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Abstract: This paper is devoted to large-scale monotoring by using multi-hop wireless sensor
networks. Environmental applications such as pollution monitoring are considered in this paper.
We consider the problem of minimizing the overall energy comsuption of the network while
maximizing observability, with a receding horizon control strategy. The measure of observability
is defined by the transient observability gramian associated to a finite-dimensional model of the
PDE governing the pollution dynamics. Some numerical results based on a realistic case study
demonstrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Sensor networks are recognized for being well adapted for
measurement, monitoring, tracking of distributed physical
phenomena, such as environmental phenomena (weather,
seismic events, wildfires, air, soil or river pollution, sound
or vibration monitoring ...) or complex industrial processes
(in the chemical industry for example). In this paper, we
consider sensor networks defined as a collection of wireless
embedded sensors disseminated on the field of interest, and
more and more with mobility capabilities (Cortes et al.
(2004)). Large-scale deployment of such ad hoc networks
relies on the availability of cheap, small-size embedded
sensors with sufficient energy autonomy. More specifically,
we consider the main environmental issue of monitoring air
pollution. Some approaches have been proposed for that
purpose on the basis of a regular grid of sensors (Ghanem
et al. (2004)).

In this paper, we consider the case of randomly distributed
wireless sensors. Random distribution of the embedded
sensors generates several main issues (Woo et al. (2003)),
such as poor or unstable wireless communication quality
inducing bandwith limitations and energy autonomy (Woo
et al. (1998)). Many researches have been devoted in the
last decade to the design of routing protocols to face
sensor network issues (see Akkaya (2005)), Heinzelman
et al. (2000)). Some optimal routing strategies based on
a dynamical model of energy consumptiom of each node
of the network have been also recently proposed in order
to increase the network life (Wu et al. (2005)).

On the other hand, there are still relatively few research
results on application-dependant approaches. See for ex-
ample (Cortes et al. (2004)) for the coverage control prob-
lem for mobile sensing networks, but also some approaches

dedicated to chemical plume tracing with robot swarms
(Zarzhitsky et al. (2005)).

In this paper, a new application-dependant dynamic rout-
ing procedure under wireless communication constraints is
proposed. It can be applied to a large class of estimation
or physical monitoring problems governed by partial differ-
ential equations. The here-proposed approach is based on
an observability index based on the observability gramian
(Georges (1995)) and a model of the energy consumption
of each node. The goal is to minimize the energy consump-
tion (to ensure the network life), while maximizing the
observability index.

The paper is now organized as follows: Section 2 is de-
voted to some backgrounds on air pollution modelling
and monitoring. Section 3 is dedicated to the formulation
of the horizon control strategy. Some numerical results
are provided in section 4. Finally some conclusions and
perspectives are also provided.

2. AIR POLLUTION MODELING

2.1 PDE Governing Pollution Dynamics

Air pollution (without chemical reaction) may be well
modeled (see Tirabassi (1989) and Zannetti (1990)) on a
2D domain Ω by an advection-diffusion partial differential
equation of the form:
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where z(x, y, t) is the concentration of a chemical species
in the air (the pollutant), (Ux, Uy)

T is the vector of the



wind velocities which is supposed to be known (based
on weather forecast or measurements), K is a constant
diffusion coefficient which is supposed to be known, and
S(t) is the source of pollution located at position (xs, ys).

Some initial conditions z(x, u, t = 0) = z0(x, y) and some
boundary conditions (such as Pearson’s conditions) on the
domain boundary ∂Ω have to be provided:
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where (µx, µy) is the equivalent celerity vector.

2.2 Finite-Dimensional Modelling

A finite-dimensional state-space representation may be
derived by using a discretization scheme, such as the finite-
difference method defined on 2D regular grid:
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where hx is the discretization step. The same scheme
applies for the discretization in the y coordinate with a
discretization step hy.

The time discretization scheme is defined by:

∂z
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z(x, y, t+ T )− z(x, y, t)

T
(4)

where T is the sampling time, which has to chosen small
enough to ensure numerical stability.

Finally a discrete-time state representation can be easily
derived by using the previous discretization scheme:

Zn+1 = AnZn +B(θ)Sn (5)

Yn = C(VL, α)Zn (6)

where Zn is the Nx × Ny-vector of the values of the
concentration z, z(xi, yj , n) defined at time nT , at each
location (xi = ihx, yj = jhy) of the Nx × Ny-node grid,
Sn is the source magnitude at time nT and, Yn is the M -
vector of measurements produced by the M sensors of the
network.

An denotes the state matrix which depends on time
because the wind velocities may vary due to changing
weather conditions. C(VL, α) is the observation matrix
depending on both the location vector VL of the M sensors
and α, the vector of activity state of the M sensors.
0 ≤ αi ≤ 1 represents the activity percentage of the sensor
i over a given time period: αi = 1, when the sensor i is
always active. This particular metric corresponds to the
amount of measurements and computation performed to
get a reliable value of the pollutant at the node location
over the given time period. αi can also be viewed as a level
of confidence in the measured value.

By using for instance a bilinear approximation technique,
each sensor output may be expressed as follows:

Y i
n = αiFi(V

i
L)Zn (7)

where Fi is a bilinear function of the location V i
L of the

sensor i. θ denotes the unknown location (xs, ys)
T of

the source Sn to be determined together with the source
magnitude.

2.3 Pollution Monitoring via State and Source Observer

Under the assumption that the source is slowly time-
varying and with the goal of determining both the mag-
nitude and the location of the source together with the
distribution of the pollutant, an augmented model may be
defined:

Zn+1 = AnZn +B(θn)Sn (8)

Sn+1 = Sn (9)

θn+1 = θn (10)

Yn = C(VL, α)Zn (11)

An extended optimal LQ estimator may be then derived
to estimate both the states, the source magnitude and the
source location:

Ẑn+1 = AnẐn +B(θn)Ŝn + L1
n(Yn − C(VL, α)Ẑn) (12)

Ŝn+1 = Ŝn + L2
n(Yn − C(VL, α)Ẑn) (13)

θ̂n+1 = θ̂n + L3
n(Yn − C(VL, α)Ẑn), (14)

where the Li
n’s represent the observer gains obtained from

the discrete-time Riccati equation of the extended optimal
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on the use of extended Kalman estimator for monitoring,
(see Torres et al. (2005) for instance). The observer gain
matrix is given by
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The associated discrete-time Riccati equation is given by:
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where Q is the covariance matrix of the state noise, R is
the covariance matrix of the observation noise, and S0 is
the covariance matrix of the initial state.

The performance of this observer strongly relies on the
observability properties of the augmented system (8)-(11).
In particular, observability may be checked by the so-called
transient observability gramian PNo

of the augmented
system (8)-(11) defined as the solution of the following
recursive discrete-time Lyapunov equation:

AT
a (θ̂n, Ŝn)PnAa(θ̂n, Ŝn)− Pn+1 + CT

a (α)Ca(α) = 0,

P0 = 0N+3×N+3,

(17)



where Aa(θ̂n, Ŝn) and Ca(α) denote the state-space matrix
and the output matrix of the linearized augmented system

around the trajectory Ẑn, Ŝn, θ̂n of the observer. No is an
observation horizon.
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Ca(α) = (C(VL, α) 0M×1 0M×2 ) (19)

with N = Nx ×Ny.

A so-called persistence of excitation condition is given by
the fact that the solution PNo

of (17) is positive semi-
definite. This condition is equivalent to a detectability
condition of the linearized augmented system around the

trajectory Ẑn, Ŝn, θ̂n of the observer, defined by

Xn+1 = Aa(θ̂n, Ŝn)Xn (20)

Y l
n = Ca(α)Xn

The observability gramian PNo
is related to the energy Eo

of the output Y l
n over the interval [0, No] generated by the

initial state X0 of the linearized augmented system:

Eo =
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∑

k=0

‖Y l
k‖

2 = XT
0 PNo

X0. (21)

As a consequence PNo
may be used as a measure of the

”level of observability” induced by a particular choice or
location of sensors in the system. An optimal location
of sensors will consist for instance in maximizing the
minimum singular value of PNo

(see Georges (1995)) or
the trace of PNo

, which represents the sum of the singular
values of PNo

.

3. FORMULATION OF THE OPTIMAL ROUTING
PROBLEM

3.1 Structure and Model of the Sensor Network

We consider sensor networks consisting of M identical
sensors. One of them is a base station. Each sensor
is equiped with a wireless Ethernet interface, a GPS,
a solar cell and a battery ensuring a limited energetic
autonomy and some measurement equipment adapted to
the chemical species to be measured. Data communication
is based on a multi-hop protocol. The Network nodes
(sensors) cooperate to forward data packets for each other
to allow communication over multiple hops between nodes
not directly within wireless transmission range of one
another. The M sensors are not supposed to be uniformly
distributed on the field, since the sensors are supposed to
be disseminated by aircraft. We arbitrarly decide that the
node 1 is the base station. The base station is a master
station in the sense that it periodically (with a constant
sampling rate) sends some measurement requests to the
active sensor nodes in order to update the monitoring
information. We also suppose that the energy of the base
station is not constrained.

We suppose that the protocol includes a mechanism of
route discovery which consists in establishing a connectiv-
ity table, i.e. for each node, the set of the reachable nodes

via the wireless connection, which defines the set of all
possible routes from or to the base station to or from the
all reachable nodes. The connectivity table is a M × M
network adjacence matrix of elements βij ∈ {0, 1}, where
βij ∈ {0, 1} is equal to 1 when the node j is reachable by
the node i. According to the connectivity matrix, we can
derive, for each node i, the set of the nodes connected to
i: Ci = {j, j = 1, ...,M, j 6= i/βij = 1}.

We assume that each node can reach the base station
(if it is not the case, the node may be removed from
the list). The connectivity is supposed to be checked
periodically. From this connectivity matrix, the incidence
matrix MI of the network may be derived. If δ is the Mc

vector of the δij ’s, where δij denotes the average number
of packets routed from the node i to the node j and

Mc =
∑

i,j

βij =

M
∑

i=1

card(Ci), we get the following model

of communications links:

MIδ + dα−Hd0 = 0Mc×1, (22)

where d is the maximum number of packets transmitted
by any sensor node (routing information and measurement
packets), d is supposed to be fixed. H = (1, ..., 0)T , and d0
is the maximum number of packets received by the base
station. Since all the packets are supposed to converge

towards the base station, d0 =

M
∑

i=1

dαi. αi is introduced

to take into account the fact that the sensor i may be less
active due to energy starvation.

We also suppose that the amount of energy needed to send
a packet of the measurement data, status and routing data
between the node i and the node j is available through a
priori experiments at each sampling time on request of
the base station and is given by a coefficient ksij > 0. ksij0
depends on the distance dij between the node i and the
node j, since the emission power needed to reach the node
j increased as a function of the distance dij . On the other
hand, the amount of energy needed to receive a packet
from the node j is given by a coefficient krij > 0. A model
of energy consumption at each node i, i = 1, ...,M is then:

ein+1 = ein − kiiα
i −

∑

j∈Ci

[ksijδ
ij + krijδ

ji] + Ei
n − pin(23)

ei0 = eiI , (24)

ei ≤ ein ≤ ēi, (25)

pin ≥ 0, (26)

where ein is the available energy of node i at sampling time
nT , eiI is the initial available energy stored in the node
battery, and Ei

n is the energy provided by the solar cell of
the sensor i at the sampling time nT . The coefficient kii
correspond to the energy consumed by the node i when it
collects and computes its own air pollution measurement.
ei and ēi are the discharge and full battery bounds,
respectively. pin is a energy ”spill” variable to take into
account the full battery state.



3.2 A Receding Horizon Optimal Control Problem

In this section, we propose a procedure to update the
routing at each time sampling nT , in order to minimize the
overall energy consumption of the network and maximize
observability, over a receding horizon (n+Np)T , i.e. the op-
timal sensor commitment over the period [nT, (n+Np)T ].
A trade-off must be found between reducing the number of
active nodes (in order to reduce the energy consumption)
and satisfying a minimal level of observability with a large
enough number of active sensors well located on the field.
This trade-off is defined by the cost function (27).

The optimal routing problem (ORP) may be formulated
as follows:

min
δl,αl,d
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l − pil (29)

ei0 = eiI , (30)

ei ≤ eil ≤ ēi, (31)

0 ≤ δijl ≤ δ̄ij(dij), 0 ≤ αi
l ≤ 1, dLl ≥ 0, pil ≥ 0, (32)

where σ > 0 is the ”trade-off coefficient” and Kp > 0
is a large enough penalty coefficient, P (n − No, n, αl) is
the observability gramian, solution of the discrete-time
Lyapunov equation (17) computed on the time interval

[(n − No)T, nT ], Êi
l is a prediction (except at current

time nT ) of the amount of energy provided by the solar
cell (depending on both night or day time and weather
conditions). ein is the amount of energy stored in the
battery, available for the node i at nT . δ̄ij(dij) is the
maximum number of packets sent by the node i to the node
j at every sampling time (a data flow rate limit), which
will depends on the inverse of the distance dij since the
transmission rate is affected by the quality of the wireless
link. dLl is the M vector of packet losses at each node.
Packet losses may occur, when some links are congestioned
due to data flow rate limits.

In a receding horizon strategy, only the first control input
of the optimal control sequence defined on the time interval
[nT, nT+Np−1] is applied to the system at each sampling
time nT (see (Mayne et al. (2000)) for example for a
detailed description of predictive control strategy based
on receding horizon).

The transient observability gramian P (n − No, n, αl) has
to be computed on a past time interval [(n − No)T, nT ]
due to the causality condition on the output, since the
solution of the extended Kalman filter (based on the sensor
measurements) is needed for computing (17).

(ORP) is a linear-quadratic optimization problem since
it can be easily shown that trace(P (n − No, n, αl)) is
a quadratic functional of the αi

l ’s. A decomposition-
coordination algorithm based on an augmented La-
grangian approach very similar to the one proposed in
(Georges (1995)) has been used. Due to the lack of place,
this algorithm is not detailed in this paper.

4. NUMERICAL RESULTS

The monitoring problem consists in estimating both the
magnitude and the location a pollution source together
with the distribution of the pollution over a domain
[2000 m, 2000 m]. The advection-diffusion partial differ-
ential equation governing the dynamics of the pollution,
together with the parameters of the time-explicit finite-
difference scheme, are given in Table 1. Fig. 2 gives a
typical distribution of the singular values of the transient
observability gramian associated to the augmented system
(8)-(11).

Table 1. EDP and discretization scheme pa-
rameters.

Ux Uy K xs, ys Nx Ny T

(m/s) (m/s) (m2/s) (m) (s)

5 5 1 500, 500 10 10 600

However in this paper attention is only paid to the energy-
aware routing problem with maximization of observability.
In order to illustrate the proposed approach, we consider
the randomly generated sensor network depicted in Fig. 3.
The red sensor is the base station, while the dotted lines
mean that a connection may be established between the
considered nodes. The main characteristics of the network
are given in Table 2. The maximum distance allowing
a wireless connection is large to increase the routing
complexity. The kii’s, ksij and krij ’s are some explicit
functions of the distance between each connected node,
as far as the maximum reachable data rates δ̄ij , and are
not detailed in this paper.

Table 2. Main characteristics of the network.

Number of sensors number of links δij connectivity

50 296 500 m

In order to illustrate the trade-off between energy mini-
mization and observability maximization, we consider the
two following strategies corresponding to two different
values of the trade-off coefficient σ: With σ = 2, we
focus on observability maximization, while with σ = 0.1,
energy consumption minimization is reinforced. Fig. 4 and
5 provide the simulation results obtained by applying the
receding horizon optimal control strategy (ORP), with a
receding horizon of 6 hours to the sensor network over
a 24 hour period. The optimization parameters are given
by the Table 3, with σ = 2. Both the energy dynamics
of all the sensor batteries and the network traffic vary
according to the solar energy received by each sensor. As
expected, the observability index strongly depends on the
health of the network. We can notice that the data traffic
increases on some critical links of the networks when the
level of available energy is high. As also expected, Fig.
6 and 7 demonstrate a completely different behaviour of



the network with σ = 0.1. The observability index is
reduced to a minimum with this strategy, while the energy
consumption is dramatically reduced.

Table 3. Optimization parameters.

Np No σ Kp ei ēi ei
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6 3 0.1, 2 0.1 1 20 15
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Fig. 1. Distribution of the pollutant at equilibrium.
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Fig. 2. An example of the observability gramian singular
value distribution when all the sensors are supposed
to be active. Notice that only 20% of the singular
values are greater than 0.01, which means that 80%
of the states are ”weakly” observable.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, a receding horizon strategy was proposed
to manage the energy consumption of sensor networks,
while maximizing the monitoring capabilities defined by
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Fig. 3. A randomly distributed sensor network.
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Fig. 4. Energy dynamics and data traffic - σ = 2.

an observability index based on the trace of an appropri-
ate transient observability gramian. Numerical results are
provided which demontrate the effectiveness of this control
strategy. Future works will be devoted to the extension of
this approach to the case of mobile sensor networks with
the same goal of managing the trade-off between energy
minimization and observability maximization.
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