Crystallization of fluorescent quantum dots within a three-dimensional bio-organic template of actin filaments and lipid membranes.
Résumé
Biological molecules and molecular self-assemblies are promising templates to organize well-defined inorganic nanostructures. We demonstrate the ability of a self-assembled three-dimensional crystal template of helical actin protein filaments and lipids bilayers to generate a hierarchical self-assembly of quantum dots. Functionnalized tricystein peptidic quantum dots (QDs) are incorporated during the dynamical self-assembly of this actin/lipid template resulting in the formation of crystalline fibers. The crystal parameters, 26.5×18.9×35.5 nm3, are imposed by the membrane thickness, the diameter, and the pitch of the actin self-assembly. This process ensures the high quality of the crystal and results in unexpected fluorescence properties. This method of preparation offers opportunities to generate crystals with new symmetries and a large range of distance parameters.