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DISPERSIVE LIMIT FROM THE KAWAHARA TO THE KDV

EQUATION

LUC MOLINET AND YUZHAO WANG

Abstract. We investigate the limit behavior of the solutions to the Kawahara
equation

ut + u3x + εu5x + uux = 0 , ε > 0

as ε → 0. In this equation, the terms u3x and εu5x do compete together
and do cancel each other at frequencies of order 1/

√
ε. This prohibits the

use of a standard dispersive approach for this problem. Nervertheless, by
combining different dispersive approaches according to the range of spaces
frequencies, we succeed in proving that the solutions to this equation converges
in C([0, T ];H1(R)) towards the solutions of the KdV equation for any fixed
T > 0.

1. Introduction and main results

1.1. Introduction. In this paper we are interested in the limit behavior of the
solutions to the Kawahara equation

(Kε) ut + u3x + εu5x + uux = 0, (t, x) ∈ R2, ε > 0,

as the positive coefficient ε→ 0.
Our goal is to prove that they converge in a strong sense towards the solutions of
the KdV equation

(1.1) ut + u3x + uux = 0, (t, x) ∈ R2.

This study can be seen as a peculiar case of the following class of limit behavior
problems :

(1.2) ∂tu+ ∂x

(
L1 − εL2

)
u+N1(u) + εN2(u) = 0 ,

where u : R → R, L1 and L2 are speudo-differential operators with Fourier sym-
bols |ξ|α1 and |ξ|α2 with 0 < α1 < α2 and N1 and N2 are polynomial functions
that depends on u, its derivatives and possibly on the image of u by some speudo-
differential operator (as for instance the Hilbert transform) . Note that the disper-
sive limits from the Benjamin equation or some higher-order BO equations derived
in [3] towards the Benjamin-Ono equation enter this class.

In this class of limit behavior problems, the main difficulty comes from the fact
that the dispersive terms ∂xL1u and ε∂xL2u do compete together. As one can easily
check, the derivatives of the associated phase function φ(ξ) = ξ|ξ|α1 (1− ε|ξ|α2−α1)

does vanish at frequencies of order ε−
1

α2−α1 . This will make classical dispersive
estimates as Strichartz estimates, global Kato smoothing effect or maximal in time
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estimate, not uniform in ε. Therefore it is not clear to get even boundedness
uniformly in ε of the solutions to (1.2) by classical dispersive resolution methods.

On the other hand, by using only energy estimates that do not take into account
the dispersive terms, we can see immediately that the solutions to (Kε) will stay
bounded in Hs(R), uniformly in ε, providing we work in Sobolev spaces Hs(R) with
index s > 3/2. Moreover, using for instance Bona-Smith argument, we could prove
the convergence of the solution of (Kε) to the ones of (1.1) in C([0, T ];Hs(R)) with
T = T (‖u(0)‖Hs and s > 3/2. However this approach is far to be satisfactory
since it does not use at all the dispersive effects. Moreover, the KdV and Kawahara
equations are known to be well-posed in low indices Sobolev spaces (see for instance
[1], [8], [6] ) and one can ask wether such convergence result does hold in those
spaces. In this work we make a first step in this direction by proving that this
convergence result holds in Hs(R) with s ≥ 1. Note that H1(R) is a natural space
for this problem since it is the energy space for the KdV equation. Our main idea
is to combine different dispersive method according to the area of frequencies we
consider. More precisely, we will use a Bourgain’s approach (cf. [1], [4]) outside
the area Dε where the first derivative of the phase function φ′ does vanish whereas
we will use Koch-Tzvetkov approach (cf. [10]) in Dε. Indeed, noticing that φ′′

does not vanish in this area, the Strichartz estimate are valid uniformly in ε on
Dε so that we can apply Koch-Tzvetkov approach. On the other hand, outside Dε

one can easily see that one has a strong resonance relation at least for the worst
interactions, namely the high-low interactions. Indeed, assuming that |ξ1| >> |ξ2|,
by the mean-value theroem, it holds

|φε(ξ1+ξ2)−φε(ξ1)−φε(ξ2)| ∼ |φ′ε(ξ1)ξ2−φε(ξ2)| ∼ |φ′ε(ξ1)ξ2| ∼ |ξ2(3−5εξ2)ξ2| & ξ2|ξ2|,
where ξ = ξ1+ξ2 is the output frequency and φε(ξ) = ξ3−εξ5 is the phase function
associated with the (Kε). It is worth noticing that this resonance relation is similar
to the one of the KdV equation that reads (ξ1 + ξ2)

3 − (ξ1)
3 − (ξ2)

3 = 3ξξ1ξ2. To
rely on this strong resonance relation even when one of the input frequency belongs
to Dε we will make use of the fact that any H1-solution to (Kε) must belong to
some Bourgain’s space with time regularity one.

1.2. Main results.

Theorem 1.1. Let s ≥ 1, ϕ ∈ Hs(R), T > 0 and {εn}n∈N be a decreasing sequence

of real numbers converging to 0. The sequence un ∈ C(R;Hs(R)) of solutions to

(Kε) emanating from ϕ satisfies

(1.3) un → u in C([0, T ];Hs(R))

where u ∈ C(R;Hs(R)) is the unique solution to the KdV equation (1.1) emanating

from ϕ.

Theorem 1 is actually a direct consequence of the fact that the Cauchy problem
associated with (Kε) is well-posed in Hs(R), s ≥ 1, uniformly in ε ∈]0, 1[ in the
following sense

Theorem 1.2. Let s ≥ 1 and ϕ ∈ Hs(R). There exists T = T (‖ϕ‖H1) ∈]0, 1[ and
C > 0 such that for any ε ∈]0, 1[ the solution uε ∈ C(R;H1(R)) to (Kε) satisfies

(1.4) sup
t∈[0,T ]

‖uε(t)‖Hs ≤ C‖ϕ‖Hs
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Moreover, for any R > 0, the family of solution-maps SKε : ϕ 7→ uε, ε ∈]0, 1[,
from B(0, R)Hs into C([0, T (R)];Hs(R)) is equi-continuous, i.e. for any sequence

{ϕn} ⊂ B(0, R)Hs converging to ϕ in Hs(R) it holds

(1.5) lim
n→0

sup
ε∈]0,1[

‖SKεϕ− SKεϕn‖L∞(0,T (R);Hs(R)) = 0 .

1.3. Notation. For any positive numbers a and b, the notation a . b means that
there exists a positive constant c such that a ≤ cb. We also denote a ∼ b when
a . b and b . a. Moreover, if α ∈ R, α+, respectively α−, will denote a number
slightly greater, respectively lesser, than α.

For u = u(x, t) ∈ S(R2), Fu = û will denote its space-time Fourier transform,
whereas Fxu = (u)∧x , respectively Ftu = (u)∧t , will denote its Fourier transform
in space, respectively in time. For s ∈ R, we define the Bessel and Riesz potentials
Js
x and Ds

x, by

Js
xu = F−1

x

(
(1 + |ξ|2) s

2Fxu
)

and Ds
xu = F−1

x

(
|ξ|sFxu

)
.

We will need a Littlewood-Paley analysis. Let ψ ∈ C∞
0 (R) be an even function

such that ψ ≥ 0, suppψ ⊂ [−3/2, 3/2], ψ ≡ 1 on [−5/4, 5/4]. We set η0 := ψ

and for all k ∈ N∗, η2k(ξ) := ψ(2−kξ) − ψ(2−k+1ξ), η≤2k := ψ(2−k·) =
∑k

j=0 η2j

and η≥2k := 1 − ψ(2k−1·) = 1 − η≤2k−1 . The Fourier multiplicator operators by
η2j , η≤2j and η≥2j will be denoted respectively by P2j , P≤2j and P≥2j , i.e. for any
u ∈ L2(R)

P̂2ju := η2j û, P̂≤2ju := η≤2j û and P̂≥2ju := η≥2j û .

Note that, to simplify the notations, any summations over capitalized variables
such as N are presumed to be dyadic with N ≥ 1, i.e., these variables range
over numbers of the form 2k, k ∈ Z+. P+ and P− will denote the projection on
respectively the positive and the negative Fourier frequencies.

Finally, we denote by Uε(t) := e−t(∂3
x+ε∂5

x) the free evolution associated with the
linear part of (Kε).

1.4. Function spaces. For 1 ≤ p ≤ ∞, Lp(R) is the usual Lebesgue space with
the norm ‖ · ‖Lp , and for s ∈ R , the real-valued Sobolev spaces Hs(R) denote the
spaces of all real-valued functions with the usual norms

‖ϕ‖Hs = ‖Js
xϕ‖L2 .

If f = f(x, t) is a function defined for x ∈ R and t in the time interval [0, T ], with
T > 0, if B is one of the spaces defined above, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, we will
define the mixed space-time spaces Lp

TBx, L
p
tBx, L

q
xL

p
T by the norms

‖f‖Lp
TBx

=
(∫ T

0

‖f(·, t)‖pBdt
) 1

p

, ‖f‖Lp
tBx

=
(∫

R

‖f(·, t)‖pBdt
) 1

p

,

and

‖f‖Lq
xL

p
T
=

(∫

R

(∫ T

0

|f(x, t)|pdt
) q

p

dx

) 1
q

.

For s, b ∈ R, we introduce the Bourgain spaces Xs,b
ǫ related to the linear part of

(Kε) as the completion of the Schwartz space S(R2) under the norm

(1.6) ‖v‖Xs,b
ǫ

:=

(∫

R2

〈τ − φε(ξ)〉2b〈ξ〉2s|v̂(ξ, τ)|2dξdτ
) 1

2

,
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where 〈x〉 := 1 + |x|. We will also use a dyadic version of those spaces introduced
in [11] in the context of wave maps. For s, b ∈ R, 1 ≤ q ≤ ∞, Xs,b,q

ǫ will denote
the completion of the Schwartz space S(R2) under the norm

(1.7) ‖v‖Xs,b,q
ǫ

:=


∑

k≥0

(∑

j≥0

〈2k〉sq〈2j〉bq‖P2k(ξ)P2j (τ − φε(ξ))v̂(ξ, τ)‖qL2
τ,ξ

) 2
q




1
2

.

Moreover, we define a localized (in time) version of these spaces. Let T > 0 be a
positive time and Y = Xs,b

ǫ or Y = Xs,b,q
ǫ . Then, if v : R×]0, T [→ R, we have that

‖v‖YT := inf{‖ṽ‖Y | ṽ : R× R → C, ṽ|R×]0,T [ = v}.

2. Uniform estimates far from the stationary point of the phase

function

As we explained in the introduction, it is crucial that the first and the second
derivatives of the phase function φε(ξ) = ξ3 − εξ5 do not cancel exactly at the

same point. Indeed, φ′ε(ξ) = 0 ⇔ |ξ| =
√

3
5ε while , φ′′ε (ξ) = 0 ⇔ |ξ| =

√
3

10ε .

Consequently, we introduce the following smooth Fourier projectors

P̂Aεf =
[
1− η0

[
20

√
ε
(
|ξ| −

√
3

5ε

)]]
f̂

and

P̂Bεf =
[
1− η0

[
20

√
ε
(
|ξ| −

√
3

10ε

)]]
f̂

Clearly, P̂Aεf cancels in a region of order ε−1/2 around
√

3
5ε whereas P̂Bεf cancels

in a region of order ε−1/2 around
√

3
10ε . We are now in position to state the main

proposition of this section :

Proposition 2.1. Let s ≥ 1, 0 < T < 1 and ui,ε ∈ C([0, T ];Hs(R)), i = 1, 2, be
two solutions to (Kε) with 0 < ε << 1 and initial data ϕi. Then it holds

(2.1) ‖PAεui,ε‖Xs,1/2,1
ε,T

. ‖ϕi‖Hs + T 1/4‖ui,ε‖Y s
ε,T

‖ui,ε‖Y 1
ε,T

(1 + ‖ui,ε‖Y 1
ε,T

)

and, setting w = u1,ε − u2,ε,

(2.2) ‖PAεw‖Xs,1/2,1
ε,T

. ‖ϕ1 − ϕ2‖Hs + T 1/4‖w‖Y s
ε,T

2∑

i=1

‖ui,ε‖Y s
ε,T

(1 + ‖ui,ε‖Y s
ε,T

)

where

(2.3) ‖u‖Y s
ε,T

:= ‖PAεu‖Xs,1/2,1
ε,T

+ ‖u‖L∞
T Hs

We will make a frequent use of the following linear estimates

Lemma 2.1. Let ϕ ∈ S(R) and T ∈]0, 1] then ∀0 < ε≪ 1,

‖PAε∂xUε(t)ϕ‖L∞
x L2

t
. ‖ϕ‖L2(2.4)

‖D1/4
x PBεUε(t)ϕ‖L4

tL
∞
x

. ‖ϕ‖L2(2.5)

‖P≤2Uε(t)ϕ‖L2
xL

∞
T

. ‖ϕ‖L2 ,(2.6)

where Fx(P∁Aε
ϕ) = (1 − ηAε)Fxϕ and the implicit constants are independent of

ε > 0.
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Proof. First, (2.4) follows from the classical proof of the local Kato smoothing
effect, by using that |φ′ε(ξ)| & |ξ|2 on the Fourier support of PAε .

To prove (2.5), we first notice that the Fourier support of PBε does not intersect

the region {ξ ∈ R, |ξ| ∈ [
√

1
4ε ,
√

7
20ε ]}. By the TT ∗ argument it suffices to prove

that

(2.7) ‖Uε(t)D
1/2
x P∁Bǫ

ϕ‖L∞
x
+ ‖Uε(t)D

1/2
x PAǫϕ‖L∞

x
. t−1/2‖ϕ‖L1

By classical arguments, (1.3) will be proven if we show
∥∥∥
∫

R

χ{|ξ|6∈[
√

1
4ε ,

√
7

20ε ]}
|ξ|1/2ei[xξ+(ξ3−εξ5)t] dξ

∥∥∥
L∞

x

. t−1/2 .

Setting θ := ξ|t|1/3 this is equivalent to prove

(2.8) Iǫ := sup
t∈R,X∈R

∣∣∣
∫

R

χ
{|θ|6∈[

√

|t|2/3
4ε ,

√

7|t|2/3
20ε ]}

|θ|1/2 ei[Xθ+θ3− ε

|t|2/3
θ5]
dθ
∣∣∣ . 1

We set Φ(θ) = Φt,ε(θ) := θ3 − ε
|t|2/3 θ

5 and notice that

Φ′(θ) := 3θ2 − 5ε

|t|2/3 θ
4 and Φ

′′
(θ) = 2θ

(
3− 10ε

|t|2/3 θ
2
)
.

(2.8) is obvious when restricted on |θ| ≤ 100. Now, it is worth noticing that

|Φ′′(θ)| & 1 + max
(
|θ|, ε

|t|2/3 θ
3
)

whenever θ ∈ {|z| ≥ 100 / |z| 6∈ [

√
|t|2/3
4ε ,

√
7|t|2/3
20ε ]}. Therefore, in the region |θ| ∈

[

√
|t|2/3
10ε ,

√
2|t|2/3

ε ], (2.8) follows from Van der Corput lemma since |Φ′′(θ)| & 1+ |t|1/3√
ε

and |θ|1/2 ∼ |t|1/6
ε1/4

. It thus remains to consider the region |θ| 6∈ [

√
|t|2/3
10ε ,

√
2|t|2/3

ε ].

We notice that, in this region, it holds

(2.9) |Φ′(θ)| ∼ |θ|2 for |θ| ≤
√

|t|2/3
10ε

and |Φ′(θ)| ∼ ε|θ|4
|t|2/3 for |θ| ≥

√
2|t|2/3
ε

and divide this region into two subregions.
• The subregion |Φ′(θ) − X | ≤ |X |/2. Then |Φ′(θ)| ∼ |X |. Assuming we are in

the region 100 < |θ| ≤
√

|t|2/3
10ε , we have |Φ′(θ)| ∼ |θ|2 and thus |θ| ∼

√
|X |. Then

(2.8) follows from Van der Corput lemma since |Φ′′(θ)| & |θ| ∼
√
|X |. On the

other hand, assuming that |θ| ≥
√

2|t|2/3
ε ≥ 100 then |Φ′(θ)| ∼ ε|θ|4|t|−2/3 and

thus |θ| ∼ ε−1/4|X |1/4|t|1/6. (2.8) follows again from Van der Corput lemma since
|Φ′′(θ)| & |θ| ∼ ε−1/4|X |1/4|t|1/6.
• The subregion |Φ′(θ) − X | > |X |/2. Then |Φ′(θ) − X | ∼ |Φ′(θ)| and (2.8) is
obtained by integrating by parts and using (2.9). This completes the proof of (2.5).

Finally, to show (2.6) we notice that it suffices to prove that for |x| ≥ 104,

sup
t∈[0,1]

∣∣∣
∫

R

η≤2(ξ) e
i[xξ+φε(ξ)t] dξ

∣∣∣ . |x|−2 ,

where φε(ξ) = ξ3−εξ5. But this follows directly by integrating by parts twice since
|x− φ′ε(ξ)t| & |x| for any |t| ≤ 1 and |ξ| ≤ 4. �
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To prove Proposition 2.1 we will have to put the whole solution uε of (Kε) and
not only PAεuε in some Bourgain’s space with regularity 1 in time. This will be
done in the next lemma by noticing that any solution to (Kε) that belongs to

C([0, T ];H1(R)) automatically belongs to X0,1
ε,T .

Lemma 2.2. Let s ≥ 1, T ∈]0, 1[ and u ∈ C([0, T ];Hs(R)) be a solution to (Kε).
Then,

(2.10) ‖u‖Xs−1,1
ε,T

. ‖u‖L∞
T Hs−1

x
+ ‖u‖L∞

T H1
x
‖u‖L∞

T Hs
x
,

where the implicit constant is independent of ε.

Proof. First, we consider v(t) = Uε(−t)u(t) on the time interval ]0, T ] and extend
v on ]− 2, 2[ by setting ∂tv = 0 on [−2, 2] \ [0, T ]. Then, it is pretty clear that

‖∂tv‖L2(]−2,2[;Hs−1
x ) = ‖∂tv‖L2

THs−1
x

, and ‖v‖L2(]−2,2[;Hs−1
x ) . ‖v‖L∞

T Hs−1
x

.

Now, we define ũ(x, t) = η(t)U(t)v(t). Obviously, ũ is an extension of u outside
]− T, T [ and it holds
(2.11)
‖ũ‖Xs−1,1

ε
. ‖∂tv‖L2(]−2,2[;Hs−1

x ) + ‖v‖L2(]−2,2[;Hs−1
x ) . ‖∂tv‖L2

THs−1
x

+ ‖v‖L∞
T Hs−1

x
.

Therefore (2.10) follows from the identity

∂tv = Uε(−t)
[
ut + uxxx + εu5x

]

together with the facts that u is a solution to (Kε) and that

‖uux‖Hs−1
x

≤ ‖u2‖Hs
x
. ‖u‖L∞

x
‖u‖Hs

x

as soon as s ≥ 1. �

Now, according to the Duhamel formula and to classical linear estimates in Bour-
gain’s spaces (cf. [1], [4]), Proposition 2.1 is a direct consequence of the following
bilinear estimate

‖PAε∂x(u1u2)‖Xs,−1/2,1
ε

. T 1/4
(
‖u1‖Y s

ε
+ ‖u1‖Xs−1,1

ε

)(
‖u2‖Y 1

ε
+ ‖u2‖X0,1

ε

)

+T 1/4
(
‖u1‖Y 1

ε
+ ‖u1‖X0,1

ε

)(
‖u2‖Y s−1

ε
+ ‖u2‖Xs−1,1

ε

)
,(2.12)

where the functions ui are supported in time in ] − T, T [ with 0 < T ≤ 1. To
prove this bilinear estimate we first note that by symmetry it suffices to consider
∂xΛ(u, v) where Λ(·, ·) is defined by

Fx(Λ(u, v)) :=

∫

R

χ|ξ1|≤|ξ−ξ1|(Fxu)(ξ1)(Fxv)(ξ − ξ1) dξ1 .

Moreover, using that for any s ≥ 1,

〈ξ1 + ξ2〉s . 〈ξ1 + ξ2〉
(
〈ξ1〉s−1 + 〈ξ2〉s−1

)
,

it is a classical fact that we can restrict ourself to prove (2.12) for s = 1.
As mentioned in the introduction, the following resonance relation is crucial for our
analysis in this frequency area :

(2.13) Θ(ξ, ξ1) := σ − σ1 − σ2 = ξξ1(ξ − ξ1)
[
3− 5ε

(
(ξ1 + ξ2)

2 − ξ1ξ2

)]

where

σ := σ(τ, ξ) := τ − ξ3 − εξ5, σ1 := σ(τ1, ξ1) and σ2 := σ(τ − τ1, ξ − ξ1) .
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We start by noticing that the case of ouput frequencies of order less or equal to one
is harmless. Indeed, it is easy to check that for any couple ui, i = 1, 2, of smooth
functions supported in time in ]− T, T [ with 0 < T ≤ 1 it holds

(2.14) ‖∂xPAεP≤8Λ(u1, u2)‖X1,−1/2,1
ε

. ‖Λ(u1, u2)‖L2 . ‖u1‖L∞
t H1‖u2‖L∞

t H1 .

Let us continue by deriving an estimate for the interactions of high frequencies with
frequencies of order less or equal to 1.

Lemma 2.3. Let ui, i = 1, 2, be two smooth functions supported in time in ]−T, T [
with 0 < T ≤ 1. Then it holds

(2.15)

‖∂xPAεΛ(P≤8u1, u2)‖X1,−1/2,1
ε

. ‖u1‖X0,1
ε

(
T 1/4(‖PAεu2‖X1,1/2,1

ε
+‖u2‖X0,1

ε
)+‖∂xu2‖L2

tx

)
.

Proof. Since the norms in the right-hand side of (2.15) only see the size of the
modulus of the Fourier transform, we can assume that all our functions have non

negative Fourier transform. We set ηAε = 1−η0
[
20

√
ε
(
|ξ|−

√
3
5ε

)]
so that P̂Aεf =

ηAε f̂ . Rewriting ηAε(ξ) as ηAε(ξ−ξ1)+(ηAε(ξ)−ηAε(ξ−ξ1)), it suffices to estimate
the two following terms

I1 :=
∥∥∥F−1

x

(
∂xΛ(η≤8Fx(u1), ηAεFx(u2)

)∥∥∥
X1,−1/2,1

and

I2 :=
∥∥∥F−1

x

(
ξ

∫

R

η≤8(ξ1)Fx(u1)(ξ1)(ηAε(ξ)−ηAε(ξ−ξ1))Fx(u2)(ξ−ξ1) dξ1
)∥∥∥

X1,−1/2,1

I1 is easily estimate thanks to (2.6) by

I21 .
∑

N≥1

T
1
2
−
∥∥∥(η≤8û1) ∗ (ηNηAε ∂̂

2
xu2)

∥∥∥
2

L2

. T
1
2
−
∑

N≥1

‖P≤8u1‖2L2
xL

∞
t
‖∂2xPNPAεu2‖2L∞

x L2
t

. T
1
2
−‖u1‖2X0,1‖PAεu2‖2X1,1/2,1 .

To estimate I2 we first notice that for |ξ1| ≤ 4 and 0 < ε < 10−8,

(2.16) ηAε(ξ) − ηAε(ξ − ξ1) = 0 whenever |ξ| ∈
[15
16

√
3

5ε
,
17

16

√
3

5ε

]
∪∁
[2−3

√
ε
,
23√
ε

]
.

and for any (ξ, ξ1) ∈ R2,

(2.17) |ηAε(ξ)− ηAε(ξ − ξ1)| . min
(
1,
√
ε|ξ1|

)
.

Moreover, in the region |ξ1| ≤ 4 and |ξ| 6∈ [ 1516

√
3
5ε ,

17
16

√
3
5ε ] the resonance relation

(2.13) ensures that

(2.18) |σmax| := max(|σ|, |σ1|, |σ2|) & |ξξ1(ξ − ξ1)|

where σ(τ, ξ) := τ − φε(ξ), σ1 = σ(τ1, ξ1) and σ2 = σ(τ − τ1, ξ − ξ1). We separate
three regions
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• σmax = σ2. Then according to (2.16)-(2.18),

I2 . T
1
2
−
∥∥∥
∫

R2

(η≤8û1)(ξ1, τ1)
√
ε

|ξ1|〈ξ〉2
|ξ1||ξ − ξ1|2

〈σ2〉χ{|ξ−ξ1|∼ 1√
ε
}û2(ξ − ξ1, τ − τ1) dξ1 dτ1

∥∥∥
L2

ξ,τ(|ξ|∼ 1√
ε
)

. T
1
2
−‖P≤8u1‖L∞

tx
‖u2‖X−1/2,1

. T
1
2
−‖u1‖X0,1‖u2‖X0,1

• σmax = σ1. Then according to (2.16)-(2.18),

I2 . T
1
2
−
∥∥∥〈ξ〉2

∫

R2

〈σ1〉
|ξ1||ξ − ξ1|2

(η≤8û1)(ξ1, τ1)
√
ε|ξ1|χ{|ξ−ξ1|∼ 1√

ε
}û2(ξ − ξ1, τ − τ1) dξ1 dτ1

∥∥∥
L2

ξ,τ(|ξ|∼ 1√
ε
)

. T
1
2
−‖u1‖X0,1‖D−1/2

x F−1(χ{|ξ|∼ 1√
ε
}û2)‖L∞

tx

. T
1
2
−‖u1‖X0,1‖F−1(χ{|ξ|∼ 1√

ε
}û2‖L∞

t L2
x

. T
1
2
−‖u1‖X0,1‖u2‖X0,1

• σmax = σ. Then according to (2.16)-(2.18),

I2 .
∥∥∥〈ξ〉2

∫

R

√
ε|ξ1|

|ξ1|3/8|ξ − ξ1|3/4
(η≤8û1)(ξ1)χ{|ξ−ξ1|∼ 1√

ε
}û2(ξ − ξ1) dξ1

∥∥∥
L2(|ξ|∼ 1√

ε
)

.
√
ε‖P≤8u1‖L∞

tx
‖D5/4

x F−1(χ{|ξ|∼ 1√
ε
}û2)‖L2

tx

. ‖u1‖X0,1‖∂xu2‖L2
tx

This completes the proof of the lemma. �

The next lemma ensures that the restriction of the left-side member of (2.12) on
the region |ξ| & 1, |ξ1| & 1 and |σmax| ≥ 2−5|ξξ1(ξ − ξ1)| can be easily controlled.

Lemma 2.4. Under the same hypotheses as in Lemma 2.3, in the region where the

following strong resonance relation holds

(2.19) |σmax| ≥ 2−5|ξξ1(ξ − ξ1)| ,

we have

(2.20)

‖∂xPAεP≥8Λ(P≥8u1, u2)‖X1,−1/2,1
ε

. T 1/4‖u1‖X0,1‖u2‖X0,1+
(
‖u1‖X0,1+‖∂xu1‖L2

tx

)
‖∂xu2‖L2

tx
.

Proof. Again we notice that the norms in the right-hand side of (2.4) only see the
size of the modulus of the Fourier transforms. We can thus assume that all our func-
tions have non-negative Fourier transforms. We set I := ‖∂xPAεP≥8Λ(P≥8u1, u2)‖X1,−1/2,1

ε

and separate different subregions .
• |σ1| ≥ 2−5|ξξ1(ξ − ξ1)|. Then direct calculations give

I . T
1
2
−‖u1‖X0,1‖D−1

x P≥2u2‖L∞
tx

. T
1
2
−‖u1‖X0,1‖u2‖X0,1 .

• |σ2| ≥ 2−5|ξξ1(ξ − ξ1)|. This case can be treated exactly in the same way by
exchanging the role of u1 and u2.
• |σ| ≥ 2−5|ξξ1(ξ − ξ1)| and max(|σ1|, σ2|) ≤ 2−5|ξξ1(ξ − ξ1)|.
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Then we separate two subregions.
1. |ξ1| ≥ 2−7|ξ|. Then |ξ1| & |ξmax| and taking δ > 0 close enough to 0 we get

I . ‖∂xPAεP≥8Λ(P≥8u1, u2)‖X1,−1/2+δ
ε

.
∥∥∥∂xu2D−1/2+3δ

x P≥8u1

∥∥∥
L2

. ‖D−1/2+3δ
x P≥8u1‖L∞

tx
‖∂xu2‖L2

tx

. ‖u1‖X1/4,3/4‖∂xu2‖L2
tx

. (‖u1‖X0,1 + ‖∂xu1‖L2
tx
)‖∂xu2‖L2

tx
.

2. |ξ1| ≤ 2−7|ξ|. Then, we notice that in this region 1
2 |ξ| ≤ |ξ − ξ1| ≤ 2|ξ| and thus

(1− 2−6)ξ2 ≤ ξ2 − ξ1(ξ − ξ1) ≤ (1 + 2−6)ξ2 .

Since ηAε does vanish on
{
|ξ| ∈

[
15
16

√
3
5ε ,

17
16

√
3
5ε

]}
, we deduce from (2.13) that

(2.21) |σ| ∼ max
(
|ξξ1(ξ − ξ1)|, ε|ξ3ξ1(ξ − ξ1)|

)

on the support of ηAε . We thus can write

I2 .
∑

N≥4

( ∑

4≤N1≤2−5N

∥∥∥ηN (ξ)ηAε(ξ)|ξ|χ{|σ|∼max(N1N2,εN4N1)}Fx

(
Λ(PN1

u, u2)
)∥∥∥

X
1,−1/2,1
ε

)2

.
∑

N≥4

( ∑

4≤N1≤2−5N

‖PN1
D−1/2

x u1‖L∞
tx
‖χ{|ξ|∼N}ξ û2‖L2

τ,ξ

)2

.
∑

N≥4

‖χ{|ξ|∼N}ξ û2‖2L2
τ,ξ

( ∑

4≤N1≤2−5N

N
−1/4
1 ‖PN1

D1/4
x u1‖L∞

t L2
x

)2

. ‖u1‖2X1/4,3/4‖∂xu2‖2L2
tx

. (‖u1‖X0,1 + ‖∂xu1‖L2
tx
)2‖∂xu2‖2L2

tx
.

�

Proof of the bilinear estimate (2.12)
First, according to (2.14) and Lemma 2.3 and to the support of ηAε it suffices to
consider

I :=
[ ∑

N≥4

N2
(∑

L

L−1/2
∥∥∥ηL(σ)ηN (ξ)

∫

R2

∑

N1∧N2≥8

P̂N1
u1(ξ1, τ1)P̂N2

u2(ξ2, τ2) dτ1 dξ1

∥∥∥
L2

τ,ξ(|ξ|6∈Jε)

)2]1/2
,

where

(2.22) Jε = [
15

16

√
3

5ε
,
17

16

√
3

5ε
], τ2 = τ − τ1 and ξ2 = ξ − ξ1 .

Now we will decompose the region of integration into different regions and we will
check that in most of these regions the strong resonance relation (2.19) holds. By
symmetry we can assume that N1 ≤ N2. For the remaining it is convenient to
introduce the function

Γ(ξ, ξ1) :=
∣∣∣3− 5ε

(
ξ2 − ξ1(ξ − ξ1)

)∣∣∣

which is related to the resonance relation (2.13).



10 LUC MOLINET AND YUZHAO WANG

1. N1 < 2−10N2. Then it holds

(1− 2−7)ξ2 ≤ ξ2 − ξ1(ξ − ξ1) ≤ (1 + 2−7)ξ2

and it is easy to check that Γ(ξ, ξ1) ≥ 2−5 as soon as |ξ| 6∈ Jε. According
to (2.13) this ensures that (2.19) holds.

2. N1 ≥ 2−10N2.

2.1. The subregion |ξ| 6∈
[√

17
80ε ,

√
2
5ε

]
. In this region, by (2.5) of Lemma

2.1 and duality, we get

I .
∑

min(4,2−10N2)<N1≤N2

‖D− 1
4
+

x ∂2x(PN1
u1PN2

u2)‖
L

4
3
+

t L1+
x

.
∑

min(4,2−10N2)<N1≤N2

T
3
4
−N

− 1
4
+

2 ‖∂xPN1
u1‖L∞

t L2
x
‖∂xPN2

u2‖L∞
t L2+

x

. T
3
4
−‖u1‖L∞

t H1‖u2‖L∞
t H1 .

2.2. The subregion |ξ| ∈
[√

17
80ε ,

√
2
5ε

]
.

2.2.1 The subregion |ξ1|∧|ξ2| ≤
√

17
80ε . Since both cases can be treated

in the same way, we assume |ξ1| ∧ |ξ2| = |ξ1|. Then, according
to (2.5) and the support of ηAε and ηBε , we get

I .
∑

min(4,2−10N2)<N1≤N2

T
1
2
−‖∂2x(PBεPAεPN1

u1PN2
u2)‖L2

tx

. T
1
2
−

∑

min(4,2−10N2)<N1≤N2

‖PBεPAε∂xPN1
u1‖L4

tL
∞
x
‖∂xPN2

u2‖L∞
t L2

x

. T
1
2
−

∑

min(4,2−10N2)<N1≤N2

N
−1/4
1 ‖PAεPN1

u1‖X1,1/2,1‖∂xPN2
u2‖L∞

t L2
x

. T
1
2
−‖PAεu1‖X1,1/2,1‖u2‖L∞

t H1 .

2.2.2 The subregion |ξ1|∧|ξ2| >
√

17
80ε . In this subregion we claim that

(2.19) holds. Indeed, on one hand, if ξ1ξ2 ≥ 0 then ξ2 − ξ1ξ2 ≤
ξ2 ≤ 2

5ε and thus Γ(ξ, ξ1) ≥ 1. On the other hand, if ξ1ξ2 ≤
0 then, since |ξ| ≥

√
17
80ε , we must have |ξ1| ∨ |ξ2| ≥ 2

√
17
80ε .

Therefore, ξ2−ξ1ξ2 ≥ 3 17
80ε and thus Γ(ξ, ξ1) ≥ 3

16 which ensures
that (2.19) holds and completes the proof of (2.12).

3. Uniform estimate close to the stationary point of the phase

function

As announced in the introduction, close the the stationary point of the phase
function we will apply the approach developed by Koch and Tzvetkov in [10]. Note
that, in [9], Kenig and Koenig improved this approach by adding the use of the
nonlinear local Kato smoothing effect. However, this improvement can not be used
here since this smoothing effect is not uniform in ε close to the stationary point.
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Proposition 3.1. Let s ≥ 1 and uε ∈ C([0, T ];Hs(R)), i = 1, 2, be a solution to

(Kε) with initial data ϕ. Then it holds

(3.1) ‖‖P∁Aε
uε‖2L∞

T Hs
x
. ‖P∁Aε

ϕ‖2Hs +(ε1/2+T 1/4)‖uε‖2Y s
ε,T

(
‖uε‖Y 1

ε,T
+ ‖uε‖2Y 1

ε,T
)

where Y s
ε,T is defined in (2.3) and Fx(P∁Aε

ϕ) = (1− ηAε)Fxϕ.

First we establish an estimate, uniform in ε, on the solution to the associated
non homogenous linear problem.

Lemma 3.1. Let v ∈ C([0, T ];H∞(R)) be a solution of

(3.2) vt + vxxx + εv5x = −Fx .

Then

(3.3) ‖P∁Aε
v‖L1

TL∞
x

. (ε1/2 + T )‖P∁Aε
v‖L∞

T L2
x
+ ‖P∁Aε

F‖L1
TL2

x
.

Proof. For 0 < ε << 1 fixed, we write a natural splitting

[0, T ] = ∪Ij
of [0, T ] where Ij = [aj , bj ] are with disjoint interiors and |Ij | ≤ ε1/2. Clearly, we

can suppose that the number of the intervals Ij is bounded by C(1+Tε−1/2). Using
the Hölder inequality in time, we can write

‖v‖L1
TL∞

x
.
∑

j

‖v‖L1
Ij

L∞
x

. ε
3
8

∑

j

‖v‖L4
Ij

L∞
x
.

Next, we apply the Duhamel formula on each Ij to obtain

P∁Aε
v(t) = Uε(t− aj)P∁Aε

v(aj)−
∫ t

aj

Uε(t− t′)P∁Aε
∂xF (t

′) dt′ .

Using the uniform in ε Strichartz estimate (2.5) and classical TT ∗ arguments, it
yields

‖P∁Aε
v‖L4

Ij
L∞

x
. ‖D−1/4

x P∁Aε
v(aj)‖L2 + ‖D3/4

x P∁Aε
F‖L1

Ij
L2

x

. ε1/8‖P∁Aε
v(aj)‖L2 + ε−3/8‖P∁Aε

F‖L1
Ij

L2
x
.

Therefore, we get

‖P∁Aε
v‖L1

Ij
L∞

x
. ε1/2‖P∁Aε

v(aj)‖L2 + ‖P∁Aε
F‖L1

Ij
L2

x

and summing over j,

‖P∁Aε
v‖L1

TL∞
xy

. ε1/2
∑

j

‖P∁Aε
v‖L∞

T L2
x
+ ‖P∁Aε

F‖L1
TL2

x
.

. (ε1/2 + T )‖P∁Aε
v‖L∞

T L2
x
+ ‖P∁Aε

F‖L1
TL2

x
.

�

We now need the following energy estimate

Lemma 3.2. Let s ≥ 1. There exists C > 0 such that all 0 < ε << 1 and all

ϕ ∈ Hs(R), the solution u ∈ C(0, T ;Hs) of (Kε) with initial data ϕ satisfies

(3.4) ‖P∁Aε
u‖2L∞

T Hs ≤ ‖P∁Aε
ϕ‖2Hs + C ‖PBεux‖L1

TL∞
x
‖u‖2L∞

T Hs .
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Proof. Applying the operator P∁Aε
on (Kε) and taking the Hs-scalar product with

P∁Aε
u we get

d

dt
‖P∁Aε

u(t)‖2Hs =

∫

R

Js
xP∁Aε

∂x(u
2)Js

xP∁Aε
u .

Decomposing u as u = PBεu + P∁Bε
u we can rewrite the right-hand side member

of the above equality as
∫

R

Js
xP∁Aε

∂x(PBεu)
2Js

xP∁Aε
u+

∫

R

Js
xP∁Aε

∂x

(
(P∁Bε

u)2+2PBεuP∁Bε
u
)
Js
xP∁Aε

u := I1+I2 .

In the sequel we will need the following variant of the Kato-Ponce commutator
estimate ( [7]):

(3.5)
∥∥∥
[
Js
xP∁Aε

, f ]g
∥∥∥
L2

x

. ‖fx‖L∞
x
‖g‖Hs−1

x
+ ‖f‖Hs

x
‖g‖L∞

x
.

Integrating by parts and applying the above commutator estimate we easily esti-
mate the first term by

I1 = 2

∫

R

PBεu ∂x

(
Js
xP∁Aε

PBεu
)
Js
xP∁Aε

u+ 2

∫

R

[
Js
xP∁Aε

, PBεu]PBεux J
s
xP∁Aε

u

. ‖PBεux‖L∞
x
‖u‖2Hs ,

where, in the last step, we use that according to the support localization of η,

(3.6) PBεP∁Aε
= P∁Aε

.

For the second term, we notice that by the frequency projections, all the functions in
the integral are supported in frequencies of order 1/

√
ε. Therefore, using Bernstein

inequalities we get

I2 . ε−s−1/2
∥∥∥P∁Aε

(
(P∁Bε

u)2 + 2F−1
x

(
χ{|ξ|∼ε−

1
2 }F(PBεu)

)
P∁Bε

u
)∥∥∥

L1
x

‖P∁Aε
u‖L∞

x

. ‖P∁Aε
ux‖L∞

x
‖u‖2Hs .

(3.4) then follows by integration in time, using again (3.6). �

Proof of Proposition 3.1 Applying (3.3) to ux with u solving (Kε) we get

‖P∁Aε
ux‖L1

TL∞
x

. (ε1/2 + T )‖P∁Aε
ux‖L∞

T L2
x
+ ‖P∁Aε

∂x(u
2)‖L1

TL2
x

. (ε1/2 + T )‖u‖L∞
T H1

x
+ T ‖u‖2L∞

T H1
x
.(3.7)

Therefore, gathering (3.4), (3.7) and (2.5) we obtain

‖P∁Aε
u‖2L∞

T Hs
x

. ‖P∁Aε
u0‖2Hs + C ‖u‖2L∞

T Hs
x

(
T 1/4‖PBεPAεux‖L4

TL∞
x
+ ‖P∁Aε

ux‖L1
TL∞

x

)

. ‖P∁Aε
u0‖2Hs + C (ε1/2 + T 1/4)‖u‖2L∞

T Hs
x

(
‖u‖Y 1

ε,T
+ ‖u‖2Y 1

ε,T
) ,

which completes the proof of (3.1). �
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4. Proof of Theorem 1.2

4.1. Uniform bound on the solutions. Let u ∈ C∞(R;H∞(R)) be a solution of
(Kε). Combining Propositions 2.1 and 3.1 we infer that for any s ≥ 1 and T ∈]0, 1[,

‖u‖2Y s
ε,T

≤ C ‖ϕ‖2Hs + C (
√
ε+ T 1/4)‖u‖2Y s

ε,T
‖u‖Y 1

ε,T

(
1 + ‖u‖3Y 1

ε,T

)
,

for some constant C > 0. Since u is smooth, T 7→ ‖u‖Y s
ε,T

is continuous and

lim sup
Tց0

‖u‖Y s
ε,T

. ‖ϕ‖Hs . Therefore a classical continuity argument ensures that

for any δ > 0 there exists α > 0 such that

(4.1) C(
√
ε+ T 1/4)‖u‖2Y s

ε,T
‖u‖Y 1

ε,T

(
1 + ‖u‖3Y 1

ε,T

)
≤ δ

and ‖u‖Y s
ε,T

. ‖ϕ‖Hs provided

(4.2) (
√
ε+ T 1/4) ≤ α(‖ϕ‖H1 + ‖ϕ‖4H1)−1 .

By continuity with respect to initial data (for any fixed ε > 0) it follows that for
any fixed initial data ϕ ∈ Hs(R), s ≥ 1, the emanating solution u ∈ C(R;Hs(R))
of (Kε), with

(4.3) 0 < ε ≤ ε0(‖ϕ‖H1) :=
α2

4
(‖ϕ‖H1 + ‖ϕ‖4H1)−2 ,

satisfies

(4.4) ‖u‖Y s
ε,T

. ‖ϕ‖Hs ,

with T = T (‖ϕ‖H1) ∼ (‖ϕ‖H1 + ‖ϕ‖4H1)−4.
Finally, the result for ε ∈ [ε0(‖ϕ‖H1), 1] follows from a dilation argument. Indeed,
it is easy to check that u is a solution of (Kε) with initial data ϕ if and only if
uλ = uλ(t, x) = λ−2u(λ−3t, λ−1x) is a solution of (Kλ2ε) with initial data ϕλ =
λ−2ϕ(λ−1x). Hence, taking λ = ε−1/2 ≥ 1 we observe that uλ satisfies (K1). By
classical well-posedness result for (K1) (see for instance [6]), there exists a non
increasing function R : R∗

+ → R∗
+ such that

‖uλ‖L∞
T ′Hs . ‖ϕλ‖Hs with T ′ = R(‖ϕλ‖H1) .

Coming back to u, noticing that ‖ϕλ‖H1 . λ−3/2‖ϕ‖H1 and that 1 ≤ λ = ε−1/2 .
(‖ϕ‖H1 + ‖ϕ‖2H1) we deduce that

‖u‖L∞
T Hs . ‖ϕ‖Hs with T = T (‖ϕ‖H1) ,

which completes the proof of (1.4).

4.2. Proof the equi-continuity result. Now to prove the equi-continuity result
we will make use of Bona-Smith argument [2]. To simplify the expository we will
only consider the most difficult case that is the case s = 1. We thus want to
prove that, be given a sequence {ϕk} ⊂ H1(R) converging towards ϕ in H1(R), the
emanating solutions uε,k := SKε(ϕk) satisfy

(4.5) lim
k→∞

sup
0<ε<1

‖uε,k − uε‖L∞
T H1 = 0 ,

where uε := SKε(ϕ) and T = T (‖ϕ‖H1). We first notice that we can restrict
ourself to consider ε satisfying (4.3) since the same dilation argument as above
yields directly the result otherwise.
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The first step consists in repeating the arguments of Sections 2 & 3 to get a
L2-Lipschitz bound, uniform in ε, for H1-solution. This is the aim of the following
proposition which proof is postponed in the appendix.

Proposition 4.1. Let 0 < ε < 1, T > 0 and v ∈ Y 1
ε,T satisfying

(4.6) (
√
ε+ T 1/4)

(
‖v‖Y 1

ε,T
+ ‖v‖4Y 1

ε,T

)
<< 1

and

(4.7) ‖PBε∂xv‖L1
TL∞

x
. (

√
ε+ T 1/4)

(
‖v‖Y 1

ε,T
+ ‖v‖2Y 1

ε,T

)
.

Then any solution w ∈ C([0, T ];H1(R)) to

(4.8) ∂tw + ∂3xw + ε∂5xw +
1

2
∂x(wv) = 0

satisfies

(4.9) ‖w‖L∞
T L2

x
. ‖w(0)‖L2

x

where the implicit constant is independent of ε.

Now, for any ϕ ∈ H1(R) and any dyadic integer N we set ϕN := P≤Nϕ. By
straightforward calculations in Fourier space, for any ϕ ∈ H1(R), any N ≥ 1 and
any r ≥ 0,

(4.10) ‖ϕN‖H1+r
x

. N r‖ϕ‖H1
x

and ‖ϕN − ϕ‖H1−r
x

. o(N−r)‖ϕ‖H1
x
.

Setting uNε := SKε(ϕ
N ) and uNε,k := SKε(ϕ

N
k ), (4.1) ensures that there exists T0 =

T0(‖ϕ‖H1) ∈]0, 1[ such that for k large enough and z := uε, u
N
ε , uε,k or uNε,k,

(4.11) (
√
ε+ T

1/4
0 )

(
‖z‖Y 1

ε,T0

+ ‖z‖4Y 1
ε,T0

)
<< 1

and, according to (4.4), (2.5) and (3.7),
(4.12)

‖z‖Y 1
ε,T0

≤ 2‖ϕ‖H1 and ‖PBε∂xz‖L1
T0

L∞
x

. (
√
ε+ T

1/4
0 )

(
‖z‖Y 1

ε,T0

+ ‖z‖2Y 1
ε,T0

)
.

Moreover,

(4.13) ‖uNε ‖Y s
ε,T0

+ ‖uNε,k‖Y s
ε,T0

. ‖ϕN‖Hs . Ns−1‖ϕ‖H1

provided s ≥ 1. By the triangle inequality, it holds

(4.14) ‖uε−uε,k‖L∞
T H1

x
≤ ‖uε−uNε ‖L∞

T H1
x
+‖uNε −uNε,k‖L∞

T H1
x
+‖uNε,k−uε,k‖L∞

T H1
x
.

We start by estimating the first term of the right-hand side fo (4.14). Setting
wε := uε − uNε , we observe that wε satisfies

(4.15) ∂twε + ∂3xwε + ε∂5xwε +
1

2
∂x(wε(u

N
ε + uε)) = 0 .

Therefore, combining Proposition 4.1, (4.11)-(4.12) and (4.10) we get that

(4.16) ‖wε‖L∞
T0

L2
x
. o(N−1) .

According to (2.2) we also have

(4.17) ‖PAεwε‖X1,1/2,1
ε,T0

≤ C ‖ϕ− ϕN‖H1
x
+

1

2
‖wε‖Y 1

ε,T0

.
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Now to estimate P∁Aε
we rewrite the equation satisfying by wε in the following less

symmetric way :

∂twε + ∂3xwε + ε∂5xwε = −1

2
∂x(w

2
ε)− ∂x(u

N
ε wε) .

Applying the operator P∁Aε
on the above equation and taking theH1-scalar product

with P∁Aε
wε we get

d

dt
‖P∁Aε

wε(t)‖2H1
x

=

∫

R

J1
xP∁Aε

∂x(w
2
ε)J

1
xP∁Aε

wε + 2

∫

R

J1
xP∁Aε

(uNε ∂xwε)J
1
xP∁Aε

wε

+2

∫

R

J1
xP∁Aε

(wε∂xu
N
ε )J1

xP∁Aε
wε .(4.18)

The contribution of the first term of the above right-hand side can be estimated in
exactly the same way as in the proof of Lemma 3.2 by ‖PBε∂xwε‖L∞

x
‖wε‖2H1

x
. The

second term can be estimated also in the same way by

(‖PBε∂xu
N
ε ‖L∞

x
‖wε‖H1

x
+ ‖uNε ‖H1

x
‖PBε∂xwε‖L∞

x
)‖wε‖H1

x
.

The difficulty comes from the third term. To estimate its contribution we first
decompose wε and uNε to rewrite it as

2

∫

R

J1
xP∁Aε

(
P∁Bε

wεP∁Bε
∂xu

N
ε + P∁Bε

wεPBε∂xu
N
ε + PBεwεP∁Bε

∂xu
N
ε

)
J1
xP∁Aε

wε

+2

∫

R

J1
xP∁Aε

(PBεwεPBε∂xu
N
ε )J1

xP∁Aε
wε = I1 + I2

According to the frequency projections, in the same way as proof of Lemma 3.2, all
the functions in I1 are supported in frequencies of order ε−1/2, which leads to

I1 . ‖P∁Aε
∂xwε‖L∞

x
‖wε‖H1

x
‖uNε ‖H1

x
.

Finally we control the contribution of I2 by

I2 . ‖P∁Aε
∂xwε‖L∞

x

(
‖wε‖H1‖uNε ‖H1

x
+ ‖wε‖L2‖uNε ‖H2

)

Note that the difficulty to control I2 comes from the fact that we can not avoid to
put a H2-norm on uNε . But the idea of Bona-Smith is to compensate the growth
with N of this H2-norm by the decay with N of the L2-norm of wε. Actually,
integrating (4.18) in time, with the above estimates together with (4.16) and (4.12)-
(4.13) in hand, we get

‖P∁Aε
wε‖2L∞

T0
H1

x
. ‖P∁Aε

(ϕ− ϕN )‖2H1
x
+ (‖PBε∂xwε‖L1

T0
L∞

x
+ ‖PBε∂xu

N
ε ‖L1

T0
L∞

x
)‖wε‖2L∞

T0
H1

x

+‖PBε∂xwε‖L1
T0

L∞
x
(‖wε‖L∞

T0
H1

x
‖uNε ‖L∞

T0
H1

x
+ ‖wε‖L∞

T0
L2

x
‖uNε ‖L∞

T0
H2

x
)

≤ γ1(N) +
1

8
‖wε‖2L∞

T0
H1

x
+ 2‖ϕ‖H1

x
‖PBε∂xwε‖L1

T0
L∞

x
‖wε‖L∞

T0
H1

x

+o(N−1)N(4.19)

where γ1(N) → 0 as N → ∞. On the other hand, applying Lemma 3.1 on the
x-derivative of (4.15) we get
(4.20)

‖P∁Aε
∂xwε‖L1

T0
L∞

x
. (ε1/2+T0)‖wε‖L∞

T0
H1

x
+T0‖wε‖L∞

T0
H1

x
(‖uε‖L∞

T0
H1+‖uNε ‖L∞

T0
H1)
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Therefore, gathering (4.19), (4.20) and (4.17) with (4.11) in hand, we obtain

‖wε‖2Y 1
T0

≤ γ2(N) +
1

2
‖wε‖2Y 1

T0

with γ2(N) → 0 as N → ∞. This ensures that

‖uε − uNε ‖L∞
T0

H1
x
≤ 2γ2(N) .

To estimate the contribution of the third term of the right-hand side of (4.14) we
proceed exactly in the same way as for the first one, by replacing uε by uε,k and
uNε by uNε,k. We then obtain

‖uε,k − uNε,k‖L∞
T0

H1
x
≤ γ3(N) .

with γ3(N) → 0 as N → ∞. Finally, the contribution of the second term of the
right-hand side of (4.14) is also obtain in the same way by replacing uε by uNε,k
(actually, contrary to the preceding contributions, here both terms uNε,k and uNε
can play a symmetric role ). However, for this term, Proposition 4.1 only ensures
that

‖uNε − uNε,k‖L∞
T0

L2
x
. ‖ϕ− ϕk‖L2

x
.

Therefore, setting wε = uNε − uNε,k, one has to replace o(N−1)N by ‖ϕ − ϕk‖L2
x
N

in the right-hand side member of (4.19) when estimating ‖P∁Aε
(uNε − uNε,k)‖L∞

T0
H1

x
.

We thus obtain

‖uNε − uNε,k‖L∞
T0

H1
x
. ‖ϕ− ϕk‖H1

x
+N‖ϕ− ϕk‖L2

x
.

Gathering the above estimates, (4.14) leads to

lim
k→+∞

sup
0<ε<ε0(‖ϕ‖H1)

‖uε − uε,k‖L∞
T0

H1
x
= 0

which completes the proof of Theorem 1.2.

4.3. Proof of Theorem 1.1. We follow general arguments (see for instance [5]).
Let us denote by SKε and SKdV the nonlinear group associated with respectively
(Kε) and KdV. Let ϕ ∈ Hs

x(R), s ≥ 1 and let T = T (‖ϕ‖H1
x
) > 0 be given by

Theorem 1.1. For any N > 0 we can rewrite SKε(ϕ)− SKdV (ϕ) as

SKε(ϕ)− SKdV (ϕ) =
(
SKε(ϕ)− SKε(P≤Nϕ)

)
+
(
SKε(P≤Nϕ)− SKdV (P≤Nϕ)

)

+
(
SKdV (P≤Nϕ)− SKdV (ϕ)

)
= Iε,N + Jε,N +KN .

By continuity with respect to initial data in Hs(R) of the solution map associated
with the KdV equation, we have lim

N→∞
‖KN‖L∞(0,T ;Hs

x)
= 0. On the other hand,

(1.5) ensures that

lim
N→∞

sup
ε∈]0,1[

‖Iε,N‖L∞(0,T ;Hs
x)

= 0 .

It thus remains to check that for any fixed N > 0, lim
ε→0

‖Jε,N‖L∞(0,T ;Hs
x)

= 0. Since

P≤Nϕ ∈ H∞(R), it is worth noticing that SKε(P≤Nϕ) and SKdV (P≤Nϕ) belong
to C∞(R;H∞(R)). Moreover, according to Theorem 1.2 and the well-posedness
theory of the KdV equation (see for instance [1]), for all θ ∈ R and ε ∈]0, 1[,

‖SKε(P≤Nϕ)‖L∞
T Hθ

x
+ ‖SKdV (P≤Nϕ)‖L∞

T Hθ
x
≤ C(N, θ, ‖ϕ‖L2

x
) .
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Now, setting vε := SKε(P≤Nϕ) and v := SKdV (P≤Nϕ), we observe that wε :=
vε − v satisfies

∂twε + ∂3xwε + ε∂5xwε = −1

2
∂x

(
wε(v + vε)

)
− εv5x

with initial data wε(0) = 0. Taking the Hs-scalar product of this last equation
with wε and integrating by parts we get

d

dt
‖wε‖Hs

x
.
(
1+‖∂x(v+vε)‖L∞

x
)‖wε‖2Hs

x
+‖[Js, (v+vε)]∂xwε‖L2‖wε‖Hs

x
+ε2‖v5x‖2Hs

x
.

Making use of the following commutator estimate (see for instance [12]), that holds
for s > 1/2,

(4.21) ‖[Js
x, f ]g‖L2

x
. ‖fx‖Hs

x
‖g‖Hs−1

x
,

we easily get

d

dt
‖wε(t)‖2Hs

x
. C(N, s+ 1, ‖ϕ‖L2

x
)‖wε(t)‖2Hs

x
+ ε2C(N, 5 + s, ‖ϕ‖L2

x
)2 .

Integrating this differential inequality on [0, T ], this ensures that lim
ε→0

‖wε‖L∞(0,T ;Hs) =

0 and completes the proof of Theorem 1.1 with T = T (‖ϕ‖H1). Finally, recalling
that the energy conservation of the KdV equation ensures that for any ϕ ∈ H1(R)
it holds,

sup
t∈R

‖SKdV (ϕ)(t)‖H1
x
. ‖ϕ‖H1

x
+ ‖ϕ‖5L2

x
,

we obtain the same convergence result on any time interval [0, T0] with T0 >
T (‖ϕ‖H1

x
) by reiterating the convergence result about T0/T (‖ϕ‖H1

x
+‖ϕ‖5L2

x
) times.

5. appendix: Proof of Proposition 4.1

We follow very closely Sections 2 and 3. The first step consists in establishing
the following estimate on PAεw.

Proposition 5.1. Let 0 < T < 1 and w ∈ C([0, T ];H1(R)) be a solution to (4.8)
with 0 < ε << 1 and initial data ϕ. Then it holds

(5.1) ‖PAεw‖X0,1/2,1
ε,T

. ‖ϕ‖L2 + T
1
4
−‖v‖Y 1

ε,T
‖w‖Y 0

ε,T
(1 + ‖v‖Y 1

ε,T
)

Proof. We proceed as in Section 2. First we observe that we have trivially

(5.2) ‖P≤8∂x(vw)‖X0,−1/2,1
ε

. ‖vw‖L2
tx

. T 1/2‖v‖L∞
t H1

x
‖w‖L∞

t L2
x
.

and

‖PAε∂x(vP≤8w)‖X0,−1/2,1
ε

. ‖PAε∂x(vP≤8w)‖L2
tx

. T 1/2
(
‖vx‖L∞

t L2
x
‖P≤8w‖L∞

tx
+ ‖v‖L∞

tx
‖w‖L∞

t L2
x

)

. T 1/2‖v‖L∞
t H1

x
‖w‖L∞

t L2
x
.(5.3)

Now to control ‖PAε∂x(wP≤8v)‖X0,−1/2,1
ε

we notice that in the same way as in (5.3)

we have

‖PAε∂x(P≤16wP≤8v)‖X0,−1/2,1
ε

. T 1/2‖v‖L∞
t H1

x
‖w‖L∞

t L2
x
.
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On the other hand, according to the frequency projections and Lemma 2.3, the
contribution of P≥16w can be estimated by

‖∂xPAε(P≤8vP≥16w)‖X0,−1/2,1
ε

= ‖∂xPAεΛ(P≤8v, P≥16w)‖X0,−1/2,1
ε

.
∥∥∥∂xPAεΛ

(
P≤8F−1

xt (|v̂|), ∂−1
x P≥16F−1

xt (|ŵ|)
)∥∥∥

X
1,−1/2,1
ε

. ‖v‖X0,1
ε

(
T 1/4(‖PAεw‖X0,1/2,1

ε
+ ‖w‖X−1,1

ε
) + ‖w‖L2

tx

)
.(5.4)

To continue we need the following variant of Lemma 2.4.

Lemma 5.1. Let v and w be two smooth functions supported in time in ] − T, T [
with 0 < T ≤ 1. Then, in the region where the strong resonance relation (2.19)
holds, we have

‖∂xPAεP≥8(P≥8vP≥8w)‖X0,−1/2,1
ε

. T
1
4
−‖v‖X0,1

ε
‖w‖X−1,1

ε
+ ‖vx‖L2

tx
(‖w‖X−1,1

ε
+ ‖w‖L2

tx
)

+‖w‖L2
tx
(‖v‖X0,1

ε
+ ‖vx‖L2

tx
) .(5.5)

Proof. We notice that the norms in the right-hand side of (2.4) only see the size
of the modulus of the Fourier transforms. We can thus assume that all our functions
have non-negative Fourier transforms. We set I := ‖∂xPAεP≥8(P≥8vP≥8w)‖X0,−1/2,1

ε

and separate different subregions .
• |σ2| ≥ 2−5|ξξ1(ξ − ξ1)|. Then direct calculations give

I . T
1
2
−‖w‖X−1,1

ε
‖D−1

x P≥8v‖L∞
tx

. T
1
2
−‖v‖X0,1

ε
‖w‖X−1,1

ε
.

• |σ1| ≥ 2−5|ξξ1(ξ − ξ1)|. Then , by (2.5) of Lemma 2.1 and duality, we get

I .
∥∥∥PAεP≥8

(
P≥8D

−1
x F−1

tx (〈σ1〉û1)P≥8D
−1
x w

)∥∥∥
L

4
3
+

t L1+
x

. T
1
4
−‖v‖X0,1

ε
‖P≥8D

−1
x w‖L∞

t L2+
x

. T
1
4
−‖v‖X0,1

ε
‖w‖

X
−3/4,3/4
ε

. T
1
4
−‖v‖X0,1

ε
(‖w‖X−1,1

ε
+ ‖w‖L2

tx
) .

• |σ| ≥ 2−5|ξξ1(ξ − ξ1)| and max(|σ1|, σ2|) ≤ 2−5|ξξ1(ξ − ξ1)|.
Then we separate two subregions.
1. |ξ1| ∧ |ξ2| ≥ 2−7|ξ|. Then |ξ1| ∼ |ξ2| & |ξ| and taking δ > 0 close enough to 0 we
get

I . ‖∂xPAεP≥8(P≥8vP≥8w)‖X0,−1/2+δ
ε

.
∥∥∥wD−1/2+3δ

x P≥8v
∥∥∥
L2

. ‖D−1/2+3δ
x P≥8v‖L∞

tx
‖w‖L2

tx

. ‖v‖
X

1/4,3/4
ε

‖w‖L2
tx

. (‖v‖X0,1
ε

+ ‖∂xv‖L2
tx
)‖w‖L2

tx
.
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2. |ξ1| ∧ |ξ2| < 2−7|ξ|. Then, we use that (2.21) holds on the support of ηAε . In the
subregion |ξ1| ∧ |ξ2| = |ξ1| we write

I2 .
∑

N≥4

( ∑

4≤N1≤2−5N

∥∥∥ηN (ξ)ηAε(ξ)|ξ|χ{|σ|∼max(N1N2,εN4N1)}Fx

(
(wPN1

v)
)∥∥∥

X
0,−1/2,1
ε

)2

.
∑

N≥4

( ∑

4≤N1≤2−5N

‖PN1
D−1/2

x v‖L∞
tx
‖χ{|ξ|∼N} ŵ‖L2

τ,ξ

)2

.
∑

N≥4

‖χ{|ξ|∼N} ŵ‖2L2
τ,ξ

( ∑

4≤N1≤2−5N

N
−1/4
1 ‖PN1

D1/4
x v‖L∞

t L2
x

)2

. ‖v‖2X1/4,3/4‖w‖2L2
tx

. (‖v‖X0,1 + ‖∂xv‖L2
tx
)2‖w‖2L2

tx
.

Finally, in the subregion |ξ1| ∧ |ξ2| = |ξ2| we write

I2 .
∑

N≥4

( ∑

4≤N2≤2−5N

∥∥∥ηN (ξ)ηAε(ξ)|ξ|χ{|σ|∼max(N2N2,εN4N2)}Fx

(
(vPN2

w)
)∥∥∥

X
0,−1/2,1
ε

)2

.
∑

N≥4

( ∑

4≤N2≤2−5N

‖PN1
D−3/2

x w‖L∞
tx
‖χ{|ξ|∼N}ξ v̂‖L2

τ,ξ

)2

.
∑

N≥4

‖χ{|ξ|∼N}ξ v̂‖2L2
τ,ξ

( ∑

4≤N2≤2−5N

N
−1/4
2 ‖PN2

D−3/4
x w‖L∞

t L2
x

)2

. ‖w‖2
X

−3/4,3/4
ε

‖∂xv‖2L2
tx

. (‖w‖X−1,1
ε

+ ‖w‖L2
tx
)2‖∂xv‖2L2

tx
.

�

Now we are in position to prove the main bilinear estimates :

Lemma 5.2.

‖PAε∂x(vw)‖X0,−1/2,1
ε

. T
1
4
−
(
‖w‖Y 0

ε
+ ‖w‖X−1,1

ε

)(
‖v‖Y 1

ε
+ ‖v‖X0,1

ε

)
,(5.6)

where the functions u and v are supported in time in ]− T, T [ with 0 < T ≤ 1.

Proof. First, according to (5.2)-(5.4) and to the support of ηAε it suffices to consider

I :=
[ ∑

N≥4

(∑

L

L−1/2
∥∥∥ηL(σ)ηN (ξ)

∫

R2

∑

N1∧N2≥8

P̂N1
v(ξ1, τ1)P̂N2

w(ξ2, τ2) dτ1 dξ1

∥∥∥
L2

τ,ξ(|ξ|6∈Jε)

)2]1/2
,

where Jε is defined in (2.22). We consider different contributions to I.

1. N1 ∧N2 < 2−10(N1 ∨N2). Then it holds

(1− 2−7)ξ2 ≤ ξ2 − ξ1(ξ − ξ1) ≤ (1 + 2−7)ξ2

and it is easy to check that Γ(ξ, ξ1) ≥ 2−5 as soon as |ξ| 6∈ Jε. According
to (2.13) this ensures that (2.19) holds.

2. N1 ∧N2 ≥ 2−10(N1 ∨N2). Then N1 ∼ N2 & N .
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2.1. The subregion |ξ| 6∈
[√

17
80ε ,

√
2
5ε

]
. In this region, by (2.5) of Lemma

2.1 and duality, we get

I .
∑

N1∧N2≥8, N1∼N2

‖D− 1
4
+

x ∂x(PN1
vPN2

w)‖
L

4
3
+

t L1+
x

.
∑

N1∧N2≥8, N1∼N2

T
3
4
−N

− 1
4
+

1 ‖∂xPN1
v‖L∞

t L2+
x
‖PN2

w‖L∞
t L2

x

. T
3
4
−‖v‖L∞

t H1‖w‖L∞
t L2

x
.

2.2. The subregion |ξ| ∈
[√

17
80ε ,

√
2
5ε

]
.

2.2.1 The subregion |ξ1|∧|ξ2| ≤
√

17
80ε . Since both cases can be treated

in the same way, we assume |ξ1| ∧ |ξ2| = |ξ1|. Then, according
to (2.5) and the support of ηAε and ηBε , we get

I .
∑

N1∧N2≥8, N1∼N2

T
1
2
−‖∂x(PBεPAεPN1

vPN2
w)‖L2

tx

. T
1
2
−

∑

N1∧N2≥8, N1∼N2

‖PBεPAε∂xPN1
v‖L4

tL
∞
x
‖PN2

w‖L∞
t L2

x

. T
1
2
−

∑

N1∧N2≥8, N1∼N2

N
−1/4
1 ‖PAεPN1

v‖
X

1,1/2,1
ε

‖PN2
w‖L∞

t L2
x

. T
1
2
−‖PAεv‖X1,1/2,1

ε
‖w‖L∞

t L2
x
.

2.2.2 The subregion |ξ1| ∧ |ξ2| >
√

17
80ε . Then as in the proof of (2.12)

in Section 3 we observe that (2.19) holds.

�

To complete the proof of Proposition 5.1 we notice that, similarly to Lemma 2.2,
one can easily prove that any solution w ∈ C([0, T ];L2(R)) with 0 < T < 1 of (4.8)
satisfies

(5.7) ‖w‖X−1,1
ε,T

. ‖w‖L∞
T H−1

x
+ ‖v‖L∞

T H1
x
‖w‖L∞

T L2
x
.

Finally, with (5.6) and (5.7) in hand, Proposition 5.1 follows from the classical
linear estimates in Bourgain’s spaces. �

Now the second step consists in proving the following estimate :

Proposition 5.2. Let 0 < ε < 1, w ∈ C([0, T ];H1(R)) a solution to (4.8) with

initial data ϕ and v ∈ Y 1
ε,T . Then it holds

(5.8) ‖P∁Aε
w‖2L∞

T L2
x
. ‖P∁Aε

ϕ‖2L2 + (ε1/2 + T 1/4)‖w‖2Y 0
ε,T

(
‖v‖Y 1

ε,T
+ ‖v‖2Y 1

ε,T

)

where the implicit constant is independent of ε.
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Proof. Applying the operator P∁Aε
on (4.8) and taking the L2

x-scalar product with
P∁Aε

w we get

d

dt
‖P∁Aε

w(t)‖2L2
x

=

∫

R

P∁Aε
∂x(vw)P∁Aε

w

=

∫

R

P∁Aε
∂x(wPBεv)P∁Aε

w +

∫

R

P∁Aε
∂x(wP∁Bε

v)P∁Aε
w

= I1 + I2 .

Using the following commutator estimate (see for instance [10])

‖[P∁Aε
∂x, f ]g‖L2

x
. ‖∂xf‖L∞

x
‖g‖L2

x
,

and integrating by parts, we get

I1 =

∫

R

PBεvP∁Aε
wxP∁Aε

w +

∫

R

(
[P∁Aε

∂x, PBεv]w
)
P∁Aε

w

. ‖∂xPBεv‖L∞‖w‖2L2
x
.

By the frequency projections, we easily control I2 by

I2 . ε−1/2
∥∥∥P∁Aε

(wP∁Bε
v
)∥∥∥

L1
x

‖P∁Aε
w‖L∞

x

. ‖P∁Aε
w‖L∞

x
‖w‖L2

x
‖v‖H1

x
.

Gathering the above estimates we infer that

d

dt
‖P∁Aε

w(t)‖2L2
x
.
(
(‖w(t)‖L2

x
+‖P∁Aε

w(t)‖L∞
x
)(‖∂xPBεv(t)‖L∞

x
+‖v(t)‖H1)

)
‖w(t)‖L2

x
.

On the other hand, applying Lemma 3.1 on (4.8) we get

‖P∁Aε
w‖L1

TL∞
x

. (ε1/2 + T )‖P∁Aε
w‖L∞

T L2
x
+ T ‖v‖L∞

T H1
x
‖w‖L∞

T L2
x

.

Therefore, integrating in time the next to the last inequality with (4.7) in hand,
leads to (5.8) �

Combining Propositions 5.1 and 5.2 we infer that

‖w‖2Y 0
ε,T

≤ C ‖ϕ‖2L2 + C (
√
ε+ T

1
4 )‖w‖2Y 0

ε,T
‖v‖Y 1

ε,T

(
1 + ‖v‖3Y 1

ε,T

)
.

which yieds the desired result according to (4.6)
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