the dashed line is the exponent of log n in Equation (11), and the bullet is
the minimum of the maximum of the two functions.

Theorem 4 (Density of the composed test). Let A and B be two real numbers such that
A > 2 and B > 4A/(A− 2). Let

C = 1− 2/A− 4/B. (13)

Let n be an integer that is not a prime power. Assume that n has no prime divisor smaller
than B. Let r and d be two positive integers such that

dr

(
1− A

d

)
6
A2C log n

2 log 2
(14)
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1

1 + ρ

δ + ρ

0 11 − δ

ρ

1 + δ

π = limn→∞
log log max pv

log logn

limn→∞ − log log µ
log logn

Figure 1. The Miller-Rabin (continuous) and Galois (dashed) densities.

and let P be the composite test of r Miller-Rabin tests and one Galois test of dimension d.
The density of bad witnesses for P is bounded from above by

6 2−
rd
A

(1−A
d

).

Taking A = 2.1, B = 1000, and d > 16, we have C > 0.043619 and we obtain a density
6 2−0.41369rd provided rd 6 0.13875 log n.

Taking A = 4, B = 1000, and d > 16, we have C > 0.496 and we obtain a density 6 2−0.18rd

provided rd 6 5.72 log n.
We note that the complexity of such a composed test is (log n)2+ε(n)(r+d1+ε(d)) under the

condition that arithmetic operations in the Z/nZ-algebra S can be performed in quasi-linear
time in the degree d. It is asymptotically optimal to take d and r as close as possible. We
thus prove Theorem 1 provided we can efficiently construct a Galois extension of Z/nZ with

degree d in some interval [k, k1+ε(k)]. This is the purpose of the next Section 4.

Heuristics. There are many possible choices for the parameters A, B, r and d when using
Theorem 4. We will explain in Section 5.2 how to choose them optimally. Here we just collect
a few simple minded observations on what could be a reasonable choice. We take

B = 8000. (15)

Taking a too large A is pointless. We recommend

2 < A 6 48. (16)

In case we have a bigger value of A it will be more efficient to take smaller values for r and
d and repeat the whole test. We also suggest that

d > 2A, (17)

otherwise we would better use r Miller-Rabin tests only, and obtain better security at lower
cost. It is reasonable also to have

d 6 r, (18)
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because the r Miller-Rabin tests and the one Galois test have similar effect on the security.
So the time devoted to the r Miller-Rabin tests should not be smaller than the time devoted
to the Galois test. Assume we want to bound from above the error probability by 2−λ for
some integer λ. We must have

λ 6
rd

A
(1− A

d
). (19)

And we should have
rd

A
(1− A

d
) 6 2λ, (20)

in order not to waste time.
We deduce from Equations (18), (20), (17), and (16) that

d 6 2
√
Aλ 6 14

√
λ. (21)

We deduce from Equations (19), (14), (13), and (16), that

λ 6 (0.9995A− 2)
log2 n

2
6 23 log2 n. (22)

Under the reasonable hypotheses above, the smallest possible value for A when applying
Theorem 4 is thus (

2 +
2λ

log2(n)

)
/0.9995.

So we recommend to take

A =

(
2 +

2λ

b− 1

)
/0.9995, (23)

where
b = blog2(n)c+ 1,

is the number of bits of n.

4. Constructing algebras

In this section we prove the following theorem.

Theorem 5 (Constructing algebras). There exist a function ε : R→ R in the class o(1) and
a probabilistic (Las Vegas) algorithm that takes as input an odd integer n and an integer k

such that 1 6 k 6 log n, runs in time (log n)2+ε(n), and returns with probability > 1/2 at least
one of the following two data

• A proof that n is composite,
• A cyclic algebra S over Z/nZ with degree d and Galois group G = 〈σ〉 such that

k 6 d 6 k1+ε(k), (24)

and there exists a basis Ω of the Z/nZ-module S such that σ(ω) = ωn for every ω in
Ω.

Arithmetic operations in S are then performed in deterministic time (log n)1+ε(n)d1+ε(d).

From Theorem 5 and Theorem 4 one can easily deduce Theorem 1. We prove Theorem 5
in two steps. We first apply a single Miller-Rabin test to n. If n is composite we shall thus
detect it with probability > 1/2 in probabilistic time (log n)2+ε(n). So this copes with the
case when n is composite. We then try to construct an (Z/nZ)-algebra S. For the complexity
analysis of this second step, we can assume that n is prime.
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We shall use Kummer theory to construct an extension of Z/nZ with appropriate degree.
This is a classical construction in this context. It appears in [1, 12] and even more explicitly
in [5, 9]. We first construct a small cyclotomic extension Rcyc, then a Kummer extension S
of Rcyc. We let dcyc be the smallest positive integer such that the product Q of all prime
integers q such that q − 1|dcyc exceeds k. According to [1, Theorem 3] we have

dcyc 6 (log k)Θ log log log Θk.

We call dkum the smallest divisor of Q that exceeds k. We set d = dkumdcyc. It is clear that
d satisfies Inequality (24). We first use the algorithms in [16] to find a degree dcyc unitary
polynomial F (X) in Z/nZ[X] that is irreducible if n is prime. This takes probabilistic time

dcyc
2+ε(dcyc)(log n)2+ε(n) that is (log n)2+ε(n). We set

Rcyc = (Z/nZ)[X]/F (X).

We set x = X mod F (X) and call σcyc : Rcyc → Rcyc the (Z/nZ)-linear map that sends xi to
xni for 0 6 i 6 dcyc − 1. We check that σcyc is a morphism of (Z/nZ)-algebras. This boils

down to checking that σcyc(x
i) = xni for dcyc 6 i 6 2dcyc − 2. This takes time (log n)2+ε(n).

It is a matter of linear algebra to check that the fixed subalgebra by σcyc is Z/nZ. It takes

time (dcyc)
3(log n)1+ε(n) = (log n)1+ε(n). We pick a random u in Rcyc and check that

σcyc
i(u)− u ∈ R∗cyc (25)

for every 0 < i < dcyc. If n is prime then the density of such elements in Rcyc is at least 1/2.

So finding one of them takes probabilistic time (log n)2+ε(n).
We check that dkum divides ndcyc − 1. We check that σcyc

dcyc(x) = x.

We look for an element a in R∗cyc such that ζ = a
ndcyc−1
dkum has exact order dkum. If n is prime,

the density of such elements a in R∗cyc is > (log log log n)−Θ. We check that σcyc(a) = an.
We set

S = Rcyc[Y ]/(Y dkum − a),

and y = Y mod Y dkum − a. Let τ : S → S be the unique endomorphism of Rcyc-algebra such
that τ(y) = ζy. The fixed subalgebra by τ in S is Rcyc.

There exists a unique endomorphism of (Z/nZ)-algebra σ : S → S such that σ(y) = yn

and the restriction of σ to Rcyc is σcyc. It is clear that σdcyc is τ . Restriction to Rcyc gives an
exact sequence

1→ 〈τ〉 → 〈σ〉 → 〈σcyc〉 → 1.

So the order of σ is d = dkumdcyc. Every element in S fixed by σ is also fixed by τ = σdkum .
So it belongs to Rcyc. But elements in Rcyc fixed by σcyc actually lye in Z/nZ. So

SG = Z/nZ, (26)

where G is the group generated by σ. Furthermore, for every 0 < i < dkum

τ i(y)− y = (ζi − 1)y ∈ S∗. (27)

From (26), (25), (27) and [8, Proposition 1.2] we deduce that S is a Galois extension of
Z/nZ with group G. As for the basis Ω we can take the xiyj for 0 6 i < dcyc and 0 6 j < dkum.
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Remark. We expect [1, Remark 6.3] that

dcyc 6 (2 log dkum)1.5 log log log dkum ,

for large enough k. This and Equations (21), (22) implies

dcyc 6 (9 + log b)1.5×max(1,log log log 68
√

log2 n) , (28)

where b is the number of bits of n. We shall use this estimate in Section 5.2.

5. An algorithm

It is now possible to specify an algorithm.

5.1. A theoretical algorithm. We prove Theorem 1 by describing the algorithm. The input
consists of a large enough integer n and a bound λ such that 1 6 λ 6 log n. The algorithm
outputs either that n is composite or that n is a probable prime. The probability of missing
a composite is at most 2−λ.

The algorithm is the following.

i) Check that n has no prime factor smaller than 1000.
ii) Check that n is not a prime power.

iii) Set k = max(16, b
√
λc) and use the algorithm in the proof of Theorem 5 to construct

a (Z/nZ)-algebra S with degree d such that k 6 d 6 k1+ε(k).
iv) Set r = dλ/(0.18× d)e.
v) Perform r Miller-Rabin tests. If one of them fails output composite.
vi) Choose at random a non-zero z in S and check that it is invertible. If it is not, output

composite.
vii) Check that σ(z) = zn and output composite or prime accordingly.

Applying Theorem 4 with A = 4 and B = 1000 we see that, for large enough n, the
algorithm returns prime with probability 6 2−λ when n is composite. It runs in time

(log n)2+ε(n)λ
1
2

+ε(λ) because both d and r are 6 λ
1
2

+ε(λ).

5.2. A practical algorithm. We let b be the number of bits of n. We assume λ 6 23 log2 n
according to Equation (22). For higher security we may just repeat the test. We set B = 8000

and A =
(

2 + 2λ
b−1

)
/0.9995 following Equations (15) and (23).

The algorithm of Section 5.1 can be reformulated as follows.

• Preliminaries.
1) Check that n has no prime factor smaller than B.
2) Check that n is not a prime power.
3) Determine the integers dcyc, dkum and r.

• Miller-Rabin tests.
4) Perform r Miller-Rabin tests.

• Construction of the algebra Rcyc.
5) Find an “irreducible” polynomial F (X) of degree dcyc modulo n and construct

the algebra Rcyc.
6) Compute the action of the automorphism σcyc on every Xi mod F (X) for i =

0, . . . , 2dcyc − 2.
7) Check that the fixed submodule by σcyc in Rcyc is Z/nZ.
8) Find a u in Rcyc such that σcyc

i(u)− u is a unit for every 1 6 i 6 dcyc − 1.
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• Construction of the algebra S.

9) Find an element a in Rcyc such that ζ = a
ndcyc−1
dkum has exact order dkum. Check

that σcyc(a) = an.

• The Galois test.
10) Choose at random a non-zero z in S and check that it is invertible.
11) Check that σ(z) = zn.

We now comment on each of these steps.

5.2.1. Preliminary steps.

Step 1: Check that n has no prime factor smaller than B. Recall that B = 8000. We compute
once and for all the product of all the primes smaller than B and check that the gcd with n
is equal to 1. If this is not the case, we stop and output that n is composite.

Step 2: Check that n is not a prime power. For each integer d between 2 and b, we compute
some integer approximation η of the positive real d

√
n such that |η − d

√
n| 6 0.6 (there exist

fast methods based on Newton iterations for this task). Then we check that ηd is not equal
to n. Otherwise we stop and output that n is composite.

Step 3: Determine the integers dcyc, dkum and r. We consider all the small integers dcyc, start-

ing from 1 and ending at b(9 + log b)1.5×max(1,log log log 68
√

log2 n)c according to Equation (28).

For each dcyc, we enumerate the divisors dkum of ndcyc − 1 upper bounded by b2
√
Aλ/dcycc

according to Equation (21). We set d = dcyc × dkum and r = dλA/(d−A)e .
This exhaustive search produces many 3-uples (dcyc, dkum, r). Among these we select the

one with the smallest estimated cost. The cost estimates are obtained from some systematic
experiments with the available computer arithmetic (see Section 6 for our choices in a magma
implementation).

We compare then with the estimated cost of λ/2 classical Miller-Rabin tests. If the latter
are cheaper, we switch to these classical tests and output the result, otherwise we go to Step 4.

5.2.2. Miller-Rabin tests.

Step 4: Perform r Miller-Rabin tests. Each of these r tests is a classical Miller-Rabin test as
described in Section 1.

5.2.3. Construction of the algebra Rcyc. We skip the next four steps when dcyc = 1.

Step 5: Find a unitary “irreducible” polynomial F (X) of degree dcyc modulo n. We use any
efficient probabilistic algorithm A that produces a degree dcyc unitary irreducible polynomial,
with probability > 1/2, provided n is prime. For n prime, A fails with probability 6 1/2. In
that case it returns nothing. If n is not prime, then A may return either nothing or a unitary
polynomial of degree dcyc in (Z/nZ)[X].

We call B the algorithm consisting of A followed by a Miller-Rabin test. It returns with
probability > 1/2 either a proof that n is not prime or a polynomial of degree dcyc in
(Z/nZ)[X]. We iterate B until we get such an output.

Step 5 thus provides either a proof of compositeness or a polynomial which we know to
be irreducible in case n is a prime. As for the choice of A we distinguish several cases, for
efficiency purposes.
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• When dcyc = 2, we look for an element o with Jacobi Symbol
(
o
n

)
equal to −1 and we

set F (X) = X2 − o. Note that o is a quadratic non-residue when n is a prime.

• When dcyc divides n−1, we look for an element o such that o
(n−1)
dcyc has order dcyc, and

we set F (X) = Xdcyc − o.
• Otherwise, we test random unitary polynomials F (X) and we use the extended Eu-

clidean algorithm to check that the ideal (Xni −X,F (X)) in (Z/nZ)[X] is one for all
i from 1 to bdcyc/2c. If we test more than log(1/2)/ log(1− 1/2d) polynomials F (X),
then the probability of success is > 1/2 provided n is prime.

One may wonder why we incorporate a Miller-Rabin test in the loop. This is just to
guarantee that we leave the loop in due time, even if n is composite. A similar caution should
be taken in every loop occurring in the next steps. We only detail this here. In practice these
Miller-Rabin test are completely useless. Indeed n is almost known to be prime and there is
no risk that we keep blocked in such a loop.

Step 6: Compute the action of the automorphism σcyc. We set x = X mod F (X) and write

xi n in the polynomial basis (xk)k, for i from 0 to dcyc − 1. This yields a dcyc × dcyc matrix
over Z/nZ, that we denote Mσcyc . Using this matrix, we can check that σcyc(x

i) = xin for i

from dcyc to 2 dcyc − 2, and σcyc
dcyc(x) = x. If this is not the case, we stop and output that

n is composite.

Step 7: Check that σcyc fixes Z/nZ. We try to compute the kernel of Mσcyc − Id, using Gauss
elimination. It produces either the expected kernel or a zero divisor in Z/nZ. In the latter
case we stop and output that n is composite. Once computed the kernel, we check that it is
equal to Z/nZ. If it is not the case, we stop and output that n is composite.

Step 8: Find a u in Rcyc such that σcyc
i(u) − u is a unit for every 1 6 i 6 dcyc − 1. If n is

prime then at least half of the elements in Rcyc satisfy the condition. So we pick at random
u in Rcyc and test the condition. We iterate if it fails. We again add a Miller-Rabin test in
the loop to make sure that it stops with probability > 1/2 even when n is composite.

To check that a non-zero element z in Rcyc is a unit we try to compute an inverse using
extended Euclidean algorithm. If it returns an element z′, we just need to check that z z′ = 1.
It it fails we know that n is not a prime and we stop.

5.2.4. Construction of the algebra S.

Step 9: Find an element ζ of exact order dkum in Rcyc. We pick a random a in the algebra

Rcyc and compute ζ = a(ndcyc−1)/dkum . If n is prime then the density of a such that the
corresponding ζ has exact order dkum is > (log log log n)−Θ. The test consists of checking

that ζdkum/q − 1 is a unit, for every prime divisor q of dkum. We proceed as in Step 8.
As above, we add a Miller-Rabin test in the loop to make sure that it stops with probability

> 1/2 when n is composite.
We check that σcyc(a) = an using the matrix Mσcyc . If this is not the case, we know that

n is not a prime and we stop.

5.2.5. The Galois test.
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Step 10: Choose at random an invertible element in S. We pick a random non-zero z in S
and try to compute the inverse z′ of z with the extended gcd algorithm. If the extended gcd
algorithm fails, or z′ × z is not equal to 1, then we know that n is not a prime and we can
stop.

Step 11: Check that σ(z) = zn. On the first hand, we compute zn in S using fast exponenti-
ation. On the other hand, we write z =

∑
i zi y

i where zi ∈ Rcyc and y = Y mod Y dkum − a.
Then, we compute σ(z) as ∑

i

σcyc(zi)× yin

where σcyc(zi) is computed using the matrix Mσcyc . Note that yin can be efficiently computed

as aαyβ where α (resp. β) is the quotient (resp. the remainder) in the Euclidean division of
in by dkum.

If σ(z) is not equal to zn, we output that n is composite. Otherwise, we output that n is
a Galois pseudo-prime.

6. Experiments

We first have determined power functions that best approximate the sub-quadratic timings
that we have measured for elementary arithmetic polynomial operations in magma v2.18-2.
In our testing ranges, i.e. b between 512 and 8192 bits, dcyc between 1 and 16 and dkum

between 8 and 1000, we have obtained the following upper bounds for the heaviest steps in
the algorithm.

• Step 4. Computing r Miller-Rabin tests:

TMR(b, r) = F × r × b2.6 .

• Step 5. Constructing an “irreducible” polynomial of degree dcyc modulo n (worst
case):

TF(b, dcyc) =


0 if dcyc = 1 ,
F × log2 b× b2.6 if dcyc = 2 ,
18F × log2 dcyc × dcyc

2.2 × b 2.4 for larger dcyc .

• Step 9. Finding an element ζ of order dkum in Rcyc (worst case):

Tζ(b, dcyc) =

{
19F × b 2.4 if dcyc = 1 ,
36F × dcyc

2.2 × b 2.4 otherwise.

• Step 11. Computing σ(x) in S:

Tσ(b, dcyc, dkum) =

{
F × dkum × b 2.6 if dcyc = 1 ,
10F × (dcyc × dkum)× b 2.4 otherwise.

• Step 11 bis. Computing xn in S:

Tpower(b, dcyc, dkum) =

{
19F × dkum

1.2 × b 2.4 if dcyc = 1 ,
36F × (dcyc × dkum) 1.2 × b 2.4 otherwise.

For the sake of completeness, we found that the constant F is equal to 30× 10−9 seconds on
our laptop (based on a Intel Core i7 M620 2.67GHz processor). Note that the knowledge
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of F is not necessary to perform the comparisons in Step 3, since all the estimated costs,
especially TMR(b, λ/2) for λ/2 Miller Rabin tests, and

TGalois(b, r, dcyc, dkum) '
TMR(b, r) + TF(b, dcyc) + Tζ(b, dcyc) + Tσ(b, dcyc, dkum) + Tpower(b, dcyc, dkum) ,

for Galois tests, are known up to F . Our conclusions should thus be valid on any computer.
The set of pairs (b, λ) for which a Galois test is more efficient than λ/2 Miller-Rabin tests

is the pale domain in Figure 2. We observe that when b tends to infinity, then the value of λ
where the two methods cross tends to 47.
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Figure 2. Ranges of efficiency for the Galois test

A reasonably optimized implementation in magma v2.18-2 is available on the authors’ web
pages for independent checks. In order to see how practical is this implementation, we have
picked a few random integers of sizes ranging from 1024 to 8192 bits, and we have measured
the timings for those which turn to be pseudo-primes. As expected, the cost ratio between
λ/2 Miller-Rabin tests and one equivalent Galois test increases with b. Results are collected
in Table 6.
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Libération, 33405 Talence cedex, France.

INRIA Bordeaux Sud-Ouest, projet LFANT.
Email address: jean-marc.couveignes@math.u-bordeaux1.fr
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