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Abstract

Linear stability of two-dimensional natural convection in air-filled horizontal an-
nuli is numerically investigated for radius ratios in the range 1.2 < R < 3 and
for Rayleigh numbers less than 10*. Bifurcation diagrams are obtained for various
radius ratios and the main thresholds are tracked as a function of R. A new insta-
bility mode has been highlighted which breaks the symmetry of the basic flow. This
result demonstrates the need of modeling the annular gap without assuming flow
symmetry. In addition to bifurcation maps drawn in the Rayleigh number-radius
ratio plane, a map of possible flow-patterns is also established. This map allows to
foresee the number of solutions and the corresponding flow structures.
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Nomenclature
d gap width of the annulus, n =R-1
To =T . A eigenvalue
[ radial function, nr+1 v kinematic viscosity
9 gravity acceleration w  imaginary part of eigenvalue
Nu  local Nusselt number, ¥ eigenvector
_01)/(0r)] x f/n In(R) 0 azimutal coordinate
Nu average  Nusselt  number,
1/ Jy Nudb Subscripts
Pr Prandtl number, o/v c critical value
p pressure f pitchfork bifurcation
R radlal‘ ratio, 7,/7i h Hopf bifurcation
Ra  Rayleigh \ number, i inner cylinder
95 (T o Tl)d [va 5 saddle-node bifurcation
r radial coordinate o . .
. t transcritical bifurcation
S wvector, (u, T) .
0 outer cylinder
T temperature
. 0 steady state
t time
u velocity vector Superscrints
u ,v radial and azimutal velocity Perscripis .
Combonents * dimensional variable
P b basic branch
Greek symbols l lower branch
« thermal diffusivity u upper branch
15} coefficient ~ of  thermal
expansion

1 Introduction

Natural convection between horizontal isothermal concentric cylinders has
been extensively studied because of its importance in many technological ap-
plications such as heat exchangers. From a theoretical point of view, this
problem has been considered in a number of studies because a large variety
of flow structures is encountered in this configuration according to the aspect
ratio, Rayleigh and Prandtl numbers.

For low Ra, the basic flow field consists of two two-dimensional crescent-
shaped cells, symmetrical with respect to the vertical plane containing the axes
of the cylinders. In each of the two annular half spaces, the fluid goes upwards
and downwards, respectively along the hot inner and cold outer cylinders.
The conduction is the major mode of heat transfer between the differentially
heated boundaries of the annulus. As the Rayleigh number is increased, the



center of rotation of the main cells moves upward and a thermal plume starts
to form at the upper part of the annulus with an impingement region on the
outer cylinder. The distribution of the thermal fluxes along the inner and outer
cylinders shows that the largest part of the heat convected within the annulus
is extracted from the lower part of the inner cylinder.

From their experimental work, Powe et al. [1, 2] depicted flow regimes and spa-
tial patterns for air-filled annuli as a function of the radius ratio and Rayleigh
number. For wide gap annuli, i.e. for radius ratio larger than R = 1.71, transi-
tions happen from two-dimensional steady to oscillatory flows. For moderate
gap annuli (1.24 < R < 1.71) a three-dimensional spiral flow is observed past
the transition, while for narrow gap annuli (R < 1.24) the basic one-cellular
flow changes to multi-cellular flows. Later, experimental and numerical stud-
ies conducted by Rao et al. [3] yielded results in qualitative agreement with
the Powe experimental map for moderate and narrow gap annuli. However,
they failed to detect the oscillatory two-dimensional flow régime for wide gap
annuli. Vafai and Ettefagh [4] and more recently Cadiou [5] and Dyko et al.
[6, 7, 8] numerically studied the effect of the axial confinement for various
radial and axial aspect ratios. The existence and validity of two-dimensional
solutions were established either in the core region, the size of which decreases
when increasing Ra, or for transient flows. The three-dimensional simulations
performed for moderate and large gap annuli [6] present a good accordance
with the prediction of the Powe chart. Some discrepancies are however ob-
served for narrow annuli (R < 1.2) in which fully three-dimensional flows, due
to the development of spiral vortex, were computed. Therefore, the flow ex-
hibits in the upper region of the narrow-gap annulus either transverse rolls or
a combination of longitudinal and transverse rolls with respect to the cylinder
axis [7]. For small enough radius ratio, an odd number of transverse rolls can
occur so that a longitudinal flow is present at the mid axial plane [8].

A three-dimensional stability analysis was performed by Choi and Kim [9]
using the linear theory and more recently by Dyko and al. [6] using both
the linear theory and the energy method. The neutral stability curves as well
as the critical wave numbers were computed as a function of the radius ratio.
The unstable mode superimposed on the basic flow gives rise to spiral motions
similar to those observed in numerical or experimental simulations. As R tends
to 1, Ra. approaches 1708, the critical Rayleigh number which corresponds to
the onset of the natural convection in a horizontal layer.

Amongst the two-dimensional studies, a large variety of works was focused
on multi-cellular flow patterns and multiplicity of solutions for various sets
of parameters (Yoo [10, 11], Cadiou et al. [12, 13], Desrayaud et al. [14] and
Mizushima et al. [15, 16]). These results reveal the existence of an imperfect
bifurcation: the Rayleigh-Bénard pitchfork bifurcation is broken into a couple
of one wvirtual transcritical and one saddle-node bifurcation from which two



stable branches of multi-cellular solutions emerge. The mechanisms of forma-
tion or merging of the cells within the upper part of the annulus are indeed
the same on the two branches and are due to thermal instabilities. The num-
ber of cells mainly depends on the radius ratio and Rayleigh number. For a
fixed supercritical value of Ra, the number of cells increases as the radius
ratio decreases. When R — 1 the number of cells tends toward infinity and
the classical Rayleigh-Bénard problem characterized by a pitchfork bifurca-
tion applies. The multi-cellular flows calculated in these studies was shown to
undergo an unsteady secondary instability by increasing the Rayleigh num-
ber, provided the radius ratio is small enough (for example R = 1.14). The
resulting periodic flow is composed of cellular patterns located into the basic
flow in the lateral regions. This second type of instability is hydrodynamic in
its origin as in air-filled vertical slots.

An overview of the published numerical studies (2D- as well as 3D-modeling)
shows that very few considered a possible breaking of the vertical symmetry
[17, 18] because flow-symmetry was assumed in order to save CPU-time. As
an example of such a symmetry breaking, Petrone et al. [17] computed steady
and oscillatory dissymmetrical flows for low Prandtl number fluids. For air
as working fluid and a fixed radial ratio R = 1.2 [18], the appearances of
dissymmetrical disturbances give rise to unstable and non-symmetrical flows
that had never been reported in the current literature.

Therefore, the present study is motivated by the need of revisiting bifurcation
and flow structure maps in the (Ra, R) plane in order to unify the results
published for two-dimensional natural convection in horizontal air-filled an-
nuli. The paper is divided into two main parts. A set of numerical methods
especially developped for linear stability analysis and bifurcation tracking are
first presented and validated. The results are then discussed into two sections.
The first section is devoted to the flow description and stability analysis for a
fixed radius ratio R = 1.2. The effects of increases in R on the flow patterns
and critical Rayleigh number are then investigated.

2 Equations and numerical methods

2.1 Governing equations

Consider two horizontal concentric cylinders of radii r} and r} = R x r} > r}
held at uniform temperatures 7 and 7F < T}, respectively (Fig. 1). The
two-dimensional governing equations for laminar, incompressible flows of air
with constant physical properties except the density in the buoyancy term

are written in cylindrical coordinates and the Boussinesq approximation is



invoked. By scaling the length by the gap width d and the time by a/d, by
introducing the dimensionless temperature difference 7' = (7% — 0.5 x (Tf +
T*)) /(T —Tr) and the radial coordinate r = (r* — r})/d, the dimensionless
governing equations in cylindrical coordinates (r, ), where 6 is measured from
the downward vertical, read :

Vuau=0
% (fu) +§' (wa) —nv* = — % — RaPrfT cos6 + Pr (/Vv?u _ %%) )
% (fv) + V. (Uﬂl‘f’ nuv = — % + RaPrfTsinf + Pr (AV/% + %%)
2 (fT)+ V. (T.1) = V2T

where n = R — 1 and f = nr + 1. The operators are defined as follows:
V.(Xa) = (0/0r) (fX.u) + (8/80) (nX.v) and V2X = (9/dr)(f[0X/0r]) +
(0/00)(n?/f x [0X/00]), where X (r,0) is a scalar quantity. The boundary
conditions are periodic in the azimuthal direction and verify the following
conditions in the radial direction:

=20
r=20
T=+0.5
0<6<2r (2)
=20
r=1
T=-0.5

2.2 Numerical methods

The governing equations (1) with boundary conditions (2) were solved numer-
ically in the primitive variable formulation using a finite volume method on a
non-uniform, staggered-structured grid. Each elementary mesh is defined by
75, 7ig1] % [0}, 6;41] with

tanh (CT ( S 1)) + tanh(c,)

P = ,=1,N, +1
" 2 tanh(c,) ! *
exp (2mcplt) — 1 3
m (2rev's)) j=1,% 41 ®)
b, = exp(meg) — 1
21 — Ony 42— j=%+1,Nyg+1

where N, is an any integer and Ny an even integer, ¢, and ¢y are two negative
or zero real parameters used to modify the grid distribution in the upper part
of the annulus (near § = 7) and close to the cylinder surfaces. The transport



terms of the momentum and energy equations were discretized with a second-
order centered scheme. A time splitting method [19] was used to uncouple the
velocity and pressure fields.

2.2.1 Time-marching numerical schemes

To perform the linear stability analysis, several numerical methods have been
implemented and are now described. In order to simplify the presentation,
notations are introduced in cartesian coordinate system where, in contrast
to cylindrical coordinate, no coupling of the radial and azimuthal velocity
components is present in the diffusion terms of the momentum equations. The
discrete velocity components and temperature are combined into one single
vector S(t) = (u, T)'. Let note 6§ the boundary of an elementary cell {2 and
7 the unit outwards vector, then the spatially discretized transport, diffusive
and Boussinesq operators are noted T'(u), D and B respectively so that:

o NTXNQ [ a7 ® a7\ 7
T()S = / @ema .
=1 59 Tﬂ n
_ NexNg Pr (Vﬂ) n
DS = / R ds
=1 _591 (VT) n
v [ pro, Ty
BS = / av
=1 _Qz 0

By introducing the non-homogeneous part of the boundary conditions as vec-
tor be, the set of the governing unsteady equations reads

;S:(T(u)+D+RaB)S+l)c (4)

The steady or unsteady flows are obtained by using a time integration of Eq.
(4) with a first order scheme in which the diffusive terms are treated by an
implicit method and the convective terms by an explicit method.

The linear stability analysis of a steady state Sy consists in studying the
growth rates of infinitesimal disturbances 6S = (du, 6T)" as a function of only
one parameter : the bifurcation parameter. Therefore, the solution Sy + 85
satisfies Eq. (4):



o _ .
5 (S0 +08) = (T(tio + 3u) + D + Ra B) (So + 85) + be

that is equivalent to

;&9: (J|T(w)] + D + Ra B) 35S + O(HEW)

where J[T(10)]0S is the Frechet derivative defined by J[T'(w)]0.S = T ()05 +
T(6u)Sy. By neglecting the second-order terms, the solution of the previous
equation reads:

08(t) = exp{(J[T(@W)] + D + Ra B)t}3S(t = 0) (5)

When time tends towards infinity, the disturbance amplifies or is damped
according to the sign of the eigenvalue of the matrix (J[T'(wy)] + D + B)
having the largest real part. The evaluation of the dominant spectrum with
the largest real parts is achieved by an Arnoldi method [20] as proposed by
Mamun and Tuckerman [21]: the evaluation of the right-hand side of Eq. (5)
is performed by a first order temporal scheme in which the convective terms
have been linearized in perturbations.

2.2.2  Non-linear systems
Although the time marching code allows to compute stable flows, its conver-
gence rate tends towards zero when the parameters are close to the bifurcation

thresholds. To evaluate efficiently steady flows near the transitions or the un-
stable steady solutions, the following non-linear system is solved:

(T(up) + D+ RaB)So+bc=0 (6)

using the Newton method. The k™ step reads:

(J[T(ﬂ(()k))] + D+ Ra B) s (T@(()’f)) D+ Ra B) gék) e

- ) (7)
S(()k—&-l) _ S((]k) _ 55D

In order to compute an eigenvalue, a possible alternative to the Arnoldi



method is to solve directly the non-linear eigen-problem [22]:

where (), 1) is the couple of complex eigenvalue with its corresponding eigen-
vector and ¢ is an arbitrary real vector used to ensure the normalized condition
for 1): in this work, ¢ = S,. Therefore, the k" step of the Newton algorithm
consists in computing:

(JIT @) + D + Ra B) 9" — A05p Y — gtk
= (JIT@P)] + D + Ra B) " — A"

e Re(@0" ™) =2 Re(@™) — 1

e Im(@" ) = . im (@)

P O G

AEFD — \(K) _ §A(R+1)

To track the Hopf bifurcations as a function of a given parameter, Griewank
and Reddien [23] proposed to seek simultaneously the parameter threshold, the
steady state Sg, the complex eigenmode 7 and the corresponding eigenvalue
A =0+ w at the transition:

(T'(wy) + D + Ra B) Sy + bc =0

(J[T (1)) + D + Ra B) ¢ —iw) =0
t Re<*> =
Im(¥)

(10)

In our problem, the bifurcation parameter is Ra so that the k' step of the



Newton method reads:

(JIT @) + D+ RaB) 65" + (6Ra**D B)S(
= (T@)") + D + RaB) 5" + b
(JIT@)] + D+ Ra B) 60" + (§Rat*+) B)y Y
—iwWFE Y sknp*)
= (JIr @) + D + Ra B) 3"
RO (11)
e Re(30") =2t Re(@™) — 1
o Im(E ") = e im(B")
S _ g0 _ g

WD — B _ 5kt )

Ra**+Y = Ra® — §RaF+1)

A particular attention must be paid to the zero imaginary part of the eigen-
value. Indeed, equations (10) define a saddle-node bifurcation point [22]. The

corresponding Newton algorithm is similar to Eq. (11) With I m(@(k)) = 0,

w® = 0 as well as their corresponding increment ]m(&/) +1)) = 0 and

Sw k“) =0.

The linear systems arising from the Newton algorithm are iteratively solved
either by the BiConjugate-Gradient Squared, as proposed in [24], or by the
Generalized Minimal RESidual methods coming from the library [25]. The
GMRES method is based on the minimization of the residual on a Krylov
subspace. The main advantage and drawback of this method are highly linked:
the residual decreases in a monotone manner as a function of the increase in
the Krylov dimension that ensures convergence. However, the required space
storage, proportional to the number of the base vectors defining the Krylov
subspace, may increase dramatically. Hence, the BCGS method was preferred
for solving the linear equations (Egs. (7) and (9)) but failed for the Hopf
system Eq. (11) which was solved by using the GMRES algorithm.

2.2.8  Implementation of the linear systems

The matrices of the linear systems (Eqs.7, 9, 11) are not explicitly built up be-
cause of their huge sizes. Each matrix vector product is obtained thanks to the
method proposed by Mamun and Tuckerman [21] for the steady state problem
(Eq. (6)) and extended by Chénier et al. [22] for the eigenvalue problems (Eq.



(8)) and the saddle-node and Hopf bifurcations (Eq. (10)). The principle of
this method is based on the temporal code (Eq. (4)) discretized in time with

a first order scheme as described in section 2.2.1. Let FO) and §(1) be two
consecutive iterations so that for a time step At:
<=1 50
S-S _ _ _
= (T@®) + Ra B) 5 + (D)5 + be

The solution 5" gives:

At At
therefore
S0 5O _ <11 - D) (@) 1D+ RaB)SV 1 5)  (12)
Al

where [ is the identity matrix. The idea of the method proposed by Mamun
and Tuckerman [21] is therefore to substitute Eq. (6) by its preconditioned
expression:

~D7((7@) + D + Ra B) 59 4 be) =0

obtained by subtracting two consecutive iterations 5V 5 for large enough
time step At (Eq. 12). All the matrix vector products in Egs. (7, 9, 11) are
then constructed on the same principle by adapting the initial temporal code
(Eq. 4) to the problem to be resolved.

The use of the projection algorithm [19] in the context of the Mamum and
Tuckerman method [21] requires some technical adaptations. Indeed, the choice
of a large At for the pressure calculation increases dramatically the number of
iterations of the GMRES and BCGS methods [26]. To overcome this problem
by keeping the Mamum and Tuckerman method, a second time step (or param-

eter) At, is introduced by adding the H(H)A_tf(n) expression into the discretized
Navier-Stokes equations. The projection step, which defines the pressure equa-
tion, is then constructed with At, whereas the diffusion part uses the large
time step At. The degree of freedom coming from the parameter value At, is
therefore used to reduce as much as possible the number of iterations neces-
sarily to converge with the GMRES and BCGS methods. Classicaly, the At,

value is in the range [107%, 107!].
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2.2.4 Additional numerical aspects

Although many algorithms allow to compute the same physical quantities
(steady-states, eigenvalues or bifurcations), their respective use are often com-
plementary. The Newton method converges by an iterative process and needs
an appropriate initial guess. This initialization is therefore ensured either by
a time marching code or by using previous results obtained with the Newton
procedure. The Arnoldi method (5) allows to evaluate the leading eigenvalues
without necessary using an initial guess. However, as the gap between the
real parts of the interested and dominant eigenvalues increases, the compu-
tations are less accurate. Moreover, numerous iterations may be necessary to
distinguish two modes having almost identical growth rates.

The following remarks can be brought:

e The evaluation of the critical Rayleigh number is of course sensitive to the
mesh size used for computations. This dependency is linked to the slope s
of the curve, representing the real part of the eigenvalue as a function of
Ra. In the vicinity of the threshold value, Re(\) evolves quite linearly as a
function of Ra, and therefore an absolute error of order € on the eigenvalue
computation induces a threshold displacement of the order of ¢/s. So, if
the slope is very small, the error on the critical parameter may be highly
amplified.

e Some convergence problems of the Newton algorithm may be observed when
the Jacobian matrix of the non-linear application has too small eigenvalues
or is not invertible. In that situation, theorical studies suggest a linear (in-
stead of a quadratic) convergence of the Newton method. This behaviour
should probably be observed if the iterative resolution of the linear system
at each Newton step was exact. For the present computations, the BCGS
and GMRES methods failed to converge for a small enough stopping crite-
ria: a too large stopping criteria does not improve enough the Newton steps,
so that the global convergence is finally not ensured.

2.8  Validation

2.3.1 Comparisons with the literature

In order to validate the numerical schemes, several usual computations have
been performed and then compared with the literature. For Ra = 3000, Pr =
0.7, R = 1.6 and a 60 x 240 mesh, the steady flow obtained with the time
marching code (Eq. (4)) on the full cavity consists in two crescent-shape cells,
symmetrically located within the annulus. As shown in table (1), the average
Nusselt numbers at the cylinder surfaces are in good agreement with previous
works. No significant differences were obtained between the values computed
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by the Newton (Eq. (7)) or by the temporal (Eq. (4)) codes.

The growth rates of the dominant linear perturbation associated with the
symmetrical two-cellular flow at R = 1.2 and Pr = 0.7 and achieved with the
Newton method (Eq. (9)) are in accordance with the data obtained by the
spectral method used by Mizushima et al. [16] (Tab. 2). For a fixed 60 x 240
mesh, the relative difference between the results does not exceed 1.5 %, except
for small growth rates where the error reaches 4 %.

Comparisons were also made about the location and nature of the first tran-
sition of the symmetrical two-cellular flow at R = 1.2 and Pr = 0.7 (Tab. 3).
Although the transition is differently named according to the authors, it deals
with the same physical process. The present Rayleigh number values at the
thresholds are close to the previous works, with a maximum relative differ-
ence less than 1.5%. The virtual transcritical bifurcation threshold, so-called
by Mizushima et al. [16], has been obtained by interpolating the eigenvalues
as a function of Ra so that the growth rate is zero whereas the saddle-node
bifurcation is directly computed thanks to the Newton algorithm (Eq. (11)).

2.3.2  Comparisons between the numerical methods and convergence proper-
ties

Comparisons are discussed here about the use of the different methods pre-
sented in this paper. At first, the focus is on the growth rate calculations car-
ried out by the Arnoldi and Newton schemes. The Arnoldi method is based on
a first order time marching code that implies a linear convergence of solutions
as a function of the time step (Fig. 2). The linear extrapolation based on the
six most accurate eigenvalues obtained using the Arnoldi method for a zero
time-step (lima;0(A\) = —2.4391) presents a good agreement with the value
achieved with the Newton procedure (A = —2.4330), with a relative discrep-
ancy less than 0.5 %. The evaluation of the Hopf bifurcation point for R = 1.3
was then compared. It can be performed, either by computing iteratively the
steady (Eq. (6)) and eigenvalue (Eq. (8)) problems for successive Rayleigh
numbers (Fig. 3), or by simultaneously solving the steady and eigen-problems
at the bifurcation point (Eq. (10)). In both cases, the critical threshold and
pulsation are almost identical, Ra ~ 6091 and Im(\) ~ 12.72 when using a
60 x 240 mesh. The threshold Ra. (Fig. 4a) and the pulsation Im(\) (Fig.
4b) of the Hopf bifurcation at R = 1.3 was also studied as a function of the
average mesh size (h? = 1/N2, hi = (27/Ny)?), and for several grid distribu-
tions parametrized by ¢, and cy. The numerical results are plotted in these
figures by symbols as well as by continuous lines which correspond to linear
polynomial fits as a function of the average squared grid size. Each grid dis-
tribution ¢, and ¢y is associated to a particular symbol. The lower and upper
abscissa axis are labelled by the cell numbers N, and Ny respectively. The
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set of four (four filled symbols) and three curves (four open symbols), which
converge respectively towards (Ra. ~ 6034, Im(\) ~ 12.48) with h, — 0 and
(Ra. ~ 6188, Im(\) ~ 13.13) with hy — 0, correspond to the influence of the
average grid sizes h, and hy, for fixed meshes in the second direction, namely
(Ng = 240, ¢y = —0.75) and (N, = 60, ¢, = 0). Therefore, the best radial mesh
with Ny = 240 (filled symbols) is obtained for ¢, = 0, i.e. a regular mesh,
and it is preferable to employ ¢y = —1.00 when N, = 60 (open symbols). In
this last case, decreasing ¢y from —1.00 to —1.25 does not improve the conver-
gence rate because the computed Ra. and Im(\) are indeed quite identical.
Whereas it is worthwhile to reduce the mesh size in the azimuthal direction in
order to improve the spatial resolution in the upper part of the annulus, that
does not seem useful close to the radial boundaries. The last two curves in
Figs. 4(a) and 4(b) which tend to (Ra. ~ 6152, Im(\) ~ 13.00) are achieved
by increasing proportionally the cell numbers in both directions. By consid-
ering relative differences between the extrapolated and computed values less
than 5% and by taking into account the computation time and the memory
storage requirements, a (N,, Ny) = (60, 240) mesh with (¢, ¢p) = (0,—1) was
retained to compute the Hopf bifurcations as a function of the radius ratio.
With this particular choice at R = 1.3, the threshold and pulsation are equal
to (Ra. = 6091, Im(\) = 12.72) and the relative discrepancies are about 1%
and 2 %, respectively.

3 Results

It can be easily proved that if (ug, vo, Tp) is a solution of the coupled equations
(1) and boundary conditions (2), then (uy, vy, T1) = I'(uo, vo, To) defined by

is also a solution. A particular and interesting situation occurs when
[(wg, vo, To) = (uo, v, To). In that case, the flow is itself symmetric through
the transformation I', noted I'-symmetry in what follows, and the computa-
tion of such a solution requires only to solve equations (1) with the following
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symmetrical boundary conditions:

=20
r=20
T =+40.5
0<0<nm (14)
=20
r=1
T=-05
and
ou
%—0
0<r<1:0=0,140v=0 (15)
oT
%—O

This simplified mathematical model labelled m-annulus has been extensively
employed, for instance in [10, 15, 16, 27, 28, 29|, in order to decrease both the
CPU time and memory space storage.

The results are organized into two sections. The flows and the bifurcation
diagram are first presented for a narrow cavity with R = 1.2. Secondly, the
bifurcations are tracked as a function of the radius ratio.

3.1 Radius ratio R=1.2

3.1.1 Bifurcation diagram

The results are presented in the form of a bifurcation diagram representing the
steady radial velocity component u(0.5,7) as a function of Ra (Fig. 5). This
component is useful in determining quickly the direction of the rotating cells
in the upper region of the annulus when the flow is ['-symmetric. For a given
Rayleigh number, the steady states lying on the continuous and dashed lines
are stable and unstable, respectively. Below Rals1 = 1911, only the well known
basic couple of crescent-shaped cells, symmetrically located on both side of
the annulus are observed. Just above Ral , two new steady solutions are found
lying on the unstable branch as shown in the enlargement plotted in Fig. 5.
For convenience, the branches starting from Ra = 0 and ROLZS1 will be called in
what follows as the basic-branch and lower-branch, respectively: the quantities
expressed on those branches are labeled “.*” and “.”. The sharp growth of
u(0.5, ) as well as the appearance of the lower-branch of solutions are due to
thermal instabilities similar to those observed in Rayleigh-Bnard experiments.

14



The effect of the curvature is to break the classical pitchfork bifurcation into
a saddle-node bifurcation at Ra! = 1911 and into a transcritical-like bifurca-
tion at Ra; = 1917, values in excellent agreement with those reported in [16]
(see Tab. 3). However, the comparison of the enlargement with [16] shows dif-
ferences on the stability solutions lying on the lower part of the lower-branch,
below u(0.5, 7) ~ 0. Indeed, unlike to the Mizushima et al. results which leads
to stable steady states, our solutions are unstable. An unstable disturbance is
still present above Ral . (Fig. 6). By describing the curves through decreases
in Ra, the eigenvalue A, which gives rise to the saddle-node bifurcation, de-
creases sharply from zero whereas the growth rate A} of a new disturbance
slowly decreases and reaches zero at Ralfl. It is worth noting that the slope of
Al as a function of Ra is of order 10~ and therefore Ral; is rather sensitive to
numerical errors (see section 2.2.4). The streamlines of these two eigenmodes,
plotted in Fig. 7, are characterized by two different symmetries. The mode
giving rise to the saddle-node bifurcation is associated to the ['-symmetry
whereas the other eigenvector satisfies the A-symmetry defined by

(
A L Au(r,0)) = o(r, —0) (16)

At the bifurcation point Ralfl, a new branch of solutions thus appears (Fig.
5). This branch is locally tangent to the central manifold: the steady states
lying on that new branch are then qualitatively made of the I'-symmetrical
basic flow superimposed to the A-symmetrical perturbation. Consequently,
the I'-symmetry is broken. Since the governing equations always verify the
[-symmetry property, another perturbation is also possible. It corresponds
to the disturbance obtained through the I'-symmetry applied to the pertur-
bation drawn in Fig. 7a. It should be noted that the branch based on this
second disturbance is not distinguishable on the bifurcation diagram (Fig. 5)
because u(0.5, 7) is unchanged through the I'-symmetry. Thanks to all these
considerations and to the stability of solutions lying on this new branch, it is
obvious that the critical threshold Ralf1 corresponds to a sub-critical pitchfork
bifurcation. Above Ralfl, the steady states are stable up to Ra = 5000.

The dominant spectrum computed for flows lying on the basic-branch is shown
in Fig. 8. For Ra < Ra; = 1917, the two real eigenvalues A} and A, grow up
simultaneously to almost zero values. It should be noted that the part of
the curve A5 vs Ra for Ra < Ray is in a good agreement with the results of
Mizushima et al. [16]. On the other hand, the second part differs because it was
computed in [16] for solutions lying on the upper part of the lower-branch.
Therefore their eigenvalues Ay are positive: the branch jumping defines the
virtual-transcritical bifurcation. Close to Ra; (Fig. 8) both eigenvalues sepa-
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rate so that A\ decreases sharply while A\ crosses the zero-axis, first from neg-
ative to positive values at Ra’}1 = 2068, and then after in the reverse direction
at Ral}2 = 2456. These transitions correspond to two pitchfork bifurcations
(Fig.5) and are associated to one A-symmetric disturbance looking like the
one presented in Fig.7a. As for the pitchfork bifurcation of the lower-branch
of the bifurcation diagram, these two transitions give rise to new solutions
breaking the I'-symmetry. In particular, the branch starting from the Ral}1
threshold and made of unstable dissymmetrical solutions (Fig. 9), joins the
pitchfork bifurcation defined at Ralfl. For Ra > Ral}Q, the flow is found stable
until Ra = 5000.

The solutions lying on the almost horizontal part of the lower-branch (see
enlargement in Fig. 5) defined for Ra > Ra,; are two times unstable. At Ra ~
2435 (Fig. 5), an imperfect pitchfork bifurcation occurs which seem to be made
of both one transcritical (Ra ~ 2435) and one saddle-node (Ras, ~ 2431) bi-
furcations (Fig. 10a). An appropriate scaling of Fig.10a clearly shows two
couples of saddle-node and pitchfork bifurcations close to Rays ~ 2434.45
and Ra =~ 2434.95 (Fig. 10b). By following the upper curve of Fig. 10a, an-
other pitchfork appears which gives rise to dissymmetrical solutions on a new
branch at Ray, ~ 2950 before reaching the basic-branch of the bifurcation
diagram (Fig. 5) at Ra?2 through one saddle-node at Ra,, ~ 3510. It is
therefore possible to cross continuously from the lower to the basic-branch
of the bifurcation diagram by following a set of curves. In what follows, each
part of the continuation curve are labelled by “uns;” to denote that solu-
tions are unstable to ¢ disturbances with positive growth rates. Therefore, it
exists two different paths to join the bifurcation points Ralf and Ra},. The
easiest one is constituted of three pitchfork bifurcations and described by the
way Ral "' Rah "' Ra,. Both four saddle-nodes and pitchfork bifurca-
tions take place on the much more complicated second path summed up by
Ra, B Ral "™ Rays "3 Ray, ™ Ray, ™% Rag, ™' Ral,. Although the
pitchfork bifurcations described in Fig. 10b occur in a very narrow gap of Ra,
and could be considered as spurious, they are in fact linked to the appearance
of the two other transitions at Ra,, and Ray,.

Additional comments should also be added on the symmetry breaking of the
perturbations. Indeed, this results could be surprisingly new since numerous
works having dealt with this problem. In fact, the use of I'-symmetrical models
are probably only one part of the explanation. Several computations on the
full annulus, with periodic conditions in the azimuthal direction, have already
been performed without showing such instability. The main reason is probably
given through examination of the growth rate values of the A-symmetrical
disturbances represented in Figs. 6 and 8. These values are so small that
convergence with a temporal code may easily be achieved without observing
the destabilizing effects of this perturbation. Because the steady solutions used
to initialize the temporal codes are often characterized by the I'-symmetry, the
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initial magnitude of the A-disturbance is of the order of the numerical errors.
For instance, in the linear point of view and for a growth rate A ~ 0.025 (Fig.
8), a dimensionless time of 1/\ & 40 is required to multiply the magnitude of
the disturbance by only e!. This behavior is not new and explains the need of
using suitable disturbances to evolve from conductive to convective flows in
the classical Rayleigh-Bénard flow simulations.

3.1.2  Flow fields

For Ra < Ray, the flow pattern labelled C'F consists in two large cells on each
part of the annulus due to the I'-symmetry. Since only I'-symmetrical flows
are described, the flow patterns are plotted in a half region of the annulus.
By following the basic-branch of the bifurcation diagram by increasing Ra
(Fig. 5), the flow evolves continuously from one large crescent-cell C* to three
cells, two cells being located at the top of the annulus and the other forms
the crescent-shaped cell. In order to investigate the birth and growth of the
upper cells, their angular sizes at the middle between the two cylinders are
measured as a function of Ra (Fig. 11). For convenience, the cells rotating
in the same direction as the large crescent-cell C* are also noted Ct or ¢™,
whether they are stretching out on the entire annulus gap or not. The counter-
rotating cells are labelled C'~. Slightly above Ray, a co-rotating cell ¢t grows
very fast with Ra but stays confined in the large C*™ (Fig. 12a). The splitting
of the daughter cell from the mother one occurs at Ra ~ 2270 and gives
rise to one counter-rotating cell C~ located between them (Fig. 12b). From
this point and until Ra = 5000, the steady flow remains three-cellular; this
pattern is therefore denoted C*C~C™. It should be noticed that globally the
angular size of the largest C' decreases in favor of the two upper eddies. The
Rayleigh number value which corresponds to the onset of the C*C~C™ pattern
is in very good agreement with Kim and Ro [28] and Chung et al. [29] who
proposed Ra = 2270 and Ra = 2330, respectively, as the threshold values for
the flow transition between 1 and 3 cells. On the lower part of the continuation
diagram (Fig.5), a reverse flow appears just after the saddle-node bifurcation
point at Ral . Above this point, the negative radial velocity u(0.5,7) (see
enlargement in Fig. 5) indicates the formation of a counter-rotating cell C'-
adjacent to the main crescent-shaped flow (Fig. 13). Like on the basic-branch
of the bifurcation diagram, a co-rotating cell ¢* is set up slightly before Ralf1
but disappears at Ra =~ 3500 (Fig. 14). The C~C* — C ¢ Ct — C~C*
transition is therefore observed by increasing Ra on this branch. Some of
the flow pattern modifications can be correlated with the unstable regions.
The generation of the co-rotating nucleus ¢* on the basic-branch occurs when
the growth rate of the disturbance is becoming positive, while the CTC~C*
establishment precedes the flow stabilization. On the lower-branch, the onset
of the re-circulation nucleus ¢* is detected at the location which characterises
the re-stabilization of the steady flow.
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A slow increase in Ra from zero shows that the steady flow pattern evolves
from the crescent-shaped cell C* at first to ¢*C* and then to C~¢TC™ struc-
tures when the solutions reach the lower-branch as it is presented on the
diagram in Fig. 15. The cell nucleus then disappears and the two-cell flow
structure C~C'™" is the only possible. It is worth noting that the stable steady
state tracking does not allow to reach the three-cell flows CTC~C™*. To end,
Figure 15 shows a hysteretical behavior between patterns lying on the lower
and on the basic branches at Ralf1 and Ra’}l.

3.2 Effect of the radius ratio: bifurcation maps

The effects of the aspect ratio on the flow stability are discussed in this para-
graph for 1.2 < R < 3 and Ra < 10*. Increases in R lead to displacements
of the bifurcation thresholds and also modify the shape of the bifurcation di-
agram, especially the basic-branch. Consequently, we will first focus on the
fundamental changes occurring on the bifurcation diagram for small radius
ratio R €]1.24,1.28[. The critical values will be then presented in the (R, Ra)-
plane.

The basic and other unstable branches of the bifurcation diagrams for R = 1.24
and R = 1.25 are plotted in Fig.16. Such a small increase in R brings closer
the branches labelled bo(R = 1.24) and b3(R = 1.24) so that they come
into contact, very close to or at the saddle-node bifurcation points defined by
Rag(be, R = 1.24) and Ra(bs, R = 1.24), exchanging parts of their curves each
other, and forming two new branches labelled by(R = 1.25) and b3(R = 1.25).
By crossing the critical radius ratio R, €]1.24, 1.25[, the number of solutions in
the interval Ra €|Ras(bs, R), Ras(bs, R)[ changes from zero to two. This find-
ing characterizes a saddle-node transition for the bifurcation parameter R.
If the contact points are exactly located at the thresholds Rag(be, R = 1.24)
and Ras(bs, R = 1.24), a bifurcation with a co-dimension two is therefore ex-
pected in the (Ra, R) plane at Rags(be, R.) = Ras(bs, R.). The most important
changes for the flow stability occur in the R-interval |1.25,1.26] where a new
independent branch of solutions, called as the upper-branch and labelled with
“«wrappears for Ra > Ra? (Fig. 17). The origin of the upper-branch is re-
lated to another saddle-node bifurcation. Indeed, by increasing R, the upper
part of the branch by(R = 1.25) and the basic branch b, (R = 1.25) approach
themselves, merge together for R. €]1.25,1.26], and finally separate from each
other after having exchanged parts of their branches. Consequently, no solu-
tion exists above R. in the vicinity of the previous contact point. Finally, the
two saddle-node bifurcations belonging to the basic-branch at Ras, (b1) and
Ras,(by) collapse in the R-interval |1.26,1.28[. Increases in R upon a small
interval has thus generated a new independent branch and modified substan-
tially the solutions lying on the basic-branch.
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Concerning the effects produced by increasing the radius ratio on the flow
patterns corresponding to the different branches, no qualitative difference is
found for 1.2 < R < 1.25: the flow structures are similar to those at R = 1.2.
On the other hand, for 1.26 < R < 1.35, the C*C~C™ pattern is not observed
on the basic-branch which is now characterized by ¢tC™ structures: a ¢
nucleus appears, grows and then disappears. The CTC~C™ is located on the
upper-branch because this new branch takes its origin from a part of the
previous basic-branch. For R > 1.35 the fluid flows on the basic-branch are
mono-cellular in the range of Ra investigated, while the upper-branch consists
systematically in three-cellular patterns. Concerning the lower-branch of the
bifurcation diagram, the C~¢*C™ flow is observed for R < 1.24 only. The ¢*
nucleus size becomes smaller and smaller by increasing R and then the nucleus
disappears. For larger radius ratios, the flow is two-cellular.

The bifurcation thresholds and the stability regions are presented in the follow-
ing as two-dimensional diagrams plotted in the (Ra, R)-plane for the lower, ba-
sic and upper-branches. The lower-branch, starting from the saddle-node Ra!, .
is plotted in Fig. 18. The variation of Ra . as a function of R is found in good
agreement with the results of by Mizushima et al. [16] since the largest relative
difference is only 0.25% for R € [1.2,3]. For small radius ratios (R < 1.5),
the critical parameters of the pitchfork and saddle-node bifurcations are very
close. Above R = 1.6, the pitchfork threshold Ralf1 abruptly increases to finally
collapses at R ~ 2 with another pitchfork bifurcation appearing on the same
branch , but at RalfQ. The stability region of solutions is therefore bounded by
the two curves giving the pitchfork bifurcation thresholds. Indeed, for R > 2.1
and Ra < 10%, any stable flow occurs on this branch as it is checked by the
study of the growth rate of the dominant perturbations. The small region of
this branch characterized by the C~¢TC™ flow pattern is visible in the bot-
tom left side of Fig.18 bounded by dashed lines. On the basic-branch (Fig.
19) and for R € [1.2,1.25], the pitchfork bifurcation thresholds Ra; and Ral,
move so that the instability region grows slowly. The changes in shape of the
bifurcation diagram act significantly on the flow stability because they occur
in the instability region bounded by the pitchfork transitions. It can be thus
concluded that the flow stabilizes not on the basic-branch at Ral]’r2 but rather
on the upper-branch at Ra§,. From Ra?cl, the flows lying on the basic-branch
are unstable, firstly because of the disturbance associated to the pitchfork bi-
furcation, and secondly because the onset of an oscillatory perturbation gives
rise to a Hopf bifurcation located at Ra?. This last transition moves towards
by increasing Ra so that a pitchfork bifurcation at Ra’}3 appears just above
R = 1.28. Thus, for R €]1.28,1.29], a region of stable flows is distinguishable
if Ra €]Ra%,, Raj[. At last, the two pitchfork transitions at Ra}, and Rafy
merge between R = 1.25 R = 1.3 so that the associated unstable region disap-
pears: the flow is therefore stable until the onset of the oscillatory disturbance
at Ra?. Finally the Ra-domain of instability due to unsteady perturbations
is reduced when increasing R, and disappears past R ~ 1.32. Consequently,
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the solutions may be continuously followed from Ra = 0 to Ra = 10* without
meeting unstable regions. The upper-branch, starting from the saddle-node
at Ray, consists in unstable solutions until the pitchfork bifurcation at Ra¥,
occurs as it is shown in Fig. 20. It should be noted that superimposing Fig.20
and Fig.19, the two curves representing the bifurcation thresholds Ral}2 and
Ra}, match well and form a coherent continuous curve. As the radius ratio

increases, the threshold Ra', moves quickly along the upper-branch up to
Ra = 10*.

From the bifurcation maps shown in Figs.18, 19 and 20 it can be concluded
that various stable solutions and flow patterns set in for a given couple (R, Ra).
The locations of the flow patterns are gathered in Fig.21. As can be seen,
three, two or only one solutions co-exist with a number of possible flows which
decreases when the radius ratio increases.

4 Conclusion

Two-dimensional natural convection in air-filled horizontal annuli has been
investigated numerically and linear stability analyses are presented for radius
ratio in the range 1.2 < R < 3 and for Ra < 10*. The governing equations were
integrated by a classical time-marching procedure or directly solved in their
non-linear steady form by using the Newton algorithm. The linear stability
analysis was conducted by investigating the growth rates of infinitesimal dis-
turbances about the steady states. The resulting eigen-problems were solved
either by the Arnoldi method or by the Newton method. Solutions of large
non-linear systems of algebraic equations were also computed in order to prop-
erly evaluate the Hopf and saddle-node bifurcations when using the Newton
method. Validations of the numerical tools and comparisons with previously
published results are presented and are shown in good agreement. From the
bifurcation diagrams and bifurcation maps in (R, Ra)-planes, complex flow
behaviors are pointed out, especially for small radius ratios where solutions
are highly modified through small increases in Ra. New pitchfork bifurca-
tion thresholds are determined thanks to the full annulus model adopted in
the computations. These transitions are proved to be produced by perturba-
tions breaking the symmetry about the vertical plane containing the axes of
the cylinders. Flow patterns were discussed and a map of the possible flow
structures is presented in the (R, Ra)-plane. For the first time, multiplicity of
solutions and flow patterns have been clearly established and described.
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Fig. 1. Geometry of the annulus.
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(b) Saddle-node

Fig. 7. Streamlines of perturbations associated to the bifurcations.
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Fig. 9. Streamlines (—3; 3, [0.6]) of the dissymmetrical solution lying on the branch
joining the bifurcation points Ral]’c1 and Ralfl, at Ra = 2010.
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(b) C*TC~C™ pattern at Ra = 2500, (—1;6,[0.5])

Fig. 12. Streamlines of steady states lying on the basic-branch of the bifurcation
diagram (Fig. 5).
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(b) C~C™* pattern at Ra = 5000, (—5;12,[1])

Fig. 14. Streamlines of steady states lying on the lower-branch of the bifurcation
diagram (Fig. 5).
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Fig. 17. Elements of the bifurcation diagrams at R = 1.25 and R = 1.26. The arrows
indicate the part of the curves coming closer with the increasing radius ratio.
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Fig. 18. Bifurcation thresholds and stability regions in the plane (Ra, R) for the
lower-branch of the bifurcation diagram (Fig. 5).
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Fig. 19. Bifurcation thresholds and stability regions in the plane (Ra, R) for the
basic-branch of the bifurcation diagram (Fig. 5).
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Fig. 20. Bifurcation thresholds and stability regions in the plane (Ra, R) for

upper-branch of the bifurcation diagram (Fig. 5).
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Fig. 21. Possible flow patterns in the (R, Ra) plane.
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[27] [28] [29] Present result
1.213 1.180
N (N, x ) | (33 39) (31 x 73) 1.185 1.179
1.199 1.179 (25 x 120) (60 x 240/2)
(49 x 49) (59 x 98)
Table 1

Comparisons of the average Nusselt number Nu = 1/(r) [;f Nudf on the radial

boundaries in a half cavity for Ra = 3000, Pr = 0.7 and R = 1.6.
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Ra 1000 1500 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000

[16] (scanned values) | -5.664 | -2.406 | 0.4653 | 2.993 | 5.238 | 7.273 | 9.109 | 10.78 | 12.29
Present results (Eq. 8) | -5.735 | -2.432 | 0.4467 | 2.975 | 5.217 | 7.221 | 9.031 | 10.67 | 12.17
Relative gap (%) 1.25 1.08 4.00 0.60 | 040 | 0.71 | 0.86 | 1.02 | 0.98

Table 2

Comparisons of eigenvalues for R = 1.2 and Pr = 0.7 as a function of Ra.
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Bifurcations | Saddle-node | Virtual trancritical | imperfect pitchfork
[28] 1920
[12] 1915
[29] 1894
[16] 1914 1920
Present study 1911 1917

Table 3
Comparisons between the Rayleigh number values and denomination of the transi-
tion by each authors.
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