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DISPERSIVE LIMIT FROM THE KAWAHARA TO THE KDV
EQUATION

LUC MOLINET AND YUZHAO WANG

ABSTRACT. We investigate the limit behavior of the solutions to the Kawahara
equation
Ut + U3z +eusy +uugy, =0 ,e>0

as € — 0. In this equation, the terms wu3z, and eus; do compete together
and do cancel each other at frequencies of order 1/y/e. This prohibits the
use of a standard dispersive approach for this problem. Nervertheless, by
combining different dispersive approaches according to the range of spaces
frequencies, we succeed in proving that the solutions to this equation converges
in C([0,T]; H'(R)) towards the solutions of the KdV equation for any fixed
T >0.

1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. In this paper we are interested in the limit behavior of the
solutions to the Kawahara equation

€ Ut + U3y + EUSy + UU, = 0, y ) € , € >0,
(K.) 0, (t,x)€R? 0

as the positive coefficient ¢ — 0.
Our goal is to prove that they converge in a strong sense towards the solutions of
the KdV equation

(1.1) g + Uzp +uug =0, (t,7) € R%

This study can be seen as a peculiar case of the following class of limit behavior
problems :

(1.2) Oyt + B, (L1 —ELg)u—i-Nl(u) FeNo(u) =0,

where v : R — R, L; and Ly are speudo-differential operators with Fourier sym-
bols |]** and |¢]*? with 0 < a3 < az and N; and Ns are polynomial functions
that depends on wu, its derivatives and possibly on the image of u by some speudo-
differential operator (as for instance the Hilbert transform) . Note that the disper-
sive limits from the Benjamin equation or some higher-order BO equations derived
in [3] towards the Benjamin-Ono equation enter this class.

In this class of limit behavior problems, the main difficulty comes from the fact
that the dispersive terms 0, Liu and €0, Lou do compete together. As one can easily
check, the derivatives of the associated phase function ¢(&) = £|&|** (1 — e|€[*2~*1)

1
does vanish at frequencies of order ¢ e2-e1. This will make classical dispersive
estimates as Strichartz estimates, global Kato smoothing effect or maximal in time
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2 LUC MOLINET AND YUZHAO WANG

estimate, not uniform in e. Therefore it is not clear to get even boundedness
uniformly in & of the solutions to (1.2) by classical dispersive resolution methods.

On the other hand, by using only energy estimates that do not take into account
the dispersive terms, we can see immediately that the solutions to (K.) will stay
bounded in H*(R), uniformly in &, providing we work in Sobolev spaces H*(R) with
index s > 3/2. Moreover, using for instance Bona-Smith argument, we could prove
the convergence of the solution of (K.) to the ones of (1.1) in C([0,T]; H*(R)) with
T = T(||u(0)||zz= and s > 3/2. However this approach is far to be satisfactory
since it does not use at all the dispersive effects. Moreover, the KdV and Kawahara
equations are known to be well-posed in low indices Sobolev spaces (see for instance
[1], [8], [6] ) and one can ask wether such convergence result does hold in those
spaces. In this work we make a first step in this direction by proving that this
convergence result holds in H*(R) with s > 1. Note that H'(R) is a natural space
for this problem since it is the energy space for the KdV equation. Our main idea
is to combine different dispersive method according to the area of frequencies we
consider. More precisely, we will use a Bourgain’s approach (cf. [1], [4]) outside
the area D, where the first derivative of the phase function ¢’ does vanish whereas
we will use Koch-Tzvetkov approach (cf. [10]) in D.. Indeed, noticing that ¢
does not vanish in this area, the Strichartz estimate are valid uniformly in € on
D. so that we can apply Koch-Tzvetkov approach. On the other hand, outside D,
one can easily see that one has a strong resonance relation at least for the worst
interactions, namely the high-low interactions. Indeed, assuming that |&1]| >> |&a],
by the mean-value theroem, it holds

b (E14E2) =D (&) —de ()] ~ |PL(&1)E2—0e(&2)] ~ |BL(&1)Eo| ~ [€3(B—De?)Ea| 2 €2|&al,

where £ = &1 +& is the output frequency and ¢ (€) = €3 —e£® is the phase function
associated with the (K.). It is worth noticing that this resonance relation is similar
to the one of the KAV equation that reads (&1 + &)% — (&1)% — (&2)2 = 3££,&,. To
rely on this strong resonance relation even when one of the input frequency belongs
to D. we will make use of the fact that any H!-solution to (K.) must belong to
some Bourgain’s space with time regularity one.

1.2. Main results.

Theorem 1.1. Let s > 1, o € H*(R), T > 0 and {e, }nen be a decreasing sequence
of real numbers converging to 0. The sequence u,, € C(R; H*(R)) of solutions to
(K.) emanating from ¢ satisfies

(1.3) un, — u in C([0,T); H*(R))
where u € C(R; H*(R)) is the unique solution to the KdV equation (1.1) emanating
from .

Theorem 1 is actually a direct consequence of the fact that the Cauchy problem
associated with (K.) is well-posed in H5(R), s > 1, uniformly in ¢ €]0, 1] in the
following sense

Theorem 1.2. Let s > 1 and p € H*(R). There exists T = T (|||l ) €]0,1[ and
C > 0 such that for any € €]0, 1] the solution u. € C(R; H'(R)) to (K.) satisfies

(1.4) sup ||us(t)| = < Clle|
te[0,T)
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Moreover, for any R > 0, the family of solution-maps Sk. : ¢ — u., € €]0,1],
from B(0, R)ps into C([0,T(R)]; H*(R)) is equi-continuous, i.e. for any sequence
{on} C B(0,R)gs converging to ¢ in H5(R) it holds

1.5 lim sup [[Sk.¢ — Sk.onllLe01(R):H:®R) =0 .

(1.5) dy, sup I nll e 0,7 (r); e ()

1.3. Notation. For any positive numbers a and b, the notation a < b means that
there exists a positive constant ¢ such that a < cb. We also denote a ~ b when
a <band b < a. Moreover, if a € R, a, respectively a_, will denote a number
slightly greater, respectively lesser, than a.

For u = u(z,t) € S(R?), Fu = @ will denote its space-time Fourier transform,
whereas Fyu = (u)"=, respectively Fru = (u)™t, will denote its Fourier transform
in space, respectively in time. For s € R, we define the Bessel and Riesz potentials
J7 and D3, by

Jiu=F; (1 +|¢*)2Fou) and Diu= F, ' (|¢*Fou).
We will need a Littlewood-Paley analysis. Let ¢ € C§°(R) be an even function
such that ¢ > 0, suppv C [-3/2,3/2], ¥ = 1 on [—5/4,5/4]. We set ng := 9
_ _ _ k
and for all k € N*, 9ok (§) = ¢(277€) — p(27F1E), negr == (27%) = 30
and n>or 1= 1 — P(2F1) =1~ N<ak-1. The Fourier multiplicator operators by
72, N<2s and 7>9; will be denoted respectively by Psi, P<o; and Psq;, i.e. for any
u € L*(R)
Poju = 772]477 P§2ju = ngyﬁ, and PZQJ'U = 7]22111 .

Note that, to simplify the notations, any summations over capitalized variables
such as N are presumed to be dyadic with N > 1, i.e., these variables range
over numbers of the form 2%, k € Z,. P, and P_ will denote the projection on
respectively the positive and the negative Fourier frequencies.

Finally, we denote by U.(t) := e~t(024€92) the free evolution associated with the
linear part of (K).

1.4. Function spaces. For 1 < p < oo, LP(R) is the usual Lebesgue space with
the norm || - || z», and for s € R, the real-valued Sobolev spaces H*(R) denote the
spaces of all real-valued functions with the usual norms

el = 1770l L2 -

If f = f(x,t) is a function defined for z € R and ¢ in the time interval [0, T], with
T > 0, if B is one of the spaces defined above, 1 < p < oo and 1 < g < oo, we will
define the mixed space-time spaces LY. By, LY B,, L1LY. by the norms

1 lzsm. = ( /OTlf(nt)ll%dt)% Wz, = ([ 1560

I/1z2es, = ( [ /OT | f(x,mpdt)zdx)?

For s, b € R, we introduce the Bourgain spaces X3 related to the linear part of
(K.) as the completion of the Schwartz space S(R?) under the norm

and

2

(16) oo = ( [t = o1 1ote.rPasar)
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where (z) := 1+ |z|. We will also use a dyadic version of those spaces introduced
in [11] in the context of wave maps. For s, b € R, 1 < ¢ < 0o, X>?? will denote
the completion of the Schwartz space S(R?) under the norm

(L7) Jollgema = | D0 (02512 )M Par(€)Pas (7 — 62 (€))5(E, 715 )

k>0  §>0

Moreover, we define a localized (in time) version of these spaces. Let T' > 0 be a
positive time and Y = X or Y = X4 Then, if v : Rx]0, T[— R, we have that

lv]lvy == nf{]|7]ly | 0: RxR — C, 'D|]R><]O,T[ =w}.

2. UNIFORM ESTIMATES FAR FROM THE STATIONARY POINT OF THE PHASE
FUNCTION

As we explained in the introduction, it is crucial that the first and the second
derivatives of the phase function ¢.(¢) = €3 — &£° do not cancel exactly at the

same point. Indeed, ¢L(§) = 0 < [¢] = ,/% while , ¢/(¢) = 0 & || = 1/%.

Consequently, we introduce the following smooth Fourier projectors

Paf= [1—n0[20\/5(|€|—\/gmf
Pof = [1—n0[20\f(|§| \/T%)Hf

Clearly, 17,4:“ cancels in a region of order e~1/2 around ./ i whereas P/B\f cancels

and

1/2

in a region of order e/ around 4/15;. We are now in position to state the main

OE
proposition of this section :

Proposition 2.1. Let s > 1, 0 < T < 1 and u; € C([0,T]; H*(R)), i = 1,2, be
two solutions to (K.) with 0 < e << 1 and initial data p;. Then it holds

(21)  Pauiclyegen Slleillae + T uicllve, fuicllyve, O+ uselly,)

and, setting w = uic — U2,

(22) [[Pa,wllyoz2n S llp1 = @2l + T w]yz,, Z i ellyz, (L luiellve,)

where
(2.3) lullys, = I\Raxaullxas:;/z,1 + |lull g pre

We will make a frequent use of the following linear estimates

Lemma 2.1. Let ¢ € S(R) and T €]0,1] then V0 < e < 1,

(2.4) [P 0:Ue ()l rerz S lleellre
(2.5) IDY*Pp. Ue(Dpllare S el
(2.6) [P<2Uc()ellzre < Nl

where Fy(Pga @) = (1 —na.)Fzp and the implicit constants are independent of
e>0.
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Proof. First, (2.4) follows from the classical proof of the local Kato smoothing
effect, by using that |¢L(€)| = |£|? on the Fourier support of Py_.
To prove (2.5), we first notice that the Fourier support of Pg_ does not intersect

the region {¢ € R, [¢] € [y/+.1/55]}. By the TT* argument it suffices to prove
that

(2.7) 1U-() D3/ Pop, ¢l + U (t) D2 Pa, ol g S 7420l

By classical arguments, (1.3) will be proven if we show

1/2 zz£+(§37€§ < —-1/2
H/ Xielgty/E/amn 617 e
Setting 6 := &[t|'/3 this is equivalent to prove
1/2 JIXO+6°— 575 0°)
28 L te]R XER‘/]R {|9|§Z[\/ [OEANVATAI)! o1 e dé" sl
4e

We set ®(0) = &, .(0) := 6% — MZ/JH and notice that

" 10
6% and @ (9):29(37 ° 92).

/ o 2
@(0) = 36"~ oo MEE

(2.8) is obvious when restricted on |#| < 100. Now, it is worth noticing that
" > 3
|27(6)] 2 1 —|—max(|9| |t|2/39 )

whenever 0 € {|z| > 100/ |z] & [1/ ‘tfa/z, 7‘;1)26/3]}. Therefore, in the region |0 €

[1/ |t1‘;23, \/ sz/s (2.8) follows from Van der Corput lemma since |®”(0)| 2 lJrM

and [0]'/2 ~ M . It thus remains to consider the region 0| & [/ |t1‘;23 A/ 2‘”2/3

We notice that in this region, it holds

[ clof* 207
) ! -~ 2 < |_ / -~ > i b
(29) &/(0)] ~ 0 for 0] <\ Fg— and @) ~ T for [0] 2 /=

and divide this region into two subregions.

e The subregion |®'() — X| < |X|/2. Then |®'(0)| ~ |X|. Assuming we are in
the region 100 < |0] < 4/ %, we have |®'(6)| ~ |0]* and thus |0| ~ /| X|. Then
(2.8) follows from Van der Corput lemma since |®”(6)] 2 |0] ~ +/|X]|. On the
other hand, assuming that |0 > \/% > 100 then |®'(0)| ~ £|0|*|t|=%/3 and
thus 0] ~ e~ 1/4| X[ /4|t|'/6. (2.8) follows again from Van der Corput lemma since
|D7(0)] 2 10] ~ e /A X[V 4]0

e The subregion |®'(0) — X| > |X|/2. Then |®'(0) — X| ~ |®'(¢)| and (2.8) is
obtained by integrating by parts and using (2.9). This completes the proof of (2.5).

Finally, to show (2.6) we notice that it suffices to prove that for |z| > 10%,

sup ‘/77<2 eiles+o: (O ge| < || 2
te[0,1]

where ¢.(£) = €3 —e£°. But this follows directly by integrating by parts twice since
2 — 6L(&)t] 2 Jo] for any |f] < 1 and J¢] < 4. O
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To prove Proposition 2.1 we will have to put the whole solution . of (K.) and
not only P4_u. in some Bourgain’s space with regularity 1 in time. This will be
done in the next lemma by noticing that any solution to (K.) that belongs to
C([0,T); HY(R)) automatically belongs to Xg,’%.

Lemma 2.2. Let s > 1, T €]0,1] and v € C([0,T]; H*(R)) be a solution to (K.).
Then,

(2.10) lull o S Mull pge gz + lllpge mrallull e ms
where the implicit constant is independent of €.

Proof. First, we consider v(t) = Us(—t)u(t) on the time interval ]0,7T] and extend
von | — 2,2[ by setting dyv = 0 on [—2,2]\ [0,T]. Then, it is pretty clear that
||atv||L2(]7272[;Hfj1) = ||8tv||L2TH;71, and ||UHL2(]72,2[;H;*1) S HU”L%OH;*1 .

Now, we define u(x,t) = n(t)U(t)v(t). Obviously, @ is an extension of u outside
] = T,T[ and it holds
(2.11)

||ﬁ|\nglv1 S HatU”L?(]—ZQ[;Hj*l) + ||UHL2(]72,2[;H2*1) S HatUHLzTH;*I + ||UHL;9H;*1 :
Therefore (2.10) follows from the identity
0w = Uz (—1t) |ut + Upga + €Usy
together with the facts that w is a solution to (K.) and that
luttall gg=1 < ||y S lullpgellullag
as soon as s > 1. O

Now, according to the Duhamel formula and to classical linear estimates in Bour-
gain’s spaces (cf. [1], [4]), Proposition 2.1 is a direct consequence of the following
bilinear estimate

1Pa.Ou (o) | gomren S T4 (Jua)

ve + lull e ) (Huzllys + lluzllxon )

(2.12) +T4 (v + sl o ) (lluzllyzsr + uall o1 )

where the functions wu; are supported in time in | — 7,7 with 0 < T < 1. To
prove this bilinear estimate we first note that by symmetry it suffices to consider
A (u,v) where A(-,-) is defined by

Fo(A(u,v)) := /RX\&\g\f—sl\(J’zU)(él)(fzv)(f — &) dé
Moreover, using that for any s > 1,

(6 +&)" S (& + &) (€)™ + (&)™)

it is a classical fact that we can restrict ourself to prove (2.12) for s = 1.
As mentioned in the introduction, the following resonance relation is crucial for our
analysis in this frequency area :

(213)  O(§&) =0 -0 —0o = €6(E~ &)[3-5e((61 + &) - 6162 |

where

o:=0(1,&) =71 — 3-8 o= o(m,&) and o2 :i=0o(T7 —1,§ — &1) .
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We start by noticing that the case of ouput frequencies of order less or equal to one
is harmless. Indeed, it is easy to check that for any couple u;, ¢ = 1,2, of smooth
functions supported in time in | — T, T[ with 0 < T < 1 it holds

(2.14) (|02 Pa, P<gM(ur, uo)ll 1 -120 S | A(ur, u2) 2 S Nl pge mo [luzll g arn -

Let us continue by deriving an estimate for the interactions of high frequencies with
frequencies of order less or equal to 1.

Lemma 2.3. Let u;, i = 1,2, be two smooth functions supported in time in | —T,T|
with 0 < T < 1. Then it holds
(2.15)

102 Pa. A(Pestn, ua)lyov/an S o (T4 Pasuall roso -+l o)+ 102l 2, ) -

Proof. Since the norms in the right-hand side of (2.15) only see the size of the
modulus of the Fourier transform, we can assume that all our functions have non

negative Fourier transform. We set 4, = 1—mn9 [20\/E(|§| —y/ %)} so that 1§A:f =

na.F. Rewriting na, () as 14, (€~ 1)+ (14, (€) —na. (€~ &), it suffices to estimate
the two following terms

o (st 70|

X1,-1/2,1

and

n= |7 (e / s (60)Fe () (€0) a. (€)—na. (E~€) Fa () €€ &t )|

—1/2,1
I, is easily estimate thanks to (2.6) by
L . 2
g Y T H(ngsul) * (77N77A53§U2)HL2
N>1

1_
S T Y |1P<suallfa g l|07 Py Pauslf < 2
N>1

S T unlZon || Pacual %z

To estimate I we first notice that for |£1] <4 and 0 < e < 1078,

3 93
(2.16) na.(€) —na. (€ — &) = 0 whenever [€] e \/?5 16\/7 2 2 } .

and for any (£,&1) € R?,

(2.17) 74, (€) = ma. (€ — €0)] S min(1, VEl&]) -
Moreover, in the region || < 4 and [¢] & [124/2, 124/ ] the resonance relation
(2.13) ensures that

(2.18) |0maz | = max(|o], |o1], |o2]) Z [€€61(§ — &)

where o(7,€&) =7 — ¢-(§), 01 = o(m1,&1) and 02 = (7 — 11,& — &1). We separate
three regions
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® Oz = 02. Then according to (2.16)-(2.18),

1 1€11(€)? _
I 5 T2 H/ N<su1) 51,71)\/_|§ = 5|2<02>X{|g_51\~%}uz(€—51,7—71)d€1dﬁ‘
S T2 || P<sunl|nge |luzll x-1/2.
< T ||y xo [Jua| xo.

® Opmar = 01. Then according to (2.16)-(2.18),

g @ [ e e € VBRI e g T~ 61,7 ) dr
S T Junlos |72 F (e 2 83 e
S T lullxon |F 7 Ocqrerm sy Bl
S T2 |00 [[usl| o

® Opmar = 0. Then according to (2.16)-(2.18),

b2 / |£1|3/;/|;§1£ 7 (i) DX e-u1~ 32y (6 — &) &‘ L2(Jel~ k)
S \/E||P§8u1||L;’;||D2/4f_ (X{\gwﬁ}@)nﬁm
S llurllxon || Opusl| 2,

This completes the proof of the lemma. [

The next lemma ensures that the restriction of the left-side member of (2.12) on
the region €] > 1, |&1| 2 1 and |opmaz| > 27°(€61(€ — €1)] can be easily controlled.

Lemma 2.4. Under the same hypotheses as in Lemma 2.3, in the region where the
following strong resonance relation holds

(219) |Umaz| > 275'661(6 - 61)| )

we have
(2.20)

L2 (jl~k)

L2 (jglv2)

102 Pa, PosA(Posgtur, ua) 11720 S T4 s o il o+ (el co + 10 | 2, ) 90z, -

Proof. Again we notice that the norms in the right-hand side of (2.4) only see the

size of the modulus of the Fourier transforms. We can thus assume that all our func-

tions have non-negative Fourier transforms. We set I := [0, Pa, P>s A(P>gu1, ug)|| 1.-1/21
and separate different subregions . :

o |o1| > 275(€6 (€ — &1)|. Then direct calculations give

I S T3 |lur||xoa|| Dyt Poous| nos
< T ||| o [Juz xou -

o o] > 2751€€1(€ — &1)|. This case can be treated exactly in the same way by
exchanging the role of u; and us.
o [o] = 27°€&1(§ — &)] and max(|ou|, o2]) < 27°1€61(§ — &1).



DISPERSIVE LIMIT FROM THE KAWAHARA TO THE KDV EQUATION 9

Then we separate two subregions.
1. |&] > 277[€]. Then [£1] 2 [€max| and taking § > 0 close enough to 0 we get
I 5 0:Pa. P>sA(Pxgus, U2>|‘X51ﬁ1/2+5
’ D;1/2+36PZSU1HL2
D243 Pogun || e | Orual| 2,

S
S lutllxsassallOzuzll Lz,
S (luallxos +110zuall L2, )1 0zusl| Lz, -

A

2. |&| < 277[¢]. Then, we notice that in this region $|¢| < | — & | < 2|¢| and thus
1-279 < -&(¢-&) < (1+27%9¢.

Since 14, does vanish on {|§| E[ \/;, 16 \/;] } we deduce from (2.13) that

(2.21) o] ~ max(Jg61 (€ — ), el (€ — €0)])

on the support of n4.. We thus can write

r S Z( Z HnN(&)nAE(5)|§|X{\G\Nmax(NlNQ,aN‘lNl)}fx(A(PNlu;UQ))HX61,71/2’1)2

N>4 4<N;<2-5N

2
s (X 1PwD PullzliggemEwle,)

N>4 4<N;<2-5N

< =2 1/4 1/4 2

S ZHX{|§|~N}§U2”L3£( > NPy, D; U1||L°°L2)
N>4 T U4<N <2-5N

S Nl snssllOrus 25

S (luallxon + 19punllzz,)?100us ]2, -

O

Proof of the bilinear estimate (2.12)
First, according to (2.14) and Lemma 2.3 and to the support of n4, it suffices to
consider

I f[ZNQ(ZL 1/2 ’UL a)nn (€ /R2 Z Py, ur (61, 71) Pryus (€, 72) dry dEy

N>4 N1AN22>8

211/2
i,guagm) } ’

where

(222) \/g 16\/; To =T —1T1 and 52 5 &1 .

Now we will decompose the region of integration into different regions and we will
check that in most of these regions the strong resonance relation (2.19) holds. By
symmetry we can assume that N; < Nsy. For the remaining it is convenient to
introduce the function

['(€, &) : ‘3 55(5 - &€ - 51))‘

which is related to the resonance relation (2.13).
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< 2710, Then it holds
(1-2"78 <@ -GE-&)<(1+277)¢

and it is easy to check that T'(£,£1) > 27° as soon as |¢] € J.. According
to (2.13) this ensures that (2.19) holds.

2. Ny
2.1

1 g

N

A

2.2.

N

A

N

> 2710]\72.
. The subregion [¢| & [, / 81_075’ ’/5_25}' In this region, by (2.5) of Lemma

2.1 and duality, we get

it g2
> 1Da * " 05 (Pryur Praus)ll 44
min(4,2-10Ny) <Ny <Njy v
s_ .. —14
> T37 Ny * 7|0 Py unl| g2 [|On Py | oo 2+
min(4,2-10 Ny)< N1 <Ny
3_

T3 Jur |l oo mr |zl Loe -

The subregion [£| € [1 / g 1/5_25} .

2.2.1 The subregion [£1|A[&] < /4. Since both cases can be treated
in the same way, we assume [£1| A |€2] = |£1]. Then, according
to (2.5) and the support of 14, and np_, we get

1
> T3~ ||92(Pp. Pa. Pn,u1 Pyyus)l| 2,
min(4,2-10 Np) < N1 < Np

1

T> > 1P, Pa. 0z Pnyur|| papse | 0w Py usl e 2
min(4,2719N3)< N1 <N»

1_ —1/4

T > Ny Pa Py x1.0720 10 Py e 2
min(4,2-10 N) < N1 < Np

1

T2 ||Pa.unl xvaszal|uel g m -

2.2.2 The subregion [£1|A|€2] > 1/ . In this subregion we claim that

(2.19) holds. Indeed, on one hand, if &€ > 0 then 52 — 66 <

£ < % and thus I'(§,&;1) > 1. On the other hand, if & <

0 then, since [¢| > /&L, we must have [&1] V [&] > 24/ 4.

Therefore, £2 —&,& > 3% and thus I'(¢, &) > % which ensures

that (2.19) holds and completes the proof of (2.12).

3. UNIFORM ESTIMATE CLOSE TO THE STATIONARY POINT OF THE PHASE

FUNCTION

As announced in the introduction, close the the stationary point of the phase
function we will apply the approach developed by Koch and Tzvetkov in [10]. Note

that, in [9]

, Kenig and Koenig improved this approach by adding the use of the

nonlinear local Kato smoothing effect. However, this improvement can not be used
here since this smoothing effect is not uniform in € close to the stationary point.
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Proposition 3.1. Let s > 1 and u. € C([0,T]; H*(R)), ¢ = 1,2, be a solution to
(K.) with initial data ¢. Then it holds

(3.1) I Pea.uellZeemy S 1Poaellfse + (/24T luel3s (HUeHYE{T lluell3 )
where Y7 r is defined in (2.3) and Fy(Pga.¢) = (1 —na.)Fuep-

First we establish an estimate, uniform in &, on the solution to the associated
non homogenous linear problem.

Lemma 3.1. Let v € C([0,T]; H*(R)) be a solution of

(3.2) Vi + Vgppw + EVsg = —Fy
Then
(3.3) [P vllLioe < (/% + T)|Poa, vllnse 2 + 1Poa. Flloy L2

Proof. For 0 < ¢ << 1 fixed, we write a natural splitting
[0,T] =UI;
of [0,T] where I; = [a;,b;] are with disjoint interiors and |I;] < e'/2. Clearly, we

can suppose that the number of the intervals I; is bounded by C(1 +Te=1/?). Using
the Holder inequality in time, we can write

3
olzyze D lvlley e S D llvllzg o -
J J

Next, we apply the Duhamel formula on each I; to obtain

t
Poa o(t) = Ue(t — a;)Pga, v(ay) —/ Ue(t —t')Poa 0 F(t) dt" .
aj
Using the uniform in e Strichartz estimate (2.5) and classical TT* arguments, it
yields

1Poaoly re S D5 Poa v(ag)lle + DY Poa Flly 12
S V8 Poa,vlag)e + 573/8|‘PCA€F|‘L}jL§ :
Therefore, we get
|\PBA€”|\L}jL;o S EI/QHP[:AEU(%)HLZ + ||PGAEF||L}jL§
and summing over j,

HPEAS’UHLITng S e'/? Z ||PCAEU||L§$’L§ + ||PCAEF||L1TL§ .
J

S (P + )| Poavllzrs + 1Pea. Fllsre -

We now need the following energy estimate

Lemma 3.2. Let s > 1. There exists C' > 0 such that all 0 < ¢ << 1 and all
© € H*(R), the solution uw € C(0,T; H®) of (K.) with initial data ¢ satisfies

(34) 1Pea.ulizens < 1Poa el + ClIPpvolly poe lullise e -
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Proof. Applying the operator Py, on (K.) and taking the H®-scalar product with
Ppa u we get

d S S
WPo O = [ J2Pea,0,0%) i Poa .

Decomposing u as v = Pp_u + Pgp_u we can rewrite the right-hand side member
of the above equality as

/ J2Pos0n(Ppu)2 TS Py ut / J2 P, Aaax((P[;Bau)2+2PBEuP[;BEu)JjP[; =T+ .
R R

In the sequel we will need the following variant of the Kato-Ponce commutator
estimate ( [7]):

(3.5) |[72Pea.. 119

2 S Walloellgl g + 1l lglloee -

Integrating by parts and applying the above commutator estimate we easily esti-
mate the first term by

L o= 2 / Pp.ud, (J;PCAEPBE u) JEPga u+2 / [JjP[;AE  Pp.u)Pp iy JS Py
R R
< IPpusl e lullde
where, in the last step, we use that according to the support localization of 7,

(36) PBEP[:AEZP[}AE.

For the second term, we notice that by the frequency projections, all the functions in
the integral are supported in frequencies of order 1/4/z. Therefore, using Bernstein
inequalities we get

Los e V| B ((Popow)? + 27, (x F(Po,u)) Pp.u) | 1Peaulle

{lel~e™ 3}
< I Pea ol llullfe -

(3.4) then follows by integration in time, using again (3.6). O

Proof of Proposition 3.1 Applying (3.3) to u, with u solving (K.) we get

|Peauallne S (72 +T)Poa, tellise 12 + 1Poa. 00 (W) 1y 22
(3.7) S @D ulng mr + Tllull7sem -

Therefore, gathering (3.4), (3.7) and (2.5) we obtain
1 Pea.ull7 S Peauollfe + Cllullz TV Pp. Pa vl pg ree + [P ol
CAUllLgeH: S CA.UollHs UllLgeHs B TA Uz || Lt Lee CA Uz llLLLee
< 1Poa,uolly +C @72 + Tl (Tl + uls)

which completes the proof of (3.1). O
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4. PROOF OF THEOREM 1.2

4.1. Uniform bound on the solutions. Let u € C*(R; H*(R)) be a solution of
(K.). Combining Propositions 2.1 and 3.1 we infer that for any s > 1 and T €]0, 1],

lull3, < Cllgle +C (Vz+ Tl lulys, (1+ uls )

for some constant C' > 0. Since u is smooth, T' + [[ully=  is continuous and

limsup [Jully=, < |l¢[lms. Therefore a classical continuity argument ensures that
T\0 ’

for any § > 0 there exists a > 0 such that
(4.1) OVe+ T ulf, luly:, (14l ) <o
and ||u||y:yT < |lellzs provided

(4.2) (Ve+TYY) < alllellm +llellz) " -

By continuity with respect to initial data (for any fixed ¢ > 0) it follows that for
any fixed initial data ¢ € H*(R), s > 1, the emanating solution v € C'(R; H*(R))
of (K.), with

2

o _
(4.3) 0<e<eolllellm) = - (lelm + lellF) 2,
satisfies

(4.4) lullys, S llellas

with T = T(ill ) ~ (Il + ll4) .

Finally, the result for € € [go(]|¢| g1), 1] follows from a dilation argument. Indeed,
it is easy to check that u is a solution of (K ) with initial data ¢ if and only if
uy = ur(t,z) = A 2u(A73t,\712) is a solution of (Ky2.) with initial data @) =
A"2p(A\12). Hence, taking A = e~1/2 > 1 we observe that u) satisfies (K;). By
classical well-posedness result for (K7) (see for instance [6]), there exists a non
increasing function R : R} — R such that

luallzes s S lpallas with 77 = R(|loa |l ) -

Coming back to u, noticing that |[px ||z < A73/2||¢|| 1 and that 1 < A\ =¢e71/2 <
(el + llll3:1) we deduce that

lullzgerrs < llllas with T = T([l¢l|a1)
which completes the proof of (1.4).

4.2. Proof the equi-continuity result. Now to prove the equi-continuity result
we will make use of Bona-Smith argument [2]. To simplify the expository we will
only consider the most difficult case that is the case s = 1. We thus want to
prove that, be given a sequence {¢r} C H'(R) converging towards ¢ in H!(R), the
emanating solutions uc  := Sk_(pr) satisfy
(4.5) lim sup [Juek — UEHL%"H1 =0,

k=00 0<e<1
where u. := Sk_(p) and T = T(||¢|lg1). We first notice that we can restrict
ourself to consider e satisfying (4.3) since the same dilation argument as above
yields directly the result otherwise.
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The first step consists in repeating the arguments of Sections 2 & 3 to get a
L2-Lipschitz bound, uniform in ¢, for H'-solution. This is the aim of the following
proposition which proof is postponed in the appendix.

Proposition 4.1. Let 0 <e<1,T >0 and v € Y;T satisfying

(46) e+ T (Il + ol ) <1

and

(4.7) 1Pb. 000y 1 S (VE+TV) (ol + 0l ) -
Then any solution w € C([0,T]; HY(R)) to

(4.8) opw + 02w + e05w + %&(wv) =0

satisfies

(4.9) lwllrgerz S lw(0)]| L2

where the implicit constant is independent of €.

Now, for any ¢ € H'(R) and any dyadic integer N we set ¢~ := P<y¢. By
straightforward calculations in Fourier space, for any ¢ € H'(R), any N > 1 and
any r > 0,

(4.10) ™ gier S NNl and o™ =@l ga-r S o(N") ol -

Setting u® := Sk_ () and uévk := Sk_(¢l), (4.1) ensures that there exists Ty =

To(llell 1) €]0, 1] such that for & large enough and 2 := ue, ul, ucx or ul,
(4.11) e+ T ) (Izllva,, + 1214, ) <1
and, according to (4.4), (2.5) and (3.7),

(4.12)

1/4

lellva,, <2l and [1Psdizloy e S VE+T (el + 1213, ) -
Moreover,
(4.13) e, + ludyllver, S 1oV e S Nl

provided s > 1. By the triangle inequality, it holds
(414) Jlue —ucpll g < llue—ul |l g ms +llul —uly | Lge o +l[uly —ue )l Ly m -

We start by estimating the first term of the right-hand side fo (4.14). Setting
We i = Ug — uév, we observe that w, satisfies

1
(4.15) dywe + Pwe + dPw. + §8I(w€(uév +u))=0.
Therefore, combining Proposition 4.1, (4.11)-(4.12) and (4.10) we get that
(4.16) lwell g 2 S o(N 7).

According to (2.2) we also have

1
(4.17) [1Pawell 12720 < Cllo =@M [lms + S llwellys,
e, Ty z 2 e, Ty
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Now to estimate g4, we rewrite the equation satisfying by w. in the following less
symmetric way :

1
drwe + Pw, + edPw. = —§8I(w§) — am(unge) .

Applying the operator Fg4_ on the above equation and taking the H L_scalar product
with g, we we get

d
EHPGAEws(t)H?q; = / J;P[}Aaar(wg)J;P[]Aaws + 2/ J;PCAE (uévast)J;P[;Aaws
) R R
(4.18) +2 / JiPoa, (00,ul)J} Pog we .
R

The contribution of the first term of the above right-hand side can be estimated in
exactly the same way as in the proof of Lemma 3.2 by || Pp, 0we ||z [|we|3;,. The
second term can be estimated also in the same way by '

(1P, Oz | oo llwellrrs + w2 | 22 1P, Oxwe || oo )lwe | ry -

The difficulty comes from the third term. To estimate its contribution we first
decompose w. and ulY to rewrite it as

2 / JrPoa. (PCBEwEP[;BE Opul + Pop wePp 0yul + Pp w.Pyp_ Oyul ) Jy Poy w:
R

+2/ JaPoa, (Pp.w:Pp 0yul ) I Poy we =11 + I
R

According to the frequency projections, in the same way as proof of Lemma 3.2, all
the functions in I, are supported in frequencies of order e='/2, which leads to
It S || Poa, Ovwe | o= llwe | llud s -

Finally we control the contribution of Iy by
2 S |LCA OzsWe||Lee | [|Wel|H [|Ue ||HL We||L2||Ue || H2
Iy S || Poa, Ovwe| e ([lwel| a flul [y + flwel 2 ul |

Note that the difficulty to control Is comes from the fact that we can not avoid to
put a H2norm on uY. But the idea of Bona-Smith is to compensate the growth
with N of this H?-norm by the decay with N of the L2-norm of w.. Actually,
integrating (4.18) in time, with the above estimates together with (4.16) and (4.12)-
(4.13) in hand, we get

||PBA€7~U6||%;CUH; S 1Pea (e — SDN)H%I; + (HPBEamweHLlTOL;O + ||PBgamU£V||L1T0L;o)||wa||%;°0H;

Jr||PBgaacws||1:1T0L;;o(||ws||L;°UH;||u£[||L;°UH; + ||ws||L;j)Lz||uéVHL;j,Hg)

1
< W)+ gllwelliz m + 20l Pe.Oswellny, noe el g
(4.19) +o(N"HN
where y1(N) — 0 as N — oo. On the other hand, applying Lemma 3.1 on the

a-derivative of (4.15) we get
(4.20)

[1Pea. Oxwe Ly, Lo S ("2 +To)[well e s +Tollwe | gy (luell g -+l g mo)
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Therefore, gathering (4.19), (4.20) and (4.17) with (4.11) in hand, we obtain

1
el < 1) + g luwelidy
with y2(N) — 0 as N — oo. This ensures that
llue — uévHL;% < 272(N) .

To estimate the contribution of the third term of the right-hand side of (4.14) we
proceed exactly in the same way as for the first one, by replacing u. by u. ; and
ul by ugk. We then obtain

l[te,k — UékaL;% m <3(N) .

with 75(N) — 0 as N — oo. Finally, the contribution of the second term of the

right-hand side of (4.14) is also obtain in the same way by replacing u. by uév &

(actually, contrary to the preceding contributions, here both terms uév , and ul¥

can play a symmetric role ). However, for this term, Proposition 4.1 only ensures
that

Huév - Ué\,[kHLgS[’)L?E Sle— <Pk||Lg .
Therefore, setting w, = uY — ugk, one has to replace o(N~1)N by ||p — SOkHLgN
in the right-hand side member of (4.19) when estimating ||Pga_(u — )l Lz g1
El 0 x
We thus obtain

Jul — “i\,[kHL;% m Sl — erllm + Nlle — orlle -
Gathering the above estimates, (4.14) leads to

lim Sup |ue — uekllge w1 =0
k—+o0 ’ To
0<e<eo(llellg1)

which completes the proof of Theorem 1.2.

4.3. Proof of Theorem 1.1. We follow general arguments (see for instance [5]).
Let us denote by Sk, and Skqv the nonlinear group associated with respectively
(K:) and KdV. Let ¢ € H3(R), s > 1 and let T = T(|[¢|/z1) > 0 be given by
Theorem 1.1. For any N > 0 we can rewrite Sgk_(¢) — Skav(p) as

Sk.(p) — Skav(p) = (SKE (¢) — Sk. (PSN‘P)) + (SKE (P<nip) — SKdv(PgN@))

+(SKdv(P§NSD) - SKdV(sO)) =I.ny+J.Nn+Kn.
By continuity with respect to initial data in H*(R) of the solution map associated
with the KdV equation, we have A}im | KNl Loe(0,7;5y = 0. On the other hand,
—00 *
(1.5) ensures that

li I . =0.
N 82}%},}1[ 1 enllz=o.7:m13)

It thus remains to check that for any fixed N > 0, liH(l) | Je, N || Loe (0,7, 5) = 0. Since
e— x

Ponyyp € H*®(R), it is worth noticing that Sk_(P<ny¢) and Skav(P<n¢) belong
to C*°(R; H*(R)). Moreover, according to Theorem 1.2 and the well-posedness
theory of the KdV equation (see for instance [1]), for all # € R and ¢ €]0, 1],

1Sk (P<n®)llLseme + |Skav (P<n®)|Lso e < C(N, 0, [[ollr2) -
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Now, setting ve := Sk, (P<ny) and v := Skqv(P<n), we observe that w, :=
v, — v satisfies

1
Orwe + 03w, + cdiw, = 75896 (ws(v + vg)) — EUsy

with initial data w.(0) = 0. Taking the H®-scalar product of this last equation
with we and integrating by parts we get

d S
gpllwellm: S (1+||3z(v+ve)||L;°)||wa||?1;+||[J s (v0)]0pwe || 2 lwe |l s +€2|vse 1 g -

Making use of the following commutator estimate (see for instance [12]), that holds
for s > 1/2,

(4.21) 172 Agllez < 1 fellmzllgl gz
we easily get

4
dt

Integrating this differential inequality on [0, T'], this ensures that 1in% lwe || o= (0,7:55) =
E—r

lwe(@)ll7: S CN, s+ 1, @l z2)lwe ()]s +*C(N,5 + 5, |l £2) -

0 and completes the proof of Theorem 1.1 with T' = T'(||¢| ). Finally, recalling
that the energy conservation of the KdV equation ensures that for any ¢ € H'(R)
it holds,

iUHE}HSKdV(Sﬂ)(t)”H; S el + lell2z
S

we obtain the same convergence result on any time interval [0,7,] with Tp >
T(|l¢ll 1) by reiterating the convergence result about To/T' (||l g1 + [|¢]|32) times.

5. APPENDIX: PROOF OF PROPOSITION 4.1

We follow very closely Sections 2 and 3. The first step consists in establishing
the following estimate on Ps_w.

Proposition 5.1. Let 0 < T < 1 and w € C([0,T]; H'(R)) be a solution to (4.8)
with 0 < € << 1 and initial data p. Then it holds

1
(5.1) 1Pawll xor20 S llellize + T3 ollyz llwllye, (14 llvllyz,)
Proof. We proceed as in Section 2. First we observe that we have trivially

(5.2) | P<g 8y (vw)

—120 Slvwl e, S T2 |v]| poe pr Jwl o2 -

o
and
[Pa. 0z (vP<sw)]| o120 S [|Pa.0x(vP<sw)l| L2,
S TY2(oellupra 1 Peswlli + ol lwllzr:)
(5:3) S Tl llwllzers

Now to control || Pa, 0y (wP<gv)
we have

| y0.—1/2.1 we notice that in the same way as in (5.3)

[ Pa. 0z (P<16wP<sv)|| yo 120 S TY2||v]| Loz 1wl Lo 2 -
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On the other hand, according to the frequency projections and Lemma 2.3, the
contribution of P>i¢w can be estimated by

||83PAE (PSg’UleﬁU})HXEU,—l/2,1 == ||83PAEA(P§8’U,P216’LU)||X2,71/2,1

(5.4) S Mollyon (T4IPawl gors2 + 0l 1) + ollzz, ) -

A

0 Pa A (PesF o (121), 0 ' Pors o (1)) |

’XEI,—I/2,1

To continue we need the following variant of Lemma 2.4.

Lemma 5.1. Let v and w be two smooth functions supported in time in | — T, T|
with 0 < T < 1. Then, in the region where the strong resonance relation (2.19)
holds, we have

1_
102 Pa. Pog(PogvPogw)| o120 S T |0l xorlwll x v + [Joallz, (Jw]l x 10 + lwlizz,)

(5.5) Hllwllzz, (ol xor + llvellzz,) -

Proof. We notice that the norms in the right-hand side of (2.4) only see the size
of the modulus of the Fourier transforms. We can thus assume that all our functions
have non-negative Fourier transforms. We set I := ||0, Pa, P>s(P>svP>sw) || yo.-1/2.1
and separate different subregions . ’
o |o2| > 27°(€41 (€ — &1)|. Then direct calculations give

I T3 ||wl 11|17 Posvll g

1_
T3 o] o w10 -

I ZANRZAN

o [o1]| > 275€€1(€ — £1)|. Then |, by (2.5) of Lemma 2.1 and duality, we get

I3 HPAEst (P28D£1ft}1((01>G)P28D;1w)‘ Lt
S T ||l xou | Pes Dy wll e g2+
< T ol o flwll 504
< Ti7||v||Xg,1(||w||X;1'1 + Hw”L?m) )

o [0 > 277|661 (€ — &) and max(|o], o2]) < 27661 (€ — &1).
Then we separate two subregions.

L. |&] A& > 277|€]. Then |&1] ~ |&2] 2 |€] and taking 6 > 0 close enough to 0 we
get

IS [|0:Pa, P>s(PosvPssw)l| yo-1/2+
< HwD;1/2+36PZSUHLz
S DA Pogol| e lwll 2,
S vllyasalwles,
S (llxor + 1020] 2 ) llwl 2z, -
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2. |&1| Aléa] < 277|€]. Then, we use that (2.21) holds on the support of 14, . In the
subregion |£1| A [&2| = |€1] we write

2
25 (0 | @na O ez v Fo (@Px )| o o)
N>4 4<N,<2-5N E
2
S Z( Z ”PNlD;l/QU”Lf;||X{\§\~N}w”Li’g)
N>4 4<N,<2-5N
2
~ —1/4 4
S Slggemalla (X NP DY Aolnsz )
N>4 " 4<N;<2-5N
< vll%yassllwlzs,
< (lllxor + 100l 22 ) wlZ -

Finally, in the subregion [£1| A |§2] = |&2| we write

12

A

Z( > HUN(&)UAE(5)|§|X{\a\Nmax(N2N2,aN4N2)}]:m((UPNzw))HXS,,l/z,l)Q

N>4 4<N,<2-5N

2
< Z( Z ”PNlD;B/Qw”L;ﬁ||X{|§|~N}§U||L_2r’§)
N>4 4<N,<2-5N

2
. —1/4 _
< Z ||X{|g|~N}§U||%3§( Z Ny / | Pn, D, 3/4w||Lg°Lg)
N>4 T A< N.<2-5N

el s/a.ra 92022

S
S (lwllx-rr +llwllzz, )? 1920117, -

Now we are in position to prove the main bilinear estimates :

Lemma 5.2.

1_
(5.6)1Pa.0u(vw) | o215 T4 (Jwllvo + w0 ) (llollyz + lollxon )
where the functions u and v are supported in time in | — T, T[ with 0 < T < 1.

Proof. First, according to (5.2)-(5.4) and to the support of 14, it suffices to consider

_ - . 241/2
1:2[2(;,; 1/2H77L(U)77N(5)/ > Pnu(&, ) Pr,w(ée, ) dry dfl’L:g(ngE)) } ’

N>4 R? N AN, >8

where J; is defined in (2.22). We consider different contributions to I.

1. Ny ANy < 2710(]\71 \Y NQ) Then it holds
(1-2NE2 <@ -GE-&)<(1+277)

and it is easy to check that I'(¢,&) > 275 as soon as |£] € J.. According
to (2.13) this ensures that (2.19) holds.
2. Ny ANy > 2710(N1 V NQ) Then N1 ~ Ny Z N.
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2.1. The subregion [¢| & [, / 81_075’ \/5_25}' In this region, by (2.5) of Lemma
2.1 and duality, we get

_1
I S’ Z HDm 4+81(PN1’UPN2U})HL%+L1+
N1AN3>8, Ni~Ns t v
3_ . —14
S Z T+ Ny * ||aacPN1UHL§°L§D+HPNzw”L;’OL?c

NiAN3>8, Ny~N>

S T3 ||o]l oo s [l poe 2 -

2.2. The subregion [£| € [, /2L, /5_28}

2.2.1 The subregion [£1|A[&] < y/4=. Since both cases can be treated

in the same way, we assume [£1| A |€2] = |£1]. Then, according
to (2.5) and the support of 04, and np_, we get

I3 > TH1I0x(Ps. Pa. Py,oPr, )iz,
N1AN2>8, Ni~No
1_
S T > | Pp. Pa 0 Pnyv| Lo | Prawll pse 2
N1AN2>8, Ni~No
5 T%_ Z N;1/4||PAEPN1’U||X51,1/2,1HPNZ’LUHL?OL?E

N1AN2>8, Ni~Ns

S TP el

80¢e
in Section 3 we observe that (2.19) holds.

2.2.2 The subregion || A[€2] > /&=. Then as in the proof of (2.12)

O

To complete the proof of Proposition 5.1 we notice that, similarly to Lemma 2.2,
one can easily prove that any solution w € C([0,T]; L?(R)) with 0 < T' < 1 of (4.8)

satisfies

(5.7) ooll 30 S 0l pse gz + ol s ol s

Finally, with (5.6) and (5.7) in hand, Proposition 5.1 follows from the classical
linear estimates in Bourgain’s spaces. (|

Now the second step consists in proving the following estimate :

Proposition 5.2. Let 0 < ¢ < 1, w € C([0,T); H'(R)) a solution to (4.8) with
initial data ¢ and v € Y;T Then it holds

(58)  Peawldzrs < I1Poaolds + €2+ TV wlZe, (ol +llel3,)

where the implicit constant is independent of €.
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Proof. Applying the operator P4 on (4.8) and taking the L2-scalar product with
Ppa w we get

d
Gz = [ Poaosu)ry,
R

= / Ppa_ 0z (wPp v) Py s w + / Py, 0z(wPyp v) Py s w
R R
= L+1.
Using the following commutator estimate (see for instance [10])

11Pea. 0z, flgllez S 110xflleellgllez
and integrating by parts, we get
Il = /PBEUP[]AameGAEw—f—/([P[]AEaI,PBE’U]’w)P[]Aaw
R R
< N0:Ppvllz=|wlZ: -

By the frequency projections, we easily control Iy by

L 3 571/2”1:’[;145 (’wPEBE’U)

1wl

S IPea wleellwlizz 1ol my -

Gathering the above estimates we infer that

d
Z1Paw®liz S ((”w(t)||L§+||PEA5w(t)”L§°)(HaﬂﬁPBav(t)”L;"Jr”v(t)HHl))||w(t)||L§ :
On the other hand, applying Lemma 3.1 on (4.8) we get

[ Pea. wllprpe < 2+ )| Poa, wlipee r2 + Tlvll g m lwllzse 2

Therefore, integrating in time the next to the last inequality with (4.7) in hand,
leads to (5.8) O

Combining Propositions 5.1 and 5.2 we infer that
1
lwliZe, < Cllgl3s +C (V2 + THwlo oz, (1+ 003, ) -

which yieds the desired result according to (4.6)
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