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DISPERSIVE LIMIT FROM THE KAWAHARA TO THE KDV
EQUATION

LUC MOLINET AND YUZHAO WANG

ABSTRACT. We investigate the limit behavior of the solutions to the Kawahara
equation
Ut + U3z +eusy +uugy, =0 ,e>0

as € — 0. In this equation, the terms wu3z, and eus; do compete together
and do cancel each other at frequencies of order 1/y/e. This prohibits the
use of a standard dispersive approach for this problem. Nervertheless, by
combining different dispersive approaches according to the range of spaces
frequencies, we succeed in proving that the solutions to this equation converges
in C([0,T]; H'(R)) towards the solutions of the KdV equation for any fixed
T >0.

1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. In this paper we are interested in the limit behavior of the
solutions to the Kawahara equation

€ Ut + U3y + EUSy + UU, = 0, y ) € , € >0,
(K.) 0, (t,x)€R? 0

as the positive coefficient ¢ — 0.
Our goal is to prove that they converge in a strong sense towards the solutions of
the KdV equation

(1.1) g + Uzp +uug =0, (t,7) € R%

This study can be seen as a peculiar case of the following class of limit behavior
problems :

(1.2) Oyt + B, (L1 —ELg)u—i-Nl(u) FeNo(u) =0,

where v : R — R, L; and Ly are speudo-differential operators with Fourier sym-
bols |]** and |¢]*? with 0 < a3 < az and N; and Ns are polynomial functions
that depends on wu, its derivatives and possibly on the image of u by some speudo-
differential operator (as for instance the Hilbert transform) . Note that the disper-
sive limits from the Benjamin equation or some higher-order BO equations derived
in [2] towards the Benjamin-Ono equation enter this class.

In this class of limit behavior problems, the main difficulty comes from the fact
that the dispersive terms 0, Liu and €0, Lou do compete together. As one can easily
check, the derivatives of the associated phase function ¢(&) = £|&|** (1 — e|€[*2~*1)

1
does vanish at frequencies of order ¢ e2-e1. This will make classical dispersive
estimates as Strichartz estimates, global Kato smoothing effect or maximal in time
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2 LUC MOLINET AND YUZHAO WANG

estimate, not uniform in e. Therefore it is not clear to get even boundedness
uniformly in & of the solutions to (1.2) by classical dispersive resolution methods.

On the other hand, by using only energy estimates that do not take into account
the dispersive terms, we can see immediately that the solutions to (K.) will stay
bounded in H*(R), uniformly in &, providing we work in Sobolev spaces H*(R) with
index s > 3/2. Moreover, using for instance Bona-Smith argument, we could prove
the convergence of the solution of (K.) to the ones of (1.1) in C([0,T]; H*(R)) with
T = T(||u(0)||zz= and s > 3/2. However this approach is far to be satisfactory
since it does not use at all the dispersive effects. Moreover, the KdV and Kawahara
equations are known to be well-posed in low indices Sobolev spaces (see for instance
[1], [6], [5] ) and one can ask wether such convergence result does hold in those
spaces. In this work we make a first step in this direction by proving that this
convergence result holds in H*(R) with s > 1. Note that H'(R) is a natural space
for this problem since it is the energy space for the KdV equation. Our main idea
is to combine different dispersive method according to the area of frequencies we
consider. More precisely, we will use a Bourgain’s approach (cf. [1], [3]) outside
the area D, where the first derivative of the phase function ¢’ does vanish whereas
we will use Koch-Tzvetkov approach (cf. [8]) in D.. Indeed, noticing that ¢”
does not vanish in this area, the Strichartz estimate are valid uniformly in € on
D. so that we can apply Koch-Tzvetkov approach. On the other hand, outside D,
one can easily see that one has a strong resonance relation at least for the worst
interactions, namely the high-low interactions. Indeed, assuming that |&1] >> |&a],
by the mean-value theroem, it holds

b (E14E2) =D (&) —de ()] ~ |DL(&1)E2—0e(&2)] ~ |BL(&1)Eo| ~ [€3(B—De?)Ea| 2 €2|&al,

where £ = &1 +&; is the output frequency and ¢ (€) = €3 —e£° is the phase function
associated with the (K.). It is worth noticing that this resonance relation is similar
to the one of the KAV equation that reads (&1 + &)% — (&1)% — (&2)% = 3££,&,. To
rely on this strong resonance relation even when one of the input frequency belongs
to D. we will make use of the fact that any H!-solution to (K.) must belong to
some Bourgain’s space with time regularity one.

1.2. Main results.

Theorem 1.1. Let s > 1, o € H*(R), T > 0 and {e, }nen be a decreasing sequence
of real numbers converging to 0. The sequence u,, € C(R; H*(R)) of solutions to
(K.) emanating from ¢ satisfies

(1.3) un, — u in C([0,T); H*(R))
where u € C(R; H*(R)) is the unique solution to the KdV equation (1.1) emanating
from .

Theorem 1 is actually a consequence of the fact that the Cauchy problem associ-
ated with (K.) is well-posed in H*(R), s > 1, uniformly in ¢ €]0, 1] in the following
sense

Theorem 1.2. Let s > 1 and p € H*(R). There exists T = T(||¢||m) €]0,1[ and
C > 0 such that for any € €]0, 1] the solution u. € C(R; H'(R)) to (K.) satisfies

(1.4) sup ||ue(t)|| = < Clle|
te[0,T)
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Moreover, for any R > 0, the solution-map ¢ — u. from B(0, R) = into C([0, T(R)]; H*(R))
is Lipschitz uniformly in e €]0,1[, i.e. there exists C = C(R) > 0 such that for any
e €]0,1[ and any couple of initial data (p1,p2) € B(0, R)%. it holds

(1.5) [ut,e = u,ell Lo (0,7 (R): s (R)) < C llo1 — @2 1=
where u; ., i = 1,2, are the solution to (K.) emanating from ;.

1.3. Notation. For any positive numbers a and b, the notation a < b means that
there exists a positive constant ¢ such that a < cb. We also denote a ~ b when
a < band b < a. Moreover, if a € R, a, respectively a_, will denote a number
slightly greater, respectively lesser, than a.

For u = u(z,t) € S(R?), Fu = @ will denote its space-time Fourier transform,
whereas Fyu = (u)"=, respectively Fru = (u)™t, will denote its Fourier transform
in space, respectively in time. For s € R, we define the Bessel and Riesz potentials
of order —s, J; and D3, by

Jou=F (A +1€P)2 Fou) and  Dju = F ' (&) Fou).

We will need a Littlewood-Paley analysis. Let ¢ € C§°(R) be an even function
such that ¥ > 0, suppy C [—3/2,3/2], v» = 1 on [—5/4,5/4]. We set 1y := ¢
« _ _ - k
and for all k& € N*, Uzk(‘f) = ¢(2 kf) - 1/’(2 k+1‘f)a N<ok = ¢(2 k) = Zj:o UpX]
and nsor 1= 1 — P21y =1 — N<or-1. The Fourier multiplicator operators by
T2, N<2s and 7>9; will be denoted respectively by Ps;, P<g; and Psq;, i.e. for any
u € L?(R)
PQj’lL = T]Qja, P§2ju = T]SQj’lAL and PZqu = 7’]22;"1} .

Note that, to simplify the notations, any summations over capitalized variables
such as N are presumed to be dyadic with N > 1, i.e., these variables range
over numbers of the form 2*, k € Z,. P, and P_ will denote the projection on
respectively the positive and the negative Fourier frequencies.

Finally, we denote by U.(t) := e~1(92+292) the free evolution associated with the
linear part of (K).

1.4. Function spaces. For 1 < p < oo, LP(R) is the usual Lebesgue space with
the norm || - ||zr, and for s € R, the real-valued Sobolev spaces H*(R) denote the
spaces of all real-valued functions with the usual norms

lellas = 1J2el e -

If f = f(x,t) is a function defined for z € R and ¢ in the time interval [0, T], with
T > 0, if B is one of the spaces defined above, 1 < p < oo and 1 < g < oo, we will
define the mixed space-time spaces LY. By, LY B,, L1LY. by the norms

s, = ([ 1C0Ba)* . Wsllizs, = [ 150 005a)",

1£llsazs = ( / ( /OT | f(x,mpdt)%dx)i

and
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For s, b € R, we introduce the Bourgain spaces X2 related to the linear part of
(K.) as the completion of the Schwartz space S(R?) under the norm

(16) oo = ( [t = 616 fote.rPasar)

where (z) := 1+ |z|. We will also use a dyadic version of those spaces introduced
in [9] in the context of wave maps. For 5, b € R, 1 < g < 0o, X3%4 will denote the
completion of the Schwartz space S(R?) under the norm

2
2
q

(L7) Mollzoa = | D2 (D@21 P ) Py (7 = 9:())5(6, )% )

k>0  §>0

Moreover, we define a localized (in time) version of these spaces. Let T' > 0 be a
positive time and Y = X or Y = X% Then, if v : Rx]0, T[— R, we have that

||’UHYT = lnf{”f}Hy | 7:RxR— (C, 6|]R><]O,T[ = ’U}.
2. UNIFORM ESTIMATES FAR FROM THE STATIONARY POINT OF THE PHASE
FUNCTION

As we explained in the introduction, it is crucial that the first and the second
derivatives of the phase function ¢.(¢) = &3 — €5 do not cancel exactly at the

same point. Indeed, ¢L(§) = 0 & [¢| = (/2 while , ¢/(&) =0 & [¢] = /1.

Consequently, we introduce the following smooth Fourier projectors

Paf= {1 —770[20\/5(|€| - \/%)Hf
Pof = {1 . [20\/E(|§| - \/%)Hf

_ _ _ s . _
Clearly, P4, f cancels in a region of order e~ /2 around 4/ £ whereas Pp_f cancels

and

1/2 3

around e -

in a region of order £~ We are now in position to state the main

proposition of this section :

Proposition 2.1. Let u;. € C([0,T]; H*(R)), i = 1,2, be two solutions to (K.)
with 0 < & << 1 and initial data @;. Then it holds

(2.1) 1Paticllren S Hillan + luwelly, (1 + lluiell, )

and, setting w = uj . — Uge,

2

(2:2)  [[Pawlxrazn S o1 = e2lla + wlly. > lticllver (1 uiclly, )
’ i=1

where
(2.3) lullve r = 1Pa.ull 1720 + ||l oo
Xs,T T

We will make a frequent use of the following linear estimates
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Lemma 2.1. Let ¢ € S(R) and T €]0,1] then V0 < e < 1,

(2.4) 1P 02U ()¢l eerz S lleellr
(25)  IDVAPa Ue(Dpllare + 1DV PpU-Oll e S llelee
(2.6) [P<2Uc()¢llzre < llellze

where Fo(Pga.p) = (1 —na.)Fep and the implicit constants are independent of
e>0.

Proof. First, (2.4) follows from the classical proof of the local Kato smoothing
effect, by using that |¢L(€)| = |£]? on the Fourier support of Py_.
To prove (2.5), we first notice that the Fourier supports of P, and Pg4_ do not

intersect the region {¢ € R, [¢] € [/, 1/50z]}- By the TT* argument it suffices
to prove that

(2.7) 1U-()D3/* Po, ¢l + U= (6) D2 Pa, ol e St 2 0l

By classical arguments, (1.3) will be proven if we show

H/ Mlelgly/aE 25

Setting 6 := &[t|'/3 this is equivalent to prove

3_ _
]}|§|1/2 zz£+(§ e€%) t 1/2.

. 179 i[X046%—
(2.8) I := te};u)?eR‘/Rx{w'g[ e \/W—Z/z 6] /2 ¢
We set ®(0) = &, .(0) := 0% — MZ/JH and notice that

5e
IEE

7 ?’] dé" <1

B'(0) = 302 — —=_¢* and @ (0) = 29(3 102 92)

1273
(2.8) is obvious when restricted on |f| < 100. Now, it is worth noticing that
" > 3
|27(6)] 2 1 —|—max(|9| |t|2/39 )

whenever 0 € {|z| > 100/ |z| € | ‘tfa/s, 7‘;1)26/3]}. Therefore, in the region |0| €

[\/ |t1\(2)23’ \/ 2"5‘62/3], (2.8) follows from Van der Corput lemma since |9 (6)| 2 1+%

1/6 . . . : /3
and [0]'/2 ~ |2‘1/4 . It thus remains to consider the region |0 & [4/ ltl‘;: A/ %]

We notice that, in this region, it holds

t[?/3 elof 21¢[2/3
) / ~ 2 < | / ~ >
29) 1#0)] ~ 107 for o) <\ and 1@70) ~ 255 for 9> /2

and divide this region into two subregions.
e The subregion |®'(9) — X| < |X|/2. Then |®'(0)| ~ |X|. Assuming we are in

the region 100 < 0] < 4/ %, we have |®'(0)| ~ |0|* and thus |0| ~ /| X|. Then
(2.8) follows from Van der Corput lemma since |®”(0)] 2 |0] ~ /|X|. On the
other hand, assuming that [6] > \/% > 100 then |®'(0)] ~ &]0]*|t|=2/3 and

thus 0] ~ e=1/4|X|/4|t|'/6. (2.8) follows again from Van der Corput lemma since
|97(0)] 2 101 ~ ™ /4 X M4t 0.
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e The subregion |®'(0) — X| > |X|/2. Then |®'(0) — X| ~ |®'(¢)| and (2.8) is
obtained by integrating by parts and using (2.9). This completes the proof of (2.5).
Finally, to show (2.6) we notice that it suffices to prove that for |z| > 10%,

sup ‘/77<2 eiles+o: (O ge| < || 2
te[0,1]

where ¢ (&) = €3 —e£5. But this follows directly by integrating by parts twice since
|z — @¢L()t| 2 |x| for any |t| <1 and |¢] < 4. O

To prove Proposition 2.1 we will have to put the whole solution u. of (K.) and
not only P4_u. in some Bourgain’s space with regularity 1 in time. This will be
done in the next lemma by noticing that any solution to (K.) that belongs to
C([0,T); HY(R)) automatically belongs to Xg’%.

Lemma 2.2. Let T €)0,1[ and u € C([0,T]; HY(R)) be a solution to (K.). Then,

(2.10) lullxos S el + lulem -

where the implicit constant is independent of €.

Proof. First, we consider v(t) = U.(—t)u(t) on the time interval ]0,7] and extend

von | — 2,2[ by setting 9;v = 0 on [—2,2] \ [0,T]. Then, it is pretty clear that
Hatv||L2(]72,2[><]R) = ||atU||L2(]7T,T[><]R)a and ||'UHL2(]72,2[><]R) 5 ||UHL;5>L§c .

Now, we define u(x,t) = n(t)U(¢)v(t). Obviously, @ is an extension of u outside
]| =T, T[ and it holds
(2.11)

[l oo S NOwllz2q—2,2ixr) + [VllL2-2,21xr) S [0¢v]lL2—2.2(xr) + V]l zgeL2 -

Therefore (2.10) follows from the identity
8{0 = Ug(ft) Ut + Ugprr + EUSL
together with the facts that u is a solution to (K.) and that H!(R) is an algebra. [

Now, according to the Duhamel formula and to classical linear estimates in Bour-
gain’s spaces (cf. [1], [3]), Proposition 2.1 is a direct consequence of the following
bilinear estimate

2

(212) (| Pa.d(wna) o120 S TT (1Pl o + sl oo + il
i=1

where the functions wu; are supported in time in | — 7,7 with 0 < T < 1. To

prove this bilinear estimate we first note that by symmetry it suffices to consider

Oz A(u,v) where A(-,-) is defined by

Fu(Mu,v)) = /RX\glwswzf&\(BU)(&)(EU)(& —&1)déy

As mentioned in the introduction, the following resonance relation is crucial for our
analysis in this frequency area :

(213) O &) =0 —01—0n = (€~ &)[3-5((6 + &) — 66|
where

o:=0(1,&) =71 — -85 o= o(m,&) and o2 :==o(T7 —1,§ — &1) .
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We start by noticing that the case of ouput frequencies of order less or equal to one
is harmless. Indeed, it is easy to check that for any couple u;, ¢ = 1,2, of smooth
functions supported in time in | — T, T[ with 0 < T < 1 it holds

(2.14)  [|0:Pa. P<gA(u1, ug)| 1120 S [[A(ur, wa)l[L2 S luall e luzll g -

Let us continue by deriving an estimate for the interactions of high frequencies with
frequencies of order less or equal to 1.

Lemma 2.3. Let u;, i = 1,2, be two smooth functions supported in time in | —T,T|
with 0 < T < 1. Then it holds
(2.15)

102 Pa. A(Pestur, ua)l o -vvon S llunl o (I1Pacual aasaa sl o+ 19l 12 )

Proof. Since the norms in the right-hand side of (2.15) only see the size of the
modulus of the Fourier transform, we can assume that all our functions have non

negative Fourier transform. We set n4, = 1—mn9 [20\/E(|§| —4/ %)} so that P/A:f =

na.f. Rewriting na, (€) as na, (€~ &)+ (na, () —na. (€—&1)), it suffices to estimate
the two following terms

o o 50|

X1.-1/2,1

and

b= |7 (¢ [ nes@) (@) ma. ©-na (- w0 e )|

I; is easily estimate thanks to (2.6) by

—1/2,1

TS ZH N<stn) * (Nnna 03 UQ)‘ ,
N>1
S Z ||P§8u1||%th°° ||82PNPAEU2||%;OL§
N>1 '
< 2 2
S llwllxoeallPauzllxiae,

To estimate I we first notice that for [£;] <4 and 0 <& < 1078,

3 o3
(2.16) na.(€) —na. (€ — &) = 0 whenever [€] e \/g 16\/7 2 2 } .

and for any (£,£1) € R?,

(2.17) 74, (€) = ma. (€ — €0)] S min(1, VEl&]) -
Moreover, in the region [&1] < 4 and [¢] € [121/2, 1Z1/ 2] the resonance relation
(2.13) ensures that

(2.18) |0maz | = max(|o], |o1], |o2]) Z [€€61(§ — &)

where o(7,&) =7 — ¢-(§), 01 = o(m1,&1) and 02 = (7 — 11,& — &1). We separate
three regions
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® Opmaz = 02. Then according to (2.16)-(2.18),

I

N

S
H/ 77<8u1 61 |§1|||1§|< >§1|2 <02>X{|§ §1|N_}u2(§ 51) 51}

| P<sua g l|uzl x-1/2.1

L2(J€l~ L)

<
S lul|xon [Jug| xon

® Omaz = 01. Then according to (2.16)-(2.18),

LS / T 5 =T EVEIG X T~ )6
S wllxoa || D 2F! (X{|§|~ﬁ}ﬂ§)”L§;
S HUIHXU*I||]:71(X{\§\~%}@HL$°L§
S luallxorfluzxo.

® Omaz = 0. Then according to (2.16)-(2.18),

Bos e |€1|3/;/|251 SRR ICY (USROS LS
S \/EHP§8U1||L$;||D2/4]:_ (X{\g\Nﬁ}@)”sz
S lullxor |0zuzll s,

This completes the proof of the lemma. (]

The next lemma ensures that the restriction of the left-side member of (2.12) on
the region [¢] 2 1, [£&1] 2 1 and |omae| > 27°|€€1(€ — &) can be easily controlled.

Lemma 2.4. Under the same hypotheses as in Lemma 2.3, in the region where the
following strong resonance relation holds

(2.19) lomas| = 2_5|§§1(§ =&l
we have
2
(2.20) ||6 PA P>8A(P>8U1,U2 ||X1 —1/2,1 H(H’uinxo,l + ||63U1||L?I) .

Proof. Again we notice that the norms in the right-hand side of (2.4) only see the
size of the modulus of the Fourier transforms. We can thus assume that all our func-
tions have non-negative Fourier transforms. We set I := |03 Pa, P>s A(P>guq,ug)

and separate different subregions .
o [o1]| > 27°(€€1 (€ — £1)|. Then direct gives

||X1 —1/2,1

I s ||U1||XU’1||D;1P22U2||L§;

~

S lluallxor fuzfxos .

o o] > 2751€€1(€ — &1)|. This case can be treated exactly in the same way by
exchanging the role of u; and us.

o o] 2 277|861 (€ — &1)] and max(|o1|, 02]) < 27°1€6(§ — &)I-
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Then we separate two subregions.
1. |&] > 277[€]. Then [£1] 2 [€max| and taking § > 0 close enough to 0 we get
I < HamPAEPZ8A(PZ8U1; UQ)

~

1D 12+ Pogun || 3z [|Oaua| 2,

HX51,71/2+5

A

—1/2430
8I’(,621)m /2+ P28U1HL2

S
S lutllxsassal|Ozuzll Lz,
<
~Y

(hnll o + 1013, ) Osel 5,
2. |&| < 277[¢|. Then, we notice that in this region £|¢| < ¢ — & | < 2|¢| and thus
1-2792 <@ -a(E-&) < (1+27%¢.
Since 14, does vanish on {|§| € [%\/%, %—g\/%] }, we deduce from (2.13) that

o] ~ max(1g61 (€ — ), el€€u (€ — €0)])

on the support of n4.. We thus can write

g Z( > HUN(E)UAE(5)|§|X{\a\~max(N1N2,gN4N1)}]:z(A(PNlu,U2))HXEL,I/M)Q

N>4 4<N;<2-5N

2
S (X 1PuD M Pl -m €Tl e, )
N>4 4<Ni<2-5N

< |2 —1/4 1/4 2

~ Z HX{|€|~N}§U2”L3§( Z Ny Py, Dy U1||Lt°°L§)
N>4 T 4<N <2-5N

< ferlBessnasuslls

S (luallxon + 100w 12,)?|0puall72 -

O

Proof of the bilinear estimate (2.12)
First, according to (2.14) and Lemma 2.3 and to the support of 74, it suffices to
consider

I ;:[ Z NQ(ZL‘”QHUL(UMN(&) /RZ Posui(€1,m1) Posus (&2, m2) dry dél‘
L

N>4

)2} 1/2
L2 (elg[8VZ. 5/ E) '

where 79 = 7— 7 and & = £ —&;. Now we will decompose the region of integration
into different regions and we will check that in most of these regions the strong
resonance relation (2.19) holds. For the remaining it is convenient to introduce the
function

D(,6) = [3—5e(¢2 —&ale — &)
which is related to the resonance relation (2.13).
1. The region |£| > \/g Then since &2 — &6 > 262 we get I'(€,&1) > 3/4
which, according to (2.13) ensures that (2.19) holds.
2. The region [¢] < |/ &.
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The subregion &€, > 0. Then 2 — &6 < &% < £ and thus T'(€,&) >
1 which again ensures that (2.19) holds.
The subregion &1€2 < 0. Then P>gujP>gus can be decomposed as
> Py, PrunPy,Pous+ Y Py, P_uiPy,Piuy
8<N1<N2 8<N1<N3
where, by symmetry, we assumed N7 < N,. Since these two terms can
be treated in exactly the same way, we will only consider the first one.
We decompose the sum into different parts.
2.2.1. 8 < Ny < 27*Nj. Then it holds [£| > 3|&| and thus
13 ,
& -6 <+ Ez_E + E ——5
This forces I'(€,&1) > § and ensures that (2.19) holds.
2.2.2. Ny > 274N,
2221 [¢] & [\/4L. /2] n this region, by (2.5) of Lemma 2.1
and duality, we get
4+
N > 1Dz * 703 (P, w1 Py us)|| 4 g
min(4,2=4N2)< N1 <N
_1
< > Ny 7100 Py n || 2o 121100 Povy | o 2+
min(4,2-4N2)< N1 <Ny
S HU1||L$°H1HU2HL§°H1-

2.2.2.2. [ € [1/%, \/%]. We separate this last region into two

subregions : We first consider the subregion [£;| <

806
Then, according to (2.5) and the support of 4. and ng_,
we get
> 102(Pp. Pa. Pxnyui Pryus)|| 2,
min(4,2=4N3)< N1 <Ny
ST 1PsPa0uPryun g [0 Pyt e
min(4,2=4N2)< Ny <Ns
S NP Pryw s |9 Pr sl ez

min(4,2=4N2)< N3 <Nj

[Pa ]l xr/za |[usll o -

Finally in the subregion |£1] > we notice that, since

80’

£1& < 0 and €] > ﬁ/%, we must have |&] > 2 805
Therefore, £2 — &€ > 35 and thus I'(§,£1) > < which
ensures that (2.19) holds and completes the proof of (2.12).
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3. UNIFORM ESTIMATE CLOSE TO THE STATIONARY POINT OF THE PHASE
FUNCTION

As announced in the introduction, close the the stationary point of the phase
function we will apply the approach developed by Koch and Tzvetkov in [8]. Note
that, in [7], Kenig and Koenig improved this approach by adding the use of the
nonlinear local Kato smoothing effect. However, this improvement can not be used
here since this smoothing effect is not uniform in e close to the stationary point.

Proposition 3.1. Let u;. € C([0,T]; HY(R)), i = 1,2, be two solutions to (K.)
with initial data p;. Then it holds

(3:1) N Pea,wieliem S I1Poa.eillin + A+ D)uicl, (Huz',sl\Ya,T +lluielly, )

and, setting w = uj . — Uge,
(3.2)
2
1Pea.wlZeemy S I1Poa. (01 —92) I3 + A+ D)l , Z(HW,EHYE,T Hluiell¥, ) -
i=1
where Y, 7 is defined in (2.3) and Fr(Pga @) = (1 —na,)Fzp.

First we establish an estimate, uniform in &, on the solution to the associated
non homogenous linear problem.

Lemma 3.1. Let v € C([0,T]; H*(R)) be a solution of

(33) Vi + VUggx + EUse = _Fz
Then
(3.4) [P vllire S (L+T)[Poa, vl r2 + [ Poa Fllsz2

Proof. For 0 < ¢ << 1 fixed, we write a natural splitting
[0,T] =UI;

of [0, T] where I; = [a;,b;] are with disjoint interiors and |I;| < £'/2. Clearly, we
can suppose that the number of the intervals I; is bounded by C'(1+T)e~1/2. Using
the Holder inequality in time, we can write

3
[vllzrzee < ZHU”L}J_LgO Sed Y lollzs ree -
J J

Next, we apply the Duhamel formula on each I; to obtain
t
Poa v(t) = Uc(t —aj)Pya v(a;) — / Ue(t —t")Pa 0, F(t') dt’ .
Using the uniform in e Strichartz estimate (2.5) and classical TT* arguments, it
yields

HPEAEUHL‘}],L?J S DV Pav(ag)| e + HD§/4PCAEF”L}J_L§
S e8| Ppav(ay)] +573/8|‘PEA5F|‘L}jL§-
Therefore, we get

1Peavllzy noe S &2 Pea,v(ag)lies + 1 Pea Fllzy r2
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and summing over j,

[1Poavllzree S et/ Z [Pea.vllrgerz + [ Poa Flloyze -
J
(L + D) Poavllnsrze + 1Pea Flloy 2 -

A

We now need the following energy estimate

Lemma 3.2. Let s > 1. There exists C > 0 such that all 0 < € << 1 the solution
uw e C(0,T; H®) of (K.) satisfies
(3.5)

HP[}A€U||2L39HS < | Poa uollz: +C (HPBEUIHL;L;c + ”PCAEUIHLlTLgO) ||U||2L39Hs :

Proof. Applying the operator Fg,_ on (K.) and taking the H°-scalar product with
Ppa u we get

d S S
WPo e = [ J2Pea,0,0%) 2 Poa .

Decomposing u as u = P, u + Pgp_u we can rewrite the right-hand side member
of the above equality as

/ J2Pos 0n(Ppu)2J5 Py ut / J3 P, Aaax((P[;Bau)2+2PBEuPCBEu)JjP[; =T+ .
R R

By integration by parts and Kato-Ponce commutator estimates we easily estimate
the first term by

L o= 2 / PBEuam(J;PGAEPBEu)JngAEu—|—2 / [J;PCAE,PBEU]PBE% J2 Py u
R R

< IP.usllzee llullf -

For the second term, we notice that by the frequency projections, all the functions in
the integral are supported in frequencies of order 1/4/z. Therefore, using Bernstein
inequalities and the fact that H*(R), s > 1, is an algebra, we get

B N
I 5 € RX{|gl\N%}|U(€1)|X{\g—gl|~\—g}|u(§ &)l d&

LEHPUAe“”L?’
S Poavallzg lullde -
(3.5) then follows by integration in time. O
Proof of Proposition 3.1 Applying (3.4) to u, with u solving (K.) we get

1 Peatellirre S A+ )| Poa, tellrg rz + ||PCA58I(U2)”L1TL§
(3.6) S+ Dllulleg m + Tllullee s -
Therefore, gathering (3.5), (3.6) and (2.5) we obtain

HP[:AEUH%;OH; S HP[:AEUOH%I +C ||U||%;OH; (T1/4HPB€PAEUIHL§L30 + ||PCAEUI||L1TL;c)

< NPeauolln +C A+ D) ulliem (IIUIIYE,T +lull¥. )

which completes the proof of (3.1). Finally (3.2) follows in the same way by writing
the equation for the difference of two solutions. O
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4. PROOFS OF THEOREM 1.1 AND 1.2

4.1. Proof of Theorem 1.2. We can restrict ourselves to the case ¢ €]0,¢q[ with
0 < g9 << 1 since the result for € € [gg, 1] follows directly from the local well-
posedness of the Kawahara equation with ¢ = 1 (see for instance [5]). Also to
simplify the expository, we only consider the worst case that is s = 1. We first
treat the case of small initial data. Let u € C°°(R; H>(R)) be a solution of (K.).
Combining Propositions 2.1 and 3.1 we infer that

el o S Nelle + Nl , (Nullv. o + il ) -

Since u is smooth, ¢ + |lully. , is continuous and |lully, , = |[¢|lgr as T\, 0.
Therefore a classical continuity argument ensures that there exists ag > 0 such
that [|ully. , < l[llm: provided

(4.1) lella < ao -

By continuity with respect to initial data (for any fixed € > 0) it follows that for
any solution v € C(R; H'(R)) of (K.) with initial data ¢ satisfying (4.1), it holds

(4.2) lully., < llellar -

Moreover, (2.2) together with (3.2) ensure that for any couple of solutions u; €
C(R; HY(R)), i = 1,2, of (K.) with initial data ; satisfying (4.1), it holds
(4.3) ur —wally. , S ller — @2llar -

Now the case of general initial data follows by a classical dilation argument. Indeed,
it is easy to check that w is a solution of (K.) with initial data ¢ if and only
if vy = un(t,r) = A 2u(A73t, A7) is a solution of (K,-2.) with initial data
©ox = A 2p(A\"'z). Fixing ¢ € H'(R) and noticing that |[oxllgr < A2 ¢l m we
deduce ) satisfies (4.1) as soon as A > (||¢|| g1 /ao)?/3. Taking

A= min(L, (l¢]m /a0)*?) |
this ensures that (4.2) holds for the solution vy of (Ky-2.) emanating from ¢j.

Coming back to u we deduce that u satisfies (2.8) with 7' ~ min(1, (%)_4/3).
Finally, (1.5) follows from (4.3) by similar arguments.

4.2. Proof of Theorem 1.1. We follow general arguments (see for instance [4]).
Let us denote by Sk, and Skav the nonlinear group associated with respectively
(K.) and KdV. Let ¢ € H*(R), s > 1 and let T = T(||¢||g1) > 0 be given by
Theorem 1.1. For any N > 0 we can rewrite Sk_(¢) — Skav (@) as

Sk.(¢) = Skav(p) = (SKE (¢) — Sk. (P§N<P)) + (SKE (P<ne) — SKdV(PSN@))

+(SKdV(P§N<P) - SKdV(QD)) =IL.n+J.n+Kn.
By continuity with respect to initial data in H*(R) of the solution map associated
with the KdV equation, we have A}im | KN Lo 0,r;z¢y = 0. On the other hand,
— 00

(1.5) ensures that

lim sup ||I,N||L°° 0.T:Hs =0.
N=%0 ccjo 1] € (0,T;H*)

It thus remains to check that for any fixed N > 0, lin%) | Je, [ oo (0,7, 175y = 0. Since
E—

P<n¢ € H*®(R), it is worth noticing that Sk, (P<n¢) and Skav(P<n¢g) belong
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to C°(R; H*(R)). Setting ve := Sk (P<ny) and v := Skqv(P<np), we observe
that w := v, — v satisfies

1
Wt + Wrgy + EWsg = 7§8I (w(vs + ’U)) —EVsg

with initial data w(0) = 0. Therefore, proceeding as in the proof of Theorem 1.2
we eventually obtain

]| o 0,750%) S €llvsallLoers S eN°|lvllpeor: S eN°Jlellze -
This proves that 111% lwl| Lo (0,7;r5y = 0 and completes the proof of Theorem 1.1
E—

with T' = T'(||¢|lgr). Finally, recalling that the energy conservation of the KdV
equation ensures that for any ¢ € H*(R) it holds,

sup ISxav (@)l < lella + lelze .
S

we obtain the same convergence result on any time interval [0,7,] with Tp >
T (|||l gr) by reiterating the convergence result on [0, T'(||¢|| g1 )] about To /T (||| g1 )
times.
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