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Abstract

In this chapter, a review of theoretical and numerical asymptotic studies on thin
adhesive layers is proposed. A general mathematical method is presented for mod-
elling the mechanical behavior of bonding and interfaces. This method is based on a
simple idea that the adhesive film is supposed to be very thin; the mechanical problem
depends strongly on the thinness of the adhesive. It is quite natural, mathematically
and mechanically, to consider the limit problem, that is, the asymptotic problem ob-
tained when the thickness and, possibly, the mechanical characteristics of the adhesive
thin layer tend to zero. This asymptotic analysis leads to a limit problem with a me-
chanical constraint on the surface, to which the layer shrinks. The formulation of the
limit problem includes the mechanical and geometrical properties of the layer. This
limit problem is usually easier to solve numerically by using finite elements software.
Theoretical results (i.e. limit problems) can be usually obtained by using at least four
mathematical techniques: gamma-convergence, variational analysis, asymptotic ex-
pansions and numerical studies. In the chapter, some examples will be presented:
comparable rigidity between the adhesive and the adherents, soft interfaces, adhesive
governed by a non convex energy and imperfect adhesion between adhesive and ad-
herents. Some numerical examples will also be given and, finally, an example of a
numerical algorithm will be presented.

Keywords: Thin layer, interface, asymptotic theory.

1. Introduction

It is now widely admitted that “interphases” (the small volume between two solids) play a
crucial role in the analysis of structure assemblies. Nevertheless, due to their small thick-
ness (typically in the 1µm to1 mm range), it is difficult in a complete finite element analysis
of a structure to take them directly into account. A simplified theory is crucial because of
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the large number of degrees of freedom and the ill-conditioned numerical problem, which it
is very hard to solve even in the linear case. On the other hand, from the numerical point of
view, it is of great importance to obtain conditions on the parameters, indicating whenever it
is possible to replace the real problem with a simplified one. There exist various strategies
to overcome these difficulties. The most classical one is to introduce phenomenological
models, taking into account the macroscopic behavior of the interface and eliminating it
geometrically. The most famous law of this kind is the classical Coulomb’s law [8, 15].
One other possible strategy consists in undertaking an asymptotic analysis (where the small
parameter is the thickness of the interphase) to eliminate the interphase geometrically and
to obtain an equivalent interface model, which will be simpler to implement in numerical
simulations. This idea has been used in many studies and applied, under linear elastic, finite
strains, and viscoelastic conditions, to obtain interface laws similar to the phenomenolog-
ical laws described in the literature [1, 4, 11, 14, 20–27, 31, 33–35, 37–42, 44, 45, 48–50].
Within this approach, the layer no longer exists from the geometrical point of view, but
is replaced by a constraint, taking the asymptotic behavior of the parameters into account.
In many of these studies, a soft interphase has often been assumed to exist, with a much
smaller stiffness than that of the adherents (the stiffness is another small parameter). Fewer
studies have focused on joints consisting of adherents and an interphase with a comparable
level of rigidity. The present chapter is devoted to a general strategy to analyze this kind of
problems.

To summarize, the analysis of thin adhesive bonded joints between deformable bodies
involves problems with several parameters. At least two kinds of these parameters are
essential because they link the stress vector to the jump in the displacement vector at the
interface:

• the thickness of the joint, which is small with respect to those of the adherents,

• possibly, the mechanical characteristics (stiffness, viscosity, etc.) of the joint, which
can be smaller than those of the adherents.

To study these asymptotic problems, several mathematical methods have been intro-
duced: matched asymptotic expansions [18, 47],Γ-convergence and variational theory
[9, 16], and numerical procedures. After introducing some general notations and the me-
chanical problem in section 2, we summarize these theories in section 3 and then we apply
them to several cases of interphases. In particular, in section 4 we present the asymptotic
analysis of a joint made of materials with comparable elastic moduli. Section 5 is devoted
to the study of Signorini-Coulomb’s conditions at the interfaces between the adherents and
the adhesive. In section 6, we report on the study of an interphase characterized by a non
convex deformation energy, which is traditionally associated to martensitic phase transfor-
mations. An example of the numerical implementation of the laws obtained in section 5 is
presented in section 7.

2. General Notations

Let us consider a body occupying an open bounded setΩ of lR3 with a smooth boundary
∂Ω, where the three dimensional space is referred to the orthonormal frame(O, x1, x2, x3).
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Figure 1. (a) Reference and (b) limit configurations of the joint.

This setΩ is assumed to have a non-empty intersectionS with the plane{x3 = 0}. Let
ε > 0 be a small parameter, and let us define the following sets:

Bε = {x = (x1, x2, x3) ∈ Ω : |x3| <
ε

2
},

Ωε
± = {x = (x1, x2, x3) ∈ Ω : ± x3 >

ε

2
},

Ωε = Ωε
+ ∪ Ωε

−,

Sε
± = {x = (x1, x2, x3) ∈ Ω : ± x3 =

ε

2
},

Ω± = {x = (x1, x2, x3) ∈ Ω : ± x3 > 0},
Ω0 = Ω+ ∪ Ω−,

S = {x = (x1, x2, x3) ∈ Ω : x3 = 0}.

(1)

Bε andΩε are the domains occupied by the adhesive and the adherents, respectively
(see fig. 1). The structure is subjected to body force densityϕ and to surface force density
g acting on the partΓ1 of the boundary, whereas it is clamped on the remaining partΓ0 of
the boundary. The adherents and the adhesive are assumed to be linear elastic. We takeσε

anduε to denote the stress tensor and the displacement field, respectively. Under the small
perturbation hypothesis, the strain tensor is

ekh(uε) =
1
2
(
∂uε

i

∂xj
+
∂uε

j

∂xi
). (2)

We takeaijkl to denote the elasticity coefficients of the adherents andλ andµ to stand for
the Lamé’s coefficients of the glue. We have therefore to solve the following problem
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Problem 1

(Pε)





Find (uε, σε) such that :
σε

ij,j = −ϕi in Ω
σε

ij = aijkhekh(uε) in Ωε

σε
ij = λekk(uε)δij + 2µeij(uε) in Bε

uε = 0 on Γ0

σεn = g on Γ1

+ interface laws on Sε
±

wheren denotes the external unit normal vector toΩ. The interface laws between the
adherents and the adhesive (perfect interface, Signorini’s law or Coulomb’s law) will be
specified later on.

For a given functionf : Ω 7→ R3, we define the restrictions off to the adherents byf±ε
and to the adhesive byfm

ε . Denotingx̂ = (x1, x2) the in-plane coordinates of the adhesive,
we define the following jumps off :

[f ]+ε (x̂) := f+
ε (x1, x2, (

ε

2
)+) − fm

ε (x1, x2, (
ε

2
)−) , (3)

[f ]−ε (x̂) := f−ε (x1, x2, (−
ε

2
)−) − fm

ε (x1, x2, (−
ε

2
)+) , (4)

[f ]ε(x̂) := fm
ε (x1, x2, (

ε

2
)−) − fm

ε (x1, x2, (−
ε

2
)+) . (5)

For a given functionf : Ω0 7→ R3, we define the restrictions off to Ω± by f± and we also
define the following jump off onS :

[f ](x̂) := f+(x1, x2, 0+) − f−(x1, x2, 0−) . (6)

Finally,we also introduce the following notations:

[[f ]]±Nε := ±[f ]±ε e3, (7)

[[f ]]±Tε := [f ]±ε ∓ [[f ]]±Nεe3, (8)

σε±
N := ±(σεe3)±ε e3, (9)

σε±
T := ±σεe3 ∓ σε±

N e3. (10)

3. Mathematical Methods

3.1. Matched Asymptotic Expansion Method

The idea underlying matched asymptotic expansions is to find two expansions of the dis-
placementuε and the stressσε in powers ofε, i.e., an external expansion for the bodies
and an internal one for the joint, and to connect these two expansions to obtain the same
limit [18,47].
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3.1.1. External Expansions

The external expansion is a classical expansion in powers ofε

uε(x̂, x3) = u0(x̂, x3) + εu1(x̂, x3) + ...,
eij(uε)(x̂, x3) = e0ij(x̂, x3) + εe1ij(x̂, x3) + ...,

elij =
1
2
(
∂ul

i

∂xj
+
∂ul

j

∂xi
),

σε
ij(x̂, x3) = σ0

ij(x̂, x3) + εσ1
ij(x̂, x3) + ...

(11)

3.1.2. Internal Expansions

In the internal expansions, we perform a blow-up of the second variable. Lety3 =
x3

ε
. The

internal expansion gives

uε(x̂, y3) = v0(x̂, y3) + εv1(x̂, y3) + ...,

eij(uε)(x̂, y3) = ε−1e−1
ij (x̂, y3) + e0ij(x̂, y3) + εe1ij(x̂, y3) + ...,

elαα =
∂vl

α

∂xα
, α = 1, 2,

el33 =
∂vl+1

3

∂y3
,

elαβ =
1
2
(
∂vl

β

∂xα
+
∂vl

α

∂yβ
),

elα3 =
1
2
(
∂vl

3

∂xα
+
∂vl+1

α

∂y3
),

σε
ij(x̂, y3) = ε−1τ−1

ij (x̂, y3) + τ0
ij(x̂, y3) + ετ1

ij(x̂, y3) + ...,

σε
ij,j =

∞∑
l=−2

εl(
∂τ l

iα

∂xα
+
∂τ l+1

i3

∂y3
).

(12)

In the last relation, we use the convention thatvl = 0 whenl < 0 andτ l = 0 whenl < −1.

3.1.3. Continuity Conditions

The third step of the method consists in connecting the two expansions. We choose some
intermediate planes defined byx3 = ±ζεt, 0 < t < 1, ζ ∈]0,+∞[. Whenε tends to zero,
x3 tends to0± andy3 = x3/ε tends to±∞. The principle of the method [18, 47] consists
in assuming that the two expansions give both the same asymptotic limits, that is

(i) v0(x̂,±∞) = u0(x̂, 0±),
(ii) τ−1(x̂,±∞) = 0,
(iii) τ0(x̂,±∞) = σ0(x̂, 0±).

(13)

3.1.4. Identification

The fourth step of the method consists in introducing the expansions in the equilibrium
equations and in the constitutive equations. We obtain systems of equations in the following
form:
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∑
εnBn(vl, τ l) = 0 (14)

We now impose that these relations are satisfied at each ordern :

Bn(.) = 0, ∀ n. (15)

These equations together with (13) identify an interface law [33,34].

3.2. Γ-convergence Theory

When Problem 1 admits an energy form, it is natural to study the variational convergence
of this energyF ε, as the small parameterε tends to zero. A now classical theory to analyze
the convergence is provided by the notion ofΓ− convergence [9,16].

We recall the following definition:

Definition 1 LetX be a topological space andF ε : X → [0,∞] a sequence of functionals
on X . The sequenceF ε is said toΓ-converge to theΓ-limit F 0 : X → [0,∞] if the
following two conditions hold:

• For every sequenceuε in X such thatuε → u0 asε→ 0,

F 0(u0) ≤ lim infε→0 F
ε(uε) (Lower bound inequality);

• For everyu0 ∈ X , there exists a sequenceuε converging tou0 asε→ 0, such that

F 0(u0) ≥ lim supε→0 F
ε(uε) (Upper bound inequality).

F 0 is an optimal asymptotic lower bound for the sequenceF ε in the sense specified by the
following proposition.

Proposition 2 If F ε Γ−converges toF 0, then

(i) F ε(uε) := min
u∈X

F ε(u) → F 0(u0) := min
u∈X

F 0(u), (16)

(ii) uε → u0. (17)

This theory, applied to the total energy of the system, allows to obtain an interface law at
order zero [36,42].

3.3. Energy Asymptotical Method

This method has been introduced in [36]. As in theΓ− convergence theory, the equilibrium
problem is written as a minimization problem of the total energy. As in the asymptotic
expansion method, the energy asymptotical method is based on an (external) expansion of
u in power ofε.Moreover, in order to reformulate the equilibrium problem in an interphase
domain independent ofε, a change of variables is introduced:

(ẑ, z3) = (x̂, x3ε
−1), (x̂, x3) ∈ Bε, (18)

(ẑ, z3) = (x̂, x3 ±
ε

2
∓ 1

2
), (x̂, x3) ∈ Ω±. (19)
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In particular,Bε is rescaled by a factorε−1 along the interphase thickness and the bodies
Ω± are shifted by±1/2(1 − ε) in the same direction.

Let ūε(ẑ,z3) be the rescaled displacement. The rescaled equilibrium problem can be
formulated as follows: find thēuε minimizing the rescaled energy,F ε, in the set of rescaled
displacements. Substituting the expansion (11)1 into the rescaled energy, we obtain

F ε(ul) =
1
ε
F−1(ul) + F0(ul) + εF1(ul) + ε2F2(ul) + o(ε2) (20)

The main assumption of this method is that we can obtain the fields which are stationary
points of the energyF ε by finding the stationary points of the energiesF l obtained at each
level of the expansion.

3.4. Numerical Methods

In this part, we present a method used in previous studies. Examples, usually academic,
are studied numerically (long bar, dovetail assembly, etc.). The aim of this numerical study
by finite elements is to confirm that the numerical results are coherent with a theoretical
approach, to check the existence of the theory (validation) and to determine the thickness
of the layer at which the limit interface law can be taken to be a valid approximation of the
original constitutive relation of the adhesive (quantification). The initial problem is there-
fore solved numerically in the case of a thin layer with decreasing thickness (and decreasing
moduli in the case of a soft interphase). The numerical results obtained are then compared
with the theoretical results. For example, in the case of a soft elastic isotropic interphase,
in order to simplify the computations, the Lamé’s coefficients are assumed to be given by

λε = λδ, µε = µγ

whereλ, µ are given and the non negative coefficientsδ, γ correspond to cases of soft or
rigid interfaces. We give an example in section 7, where the problem is solved with the
following decreasing values ofε: 1.10−2, 5.10−3, 1.10−3, 5.10−4, 1.10−4. This method is
used in [31,39].

4. The Case Involving Similar Rigidity: Perfect Interface?

In this section, we consider:

• that the adhesive is linear elastic,

• that the link between the adhesive and the adherents is perfect,

• that the stiffness of the adhesive is similar to those of the adherents.

We present the results obtained in [35], where we have usedΓ−convergence techniques to
analyze the asymptotic behavior of the total energy up to the second order of the expansion
in ε.
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4.1. First Order Study

The local formulation of the equilibrium problem corresponds to find the fields of displace-
mentuε, straine(uε) and stressσε which solve the following problem:

(P 1
ε )





Find (uε, σε) such that :
σε

ij,j = −ϕi in Ω
σε

ij = a±ijkhekh(uε) in Ωε
±

σε
ij = am

ijkhekh(uε) in Bε

uε = 0 on Γ0

σεn = g on Γ1

[uε]±ε = 0 , [σεe3]±ε = 0

We introduce the space of admissible displacements (the Sobolev spaces are denoted by
usual notations)

V ε = {u ∈ (W 1,2(Ω))3 : u = 0 on Γ0} , (21)

and the works of the internal and external loads, respectively,

Aε(u, v) =
∫

Ωε
±

a±e(u) : e(v) dx+
∫

Bε
ame(u) : e(v) dx ,

lε(v) =
∫

Ω

φ · v dx+
∫

Γ1

g · v ds ,

we reformulate(P 1
ε ) in the following way

(P̄ 1
ε )

{
Find uε ∈ Vε :
A(uε, v) = lε(v) ∀v ∈ V ε .

(22)

Under the three following regularity assumptions

H1)





aijkl ∈ L∞(Ω) ,
aijkl = aklij = ajilk

∃η > 0 : aijkleijekl ≥ ηeijeij ∀eij = eji ,

(23)

H2) ∃ε0 : Bε ∩ (Γ1 ∪ supp(φ)) = ∅ , ∀ ε < ε0 ,

(24)

H3) φ ∈ (L2(Ω))3 , g ∈ (L2(Γ1))3 .

the variational problem(P̄ 1
ε ) admits a unique solution (due to the Lax-Milgram theorem),

which is also the unique solution of the following problem of minimization:

(P̃ 1
ε )

{
Find uε ∈ V ε :
Jε(uε) ≤ Jε(v) ∀v ∈ V ε ,

(25)

where

Jε(v) =
1
2
Aε(v, v)− lε(v) (26)
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is the potential energy associated with the displacement fieldv. To apply the notion of
Γ−convergence, we introduce the strain energy functional

F ε(v) =

{ 1
2
Aε(v, v) if v ∈ Vε ,

+∞ if v ∈ X \ Vε ,
(27)

whereX = (L2(Ω))3. In [35], it is introduced the following limit functional:

F 0(v) =
{ ∫

Ω0
a±e(v) : e(v) dx if v ∈ V 0 ,

+∞ if v ∈ X \ V 0 ,
(28)

where
V 0 = {u ∈ (W 1,2(Ω0))3 : u = 0 on Γ0 , [v] = 0 on S} . (29)

We now recall the following result proved in [35].

Theorem 3 The sequence of functionalsF ε Γ-converges toF 0 in the strong topology of
X.

Note that the limit problem, i. e. the minimization problem ofF 0, involves only the
adherents. The adhesive has vanished geometrically (as expected) as well as mechanically.
We also observe that, because the displacement vector on S has to be continuous (see (29)),
the mechanical implication of the theorem is that a very thin interphase behaves like a
perfect interface.

In some cases, it may become necessary to improve the model, and it turns out that the
most natural solution is to go to a higher order in the asymptotic analysis. This is done in
the next section.

4.2. Second Order Study

In this section, we recall the results obtained in [35] at the second order and we focus on the
case of isotropic adhesive with Lamé’s coefficientsλ andµ.We introduce the displacement
fieldu1 and the stress fieldσ1 as the limit, in a sense made precise by the following lemma,

of suitable subsequences of
uε − u0

ε
and

σε − σ0

ε
respectively. We denoteD(A) the space

of theC∞ functions with compact support on the open setA andD′(A) its dual space.

Lemma 1 Let uε, σε andu0, andσ0 be the displacement and stress fields corresponding
to minimizers of the energiesF ε andF 0, respectively. Then there exist subsequences, not
relabeled, such that

uε − u0

ε
⇀ u1 in L2(Ω) (weak),

σε − σ0

ε
⇀ σ1 inD′(Ω) (weak).

(30)

This Lemma is proved in [35]. Contrarily to the fields at order zerou0 andσ0e3 which
are continuous on the surfaceS, the fieldsu1 andσ1e3 suffer discontinuity onS. The
following Theorem gives a relationship between their jumps, involving the restrictions of
the traction and the displacement vectorsu0 andσ0e3 onS.
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Theorem 4 The fields u1 and σ1 satisfy (in a weak sense) the following equilibrium equa-

tions:

σ1
ij,j = 0 in Ω±

σ1
ij = a±ijkhekh(u1) in Ω±

u1 = 0 on Γ0

σ1n = 0 on Γ1

and the following relations at the interfaceS :

[u1
α] =

1
µ
σ0

α3(x̂, 0)− u0
3,α(x̂, 0)− 1

2
(u0

α,3(x̂, 0
+) + u0

α,3(x̂, 0
−)) , α = 1, 2 ,

[u1
3] =

1
λ+ 2µ

σ0
33(x̂, 0)− λ

λ+ 2µ
(u0

1,1(x̂, 0) + u0
2,2(x̂, 0))

−1
2
(u0

3,3(x̂, 0
+) + u0

3,3(x̂, 0
−)) ,

[σ1
13] = −4µ(λ+ µ)

λ+ 2µ
u0

1,11(x̂, 0)− µu0
1,22(x̂, 0)− µ(3λ+ 2µ)

λ+ 2µ
u0

2,21

− λ

λ+ 2µ
σ0

33,1(x̂, 0)− 1
2
(σ0

13,3(x̂, 0
+) + σ0

13,3(x̂, 0
−)) ,

[σ1
23] = −4µ(λ+ µ)

λ+ 2µ
u0

2,22(x̂, 0)− µu0
2,11(x̂, 0)− µ(3λ+ 2µ)

λ+ 2µ
u0

1,12(x̂, 0)

− λ

λ+ 2µ
σ0

33,2(x̂, 0)− 1
2
(σ0

23,3(x̂, 0
+) + σ0

23,3(x̂, 0
−)) ,

[σ1
33] = −σ0

13,1(x̂, 0)− σ0
23,2(x̂, 0)− 1

2
(σ0

33,3(x̂, 0
+) + σ0

33,3(x̂, 0
−)) .

(31)

As for the minimization problem of the energy (28), the limit problem defined by theorem
4 involves only the adherents, since the adhesive has vanished geometrically. However, the
adhesive has not disappeared from the mechanical point of view: it has been replaced by
the mechanical constraints (31), linking the jump in the displacement and traction vectors to
the displacement and traction vectors (and their derivatives) at order zero. In particular, the
presence of the tangential derivatives ofu0 indicates a non-local character of the interface
law (31). Relations (31) also suggest that at higher orders, a thin interphase behaves like an
imperfect interface, which keeps trace of the elastic behavior of the interphase.

4.3. An One Dimensional Example

In this section, we propose a simple example to illustrate, in the one dimensional setting, the
origin of the terms entering the interface law (31). We consider a bar,AB, fixed at one of
its extremities,A, as represented in Figure 2. The partAB is composed of the adhesiveAC
and of the adherentCB, made by two different materials with elastic moduliE1 andE2,
respectively. A force densityφ(x) = g1x is applied onAC and a force densityφ(x) = g2x

is applied onCB. We have
AC = ε, CD = L− ε,

10



Figure 2. A composite bar subject to body forces.

u(0) = 0, E2
du

dx
(L) = a.

At order zero, we obtain:

u0(x) = −g2x
3

6E2
+

(a− 1/2g2L2)x
E2

(32)

σ0(x) = −g2
2
x2 + a− 1/2g2L2 (33)

We verify easily that
[
u0
]

=
[
σ0
]

= 0. At order one, we obtain:

u1(x) = (
1
E1

− 1
E2

)(a− 1/2g2L2) (34)

σ1(x) = 0. (35)

We can verify that,
[
u1
]

=
1
E1
σ0(0)− u0

,x(0), and
[
σ1
]

= −1
2
(σ0

,x(0
+) + σ0

,x(0−)).

5. Non Linear Imperfect Interface: Taking into Account
Frictional Contact

In this section, we consider:

• that the thin layer is elastic,

• that the stiffness of the glue is lower than that of the bodies,

• that the link between the glue and the bodies is imperfect.
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We assume the contact to involve dry friction conditions between the bodies and the thin
layer. The Signorini’s law of unilateral contact and the Coulomb’s law of dry friction are
written in the case of monotonous quasi-static loading as:

[σεe3]
±
ε = 0,

σε±
N ≤ 0,

[[uε]]±Nε ≤ 0,
σε±

N [[uε]]±Nε = 0,
|σε±

T | ≤ f |σε±
N |,

If |σε±
T | < f |σε±

N | then [[uε]]±Tε = 0,
If |σε±

T | = f |σε±
N | then [[uε]]±Tε = −ζσT , with ζ ≥ 0,

(36)

wheref is the friction coefficient. To analyze the asymptotic behavior of the interphase,
we use two of the methods presented in section 3: matched asymptotic expansion and a
numerical method.

5.1. Asymptotic Expansions

In the following, we summarize the results obtained in [39]. Given the constitutive equa-
tions in the thin layer, we have

ε−1τ−1
ij + τ0

ij + ετ1
ij + ... = λ(ε−1e−1

kk + e0kk + εe1kk + ...)δij
+2µ(ε−1e−1

ij + e0ij + εe1ij + ...).
(37)

The identification of the various orders depends on the behavior of the Lamé coefficientsλ
andµ with respect toε. We obtain nine cases corresponding to the values of the limitsλ

andµ of the ratios
λ

ε
and

µ

ε
:

• (a)λ = µ = 0, τ−1
ij = 0, τ0

ij = 0.

• (b) λ = 0, 0 < µ <∞, τ−1
ij = 0, τ0

ij = 2µe−1
ij .

• (c) 0 < λ <∞, µ = 0, τ−1
ij = 0, τ0

ij = λe−1
kk δij .

• (d) 0 < λ <∞, 0 < µ <∞, τ−1
ij = 0, τ0

ij = λe−1
kk δij + 2µe−1

ij ,

• (e)λ = ∞, µ = 0, e−1
kk = 0, τ0

ij = 0.

• (f) λ = ∞, 0 < µ <∞, e−1
kk = 0, τ0

ij = 2µe−1
ij .

• (g) λ = 0, µ = ∞, e−1
ij = 0, e0ij = 0.

• (h) 0 < λ <∞, µ = ∞, e−1
ij = 0, e0ij = 0.

• (i) λ = ∞, µ = ∞, e−1
ij = 0, e0ij = 0.

LetK1 = KT = µ andK2 = KN = λ+ 2µ. f+ is the positive part of a functionf .
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• (a)λ = µ = 0
In this case,τ0

ij = 0. Because of the continuity conditions, we obtain

σ0(x1, 0) = 0 (38)

• (b) λ = 0, 0 < µ <∞

In this case,τ0
11 = 0, τ0

12 = µ
∂v0

1

∂y2
, τ0

22 = 2µ
∂v0

2

∂y2
.

Using standard arguments, we obtain

σ0
N = −2µ[[u0]]+N ,

|σ0
T | ≤ f |σ0

N |,
If |σ0

T | < f |σ0
N | then σ0

T = −µ[[u0]]T ,

If |σ0
T | = f |σ0

N | then [[u0]]T = −ζσ0
T , ζ ≥ 0.

(39)

• (c) 0 < λ <∞, µ = 0

In this caseτ0
11 = τ0

22 = λ
∂v0

2

∂y2
, τ0

12 = 0. For the normal part, we proceed as in (b),

by replacing2µ by λ. The tangential part corresponds to (a). We obtain

σ0
N = −λ[[u0]]+N ,
σ0

T = 0.
(40)

• (d) 0 < λ <∞, 0 < µ <∞

In this case,τ0
11 = λ

∂v0
2

∂y2
, τ0

i2 = Ki
∂v0

i

∂y2
. Here, we again proceed as in (b). We obtain

σ0
N = −(λ+ 2µ)[[u0]]+N ,

|σ0
T | ≤ f |σ0

N |,
If |σ0

T | < f |σ0
N | then σ0

T = −µ[[u0]]T ,
If |σ0

T | = f |σ0
N | then [[u0

] ]T = −ζσ0
T , ζ ≥ 0.

(41)

• (e)λ = ∞, µ = 0

We have
∂v0

2

∂y2
= 0, τ0

12 = 0. For the normal tangential part, we proceed as in (a).

Using standard arguments, we have

[[u0]]N ≤ 0, σ0
N ≤ 0, [[u0]]Nσ

0
N = 0,

σ0
T = 0.

(42)

• (f) λ = ∞, 0 < µ <∞

We have
∂v0

2

∂y2
= 0, τ0

12 = µ
∂v0

1

∂y2
. The treatment of the tangential part is similar to (b)

and the treatment of the normal part is similar to (e). To summarize, we obtain

[[u0]]N ≤ 0, σ0
N ≤ 0, [[u0]]Nσ

0
N = 0,

|σ0
T | ≤ f |σ0

N |,
If |σ0

T | < f |σ0
N | then σ0

T = −µ[[u0]]T ,

If |σ0
T | = f |σ0

N | then [[u0]]T = −ζσ0
T , ζ ≥ 0.

(43)

The three last cases call for a special treatment.
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• (g)(h)(i) µ = ∞

In these cases, we have
∂v0

i

∂y2
= 0. We proceed as in (e) on the normal and tangential

parts. This gives

[[u0]]N ≤ 0, σ0
N ≤ 0, [[u0]]Nσ

0
N = 0,

|σ0
T | ≤ f |σ0

N |,
If |σ0

T | < f |σ0
N | then [[u0]]T = 0,

If |σ0
T | = f |σ0

N | then [[u0]]T = −ζσ0
T , ζ ≥ 0.

(44)

5.2. Numerical Validations

b = 65 mm

f = 40 mm

a = 87 mm

c = 43 mm

d = 148 mm

e = 72 mm

g = 103 mm

a b

c

d

e f

g

S
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CD

ε

ε

S
ε

th
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 la
ye

r

B

E

+
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Figure 3. The dovetail assembly.

This section illustrates some numerical results obtained in [31, 44]. The example of a
dovetail assembly is treated. The aim of this numerical study is to confirm that the numerical
results are coherent with the theory (validation)and to determine the thickness of the layer at
which the limit interface law can be taken to be valid (quantification). The initial problem
is therefore solved numerically in the case of a thin layer with decreasing thickness and
stiffness values, as done by [44]. A relaxation procedure is used for this purpose, as in
previous studies [30,46].
The numerical results obtained are then compared with the theoretical results. In order to
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Figure 4. Mesh of the structure.
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Figure 5. Ratio between normal stress and normal displacement (case b).
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Figure 6. Ratio between tangential stress and tangential displacement (case d).

simplify the computations, the Lamé’s coefficients of the joint are assumed to be given by
{
λε = εγλ, γ ≥ 0,
µε = εδµ, 0 ≤ δ < 2.

The problem is solved with the following decreasing values ofε :

1.10−2, 5.10−3, 1.10−3, 5.10−4, 1.10−4.

In order to analyze the results obtained, the displacement fields (uN ,uT ) and the stress
vector (σN , σT ) were computed onS±

ε in the case of the initial problem (and onS in that
of the limit problem) in the nine cases studied. The theoretical and numerical curves of
the stick and sliding nodes are then compared. The friction problem is solved by means
of a fixed point algorithm coupled with a relaxation procedure [46]. Similar results were
obtained (see fig. 5 and 6). As can be seen from these figures, the limit law can be taken to
be valid for at thin layer thickness up to10−3 mm. This value is suitable for a large class of
problems (for example in glue-bonding processes).

5.3. Predictive Nature of the Model

In this section, we focus on a particular characteristic of the model, its predictive nature
which depends on the mechanical and geometrical parameters of the glue and the adherents.
The model presented in the previous paragraphs involves four parameters: the thickness of
the glueε, the stiffness coefficients of the glueλ andµ and the friction coefficientf .
We observe that the various cases depend both on the limits ofλ/ε and ofµ/ε. We stress
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the fact that the nine laws that appear depend only on the relative values of the parame-
ters. If mathematically, these limits are perfectly defined, mechanically, in a non academic
problem, they are a priori unknown. The engineer only knows (or has the possibility of
knowing) the thickness and the stiffness of the glue. The limits are approximated in a satis-
factory way by the ratio between the stiffness and the thickness. In other words, the values
of λ̄ andµ̄ can be replaced byλ/ε andµ/ε respectively. But these approximations are never
equal to zero or to infinity. So when shall we consider that these limit values are obtained ?
Simply by comparison to a reference value. For example in the case of isotropic adherents,
the reference values, would beλm/L or µm/L, whereλm andµm are the moduli andL
the characteristic length of the adherents (chosen equal to1 in the numerical applications),
with λ << λm, µ << µm andε << L, which expresses the fact that the interface is both
soft and thin.
More precisely, when

• λ/ε andµ/ε are very small by comparison to the reference value, i.e. the glue is
relatively more soft than thin,̄λ andµ̄ shall be taken equal to zero;

• λ/ε andµ/ε are very large by comparison to the reference value, i.e. the glue is
relatively more soft than thin,̄λ andµ̄ shall be taken equal to infinity;

• λ/ε andµ/ε are finite by comparison to the reference value, i.e. the glue is as thin as
soft, λ̄ andµ̄ shall be taken equal toλ/ε andµ/ε respectively.

Numerically, we can observe that ”very small” corresponds to less than3% of the reference
value and that ”very large” corresponds to more than30 times the reference value. The
”finite case” corresponds to the range between these two extreme values.

6. Non Linear Imperfect Interface: Non Convex Energy

In this section, we consider:

• that the thin layer is governed by a non convex energy,

• that the stiffness of the glue is lower than that of the bodies,

• that the link between the glue and the bodies is perfect.

Non convex energies are usually associated to phase transforming materials [10,19]

6.1. Constitutive Relation of a Phase Transforming Adhesive

To model the constitutive behavior of the adhesive, we adopt the Fr émond constitutive
relation, which involves three phases, the austenite and two variants of martensite [19]:





σij = λekkδij + 2µeij + αχij , if αχijeij ≤ −c
σij = λekkδij + 2µeij , if |αχijeij | ≤ c
σij = λekkδij + 2µeij − αχij , if αχijeij ≥ c,

in Bε (45)
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and where constantsα andc are two material parameters. The constantc can be related to a
critical temperature, below which the stress-strain curve has only two ascending branches,
each one corresponding to a different variant of martensite (fig. 7.1-a) Above the transfor-
mation temperature, a third phase exists, called austenite and corresponding to an interme-
diate ascending branch in the stress-strain curve (fig. 7.1-b).
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11
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k
kc

11

c
11

+

(b)

11

Figure 7. Stress-strain diagrams simulating an extension test on a phase transforming adhe-
sive: (a)c ≤ 0, (b) c > 0.

The problem is studied by means of matched asymptotic expansions. LetS, T denote
the diagonal2 × 2 matrices withS11 = KT , S22 = KN andT11 = T22 = KPT . Let x
be the vector withx1 = χ12 andx2 = χ22. Note that the coefficients ofS (resp.T ) can
be equal to infinity, zero or a non-zero bounded value (resp. infinity or a non-zero bounded
value). Using these notations, we obtain the following family of contact laws

• c̄ ≤ 0

σn = S[u] + Tx if αxi[ui] ≤ 0,
σn = S[u]− Tx if αxi[ui] ≥ 0,

.
(46)

• c̄ > 0

σn = S[u] + Tx if αxi[ui] ≤ −c̄,
σn = S[u] if |αxi[ui]| ≤ c̄,

σn = S[u]− Tx if αxi[ui] ≥ c̄,

.

(47)

6.2. Interface Laws Arising from Energy Minimization

In a one dimensional setting, it is possible to solve the equilibrium problem and discuss
the stability of the equilibrium solutions for an adhesive obeying the constitutive relation
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Figure 8. Contact laws forc ≤ 0 : (a) normal contact law forχ22 = 0; (b) tangential contact
law.
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Figure 9. Contact laws forc > 0 : (a) normal contact law forχ22 = 0; (b) tangential contact
law.

(45). This is done in the next subsection. The closed form solutions allow us to explicitly
calculate the corresponding interface laws when the thickness of the adhesive tends to zero
(see subsection 6.2.2).

6.2.1. Metastable States for a One Dimensional Phase Transforming Adhesive

Let us take a one-dimensional bar occupying a reference unstressed space configuration
Ω = (0, l), starting from which there are displacement fieldsu = u(x), x ∈ (0, l) which
are continuous, with the piecewise continuous derivativeu′ ≥ 0. The bar is fixed at the
extremityx = 0, and is subjected to a prescribed displacementδ > 0 atx = L.
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The bar is assumed to be made of two different elastic materials. In the range0 ≤
x ≤ εL, the bar is composed of an adhesive layer characterized by the piecewise quadratic
stored energy density

wa(e) = min
e>0

{k
2
e2;

k

2
e2 − αχe + c} , (48)

wherek > 0 is the elasticity of the adhesive.
In the rangeεL ≤ x ≤ L, the bar is composed of a material with quadratic stored

energy density having an elastic modulusK

wb(e) =
K

2
e2 . (49)

This system admits the following possible solutions:

i) If 0 ≤ σε < kc(αχ)−1 − αχ, then,

ū =





σε

k
x x ∈ [0, εL] ,

σε

K
x+ σεεL(

1
k
− 1
K

) x ∈ (εL, L] ,
(50)

with σε = k̂εδL
−1, andk̂−1

ε := εk−1 +(1−ε)K−1. Using the expression forσε, it is
easy to see that this solution is possible whenever0 ≤ δ < (kc(αχ)−1 − αχ)Lk̂−1

ε .

Sinceδ is positive, this solution exists only ifc > 0 and corresponds to the case of
adhesive consisting of only austenite.

ii) If c > 0 andkc(αχ)−1 − αχ ≤ σε < kc(αχ)−1, then the adhesive is a mixture of
austenite and martensite. Letλ ∈ (0, 1) denote the austenite volume fraction. Asλ
varies in[0, 1],we obtain a set of equilibrium solutions:

ū =





σε

k
x x ∈ [0, λεL] ,

σε + αχ

k
x− αχελL

k
x ∈ (λεL, εL] ,

σε

K
x+ εL(

σε + (1 − λ)αχ
k

− σε

K
) x ∈ (εL, L] ,

(51)

with

σε = k̂ε(
δ

L
− ε(1 − λ)

αχ

k
) . (52)

Using this expression forσε, it turns out that the two-phase solution exists whenever

((kc(αχ)−1−αχ)k̂−1
ε +εαχ(1−λ)k−1)L ≤ δ ≤ (kc(αχ)−1k̂−1

ε +εαχ(1−λ)k−1)L .
(53)

Since the value of the volume fractionλ is within the0 < λ < 1 range, this condition
can be further extended as follows

(kc(αχ)−1 − αχ)k̂−1
ε L ≤ δ ≤ (kc(αχ)−1 + εαχk−1)L . (54)

Therefore, given anyλ ∈ (0, 1), if the prescribed elongationδ lies in the above range,
then there will exist in the adhesive a two-phase solution involving a mixture of both
phases.
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iii) If σε ≥ kc(αχ)−1, then the solution is

ū =





σε + αχ

k
x x ∈ [0, εL] ,

σε

K
x+ εL(

σε + αχ

k
− σε

K
) x ∈ (εL, L] ,

(55)

with σε = k̂ε(δL−1 − αχεk−1). This solution, which is possible forδ >

kc(αχ)−1Lk̂−1
ε + αχεLk−1 whenc > 0 and for any positiveδ whenc ≤ 0, de-

scribes the case of adhesive consisting entirely of martensite.

It is established that the configurations described by the solutions (50), (51) and (55)
correspond to weak local minimizers [34]. It is also established that the following equilib-
rium configurations correspond to a global minimizer:

a) if 0 ≤ δ < (kc(αχ)−1 − αχ/2)L ke−1, then solution (50) is a global minimizer;

b) if (kc(αχ)−1 − αχ/2)Lk̂−1
ε ≤ δ < (kc(αχ)−1 − αχ/2)Lk̂−1

ε + εαχLk−1, then
the solution (51) withσε given by the Maxwell stressσM = kc(αχ)−1 − αχ/2 is
a global minimizer. SubstitutingσM into (52), we find the austenite volume fraction
determined solely for the givenδ :

λglo = 1 +
K

εαχ

(
k

k̂ε

c(αχ)−1 − αχ

2k̂ε

− δ

L

)
. (56)

Note that whenδ = (kc(αχ)−1 − αχ/2)Lk̂−1
ε we haveλglo = 1, i.e., the adhesive

is still in the austenite phase. Ifδ is continuously increased, the austenite volume
fraction decreases and the stress in the bar remains constant and equal to the Maxwell
stress. Whenδ = (kc(αχ)−1 − αχ/2)Lk̂−1

ε + εαχLk−1, we haveλglo = 0, and the
adhesive has completed the transformation from austenite to martensite.

c) if δ ≥ (kc(αχ)−1 − αχ/2)Lk̂−1
ε + εαχLk−1, then the solution (55) is a global

minimizer.

6.2.2. Interface Laws for a Thin Phase Transforming Adhesive

To obtain the interface law we study the asymptotic behavior of the above equilibrium
solutionswhen both the parameters(ε, k) tend to zero and the thin adhesive layer is replaced
by a point. To study the asymptotic behavior of the adhesive, we set

k = k̄ ε . (57)

Our aim here is to study the relations between the limits

σ = lim
ε→0

σε , [u] = lim
ε→0

(ū(εL)− ū(0)) , (58)

whereσε and ū correspond to the equilibrium configurations determined in the previous
subsection. This study leads to defining an asymptotic contact law linking the limit stress
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in the bar,σε, to the jump in the displacement occuring at the adhesive interface,[u]. This
contact law describes the limit behavior of the adhesive.

In addition to (57), we need to specify the scaling of the material parameters withε. To
make the limits (58) finite, we take

c = c̄ ε−1, α = ᾱ , χ = χ̄ , (59)

wherek̄, c̄, ᾱ andχ̄ are independent ofε.
Substituting (57), (59) into the expressions forσε andū listed in section 2 in (a), (b) and

(c), taking the limitε→ 0+ and eliminatingδ betweenσε and[u], we obtain the following
contact law:

σglo =





k̄
[u]
L
, 0 ≤ [u] < L(c̄(ᾱχ̄)−1 − ᾱχ̄

2k̄
) ,

(k̄c̄(ᾱχ̄)−1 − ᾱχ̄

2
), L(k̄c̄(ᾱχ̄)−1 − ᾱχ̄

2k̄
) ≤ [u] < L(k̄c̄(ᾱχ̄)−1 +

ᾱχ̄

2k̄
) ,

k̄
[u]
L

− ᾱχ̄, [u] ≥ L(k̄c̄(ᾱχ̄)−1 +
ᾱχ̄

2k̄
) ,

(60)
corresponding to global minimizers of the original equilibrium problem. In the same way,
takingσε andū as in (i), (ii) and (iii), we can calculate the limit contact law corresponding
to local minimizers. Note that this law turns out to be undefined, because of the lack of
information available due to the non uniqueness of the local minimizers. Indeed, we obtain

σloc =





k̄
[u]
L
, 0 ≤ [u] < L(c̄(ᾱχ̄)−1 − ᾱχ̄

2k̄
) ,

Σ̄, L(k̄c̄(ᾱχ̄)−1 − ᾱχ̄

2k̄
) ≤ [u] < L(k̄c̄(ᾱχ̄)−1 +

ᾱχ̄

2k̄
) ,

k̄
[u]
L

− ᾱ, [u] ≥ L(k̄c̄(ᾱχ̄)−1 +
ᾱχ̄

2k̄
) ,

(61)

whereΣ̄ can take any value in[k̄c̄(ᾱχ̄)−1−ᾱχ̄, k̄c̄(ᾱχ̄)−1+ᾱχ̄]. Therefore, local minimiz-
ers give rise to multiple contact laws, all of which are included in the dashed parallelogram
depicted in Figure 10. Note the non uniqueness of the equilibrium solutions, due to the non
convexity of the deformation energy associated to (45). To rule out non uniqueness, one
can postulate a nucleation condition and a kinetic relation, specifying the path inside the
parallelogram of the possible states [2].

7. An Example of Numerical Implementation

This section is devoted to the numerical solution of the problem presented in the previous
section. Note that there exist several studies to solve this kind of problems [3, 5–7, 12, 13,
28–30,32,46]. In what follows, we will adopt the two-dimensional context, focusing on the
contact between a deformable solidA occupyingΩ and a rigid body. In this case,
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Figure 10. Contact law obtained by energy minimization. To make the figure clearer,
we have definedζ = c(ᾱχ̄)−1, κ = ᾱχ̄k̄−1, β = k̄(ᾱχ̄)−1 − ᾱχ̄/2, ω = ᾱχ̄/2. The
shaded region is the contact law domain corresponding to local minimizers. Contact law
corresponding to global minimizers (Maxwell line):- -. Contact laws corresponding to
local minimizers:— linear kinetic,— pinning kinetic,- - convex decomposition.

Problem 2

(P )





Find (u, σ) such that :
σij,j = −ϕi in Ω
σij = aijkhekh(u) in Ω
u = 0 on Γ0

σn = g on Γ1

σN ≤ 0 on S

σN = −KNu
+
N on S

|σT | ≤ f |σN | on S

If |σT | < f |σN | then σT = −KTuT

If |σT | = f |σN | then uT = −ζσT with ζ ≥ 0

The contact laws are shown in figs. 11 and 12. In lines with previous studies, the above
problem is equivalent to:

Problem 3
Findρ, the fixed point of the applicationρ −→ f |σN(u(ρ))|, whereu = u(ρ) is the solution
of

{
Find u ∈ V such that :
J(u) ≤ J(v), ∀v ∈ V,
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Figure 11. Contact law: normal component (the dotted line corresponds to an infinite value
of KN ).

Figure 12. Contact law: tangential component (the dotted line corresponds to an infinite
value ofKT ).

with

J(v) =
1
2

∫

Ω
ae(v)e(v) dx−

∫

Ω
ϕ.u dx+

∫

Γ1

g.u dl+
∫

S
φ(vN ) ds+

∫

S
ψ(vT ) ds,
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whereφ is given by

φ(vN ) =
KN

2
(v+

N )2,

andψ is given by

ψ(vT) =
1
2
KT .(vT )2 + ρ(|vT | −

ρ

KT
)+.

Problem 3 is discretized using a finite element method formulated in terms of the displace-
ments. We usually adoptP1 finite elements (triangles with three nodes and six degrees of
freedom) orQ1 finite elements (quadrangles with four nodes and eight degrees of freedom).
We have to minimize a functional still denotedJ for v in R2NP such that

J (v) =
1
2
vTAv +

1
2
(Pv)TB(Pv) − vTL.

The following notations are used:
NP : total number of nodes,
NC : number of contact nodes,
IN : indices of normal components of contact nodes,
IT : indices of tangential components of contact nodes,
A: stiffness matrix associated with volume terms with coefficientaij ,
B: stiffness matrix to the surface terms with coefficientbij,
P : projection fromR2NP toR2NC,
L: generalized loading vector with coefficientsLi.

Relaxation method with constraints The relaxation method consists in finding the solu-
tion to problem 3 by solving a sequence of minimization problems inR2NP





Find u
n+

1
2

i such that ∀v ∈ R2NP

J (un+1
1 , . . . , un+1

i−1 , u
n+

1
2

i , un
i+1, . . . , u

n
2NP ) ≤ J (un+1

1 , . . . , un+1
i−1 , v, u

n
i+1, . . . , u

n
2NP).

ω is taken to denote the relaxation coefficient.

First we deal with the normal components. Wheni ∈ IN , the algorithm is written in

25



the following form:





u
n+

1
2

i =
1

d
n+

1
2

ii

(Li −
i−1∑

j=1

dn+1
ij un+1

j −
2NP∑

j=i+1

dn
iju

n
j )

with

dn
ij =





aij + γ(un
j )bij if j ∈ IN

aij + η(un
j )bij if j ∈ IT

aij otherwise

,

γ(u) =
{

0 if u ≤ 0
1 if u > 0

,

and η(u) =





0 if |u| > ρ

KT

1 if |u| ≤ ρ

KT

,

un+1
i = (1− ω)un

i + ωu
n+

1
2

i

.

As regards the tangential components, wheni ∈ IT we first take the fixed point problem
ρl+1

i = f |σN (u(ρl
i))| and then write





u
n+

1
2

i =
1

d
n+

1
2

ii

(Li −
i−1∑

j=1

dn+1
ij un+1

j −
2NP∑

j=i+1

dn
iju

n
j − θ(u

n+
1
2

i ).ρl
i)

with

θ(u) =





−1 if u <
−ρ
KT

1 if u >
ρ

KT

0 if |u| ≤ ρ

KT

,

un+1
i = (1 − ω)un

i + ωu
n+

1
2

i

.

Testing the validity of the algorithm: compression of a bar In this paragraph the al-
gorithm is tested and its validity is confirmed. We used a benchmark test developed by the
group working on ”Validation of computer codes” at the French Research Group ”Large
Deformations and Damage” [46].
Here we adopt the context of plane strains and take the case of a long bar with a square
section (fig. 13) and Lamé’s coefficientsλ = 45GPa andµ = 54GPa. The contact zone
(interface law) corresponds to the partAD with a friction coefficient equal tof = 1. u1 = 0
onDE andu1 = u2 = 0 at pointD. The loadingF1 = 10 daN/mm2 is imposed onAG
andF2 = −5 daN/mm2 onGE.
Using the finite element method, the contact zone is discretized by32 nodes. The changes
in contact status are given in table 1 at different values ofµ andλ. If we compare the re-
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Table 1. Behavior of the interface for some stiffness

Stiffness Gap AB Sliding
|σT | =
f |σN | BC

Stick |σT | <
f |σN | CD

(1) µ = 5.410+8; λ = 4.510+8 3 nodes 16 nodes 13 nodes
(2) µ = 5.410+2; λ = 4.510+8 3 nodes 14 nodes 15 nodes
(3) µ = 5.410+2; λ = 4.510+2 3 nodes 13 nodes 16 nodes
(4) µ = 5.410−2; λ = 4.510+8 0 nodes 00 nodes 32 nodes
(5) µ = 5.410−2; λ = 4.510+2 0 nodes 00 nodes 32 nodes
(6) µ = 5.410−2; λ = 4.510−2 0 nodes 00 nodes 32 nodes

sults obtained with those published in [46] (Signorini-Coulomb laws), it can be seen that
atλ = 4.510+8 andµ = 5.410+8 the present results are similar to those obtained by [46].
These coefficients, which are very large (i.e. ”equal” to infinity), correspond to the limit
case (Signorini-Coulomb). The decrease in the values ofµ corresponds to the increase in
the stick zone (13, 15 and 32 nodes). Note that for this example and for cases presented
in figure 14, the normal displacements are slightly changed by the variations ofKN and
KT . In particular, the penetration is negligible. However, as observed on figure 15, for
this problem the coefficients variations strongly affect the tangential displacements. A low
value of the coefficientKT reflects in an increase of the tangential displacement. The nodes
slide without reaching the value of Coulomb’s sliding limit (fig. 15). Note that numerical
tests have shown the robustness of this algorithm [49].

G E

A DB C

40 mmF1

F2

Figure 13. The problem of the long bar.
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Figure 14. Normal displacement with respect to X.

0.0 10.0 20.0 30.0 40.0
X

−0.010

0.000

0.010

0.020

0.030

U
T

KT=54.1E+00, KN = 153.1E+00

KT=54.1E+04, KN = 153.1E+04

Raous et al.

Figure 15. Tangential displacement with respect to X.

8. Conclusion

In this chapter, we analyze the asymptotic behavior of a thin adhesive. To obtain the in-
terface law, which describes the behavior of an adhesive of vanishing thickness, different
approaches have been tested. First, we have dealt with adherents and adhesive having simi-
lar rigidity and performed aΓ-convergence analysis to obtain the relation between the stress
vector and the displacement fields. Next, we have used matched asymptotic expansions to
analyze the asymptotic behavior of a a two-dimensionalequilibrium problem including fric-
tional contact at the interface between the thin adhesive and the adherents. Lastly, we have
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studied the problem of a thin layer with a non convex energy, which is used to model phase
transformation of the adhesive. To conclude, we have presented a numerical algorithm able
to solve the problem with frictional contact.

The asymptotic methods presented in the chapter allow to obtain a precise description of
the limit behavior of a vanishing adhesive in terms of an interface law. The cases presented
show that different constitutive behaviors of the adhesive give raise to different interface
laws. The mathematical methods presented in the chapter provide a precise limit behavior
if the constitutive relation of the adhesive is known, an occurrence which is rarely satisfied
in practice. Another delicate point is that the methods illustrated in the chapter can be used
under the assumption that the model of continuum is valid at the scale of the adhesive.
There are cases in which the adhesive behavior is better described by means of molecular
dynamics and other techniques should then be applied [43,51].
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phase élastique mince”,Compte Rendu Académie des Sciences Série II, 326, 237-242,
1998.

[2] R. Abeyaratne, K. Bhattacharya, J. K. Knowles, “Strain-energy functions with mul-
tiple local minima:modeling phase transformations using finite thermoelasticity”, in
Nonlinear elasticity: Theory and applications(ed. Y. Fu and R.W. Ogden), Cambridge
University Press, 433-490, 2001.

[3] K. Ach, P. Alart, M. Barboteu, F. Lebon, B. Mbodji, “Parallel frictional contact al-
gorithms and industrial applications”,Computer Methods in Applied Mechanics and
Engineering,177,169-181, 1999.

[4] A. Ait-Moussa, “Modélisation et étude des singularités d’un joint collé”, PhD thesis,
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Mécanique,330, 359-364, 2002.

[51] S. P. Xiao, T. Belytschko, “A bridging domain method for coupling continua with
molecular dynamics”,Computer Methods in Applied Mechanics and Engineering, 193
(17-20), 1645-1699, 2004.

32




