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ABSTRACT

The two major factors contributing to the opposition brightening of Saturn’s rings
are i) the intrinsic brightening of particles due to coherent backscattering and/or
shadow-hiding on their surfaces, and ii) the reduced interparticle shadowing when the
solar phase angle α → 0◦. We utilize the extensive set of Hubble Space Telescope ob-
servations (Cuzzi et al. 2002, Icarus 158, 199-223) for different elevation angles B and
wavelengths λ to disentangle these contributions. We assume that the intrinsic contri-
bution is independent of B, so that any B dependence of the phase curves is due to
interparticle shadowing, which must also act similarly for all λ’s. Our study comple-
ments that of Poulet et al. (2002, Icarus 158, 224), who used a subset of data for a single
B ∼ 10◦, and the French et al. (2007b, PASP 119, 623-642) study for the B ∼ 23◦ data
set that included exact opposition. We construct a grid of dynamical/photometric sim-
ulation models, with the method of Salo and Karjalainen (2003, Icarus 164, 428-460),
and use these simulations to fit the elevation-dependent part of opposition brighten-
ing. Eliminating the modeled interparticle component yields the intrinsic contribution
to the opposition effect: for the B and A rings it is almost entirely due to coherent
backscattering; for the C ring, an intraparticle shadow hiding contribution may also be
present.

Based on our simulations, the width of the interparticle shadowing effect is roughly
proportional to B. This follows from the observation that as B decreases, the scattering
is primarily from the rarefied low filling factor upper ring layers, whereas at larger B’s
the dense inner parts are visible. Vertical segregation of particle sizes further enhances
this effect. The elevation angle dependence of interparticle shadowing also explains most
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of the B ring tilt effect (the increase of brightness with elevation). From comparison
of the magnitude of the tilt effect at different filters, we show that multiple scattering
can account for at most a 10% brightness increase as B → 26◦, whereas the remaining
20% brightening is due to a variable degree of interparticle shadowing. The negative tilt
effect of the middle A ring is well explained by the the same self-gravity wake models
that account for the observed A ring azimuthal brightness asymmetry (Salo et al. 2004,
Icarus 170, 70-90; French et al. 2007a, Icarus 189, 493-522).

Key Words: Planetary Rings, Saturn; Hubble Space Telescope observations; Pho-
tometry; Radiative Transfer.

1. Introduction

Saturn’s rings, like most atmosphereless objects in the solar system, exhibit an opposition
effect: a rapid increase in the brightness when the Sun-observer phase angle α → 0◦. Most strikingly,
this has been demonstrated directly by the zero-phase Cassini images (Déau et al. 2009), showing
a bright localized spot on the ring location centered at exact opposition. Similarly, Hubble Space
Telescope observations during the exceptional 2005 opposition (French et al. 2007b) revealed that
the brightness increase continues all the way to zero phase angle: in 2005, the Earth was transiting
the Sun as seen from Saturn, implying a minimum α set by the finite solar radius of 0.029◦, with
the brightness increasing by about 1/3 for α < 0.5◦, in addition to a similar increase between
0.5◦ < α < 6◦.

Two main explanations have been offered for the opposition brightening of Saturn’s rings:
1) the intrinsic brightening of the grainy ring particle surfaces, and 2) the reduced amount of
mutual interparticle shadowing between ring particles, as the phase angle α → 0◦. The main
contributor to intrinsic brightening is likely to be the coherent backscattering mechanism (CB),
based on constructive interference between the incoming and outgoing light rays (Akkermans et
al. 1988, Shkuratov 1988, Hapke 1990, Muinonen et al. 1991, Mishchenko 1992), although shadow-
hiding (SH) at the particle’s surface (Hapke 2002) may also contribute. Coherent backscattering,
as well as surface shadow hiding, are complicated functions of the particle surface structure and
optical properties of the grains; these mechanisms are currently topics of extensive theoretical
and laboratory studies (Nelson et al. 2000; Nelson et al. 2002; Hapke et al. 2006, Shepard and
Helfenstein 2007, Shkuratov et al. 2007, Hapke et al. 2009). In contrast, the interparticle shadowing
(e.g. Hapke 1986; Irvine 1966) contribution is not sensitive to physical particle properties, but is
primarily determined by the optical depth and volume filling factor of the ring. In what follows,
we will consistently call this latter effect “interparticle shadowing,” rather than “shadow hiding” or
“mutual shadowing,” in order to avoid any possible misinterpretation in terms of shadows associated
with roughness of the surfaces of ring particles.

Classically, the strong and narrow opposition brightening of Saturn’s rings was interpreted in
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terms of interparticle shadowing in a low volume density ring. Near to opposition, the shadow
a particle casts on other particles becomes more and more hidden by the particle itself. The
smaller the volume density, the longer the average shadow cylinders are before hiding another
particle: a more precise alignment of illumination and viewing is thus needed for this effect to
become important. In particular, Lumme et al. (1983) calculated the interparticle shadowing
contributions for homogeneous B ring models, and showed that the then-existing phase curves
could be accounted for solely by this effect, provided that the ring has a low volume density of
the order of D ≈ 0.02. This corresponds in the case of identical particles to a multilayer with a
thickness of several tens of particle diameters. Such a low volume density seemed to contradict
dynamical models (e.g. Araki and Tremaine 1986, Wisdom and Tremaine 1988, Salo 1992a) that,
based on the laboratory measurements of the elasticity of ice (Bridges et al. 1984), predicted that
the rings should flatten to a closely packed near-monolayer state with a thickness of few particle
diameters at most, indicating D > 0.1. For such a large volume density, a homogeneous ring would
have a much wider opposition effect than the observed brightening. Therefore, Mishchenko and
Dlugach (1992) and Mishchenko (1993) suggested that the brightening is instead due to CB (see
also Muinonen et al. 1991).1 Mishchenko (1993) also argued that CB is strongly supported by
the Lyot (1929) and Johnson et al. (1980) measurements of negative linear polarization, whose
magnitude drops rapidly within α < 0.5◦. Indeed, during 1990’s the CB became accepted as the
standard explanation for Saturn’s rings opposition effect, and the Cassini VIMS observations have
also been interpreted within this framework (Nelson 2008).

However, the interpretation of the opposition effect solely in terms of intrinsic brightening has
a severe problem: improved dynamical models of flattened rings do in fact predict a fairly narrow
interparticle shadowing opposition peak, if a particle size distribution is taken into account (Salo
& Karjalainen 2003; hereafter SK2003). This is because, for a fixed D, the effective mean width
of shadow cylinders drops faster than their mean length when the size distribution is broadened.
Photometric simulations in SK2003 indicate that the effect is well-matched by Hapke (1986) size
distribution models for semi-infinite particle layers. Interestingly, if the currently favored wide
particle size distributions with width Rmax/Rmin ∼ 100 (Marouf et al. 1983, French and Nicholson
2000) are assumed, interparticle shadowing can account for most of the opposition brightening for
α > 0.5◦, and even have a significant contribution for α < 0.5◦ (SK2003, French et al. 2007b).
Nevertheless, the strong surge near α = 0◦ and the wavelength dependence of phase curves (French
et al. 2007b) unambiguously show the intrinsic contribution to be present. Therefore, both intrinsic
and interparticle shadowing mechanisms are likely to affect the opposition brightening, although it
has been surprisingly difficult to disentangle their contributions to the phase curves.

INSERT FIG 1 HERE

In this paper we propose that the intrinsic brightening and interparticle shadowing can be

1The notion of an intrinsic opposition peak originated much earlier; see e.g. Cook et al. 1973, Hämeen-Anttila

and Vaaraniemi 1975, Irvine et al. 1988.
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reliably separated by a comparison of the opposition phase curves at different ring opening angles.
Namely, whereas the intrinsic contribution should be the same regardless of elevation, the inter-
particle shadowing contribution is expected to be very sensitive to the viewing elevation. This
prediction follows from dynamical simulations, which indicate a vertically nonuniform particle dis-
tribution. As explored in detail in SK2003, the width of the modeled interparticle shadowing peak
gets narrower for more shallow illumination, since the reflection will be more and more dominated
by the low volume density upper layers; see Fig. 1 for an illustration. This B dependence of the
effective volume density should be further augmented by the particle size distribution, since small
particles are expected to have a larger scale height than the larger particles. Moreover, an extended
particle size distribution will lead to a narrower opposition effect, in accordance with theoretical
calculations Hapke (1986), although a broad particle size distribution alone, without vertical struc-
ture, does not imply a B-dependent opposition effect. To test these expectations, we will utilize the
extensive set of UBVRI observations of Saturn’s rings, obtained with the Hubble Space Telescope’s
WFPC2 (French et al. 2007b).

In order to separate the intrinsic and interparticle contributions, we will employ a set of dynam-
ical simulation models performed with different optical depths and widths of the size distribution.
The opposition phase curves are calculated for these models, covering the range of viewing eleva-
tions accessible from the Earth. We then match the observed elevation angle dependence with the
simulated one, using the common phase curve range (α = 0.5◦ − 6.0◦) available for all elevations
and filters, and obtain a set of best-fitting size distributions for the different ring components. The
known contribution of interparticle shadowing in these simulation models, for any phase or eleva-
tion angle, can then be extracted from the observed data points, to yield opposition phase curves
representing just the intrinsic contribution. The success of the extraction procedure can be tested
by the requirement that the remaining intrinsic contribution must depend only on wavelength and
ring location, and not on elevation angle.

An additional test for the importance of interparticle shadowing is provided by the B ring tilt
effect (the reflectivity I/F increases with elevation by 30% for the ground based geometries), which
is traditionally interpreted as resulting from increased multiple scattering at larger elevation angles
(Esposito and Lumme 1977, Lumme et al. 1983). In SK2003, we proposed that the tilt effect can
also arise due to an elevation-angle dependent opposition effect: at large elevations (say, B = 26◦

as in Fig. 1) the observed brightness is enhanced by the wide interparticle shadowing opposition
peak, which at smaller elevations (B = 4◦ in Fig. 1) becomes so narrow that it is confined inside
the typical observation phase angle of few degrees. The full HST data set, with sufficient B and α

coverage, and excellent photometric accuracy, offers an ideal tool for testing this hypothesis. As a
side result, we also obtain an accurate estimate for the amount of multiple scattering, and thus set
constraints on the intrinsic ring particle phase function. Note that Cassini imaging data available
to date, though having superior spatial resolution and a broader coverage of phase angles, do not
enable such a systematic study of the opposition effect at different elevations.

The plan of the paper is as follows. In Section 2, we compare HST data at different elevations.
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We show that the observed phase curves are steeper at smaller elevation angles, and moreover that
this steepening is independent of wavelength, consistent with what is expected for an interparticle
shadowing effect. In Section 3, we devise a method for extracting the elevation-dependent part of
the opposition brightening, utilizing dynamical and photometric simulations. Section 4 then shows
the results of fitting models to the observations, and discusses the implications for the relative
magnitudes of the intra-particle and interparticle opposition effects. The intrinsic opposition effect
phase curves are also presented in a tabular form, in terms of parameters for two different fitting
formulas (a linear-exponential fit,and a simplified Hapke model including both CB and SH). Section
5 discusses the close interrelation between the interparticle mutual shadowing opposition effect and
the tilt effect, and uses the observed tilt effect at different wavelengths to estimate the amount of
multiple scattering. Section 6 summarizes our conclusions.

2. Elevation angle dependence of HST phase curves

2.1. Previous analysis of HST phase curves

There are two previous studies of the opposition phase curves based on a subset of the same
HST observations used here. In Poulet et al. (2002), the HST data obtained during Cycle 7 for
10◦ elevation angle were fitted with various models for the intrinsic opposition effect, including the
Hapke (1986) shadow hiding model, the Drossart (1993) fractal phase function, and the Shkuratov
et al. (1999) model combining coherent backscattering and shadow hiding. However, no allowance
was made for a possible interparticle shadowing contribution, and subsequent HST observations
made it clear that the minimum α ≈ 0.3◦ in the data utilized by Poulet et al. (2002) was too
large to accurately constrain the models. French et al. (2007b) combined the 2005 observations
at exact opposition for ∼ 23◦ elevation with the data from Cycles 10-12 at comparable elevation
(∼ 26◦), which allowed for much more accurate fits of the phase curves than Poulet et al. (2002)
were able to obtain. In particular, linear-exponential fits, and fits with the Hapke (2002) shadow
hiding/coherent backscattering model, indicated that the HWHM of the opposition peak varies in
the range 0.1−0.2◦. The effect of interparticle shadowing was studied separately, using Monte Carlo
simulations, which indicated that the observed opposition surge is stronger and narrower than what
can be attributed even to a quite extended particle size distribution (with width Rmax/Rmin � 100).
Nevertheless, the high-quality near-opposition phase curves (see Fig. 2 in French et al. 2007b) give
an impression of possibly two superposed components, the more extended of which might represent
the interparticle contribution.

2.2. HST observations at different elevations

In the current study we use the full HST data set for |B| = 4.5 − 26◦ (See Table I in French
et al. 2007b), which has been processed and calibrated as described in French et al. (2007a).
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Throughout our analysis we use the geometrically corrected I/F (Hämeen-Anttila and Pyykkö
1970, Dones et al. 1993, and Cuzzi et al. 2002), obtained by reducing the observations at slightly
different B and B′ (the elevation angles of the Earth and the Sun, respectively) to an effective
common elevation angle Beff :

sin Beff ≡ µeff =
2µµ′

µ + µ′ , (1)

where µ ≡ | sin B| and µ′ ≡ | sin B′|, by

(I/F )corr = (I/F )
µ + µ′

2µ′ . (2)

This correction factor is exact for the reflected singly scattered light2 from a classical many-particle
thick ring (volume density D → 0), and should hold quite well even when multiple scattering is
included (Lumme 1970; Price 1973) or when scattering from a realistic geometrically thin particle
disk is considered. Inclusion of this geometric correction is very important in our case, where
observations from different elevation angles are compared with each other. For large α there can be
significant differences in B and B′, and the correction factor µ+µ′

2µ′ may amount to as much as 20%
for low elevation observations. If uncorrected, this spurious effect of variable observing geometries
would easily overwhelm the true elevation angle dependence of ring brightness. During a single
HST Cycle, Beff is more or less constant (within a few tenths of degree) although B and B′ may
vary by a few degrees (see Table I in French et al. 2007a; Fig. 1 in French et al. 2007b). This will
allow us to group together all data from each individual HST Cycle. In what follows, we will omit
the subscript and denote the geometrically corrected observed brightnesses simply as I/F .

INSERT FIG 2 HERE

To illustrate that a clear elevation angle dependent contribution is indeed present in the full
HST data set, Fig. 2 compares the radial I/F profiles at large elevation (Beff ∼ 23◦) with those
at Beff = 4.5◦, which is the lowest elevation angle for which observations are available. The solid
lines indicate observations at phase angles close to 6◦, 2◦, and 0.5◦. Indeed, for Beff = 4.5◦ the
relative brightening as α decreases is clearly stronger. For example, the typical B ring I/F is
enhanced by about 25% when α decreases from 6◦ to 2◦ for Beff = 4.5◦, but only by about 15%
for Beff = 23◦ (Fig. 3). A similar increase is seen between α ∼ 2◦ and ∼ 0.5◦. The fact that
the relative enhancement increases for lower B is qualitatively in agreement with the interparticle
shadowing example of Fig. 1; in Section 3 we will make a more detailed comparison to our Monte
Carlo models, after first characterizing the elevation angle dependence of the observations. The
figure also shows the I/F profile for B = 22.9◦, obtained at exact opposition (French et al. 2007b),
illustrating that a major part of the opposition brightening takes place inside α ∼ 0.5◦.

2The formula for the singly scattered reflected light is given by Eq. (6) in Section 3.1. When the correction factor

is applied to single scattering, µ+µ′
2µ′ × (I/F )ss(µ, µ′) = AP

8
(1 − exp(−2τ/µeff)), which equals (I/F )ss(µ = µ′ = µeff)

for all values of τ .
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INSERT FIG 3 HERE

The magnitude of opposition brightening and its dependence on elevation (at least for the
broader component outside α = 0.5◦) are fairly similar for the C ring in comparison to the optically
much denser B and A rings (see Fig. 3). At first glance, this might appear to contradict the
importance of interparticle shadowing, which is expected to be very sensitive to τ . Nevertheless,
there seems to be a positive correlation between brightness increase and the local optical depth,
as required if at least part of the brightening is due to reduced interparticle shadowing. A similar
correlation between the slope of the phase curve at Beff ∼ 26◦ and the C ring optical depth was
discussed in French et al. (2007b).

In French et al. (2007b), the high elevation angle data set (Cycles 10-13) was analyzed in detail
for three ring regions: a = 78 000 − 83 000 km (the C ring; this region excludes most prominent
ringlets and plateaus), a = 100 000 − 107 000 km (the B ring), and a = 127 000 − 129 000 km
(the A ring; this is the region where the azimuthal brightness asymmetry is strongest). Since the
data covered phase angles near to zero, it was possible to fit various detailed backscattering models
to the phase curves. In particular, besides the physically-motivated Hapke (2002) models, it was
shown that the data are quite well described by an empirical linear-exponential model

I(α)
F

= a′ exp (−α/d′) + b′ + k′α, (3)

commonly used for fitting of satellite and asteroid near-opposition phase curves (Kaasalainen et
al. 2003). The parameters a′ and d′ describe the amplitude and width of the narrow opposition
peak, while b′ and k′ give the background intensity and linear slope of the phase curve. The
half-width at half-maximum for the exponential component is HWHM = d′ ln 2. In French et
al. (2007b) a detailed analysis of the model parameters was presented as a function of ring location
and wavelength.

INSERT TABLES 1,2,3 HERE

Unfortunately, at the smaller elevation angles, the HST data are too sparse to allow such
a four-parameter fit (or a Hapke fit with seven parameters). The data we use, in addition to
those shown in Tables 2–4 in French et al. (2007b), are listed in Tables 1–3, representing mea-
surements of average geometrically corrected I/F from Cycles 6–9 for the three ring regions (C,
B, A) defined above. In some cases, there are measurements for only 3–4 distinct phase angles.
Figure 4 collects the phase curves for six sets of elevation angles, with the mean effective values of
Beff = 4.5◦, 10.2◦, 15.4◦, 20.1◦, 23.6◦, and 26.1◦ (Cycles 6, 7a, 7b, 8, 9+13, and 10-12, respectively).
The curves are normalized to I/F at α = 6◦, and the two most-widely separated filters, F336W
and F814W, are shown. For the lowest elevation angle, only two B ring phase angle data points are
available for the F336W filter, due to the contamination of images by B ring spokes. Also shown
in the plot are two-parameter log-linear fits of the form

I(α)
F

= a ln α + b. (4)
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These fits were also used in the normalization of the data to a common phase angle α = 6◦ in Fig. 4.
In order to assure a uniform coverage of phase angles at different elevations, the fits were made
restricting to values α > 0.25◦. Such simple fits seem to match the data quite well. Nevertheless,
for the most extensive data sets (Beff = 26.1◦, 23.6◦) it is evident that a steeper logarithmic slope
would be appropriate for α < 0.5◦, justifying the use of more complicated fitting formulae when
sufficient data are available. Note that the log-linear intensity fitting formula is in practice almost
indistinguishable from the log-linear magnitude fits utilized by Lumme et al. (1983) and Bobrov
(1970).

INSERT FIG 4 HERE

INSERT FIG 5 HERE

Concentrating on the wider regime α > 0.5◦, Fig. 4 suggests that the enhanced opposition
brightening at smaller elevations is well captured by the log-linear fits. A systematic increase of the
logarithmic slope with decreasing Beff is seen in all filters for all ring regions. This is most clearly
seen in Fig. 5, which compares the observations at different elevation angles for the F555W filter.
The values of the parameters a and b, for different filters and ring regions, are listed in Table 4.

INSERT TABLE 4 HERE

In order to further characterize the elevation angle dependence of opposition effect, and to
separate the intrinsic and interparticle contribution, we turn to modeling in the next section.

3. Disentangling the mutual interparticle shadowing and intra-particle contributions

3.1. Mathematical formulation

We assume that the intensity at phase angle α, effective elevation angle Beff , normal optical
depth τ , and wavelength λ, can be written in the form

(I/F )(α,Beff , τ, λ) = [fi(α, λ)fe(α,Beff , τ) + Qms(Beff , τ, λ)](I/F )ss(α,Beff , τ, λ), (5)

where fi denotes the intrinsic (e.g. due to coherent backscattering and/or shadow-hiding at the
particles’ surfaces) and fe the external (due to reduced interparticle mutual shadowing) contribution
to the opposition brightening of the singly scattered radiation, Qms is the fractional contribution
of multiple scattering, and (I/F )ss is the theoretical single scattering intensity of reflected light,

(I/F )ss =
A(λ)P (α, λ)µ′

4(µ + µ′)

(
1 − exp

[
−τ(

1
µ

+
1
µ′ )

])
, (6)

where A is the (possibly wavelength-dependent) Bond albedo of the particles and P is the particle
phase function.3 For a classical, zero volume density ring there is no interparticle shadowing, and

3The separation of particle’s intrinsic opposition brightening and its phase function is somewhat arbitrary; here, the
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thus fe = 1. Likewise, fi = 1 corresponds to the absence of an intrinsic opposition peak; the
theoretical maxima for each of these factors is 2. Note that here Qms includes just the interparticle
multiple scatterings, not the possible multiple reflection events at the particle surface, thought to be
responsible for the coherent backscattering effect. Our goal is to separate the intrinsic and external
contributions fi and fe. Note that our Eqs. (5) and (6) assume that the ring can be described by a
single uniform optical depth, whereas the actual rings are known to possess local density variations
due to self-gravity wakes (Colwell et al. 2006, 2007, Hedman et al. 2007). Besides such local
variations, the resolution element of HST observations is so large that it includes a superposition
of different optical depths, due to large scale radial structure of rings. Because of this, all the
parameters in the equations, including τ , fi, and fe, must be considered as effective mean values.

In what follows we assume that fi depends on wavelength but is independent of Beff or τ . On
the other hand, fe is independent of wavelength, but is likely to depend on both Beff and τ . The
multiply-scattered contribution vanishes for τ → 0 and for Beff → 0; in general its contribution is
expected to be small for all earth-based geometries (Cuzzi et al. 2002). We shall therefore ignore
Qms in this section, an approximation that is justified in Section 5.

Assuming Qms = 0, the fractional brightness increase (denoted by OE) in some interval αmax →
αmin can be written as

OE(Beff , τ, λ) =
I(αmin, Beff , τ, λ)
I(αmax, Beff , τ, λ)

≈ fi(αmin, λ)fe(αmin, Beff , τ)P (αmin, λ)
fi(αmax, λ)fe(αmax, Beff , τ)P (αmax, λ)

= OEi(λ) OEe(Beff , τ)
P (αmin, λ)
P (αmax, λ)

, (7)

where we have denoted OEi ≡ fi(αmin)/fi(αmax) and OEe ≡ fe(αmin)/fe(αmax). To eliminate the
intrinsic brightening and the contribution from the particle phase function, we normalize OE by
its value at some fixed elevation Beff = Bnorm. This ratio contains only the external contribution,

OE(Beff , τ, λ)
OE(Bnorm, τ, λ)

=
OEe(Beff , τ, λ)

OEe(Bnorm, τ, λ)
, (8)

since the interparticle shadowing contribution fe is the only factor that depends on Beff .

INSERT FIG 6 HERE

In Fig. 6 we show the observed brightness enhancement OEobs as a function of elevation angle,
for the previously defined C, B, and A ring regions. The range αmax = 6◦ and αmin = 0.5◦ is

phase function P (α, λ) stands for the overall angular distribution of the scattered radiation due to surface topography

and illumination.
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chosen, as the brightening in this range is likely to be due to the interparticle mutual shadowing
effect, rather than the more narrow intrinsic opposition peak. For this range of phase angles, the
log-linear fits of the previous section fits can be used with good accuracy, so that

OEobs ≡ I(0.5◦)/I(6.0◦) =
a ln 0.5 + b

a ln 6.0 + b
, (9)

where a and b are the fit parameters in Eq. (4). As seen in Fig. 6 (upper row; see also Table 5), the
typical values of OEobs for the C, B, and A ring regions are 1.25 – 1.4 for Beff = 26.1◦, increasing to
1.5 – 1.75 for Beff = 4.5◦. To show that an interparticle shadowing contribution is indeed present,
the lower row in Fig. 6 shows OEobs normalized to that at Beff = 26.1◦. If we assume, as in Eq. 8,
that the intrinsic contribution is independent of B, the effect seen in the lower row must be due
solely to the dependence of interparticle mutual shadowing on the opening angle. For the A and B
ring regions the ratio OEobs(4.5◦)/OEobs(26.1◦) is about 1.2, and about 1.1 for the C ring region.
That we are seeing an interparticle shadowing effect is further supported by the fact that the ratio
OEobs/OEobs(26.1◦) is similar for all filters, as it should be if it arises from interparticle shadowing.
It also supports the assumption that multiple scattering Qms is insignificant. That is, a significant
multiple scattering contribution would make the shape of the curves depend on the filter, since the
particle albedo increases toward longer optical wavelengths.4

INSERT TABLE 5 HERE

Similarly, to eliminate the interparticle shadowing contribution to OE we may normalize by
its value at wavelength λ = λnorm,

OE(Beff , τ, λ)
OE(Beff , τ, λnorm)

=
OEi(λ)

OEi(λnorm)
P (αmin, λ)/P (αmin, λnorm)
P (αmax, λ)/P (αmax, λnorm)

. (10)

Here, the first multiplier describes the wavelength-dependent difference in the intrinsic opposition
brightening, while the second factor describes the change in the color P (λ)/P (λnorm) between αmax

and αmin; these are written separately, since the color change (Cuzzi et al. 2002) might appear
over a wider angular range than the narrow intrinsic brightening peak. Since the intrinsic particle
behavior should not depend on opening angle, the above ratio should be independent of Beff , as is
also verified by HST data.

In order to determine the actual interparticle mutual shadowing contribution to the opposition
brightening as a function of α, and not merely its relative contribution via OEobs/OEobs(26.1◦),
we use simulation modeling in the next sub-section.

4With the inclusion of multiple scattering, Eq. (7) is modified to OEobs(Beff) = f(0.5◦,Beff )+Qms(Beff )
f(6◦,Beff )+Qms(Beff )

P (0.5◦)
P (6◦)

where f(α, Beff) ≡ fi(α, λ)fe(α, Beff , τ ). Assuming that Qms << f for all Beff , we may approximate

OEobs(Beff)/OE(Beff) = 1 + Qms(Beff )
�
1/f(0.5◦, Beff) − 1/f(6◦, Beff )

�
, where OE in the denominator includes

just the singly scattered component as in Eq. (7). Assuming that Qms(4.5◦) << Qms(26.1◦), we may further ap-

proximate OEobs(4.5◦)/OEobs(26.1◦) ≈ OE(4.5◦)/OE(26.1◦)(1 + Qms(26
◦)(1/f(6◦, 26.1◦) − 1/f(0.5◦, 26.1◦)). Since

f(0.5◦) > f(6◦), the prefactor of Qms is positive. This implies that significant multiple scattering would make the

curves in the lower row of Fig. 6 steeper in the red filter than in the blue filter, since Qms(red) > Qms(blue).
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3.2. Monte Carlo simulation method

Our photometric calculations are carried out with the method developed in SK2003 and in
Salo et al. (2004), based on following a large number of photons through a ring composed of
discrete finite-sized particles. The particle fields we use to model the rings are obtained from
dynamical simulation models. The particles are assumed to be much larger than the wavelength
so that geometric ray tracing can be used. The particle field, with periodic planar boundaries, is
illuminated by a parallel beam of photons, and the path of each individual photon is followed in
detail from one intersection with a particle surface to the next scattering, until the photon escapes
the particle field; the new direction after each scattering is obtained via Monte Carlo sampling of the
particle phase function (see e.g. Plass and Kattawar 1968; Salo 1988). The brightness at a chosen
observing direction is obtained by adding together the contributions of all individual scatterings
that are visible from this direction (not blocked by any of the finite sized particles). Compared
to direct Monte Carlo estimates based on tabulating just the directions of escaped photons, this
indirect method gives significantly reduced variance of the results (see Fig. 5 in SK2003).

Since we are dealing with low elevation angle observations, the periodic boundaries must be
treated very accurately, as described in detail in SK2003. To reduce the effect of the discreteness
of the simulated particle fields, results from at least five separate particle snapshots are combined
in the phase curves. Also, the particle fields are randomly rotated between successive photons to
avoid the possibility that, for example, a single large particle separated from the main particle field
could dominate the results. This rotation is allowed when particle fields that are homogeneous in
the planar directions are used. In contrast, in the self-gravitating examples, the correct direction
of viewing/illumination with respect to gravity wakes must be maintained, in which case a larger
number of simulation snapshots (40) is averaged in order to reduce noise. Finally, since our main
interest is in the opposition effect, which represents a deviation from the classical zero volume
case, it is important that our method can reproduce very accurately the classical results in the
asymptotic limit D → 0 (see Fig. 4 in SK2003).

In the current study, two different particle phase functions are used: the Lambert law

PL(α) =
8
3π

[sin α + (π − α) cos α] (11)

and a power-law phase function
Ppower(α) = cn(π − α)ns , (12)

where cn is a normalization constant (
∫
4π P (α)dΩ = 1). For ns = 3.09, the latter formula gives a

good match to the phase function of Callisto (Dones et al. 1993). In the case of Lambert scattering,
we utilize the fact that the above given spherical-particle phase function (van de Hulst 1980) follows
from a very simple surface-element scattering law SL(cos e, cos i) = cos e/π, where e and i measure
the emergence and incidence angles with respect to the surface element’s normal vector (this formula
means that the brightness of the Lambert surface element, I = πF cos i SL/ cos e = F cos i, is
independent of viewing angle, being just proportional to the incoming flux). Thus, in each scattering
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we sample from the distribution SL to obtain the new photon direction with respect to the normal
vector of the local surface element (see SK2003 for details). The advantage of using surface element
scattering is that the location of scatterings on the particle surface is correctly sampled, which is
crucial for accurate calculation of mutual interparticle shadowing effects. On the other hand, when
using the power-law phase function, we sample from Eq. (12) the new direction with respect to the
direction of the incoming photon. Since the particles have a finite size, this necessarily involves
an approximation as compared to using a proper surface element law. In SK2003 the Lambert
surface element scattering law and the Lambert spherical-particle phase function treatments were
compared in detail (see their Fig. 10), and it was shown that both treatments give very similar
results, provided that the scattering location at the particle surface is accurately sampled, so that
the emerging photon is continued from the point of scattering (instead of continuing from the
particle center, which would be conceptually more in accordance with the use of spherical particle
scattering law — this alternative would, however, significantly reduce the opposition brightening).

In the current study we use Lambert surface element scattering whenever we want accurate
estimates of the interparticle shadowing, i.e the function fe(α,Beff , τ) (the spherical-particle treat-
ment would also be sufficiently accurate near opposition, provided that the photon path is continued
from the intersection point). The power-law phase function is mainly used in Section 5, where we
calculate the contribution of multiple scattering, and want to compare the Lambert and power law
phase functions. Although the amount of multiple scattering itself, Ims, for a given Bond albedo
A, is not strongly dependent on the phase function, the fractional contribution Ims/(Iss + Ims)
will depend on A, as a different A is needed for a given phase function model to match the low α

observations dominated by Iss. For example, the ring brightness observed in F555W filter can be
matched with the standard ns = 3.09 power-law phase function if A ∼ 0.4 is adopted. Since the
Lambert phase function is less backscattering than this power-law phase function, a larger A ∼ 0.7
is needed to obtain a similar low α brightness. As a consequence, the role of multiple scattering
will be more important in models using the Lambert phase function.

The principal difference between our approach and the Porco et al. (2008) ray tracing method
is that we include scatterings to an arbitrary order. Additionally, our method uses Monte Carlo
sampling of the particle phase function (either the surface element law, or the spherical particle
model), so that after each scattering event a single emerging photon is followed. The computational
burden is thus at most equally divided between each scattering order (in practice, the few first orders
dominate as the photon paths are terminated when they leave the particle layer). On the other hand,
in Porco et al. (2008) each successive scattering is represented by a bundle of emerging photons,
chosen according to a discretized phase function. This implies that each successive scattering
order requires more and more computations (until they become computationally prohibitive; in
practice Porco et al. 2008 usually treat orders only up to 4), although their contribution to the
final result gets rapidly smaller. Our Monte Carlo approach will lead to identical results, but
with a significantly reduced statistical variance for a given computational effort. The improved
efficiency of our method might be quite significant in some applications, in particular when dealing
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with cases where multiple scattering is more important (transmitted radiation, high phase angles,
high particle albedo) than in the current topic of opposition brightening, which is dominated by
first-order scattering.

3.3. Grid of dynamical and photometric simulation models

We study the effect of ring structure on the expected interparticle mutual shadowing by per-
forming simulations with different dynamical optical depths (τdyn = 0.1 − 2.0) and particle size
distributions, assumed to follow a power law distribution

dN/dR ∝ R−q, Rmin < R < Rmax, q = 3, (13)

with the ratio Rmin/Rmax = 0.02 − 0.2. In all models the maximum radius Rmax = 5 m. For
the elasticity of particles the Bridges et al. (1984) velocity-dependent coefficient of restitution is
assumed

εn(vn) = min[(vn/vc)−0.234, 1], (14)

where vn is the normal component of the relative velocity of the impacting bodies and the scale
parameter vc equals vB = 0.0077 cm s−1 in Bridges et al.’s measurements. The simulations are
performed for the Saturnocentric distance a = 100, 000 km, with Ω = 1.94 · 10−4 s−1. Also, to
keep the models simple, self-gravity is not included in these simulations (it is studied separately
in Section 5 below). The dynamical simulations are performed with the local code, using the
periodic boundary conditions introduced by Wisdom and Tremaine (1988) and Toomre and Kalnajs
(1991); for more details of the code see Salo (1995) and Salo et al. (2001). These models are then
illuminated/viewed from the elevation angles B = 4◦ − 26◦ and the phase angle is varied between
0◦ to 90◦. Compared to SK2003, where several examples of opposition brightening were given,
and compared to theoretical treatments of Lumme and Bowell (1981) and Hapke (1986), we now
cover a larger range of optical depths and viewing elevations in a systematic manner, chosen to
correspond to the range of HST observations. Also a larger range of α is explored, with future
applications to spacecraft observations in mind (see Section 6). Note that the simulation models
are defined in terms of the dynamical (geometric) optical depth, i.e. the total fractional area of
particles. As discussed in SK2003, in general τdyn differs from photometric optical depth τphot,
defined in terms of the probability p for a light ray passing through the layer in the perpendicular
direction, p = exp(−τphot). However, at the classical limit D = 0 we have τdyn = τphot, so that
when referring to the theoretical Iss in Eq. (6) we make no distinction between dynamical and
photometric optical depths, and leave out the subscript from τ .

INSERT FIG 7 HERE

Figure 7 displays examples of calculated interparticle shadowing curves, in terms of fe =
Iss/Iss(D = 0). It is immediately evident that the mutual interparticle shadowing opposition
effect, measured as a deviation from the classical single scattering result, may extend to several
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tens of degrees.5 The maximum amplitude fe(α = 0◦) is practically independent of the adopted size
distribution and approaches the theoretical maximum fe = 2 (Irvine 1966) when the path optical
depth τpath = τphot/µ + τphot/µ

′ = 2τphot/µeff is large. Also, fe(0◦) is reduced for smaller τpath,
regardless of the assumed particle size distribution: the maximum amplitude is in good agreement
with the theoretical estimate (SK2003)

fe(0◦) =
2

1 + exp(−τpath/2)
(15)

≈ 1 +
1
4
τpath − 0(τpath

3)...,

which follows from the theoretical treatment of Lumme and Bowell (1981). In Fig. 7 this estimate is
marked with a horizontal line. Also shown in the upper right corner of the frames is the photometric
optical depth, which in dense homogeneous systems exceeds τdyn by a factor ∼ (1 + D) (SK2003;
see also Peltoniemi and Lumme 1992). Notice that Eq. (15) implies a similar dependence on τpath,
regardless of which combination of τphot and Beff produces it (see Fig. 13 in SK2003 for detailed
comparison for homogeneous systems; their Emax corresponds to fe(0◦)).

Also shown in Fig. 7 are fits to the simulated shadowing curves, using the Hapke (1986, 2002)
formula for the single scattering brightness enhancement due to SH in a semi-infinite particle layer,

BSH(α) = 1 +
Bs0

1 + tan(α/2)
hs

. (16)

Here, Bs0 is the fractional amplitude, and hs describes the width of the effect. The fits, indicated by
solid curves in Fig. 7 use Monte Carlo results for α < 10◦. Very good agreement is seen (the mean
RMS deviation is 0.01), except for the simulations with the widest size distribution, in which case
the fit range extends furthest away from the peak of the function (note that the Hapke SH formula
implies BSH(α) → 1 for large α, whereas Monte Carlo simulations indicate fe > 1). Similarly,
the Monte Carlo curves are well-fitted with the 4-parameter linear-exponential formula, yielding a
mean RMS ∼ 0.005.

INSERT FIG 8 HERE

As seen in Fig. 7, the angular width of the simulated interparticle shadowing opposition peak
depends strongly on the adopted size distribution, and most importantly, also on the elevation
angle. On the other hand, it is nearly independent of τdyn. Fig. 8 shows the HWHM of the
interparticle shadowing enhancement factor, both as obtained directly from fe(α) curves (in the
left), by setting

fe(α = HWHM) − 1 =
1
2

[fe(α = 0◦) − 1] , (17)

5In fact, the reflected Iss is enhanced for any phase angle: see SK2003 Fig. 7 and the discussion related to it,

and Fig. 22 below. This enhancement follows, since for a geometrically thin layer the illuminated upper layers are

preferentially visible at every lit side geometry.
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and from the Hapke SH model (HWHM ≈ 2hs), as well as from the linear-exponential model fits
to the simulation curves. For the Hapke model fits the HWHM’s are close to the actual simulation
values, whereas for the linear-exponential fits the HWHM’s are roughly 2-3 times smaller: the
discrepancy is due to the fact that the HWHM for the linear-exponential fit is calculated from the
exponential part, although a large part of the fit is due to the linear slope.

The fact that the widest size distribution has the narrowest opposition peak, is consistent with
the Hapke (1986) theoretical model for semi-infinite particle layers. According to his formulae,

HWHM
D(τs = 1)

=
3
4

< σ >< R >

< V >
=

3
4

< R2 >1.5

< R3 >
=

3
4
Y, (18)

where D(τs = 1) is the volume density at the layer where the slant optical depth equals unity, < σ >

and < V > are the average scattering cross section and particle volume, and < R >=
√

< σ > /π.
For a q = 3 power law size distribution the Hapke function Y is

Y =
√

2 (ln Ws)1.5 Ws

(Ws − 1) (W 2
s − 1)0.5

, (19)

where Ws = Rmax/Rmin. Applied to our size distributions, and using the central plane volume
filling factors (D(z = 0) = 0.32 − 0.38) for D(τs = 1), this predicts that HWHM=3 − 12◦, for
Ws = 50− 5, respectively. In addition to predicting correctly the relative change in HWHM, these
width estimates are quite close to the results of the calculations for B = 26◦, suggesting that for
this elevation the reflection is indeed from the dense equatorial layer. On the other hand, for lower
elevations the reflection is actually from the upper layers with a substantially smaller effective D (see
Fig. 1 for a schematic illustration). According to Fig. 9 in SK2003, for the dynamical simulations
studied here, the filling factor at a given vertical coordinate zo (on the side of illumination/viewing)
is roughly proportional to the path optical depth for a perpendicular illumination reaching this layer,

D(z0) ∝ τphot(z > z0). (20)

Since for an oblique view τs = τphot/ sin B, setting τs ≈ 1 corresponds to reflection from the level
z0 where τphot(z > z0) ≈ sin B, at which elevation the volume density D(z0) ≈ sinB × D(z = 0).
This explains the practically linear dependence,

HWHM ∝ B, (21)

coming in addition to the size distribution dependence implied by the Hapke (1986) formula. Note
that for a vertically uniform ring, the expected width would be independent of Beff , regardless of
size distribution.

INSERT FIG 9 HERE

Figure 9 shows the enhancement factors fe(0.5◦) and fe(6◦), which mark the range of phase
angles for which the simulated and observed opposition enhancements will be compared in the next
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section. Two optical depths (τdyn = 0.1 and 1.5) are compared: note that although for the small τdyn

the fe’s are much smaller, the ratio OEe = fe(0.5◦)/fe(6◦) (right hand panel) can still be fairly large
for low elevations, at least qualitatively consistent with Fig. 7 showing significant elevation angle
dependence of OEobs even for the C ring. For the larger optical depths, the enhancement factors, as
well as their ratio, are typically larger: however, the ratio OEe = fe(0.5◦)/fe(6◦) depends in a quite
complicated way on the width of the assumed distribution and the elevation angle. Essentially, this
is due to the fact that for the wide distributions, the width of the opposition peak sweeps through
the range α = 0.5◦ − 6.0◦ when B decreases.

INSERT Fig. 10 HERE

Finally, Fig. 10 shows examples of opposition brightening for different optical depths and
elevations, both with and without the inclusion of multiple scattering. Instead of normalizing to
the theoretical single scattering values as in the previous figures, the figure shows I/I(6◦). In this
figure, the ns = 3.09 power-law phase function with A = 0.5 was used. The small difference between
the total intensity curves and those for single scattering again underlines that, at least for these
phase functions, multiple scattering has only a minor role on the near-opposition phase curves. In
section 5, we show that this conclusion is also supported by the tilt effect observations.

4. Extracting the elevation angle dependent component via model comparisons

4.1. Separating intrinsic and intraparticle contributions

From the analysis presented in Section 3.2, we have not yet determined the absolute con-
tributions of intrinsic (fi) and interparticle (fe) contributions to the near-opposition brightness
increase. Rather, we have identified the amount of OEe(Beff) relative to Beff = Bnorm, or the
relative amount of OEi(λ) relative to λ = λnorm, respectively (here, OEe ≡ fe(αmin)/fe(αmax) and
OEi ≡ fi(αmin)/fi(αmax)). In order to estimate the interparticle shadowing enhancement factor
fe(α,Beff ) we utilize simulation modeling: we compare the observed OEobs(Beff )/OEobs(Bnorm)
(using αmin = 0.5◦, αmax = 6◦, Bnorm = 20◦) to the OEe(Beff)/OEe(Bnorm) ratios indicated by the
above described simulations performed for different optical depths and widths of the size distribu-
tion.

The best match simulation then implies a particular fe, and the intrinsic contribution can be
estimated from Eq. (5) (ignoring the Qms term):

fi(α, λ) =
Iobs(α,Beff , τ, λ)
Iss(α,Beff , τ, λ)

1
fe(α,Beff , τ)

, (22)

where Iss is the theoretical singly scattered intensity for D = 0. Note that there is still some
freedom here, since the Iss contains the product AP (α), which, as being independent of Beff cannot
be separated from fi. In practice we will divide the observations with the simulated interparticle
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shadowing contribution and determine the ratio

gi(α) ≡ fi(α)P (α)
fi(6◦)P (6◦)

=
Iobs(α)
Iobs(6◦)

:
fe(α)
fe(6◦)

. (23)

The normalized intrinsic effect gi(α) in the left side is also a quite good approximation for fi(α)
itself. That is, since the intrinsic opposition effect has HWHM < 1◦, we have fi(6◦) ≈ 1. Also,
the variation in the phase function between α = 0◦ to 6◦ is most likely very small (P (0◦)/P (6◦)
=1.005 and 1.11 for the Lambert and the n = 3.09 power law phase functions, respectively). As
a useful check of the extraction procedure, we can use the fact that observations at all elevation
angles should yield the same gi(α).

INSERT FIG 11 HERE

Figure 11 shows this procedure applied to the C, B, A ring regions. In the left panels, the
OEobs in the U (F336W) and I (F814W) filters is compared to simulations performed with various
widths of the size distribution, while in the right panels, both observations and simulations have
been normalized to the OE at Bnorm = 20◦. In the left hand panels the observed OE’s are clearly
larger than the simulated ones, which contain just the interparticle shadowing contribution: the
excess is due to the intrinsic opposition effect. Also, the OE in U is clearly larger than in the I
filter. However, at right, after normalization to Bnorm = 20◦, the observed and simulated elevation
angle trends are much closer to each other. Also note how well the normalization removes the
wavelength dependence of the observations in the right panels, with the U and I filters behaving in
a very similar manner.

For the C ring (upper row in Fig. 11) a detailed comparison is made to simulations with τdyn =
0.1, in which case the magnitude of the elevation angle dependent OE increases monotonically with
the width of the size distribution. Clearly, the best match to the elevation angle dependent part is
obtained with the widest studied distribution Ws = 50; the curves also suggest that a still larger
Ws would further improve the fit. On the other hand, the B ring (middle row) is compared to
simulations with τdyn = 2.0, and now the match is best for a much narrower size distribution
Ws = 5 − 10. The main difference in the simulated OEe(Beff)/OEe(Bnorm = 20◦) curves for small
and large τdyn’s is the turning down at low Beff values in the case of large τdyn and large Ws. As
mentioned earlier, the reason is that in this case the width of the interparticle shadowing peak is so
small that it falls inside the studied α range. For the A ring region (lower row) the comparison is
made to simulations with τdyn = 1, and just as for the B ring region, a quite narrow size distribution
Ws ∼ 5 is preferred. Interestingly, for the A ring the τdyn = 1 (or even τdyn = 2) case provides a
slightly better match than that with the nominal τdyn = 0.5, although the difference is not large.
This is not surprising, taking into account that the mid-A ring is the location where self-gravity
wakes are strongest: the actual amount of light reflection must result from a superposition of
dense wakes and rarefied gaps, with the wakes having much higher optical depth than the nominal
τ ∼ 0.5 (Colwell et al. 2006a; Hedman et al. 2007). The fact that we are comparing the A ring to
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non-gravitational simulations in the first place might seem suspect. However, French et al. (2007b)
showed that there is very little difference in the phase curve between wake and non-wake simulations.

INSERT FIG 12 HERE

In order to demonstrate that the above extraction procedure works as intended, Fig. 12 com-
pares the original HST F336W phase curves (left panels) with those after the removal of the
elevation angle dependent part (middle). All the curves are shown normalized to α = 6◦. Clearly,
the residual curves in the middle panel, gi(α) = fi(α)P (α)/[fi(6◦)P (6◦)], are all very close to each
other, indicating that the removal of the elevation dependent part has been successful (similarly
for the other filters; see Fig. 13). The removed interparticle shadowing contributions themselves,
fe(α)/fe(6◦), for the various Beff ’s are also shown (right panels).

INSERT FIG 13 HERE

4.2. Fitting the intrinsic component

Once the elevation angle dependent part of the opposition effect has been removed, it is
interesting to make model fits to the residual curves, which presumably represent the true intrinsic
opposition effect. In this subsection, the fit parameters are given for both linear-exponential and
Hapke (2002) models. We also compare our results to French et al. (2007b), to see how much the
deduced intrinsic parameters differ from those obtained from fits to original high elevation angle
data points, where the effect of interparticle shadowing is least pronounced.

Figure 13 shows the deduced residual intrinsic components (large symbols), together with
model fits (thick blue curves), for all five different filters. These data, collecting the observations
from all elevations, are also compared with the original high elevation angle data (Beff ∼ 23◦;
indicated by small symbols and thin orange curves6): since from these latter points the interparticle
shadowing contribution has not been removed, the ratio between the data sets measures the amount
of interparticle shadowing correction for Beff = 23◦.

The model fits shown in Fig. 13 are made with the Hapke (2002) formulation, which includes
both intraparticle shadow hiding and coherent backscattering contributions,

gi(α) = AiBSH(α)BCB(α). (24)

Here BSH(α) describes the intrinsic shadow hiding part, assumed to be similar in form to Eq. (16)
used above for fitting the simulated interparticle shadowing, and BCB(α) is the coherent backscat-
tering contribution (with fractional amplitude Bc0 and HWHM ≈ 0.72hc),

6 The Beff = 26◦ data are also included, after they have been corrected to correspond to Beff = 23◦, by first

dividing by fe(26
◦)Iss(26

◦) and then multiplying by fe(23
◦)Iss(23

◦).
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BCB(α) = 1 + Bc0

1 +
1 − e− tan(α/2)/hc

tan(α/2)/hc

2
[
1 + tan(α/2)/hc

]2 . (25)

Compared to Hapke (2002), we have omitted from shadow hiding the part containing the Henyey-
Greenstein phase function of regolith grains, as well as the multiple scattering at the particle surface
regolith, since the parameters related to these contributions cannot be reliably determined from
the near-opposition data alone. Here, this part is absorbed into a single parameter Ai related
to the unspecified optical properties of regolith grains. Note, however, that we apply this fit to
data normalized to α = 6◦: in this case Ai is not an independent parameter but is determined
by the normalization and the other parameters. A similar model, except for fitting the original
high elevation I/F measurements, and including the full Hapke (2002) formulas for the grain phase
function and multiple scattering, was used in French et al. (2007b). As in French et al. (2007b),
here we also take into account the finite size and limb darkening of the solar disc in the calculation
of model brightness for the near-to opposition phase angles.

The parameters of the intrinsic effect fits shown in Fig. 13 are collected in Table 6: the
typical RMS residuals of the fits normalized to α = 6◦ are of the order of 0.015-0.02 (similar to
those obtained when using original uncorrected high elevation angle data). For comparison, fits
to the intrinsic gi(α) using the linear-exponential formula (Table 7) yield residuals comparable in
magnitude to those using the simplified Hapke model.

Insert Table 6

Insert Table 7

Figure 13 also shows separately the intraparticle SH contribution: in the fitted models, this
is conveniently quantified by the enhancement factor at the zero phase, SH(0◦) = Ai(1 + Bs0).
Interestingly, for the A and B rings, the amount of the deduced intra-particle SH is almost negligible
(SH(0◦) ∼ 1.0), except for F336W, where SH(0◦) ∼ 1.1. For the A and B ring regions, the intrinsic
brightening can thus be accounted for almost entirely by the coherent backscattering, with a typical
value CB(0◦) = (1 + Bc0) ≈ 1.4 − 1.5. On the other hand, for the C ring the SH brightening is
clearly stronger in all filters, with SH(0◦) ∼ 1.3; in contrast, the CB contribution is quite similar to
the B and A ring regions. Note that this kind of separation is not possible when using the original
data without removal of the interparticle contribution.

INSERT FIG 14 HERE

INSERT FIG 15 HERE

The linear-exponential and Hapke model fit parameters are further displayed in Figs. 14 and
15, respectively. Altogether, fits to three different data sets are compared:

1) The original high elevation angle data set used in French et al. (2007b), combining the Cycle
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13 exact opposition point for Beff = 22.9◦ with the Beff = 26◦ data (upper row).

2) The original Beff = 23◦ (Cycles 13 and 9 combined ) and Beff = 26◦ (Cycles 10-12) data
sets, the latter normalized to Beff = 23◦ as described in footnote 6 (middle row).

3) The combined data set from all Beff ’s, containing just the intrinsic component (lower row).

Data sets 2) and 3) are those discussed in connection to Fig. 13. A comparison of data sets 1) and
2) (the two first rows in Fig. 14) shows that the A and B ring fits are nearly identical: both sets
indicate that HWHM is about 0.1◦ for the BVRI filters, rising to 0.15 − 0.20◦ toward U. However,
for the C ring region, although the estimated HWHM is more or less the same in all filters for both
data sets, there is a nearly two-fold difference in the fitted values. A similar difference between the
data sets 1) and 2) is also seen in the Hapke model parameters (compare the two uppermost rows
of Fig. 15). The difference arises from the inaccurate inclusion of the Cycle 13 exact opposition
point among the 26◦ data without accounting for the different elevation (data set 1). The strong
elevation angle dependence when combining such nearby Beff ’s is due to the low optical depth of the
C ring, making its I/F decrease sharply with elevation angle. That is, for τ = 0.1 the geometrical
factor in the singly scattered I/F (the exponential term in Eq. (6)) is about 1.1 times larger for
Beff = 23◦ than for Beff = 26◦. For the higher optical depth B and A rings the dependence is much
weaker (for τ = 0.5, 1.0, 2.0 the difference in (I/F )ss is 1.03,1.005, 1.0001, respectively) and the
nearby Beff ’s can be safely combined.7

Comparing the fits for the intrinsic opposition effect data, and for the original Beff = 23◦ +26◦

data set properly normalized to Beff = 23◦ (third and second rows, respectively, in Figs. 14 and 15),
we can see that the main difference is in the linear slope (for the linear-exponential fits), and in the
SH(0) amplitude (for the simplified Hapke model fits). For the linear-exponential model the slope
is significantly reduced, in particular for the B and A rings, and the same is true for the SH(0)
in the Hapke model. This quantifies the difference seen in Fig. 13 between the two sets of model
curves. On the other hand, the HWHM’s are almost unaffected by the removal of interparticle
shadowing contribution.

Insert Table 8 here

Table 8 lists the intrinsic (SH +CB) and external (interparticle shadowing) contributions to
OE(0.5◦) ≡ I(0.5◦)/I(6◦) and OE(0◦) ≡ I(0◦)/I(6◦), for different filters and ring regions. The
internal contribution OEi is calculated from the Hapke fit parameters (solid curves in Fig. 13), and
the interparticle contribution OEe has been calculated for Beff = 23◦, using the best fit simulation
models shown in Fig. 12. The modeled total opposition enhancement is then OE = OEi × OEe;
for OE(α = 0◦) this can be compared to the observed (Cycle 13) I(0◦)/I(6◦) listed in the last
column (showing agreement to within 2%). Table 9 is similar, except that OEe has been calculated

7In principle, the fact that we are fitting I/I(6◦) instead of I/F itself could affect our fits. However, we confirmed

that a similar change in the C ring fit parameters is seen in the French et al. (2007b) original fits, if the I/F for the

Cycle 13 point is divided by Iss(23
◦)/Iss(26

◦) ≈ 1.1 before combining with the 26◦ data.
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for Beff = 4.5◦: combined with OEi the predicted total enhancement I(0◦)/I(6◦) is about 2.7, 2.5,
and 2.6 for the C, B, and A rings, respectively. Unfortunately there are no HST comparison data,
since the minimum phase angle during the low elevation angle opposition (Cycle 6) was ≈ 0.3◦ (the
smallest observed α = 0.46◦).

5. Tilt effect: interparticle shadowing or multiple scattering?

5.1. HST observations of the tilt effect at different filters and phase angles

Traditionally, the term tilt effect refers to the brightening of the B ring with increasing elevation,
amounting to as much as 30% for the ground-based range of Beff ’s (e.g. Lumme et al. 1983), in
contrast to the nearly constant brightness one would expect for an optically thick classical multilayer
ring dominated by single scattering. On the other hand, for the A ring the observed I/F was found
to be nearly constant or slightly decreasing with increasing ring tilt (Lumme and Irvine 1976b),
more consistent with the single scattering prediction, Eq. 6 (Iss/F is a decreasing function of Beff

in the case of τ � 0.5, and practically constant for τ ≥ 0.5 ). Note that these early measurements
actually refer just to the brightest innermost portion of the A ring: the HST images (Cuzzi et
al. 2002) revealed that for the mid-A ring the brightness in fact decreases quite markedly with
elevation, much more than predicted by Eq. 6.

In Salo et al. (2004) this A-ring negative tilt effect was attributed to the increased visibility
of the gaps between self-gravity wakes at larger elevations. Indeed, this explanation in terms of
gaps/wakes is now fully supported by the Cassini occultation measurements (Colwell et al. 2006,
2007, Hedman et al. 2007).

The B ring tilt effect has been viewed as a consequence of multiple scattering, which becomes
more important with increasing ring elevation: this is also supported by the fact that the tilt effect
is pronounced for the optically thick B ring (Lumme and Irvine 1976b; Esposito and Lumme 1977;
Lumme et al. 1983). However, from analysis of HST observations showing the lack of significant
color variations with respect to ring elevation, Cuzzi et al. (2002) and Poulet et al. (2002) con-
cluded that multiple scattering must be quite weak in the backscattering geometry of Earth-based
observations. SK2003 proposed that the tilt effect is a consequence of the variation in the effective
filling factor with opening angle, taking place for vertically non-uniform rings. According to this
view, based on N-body simulations and Monte Carlo scattering calculations, the observed reflection
at low elevations is dominated by the rarefied upper ring layers, which should have a very narrow
opposition peak. Thus the tilt-effect observations, made typically at a phase angle of a few degrees,
fall outside the opposition peak. However, as the elevation angle increases, the reflection is more and
more dominated by the dense equatorial ring layer. This should exhibit a much wider opposition
peak, which increases the observed brightness. The magnitude of this effect should also increase
with increasing τ . However, in SK2003 no suitable data were available for testing this hypothesis.
Note that this explanation is intimately tied to the mechanism generating the opposition effect of
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the rings: in the previous section we have shown that this contains both intrinsic and interparticle
contributions. It is therefore important to test the SK2003 hypothesis for the tilt effect, using the
HST data.

INSERT FIG 16 HERE

The observed tilt effect is illustrated in Fig. 16, which displays radial profiles of the ring ansa
brightness at several elevations, normalized to that at Beff = 4.5◦. Observations with the filter
F555W are shown separately for two phase angles: α = 6◦ (upper panel) and α = 0.5◦ (lower
panel). The α = 6◦ plots correspond to Fig. 8b in Cuzzi et al. (2002), except for the normalization.
They show the strong positive tilt effect (I/F increasing with increasing Beff) for the brightest part
of the B ring, and a weaker but still positive effect in the innermost A and B rings. In contrast,
the mid-A ring (124, 000−133, 000 km) has a negative tilt effect, due to the aforementioned wakes.

INSERT FIG 17 HERE

At low phase angle (α = 0.5◦), the behavior changes quite markedly. For the A ring, the
negative tilt effect is even more pronounced at α = 0.5◦ than at α = 6◦. In the inner B ring
(93, 000− 99, 000 km), the tilt effect is now also negative, and a positive effect is prominent only in
the region 105, 000 − 110, 000 km. To exclude the possibility that the differences could be due to
anomalous behavior of Beff = 4.5◦ images (some of which were affected by spokes, though not the
ones included to Fig. 16), Fig. 17 compares two other filters, this time normalized to Beff = 10◦.
Overall, a very similar behavior is seen as in the previous figure, although the B ring α = 6◦ tilt
effect appears a bit stronger for F814W than for F336W.

5.2. Modeling the B ring tilt effect

In principle, both interparticle shadowing and multiple scattering can cause a positive tilt
effect. Our goal in this section is to provide a quantitative estimate of how much these factors
contribute to the observed B ring tilt effect. For interparticle shadowing, our estimate follows
directly from the opposition effect models of the previous section. An estimate for the fractional
amount of multiple scattering, Qms, can be obtained by comparing the magnitude of the tilt effect
at long and short wavelengths. The particle albedo increases significantly with wavelength in the
visual regime, which also increases the relative amount of multiple scattering: thus the contribution
of multiple scattering, if significant at all, should result in a strong wavelength dependence in the
tilt effect. Our approach here, for multiple scattering, is thus very similar to the Cuzzi et al. (2002)
color analysis.

INSERT FIG 18 HERE

We quantify the tilt effect by the ratio of scaled intensities, Î = I/Iss, measured at a given
elevation, normalized to that of Î at Beff = 4.5◦. Using the ratio of scaled intensities, instead
of intensities, simply removes the geometric contribution to the tilt effect arising from the factor
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1−exp(−2τ/ sin Beff) in Iss (i.e. at small τ , Iss(B) is a decreasing function of B while at larger τ it
is practically constant). The difference is not large: compare the two uppermost frames in Fig. 18,
showing the A and B ring tilt effect, by plotting either the ratio of intensities (upper frame), or that
of scaled intensities (middle frame) as a function of Voyager PPS (Photopolarimeter Subsystem)
optical depth, obtained from the NASA Planetary Data System Rings Node (Showalter et al. 1996).
Both profiles highlight the strong τ dependence of the tilt effect.

Denoting the ratio Î(Beff)/Î(Beff = 4.5◦) by RB, we have

RB(α,Beff , τ, λ) =
(I/Iss)(α,Beff , τ, λ)

(I/Iss)(α,Beff = 4.5◦, τ, λ)

≈ fi(α, λ)fe(α,Beff , τ) + Qms(Beff , τ, λ)
fi(α, λ)fe(α,Beff = 4.5◦, τ)

,

where we have utilized the fact that Qms in Eq. (5) is insignificant at Beff = 4.5◦ (Cuzzi et al.
2002). Furthermore, when evaluated at α = 6◦, we can safely assume that fi ≈ 1 (since its HWHM
in Section 4 found to be << 6◦). Therefore,

RB(α = 6◦, Beff , τ, λ) ≈ fe(α = 6◦, Beff , τ) + Qms(Beff , τ, λ)
fe(α = 6◦, Beff = 4.5◦, τ)

. (26)

Since Qms << 1, we may further approximate

RB(α = 6◦, Beff , τ, λ) ≈ fe(α = 6◦, Beff , τ)
fe(α = 6◦, Beff = 4.5◦, τ)

+ Qms(Beff , τ, λ), (27)

since according to Fig. 9, the factor fe(α = 6, Beff = 4, 5◦, τ) should be close to unity. This
approximation illustrates that the tilt effect can indeed be partly due to interparticle shadowing
(the fe(Beff)/fe(4.5◦) term), and partly due to multiple scattering (Qms): both imply enhanced ring
brightness at larger Beff , and also at larger τ . Concerning the interparticle shadowing contribution,
the various size distribution models of Fig. 9 in Section 3 imply an enhancement by 1.25–1.35 for
Beff = 26◦, τdyn = 1.5, all in qualitative agreement with the B ring observations. The interparticle
shadowing effect is thus very robust, in the sense that it does not require very specific ring models
in order to be able to account for the observed strong tilt effect.

To isolate the Qms contribution, we form the difference of RB at two different filters, with
wavelengths λ1 and λ2,

∆λRB = RB(α = 6◦, Beff , τ, λ2) − RB(α = 6◦, Beff , τ, λ1) ≈ Qms(λ2) − Qms(λ1). (28)

Following Cuzzi et al. (2002; their Appendix) we assume that the multiply-scattered flux Ims(λ) ∝
[A(λ)]n, where n ≈ 2− 3 indicates the typical order of scattering responsible for multiply scattered
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light. The ratio of fractional multiple scattering contributions at different wavelengths is then
Qms(λ2)/Qms(λ1) ∼ [A(λ2)/A(λ1)]n−1. Eliminating Qms(λ1) leads to an estimate

Qms(λ2) ∼ ∆λRB

1 − [A(λ1)/A(λ2)]n−1
. (29)

Since the backscattered flux is dominated by single scattering, the ratio of albedos can be roughly
estimated as A(λ1)/A(λ2) = Iss(λ1)/Iss(λ2) ≈ I(λ1)/I(λ2) evaluated at α = 6◦, Beff = 4.5◦ (having
minimal contribution of multiple scattering and opposition brightening). For the studied B ring
region the observed I/F ’s at Beff = 4.5◦, α = 6◦ are 0.16 and 0.44 at F336W and F814W, respec-
tively. Equation (29), together with n ∼ 2 then indicates Qms(F814W ) ∼ 1.5∆λRB. According
to lowermost frame of Fig. 18, the maximum of ∆λRB is ∼ 0.1, suggesting a maximal Qms ∼ 0.15
for the F814W filter (and ∼ 0.05 for F336W). This justifies the omission of Qms in previous sec-
tions (the fractional error of the derived fi is of the order of Qms). Comparing to the interparticle
shadowing contribution (about 30% enhancement in RB) we can now estimate that the relative
contribution of multiple scattering to the tilt effect should be about 1/3 of the total effect, at most,
and practically negligible at shorter wavelengths. The multiple scattering contribution corresponds
roughly to the difference between the F814W and F336W trends in Fig. 18 (upper or middle frame,
whereas the difference of F336W points from the theoretical single scattering curve represents the
interparticle shadowing factor).

The consistency of the estimated Qms can also be checked by a direct comparison with sim-
ulation models. For example, the observed I/F in the B ring region (for Beff = 26◦, α = 6◦)
can be reproduced with an ns = 3.09 power law phase function by assuming A336 = 0.21 and
A814 = 0.57, when the dynamical model with τdyn = 2.0, Ws = 10 is assumed. The same model
implies RB(814) − RB(336) ∼ 0.04 (with the simulated maximum Qms ∼ 0.06), which is smaller
but still in fair agreement with the ∆λRB ∼ 0.06 implied by the observations for the B ring region.
On the other hand, for a Lambert phase function, albedo values 0.36 and 0.87 would be required
for these two filters. This in turn would imply RB(814)−RB(336) ∼ 0.2 (and Qms ∼ 0.35), a factor
of three larger than the observed difference between the two filters. In Fig. 18 (bottom row) we
also plot the modeled ∆RB as a function of τ , for the two phase functions, using the above albedo
values. We conclude that the particles are significantly more backscattering than Lambert spheres,
and are more similar to those implied by the ns = 3.09 power law. This is consistent with previous
studies based on direct fitting of large range Voyager phase curves (Dones et al. 1993).

The reduction of the B ring tilt effect from α = 6◦ to 0.5◦, which was shown in Fig. 16, is just
what is expected if the elevation-dependent interparticle shadowing is primarily responsible for the
observed tilt effect. To see this, we may form

RB(α = 0.5◦, Beff , τ, λ) ≈ fi(α = 0.5◦, λ)fe(α = 0.5◦, Beff , τ) + Qms(Beff , τ, λ)
fi(α = 0.5◦, λ)fe(α = 0.5◦, Beff = 4.5◦, τ)
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=
fe(α = 0.5◦, Beff , τ)

fe(α = 0.5◦, Beff = 4.5◦, τ)
+ (30)

Qms(Beff , τ, λ)
fi(α = 0.5◦, λ)fe(α = 0.5◦, Beff = 4.5◦, τ)

,

Close to opposition, we can approximate fife ∼ 2 in the divisor of the Qms term, leading to

RB(α = 0.5◦, Beff , τ, λ) ≈ fe(α = 0.5◦, Beff , τ)
fe(α = 0.5◦, Beff = 4.5◦, τ)

+ 0.5Qms(Beff , τ, λ). (31)

According to Fig. 9, the interparticle shadowing factor (the first term in Eq. (31)) is reduced for α =
0.5◦ when compared to α = 6◦: in particular, for the narrow Ws = 5−10 size distributions, favored
by the opposition phase curve fits of Section 4, the modeled fe(26◦)/fe(4◦) ∼ 1.15, significantly
smaller than the ∼ 1.3 for α = 6◦. This drop in the magnitude of the interparticle shadowing tilt
effect, from ∼ 30% to ∼ 15%, is in remarkable agreement with observations shown in Fig. 16. Also,
according to Eq. (31) the contribution from multiple scattering should be reduced to roughly one-
half for the smaller phase angle. This is consistent with observations showing a weaker wavelength
dependence of tilt effect when α is reduced (see Fig. 17).

In summary, the interparticle shadowing mechanism, by which the interparticle opposition
peak widens at larger elevations, can account quite well for the observed positive tilt effect of the
B ring. Additionally, its phase angle dependence – the differences seen between α = 0.5◦ and 6.0◦

– are accounted for; this effect had not been considered in earlier studies, which concentrated on
α = 6.0◦. The increased amount of multiple scattering with elevation seems to be a secondary
effect, accounting primarily for the slightly stronger tilt effect at longer wavelengths.

5.3. Self-gravity wakes and the negative A ring tilt effect

So far, our model comparisons have been made with non-gravitating simulations. On the other
hand, Saturn’s A and B rings are known to possess self-gravity wake structures (Salo 1992b, see also
Toomre and Kalnajs 1991, Colombo et al. 1976), responsible for the optical brightness asymmetry
(Camichel 1958, Lumme and Irvine 1976a, Thompson et al. 1981, Franklin et al. 1987, Dones et
al. 1993) and the optical depth variations detected with various Cassini instruments (Colwell et
al. 2006, 2007, Hedman et al. 2007, Ferrari et al. 2009). Here we address the connection of wakes to
the negative tilt effect observed in the mid A ring. We model this region with the same two standard
self-gravity models that were used in Salo et al. (2004) and French et al. (2007a) for studies of the
A ring azimuthal brightness asymmetry. In the first model, identical particles are assumed (IDE),
while the second model (SIZE) employs a q=3 power law with Ws = 10. In both cases τdyn = 0.5,
internal particle density ρ = 450 kg m−3 is assumed together with the Bridges et al. (1984) elasticity
law. As shown in French et al. (2007a), the asymmetry amplitude implied by these two models
brackets the observed asymmetry in HST observations: the IDE-model yields about 15% too large
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asymmetry amplitude, while that of the SIZE-model is about 40% too small. In other respects the
IDE model is also clearly better: it matches nicely the elevation angle dependence of the asymmetry
amplitude, and moreover yields the correct minimum longitude, whereas for the SIZE model the
minimum longitude is off by about 5◦; this mismatch in minimum longitude for the supposedly more
realistic size distribution models was recently confirmed by Porco et al. (2008). The transmission
properties of the models are also in accordance with low elevation (B = 3.45◦) VIMS occultation
studies (Hedman et al. 2007): the IDE and SIZE models imply maximum transmission probabilities
T = 0.09 and 0.02, respectively, while the observations indicate T ≈ 0.08. Although one can fine
tune the strength of asymmetry in the simulation models (see Fig. 9 in French et al. (2007a),
displaying the effect of changing the elasticity law or the underlying dynamical optical depth),
these two models are probably sufficient to cover the qualitative effects of the wake structure on
the tilt effect. For comparison, we will also show results from non-gravitating size distribution
simulations with Ws = 10, both for τdyn = 0.5 and for τdyn = 2.0.

INSERT FIG 19 HERE

As we discussed in the previous sub-section, the α = 0.5◦ observations lie largely inside the
interparticle shadowing opposition peak, regardless of the observing elevation, so there should be
no significant increase of brightness with Beff due to the improved visibility of the dense central
layer. This dependence on phase angle is displayed in a more quantitative way in Fig. 19, showing
the observed (I/F ) vs. Beff in the same B and A ring regions for which the opposition phase
curves were studied in the previous sections. The dense B ring behavior is plotted in the upper left
corner, matched reasonably well by the simulation model (similar to the SIZE model, but with no
self-gravity and with τdyn = 2.0), at both α = 6◦ and α = 0.5◦.

The importance of including self-gravity when modeling the A ring is clearly seen in the upper
right corner of Fig. 19. Here, the agreement of the non-gravitating τdyn = 0.5 model with the
mid-A ring tilt curve (upper right corner) is far from satisfactory. The model curves are almost
flat, whereas the observed I/F are monotonically decreasing with B. The observed brightness
difference between the α = 6◦ (open circles) and α = 0.5◦ (filled circles) ring brightnesses is,
however, well-described by the difference between the corresponding model curves (dashed and
solid lines, respectively). This suggests that the opposition effect-related brightening with Beff acts
in the A ring just as in the B ring, and that the systematic decline is due to an additional effect
missing from the homogeneous non-gravitating model. Indeed, the strong asymmetry attributed
to gravity wakes is expected to be accompanied by a negative tilt effect (Salo et al. 2004). The
two bottom panels display the results for the two previously introduced self-gravitating models,
which again bracket the observed behavior (note that no attempt was made to fit the data points).
Curiously, for the tilt effect the SIZE model seems to be closer to observations than the IDE model
(the opposite was true for asymmetry and transmission amplitudes; this probably implies that some
ingredient is still missing from current simulation models for the A ring gravity wakes).

Gravity wakes have also been inferred for the B ring, but occultation studies (Colwell et



ACCEPTED MANUSCRIPT 
– 27 –

al. 2006, 2007) suggest that the gaps in the B ring are relatively more narrow in comparison
to A ring wakes. Thus their influence on the surface area and the reflection properties is not
so pronounced. This is in accordance with the weaker reflection asymmetry in HST and radar
observations (Nicholson et al. 2005; French et al. 2007a). Only in the less dense inner B ring is
the asymmetry amplitude noticeable (French et al. 2007a). Interestingly, in this same region the
tilt effect seems to be much smaller than in the other parts of the B ring (see Fig. 16). Still, the
interparticle shadowing mechanism seems to be important in the inner B ring, evidenced by the
reduction of the tilt effect for α = 0.5◦ (in fact, it turns into a negative tilt effect). It thus seems
that the interparticle shadowing mechanism (promoting positive tilt effect) is important for both
the A and B rings, though for the mid A ring, and to lesser degree also in the inner B ring, the
effect of gravity wakes/gaps (providing a negative contribution to tilt effect) needs to be taken into
account as well.

6. Discussion and conclusions

The analysis of Hubble Space Telescope near-opposition phase curves obtained for Beff =
4.5◦−26.1◦ shows unambiguously that the opposition brightening of Saturn’s rings depends on the
ring elevation. This is most strikingly evidenced by Fig. 5, showing the systematic steepening of the
slope of I/F vs lnα when Beff gets smaller. This previously unreported dependence demonstrates
the unique value of the 1996-2005 HST data set that spans a full Saturn season (Cuzzi et al. 2002,
French et al. 2007b). Comparison of the different filters indicates that, although the magnitude
of the total opposition effect increases toward shorter wavelengths, the elevation dependent part is
practically the same in all filters. This elevation dependence, and its independence of wavelength,
provide strong observational confirmation for the presence of an interparticle shadowing opposition
effect, in accordance with dynamical/photometric simulations (SK2003).

In contrast to the present study, it is not possible from single-elevation reflection data alone
to disentangle the intrinsic (coherent backscattering and/or shadow hiding at particle surfaces)
and interparticle shadowing contributions, since the expected functional forms are rather similar
(e.g. Hapke 2002). This difficulty is particularly true for the intrinsic SH contribution, which is
described by the same function that accurately fits the modeled near-opposition interparticle shad-
owing, although they might have different amplitudes and HWHM’s. In principle, the wavelength
dependence of CB might be used to disentangle the various contributions, but unfortunately there
is no current theoretical agreement about what kind of wavelength dependence to expect. Also,
the observational picture is not clear, probably because of differences in available α ranges, and
the fitting functions used. Analysis of high-elevation HST data (French et al. 2007b) implies that
the opposition effect has a nearly constant HWHM ∼ 0.1◦ for BVRI filters, increasing slightly at
U. This is somewhat in contrast to the analysis of Cassini ISS data (Deau et al. 2009; similarly
referring to high elevation Beff ∼ 22◦) that indicates a roughly 2-fold larger HWHM, reaching a
maximum in the green filter. On the other hand, Cassini VIMS phase curves suggest that at near-
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infrared the HWHM increases rapidly with wavelength, from 0.2◦ to > 1◦ between 1.5 µm and 3.5
µm (Hapke et al. 2006).

Polarization measurements would be helpful, since models predict (Hapke 1990, Mishchenko
1993, Rosenbush et al. 1997) that the CB intensity peak should be accompanied by a similar narrow
peak in the degree of polarization (both circular and linear). Existing ground based measurements
of linear polarization (Lyot 1927, Johnson 1980, Dollfus 1996), although not ruling out such a peak,
do not have sufficient accuracy or wavelength coverage – or mutual agreement – for quantitative
comparison to intensity light curves. Unfortunately, the polarization capabilities of Cassini are
inadequate for such studies.

Independent support for the interparticle shadowing opposition effect is provided by the Cassini
CIRS measurements, showing a pronounced opposition effect in the ring’s thermal phase curves
(Altobelli et al. 2009). CB is ruled out, since there can be no interference between the incoming
visual photons heating the particle and the infrared photons reradiating the heat. Compared to
the strongly peaked visual phase curves the thermal opposition effect extends over several tens of
degrees. However, quantitative comparison to the optical phase curve must await detailed thermal
modeling that extends beyond the current models such as those of Ferrari and Leyrat (2006) and
Morishima et al. (2009).

As demonstrated in Section 4, the elevation-dependent part of the opposition effect in the HST
data can be removed via model comparisons. In practice, we used a set of photometric/dynamical
simulations performed for various optical depths and widths of size distributions, and used a fixed
phase angle range α = 0.5◦ − 6◦, where the difference in the observed brightening I(6◦)/I(0.5◦)
for different Beff ’s was compared with that predicted by simulations. The fact that interparticle
multiple scattering is not significant simplified these comparisons, as it was sufficient to compare
with the enhancement factor fe, giving the ratio of the simulated single scattering contribution
with respect to the theoretical D = 0 formula. The deduced interparticle contribution was divided
out from the observations, leaving what presumably represents the intrinsic contribution fi.

Comparison to simulations, with τdyn = 0.1−2.0, indicated that the interparticle enhancement
fe is quite well fitted with the functional form of the Hapke (1986) shadowing model for semi-infinite
layers. In practice, the finite optical depth affects the maximum amplitude of fe, which is reduced
when the path optical depth decreases (this decrease in turn is in good accordance with Lumme
and Bowell (1981) theoretical calculations, see SK2003). The dependence of HWHM on the width
of the size distribution is at least qualitatively consistent with Hapke’s Y-function. Regardless of
the good agreement with theoretical treatments, the self-consistent dynamical simulations together
with photometric modeling are still indispensable, in order to account correctly for the elevation-
dependent interparticle shadowing, which is sensitive to the vertical structure of the ring, via the
effective volume density Deff at the layer mainly responsible for scattering. Simulations indicate
roughly linear dependence, HWHM ∝ Beff , which acts in addition to the size distribution depen-
dence implied by the Hapke’s formula. Additionally, simulations indicate that HWHM is practically
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independent of τdyn (see Fig. 8).

From their analysis of Cassini ISS phase curves, typically extending to α ∼ 25◦, Deau et
al. (2009) found that the slope of the phase curve outside the opposition peak shows a clear
correlation with optical depth (they used a linear-by-parts fit, and this outer slope corresponds
to linear component beyond α > 0.3◦). They conclude that this steepening is contrary to what
would be expected from interparticle shadowing: they reason that higher τdyn generally implies
larger volume density and thus presumably also more extended interparticle shadowing opposition
effect, e.g. phase curves should have less steep slope outside the central peak due to the intrinsic
opposition effect. Deau et al. (2009) then conclude that the τ dependence of the slope must
follow from different particle surface properties at low and high τ environments, rather than be
a result of interparticle shadowing. However, according to our detailed calculations, the variation
of the interparticle shadowing effect with optical depth seems consistent with the observations.
For example, Fig. 10 indicates that the slope beyond the central maximum is generally steeper
for larger τdyn’s. The reason for this behavior is that, although the maximum central plane filling
factor D(z = 0) does indeed increase with τdyn, the optical properties are determined by Deff at the
layer dominating the scattering. The fact that we found the HWHM of fe to be nearly independent
of τdyn suggests that the variations in Deff are much smaller than those in D(z = 0). On the other
hand, the maximum amplitude of fe does increase with τdyn, until saturation is reached at large
τpath. This, together with nearly constant HWHM, accounts for the increased slope. Therefore, our
conclusion is that the τ dependence of the outer slope gives additional support for the interparticle
shadowing effect. Of course, there may be additional indirect correlations between particle surface
properties and local optical depth as suggested by Deau et al. (2009).

Based on the elevation-dependent part of the observed opposition effect, we find that the C
ring region we study is best described by an extended size distribution with Ws � 100, whereas for
the A and B rings a significantly narrower Ws � 5 − 10 is deduced. The estimated C ring lower
bound is consistent with French and Nicholson (2000), who found Ws ∼ 1000 from the analysis of
forward scattered light in ground based stellar occultation data. However, for the A and B rings
our upper bound is definitely smaller than Ws ∼ 70 found by French and Nicholson (2000): most
likely this discrepancy follows from the fact that the uniform ring models we have studied are too
simple to describe all aspects of ring reflection and transmission.

In our models, the Bridges et al. (1984) coefficient of restitution and a power law size dis-
tribution with q = 3 was assumed. The dominant factor affecting the fit is the volume density
Deff , which depends not only on the size distribution, but also on the elasticity of particles. Less
dissipative particles lead to collisional energy balance corresponding to geometrically thicker rings,
whereas increased dissipation flattens the rings, until a minimum thickness corresponding to few
times the maximum particle radii is achieved (see e.g. Schmidt et al. 2009). Thus, for significantly
less dissipative particles8, say with the scale factor vc = 10vB in Eq (14) instead of vc = vB , the

8Such systems are potentially quite interesting, as they can be susceptible to viscous instability (see Salo and
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best fit for the C ring would be obtained for a size distribution with Ws � 10 (combined with
the resulting vertically thicker ring, Ws = 10 would lead to roughly the same Deff as the original
Bridges et al. elasticity formula in combination with Ws = 50). Clearly, such a narrow distribu-
tion would be very hard to reconcile with French and Nicholson (2000) estimates. On the other
hand, even if the particles were more dissipative than implied by the Bridges formula (say, having
a constant εn = 0.1), the best fit for B and A rings would still imply a fairly narrow Ws ∼ 10. In
conclusion, we cannot claim that any unique formula for the elastic properties of particles could be
deduced from the matching of the elevation-dependent opposition effect, taking into account the
uncertainties in the size distribution. However, it seems that the match in terms of a Bridges et
al. (1984) type, frosty particle elasticity model, is a fairly robust one, and suggests a significantly
wider size distribution in the C ring in comparison to B and A rings. Most importantly for the
current goal, the deduced intraparticle opposition effect contribution is not overly sensitive to which
particular simulation model is used in the extraction of fe, as long as it can correctly account for
the elevation angle dependence.

After removal of the interparticle opposition effect, fits to the intrinsic opposition effect were
made, using both linear-exponential and Hapke-model fits (the SH part of the latter models was
simplified, as only the near-opposition part of phase curve is fitted). Both types of fits imply that
the intrinsic effect is mainly due to CB (in linear-exponential model this can be identified with the
exponential component). In fact, for the B and A rings the intrinsic SH contribution is almost
negligible: the fitted SH component is very close to what is implied by the ns = 3.09 power law
phase function used in Dones et al. 1993, when extrapolated to near-opposition phase angles. For
the C ring, the deduced intraparticle SH is less than half of the implied coherent backscattering
contribution. Compared to the earlier fits based on the original high elevation HST data, without
separation of the interparticle effect (French et al. 2007b), there is rather little difference in the
deduced CB parameters. In particular, the amplitude Bc0 ≈ 0.4 for all ring components, as in fits
to the original data, whereas the HWHM ≈ 0.1◦ is slightly increased. Nevertheless, in any careful
analysis of the intrinsic opposition effect aiming to deduce, for example, the regional variations
in the properties of regolith-grains covering particle surfaces, the elevation dependent part should
first be excluded. For example, the difference in the deduced SH components between the C ring
and the higher density B and A rings, not distinguishable without exclusion of the interparticle
shadowing, might reflect the different collisional environments in the ring components.

INSERT FIG 20 HERE

INSERT FIG 21 HERE

The various modeled contributions are best illustrated in Figs. 20 and 21, for the C and B
rings, respectively. (The A ring case would be almost indistinguishable from the B ring.) The CB
and SH contributions are shown separately by the black and gray shaded regions; these are identical

Schmidt 2010).
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in the upper and lower frames, corresponding to Beff = 23.5◦ and 4.5◦. The modeled interparticle
shadowing contribution is shown by the dashed region, which is much more pronounced for the
lower elevation. Also shown are the HST data points corresponding to the indicated Beff . (Note
that the the models are based on fitting simultaneously the whole range of Beff ’s.) To emphasize
the extremely narrow CB peak, the phase curves are also shown on a linear scale in the right-hand
frames.

INSERT FIG 22 HERE

For comparison with spacecraft observations, we predict the behavior of the intraparticle shad-
owing effect for phase curves beyond the regime accessible by ground based studies (α < 6.37◦)
in Fig. 22. This shows the single scattering contribution for our adopted B ring model, now
covering a full range 0◦ ≤ α ≤ 180◦. Three different elevations are compared, as well as the
elevation-independent theoretical D = 0 curve, following in form the spherical-particle Lambert
phase function. According to Fig. 21, the intrinsic peak would affect just a very narrow portion
near zero phase angle. On the other hand, as mentioned previously, the interparticle shadowing
contribution extends to all phase angles. In fact, the relative brightening over the classical (D = 0)
multilayer starts to increase again beyond α ≈ 50◦. Clearly this is no longer an “opposition effect,”
but relates to a general reduction of shadowing in geometrically thin layers of particles (see foot-
note 5). Nevertheless, in practice this enhanced Iss has little significance, since it is offset by an
even larger reduction in the multiple scattering contribution (Fig. 22 right panel; see also Fig. 7 in
SK2003). Since multiple scattering dominates at high phase angles, the total brightness I/I(D = 0)
is reduced. It was shown in SK2003 that this combination of geometrically thin layers appearing
brighter in backscattering and dimmer at forward-scattering makes it possible to match simulta-
neously both the low and high phase angle brightnesses of the inner A ring. Indeed, for this ring
region, Dones et al. (1993) found that the phase curve from Voyager images cannot be accounted for
by classical radiative transfer models, and suggested that this might be due to geometrically thin
rings. Clearly, a similar effect needs to be taken into account in the interpretation of Cassini ISS
observations. In particular, by combining observations from several different elevations, one can
eliminate the uncertainties related to particle phase function and albedo, and deduce constraints
for the ring vertical profile and size distribution.9

The characteristics of the B and A ring tilt effects were explored in Section 5. We showed a

9Porco et al. (2008) claim to have deduced accurate ring thicknesses, based on small deviations between the

observed and modeled D = 0 phase curves, repeating calculations such as described in SK2003. However, there are

problems in their approach: for example, they assume that the ring particle phase function is determined precisely

by a power-law phase function, and use two observations to deduce simultaneously three unknown parameters: the

ring thickness, the particle albedo, and the index ns of a power law phase function. Moreover, the ring models they

use are not dynamically self-consistently calculated size distribution models: they assume a Gaussian distribution of

identical particles, which assumption is prone to affect the resulting model brightness (see e.g. Fig. 21 in SK2003).

Apart from these considerations, there also seem to be some problems in the convergence of their model results when

the classical limit should be reproduced exactly (see their Figs. 10-13).
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new observational result: the strong positive B ring tilt effect seen at α = 6◦ (the phase angle most
often addressed in ground based studies) is significantly weakened when observations at α = 0.5
are compared. We showed that the tilt effect itself, as well as its smaller amplitude as α → 0◦,
follow in a natural manner from the same models which match the elevation-dependent opposition
effect. Briefly summarized, at low Beff the width of interparticle opposition peak is much less than
6◦, so that near-opposition brightening has no contribution to the ring brightness. On the other
hand, when Beff increases the opposition peak gets wider, leading to an increased contribution to
the brightness. For example, the best-matching B ring interparticle shadowing model has HWHM
∼ 1◦ − 10◦, for Beff = 4◦ − 26◦ (see Fig. 8). Clearly, at phase angles smaller than the minimum
width, the interparticle contribution is present regardless of Beff : this accounts for the reduced tilt
effect for α = 0.5◦. The A ring negative tilt effect was attributed to gravitational wakes, which have
a larger effect on the reflection in the moderate-τ A ring (and the inner B ring) in comparison to the
densest part of the B ring. Nevertheless, the shadowing contribution was also present, evidenced
by the difference between α = 6◦ and α = 0.5◦.

INSERT FIG 23 HERE

The dependence of the expected B ring tilt effect as function of phase angle is further illus-
trated in Fig. 23: here, the second and third frames show the α = 0.5◦ and 6◦ cases discussed
just above. (Note the arbitrary normalization to Beff = 1◦). The first frame is for exact opposi-
tion, where the predicted interparticle contribution to the tilt effect practically vanishes (the small
residual effect follows from the weak dependence of maximum fe on path optical depth). In the
figure, the modeled tilt effect is shown separately for single scattering and for total brightness (sin-
gle+multiple scattering): the difference between these indicates the contribution due to increased
multiple scattering when Beff increases. Also shown in Fig. 23 is the expected B ring tilt effect for
phase angles > 6◦. Clearly, if the brightening of Iss in the case of non-zero D were limited to near
opposition, there would be no shadowing contribution to the tilt effect for α larger than the width
of the opposition peak. However, due to the aforementioned general brightening of geometrically
thin layers, the tilt effect due to enhanced Iss is present for all α′s: the strength of the effect is
proportional to the difference between the various Beff curves in Fig. 22. Additionally, for α � 120◦

the multiple scattering contribution to the tilt effect should become more and more important.

The effect of elevation-dependent interparticle shadowing, seen in the HST observations, should
be present also in the Cassini ISS, VIMS, and CIRS data, particularly for the recent epoch with
low solar elevation. In fact, the effect might be noticeable also for Beff ∼ 15 − 25◦, for which
range Cassini data have already been analyzed. For example, often phase curve data from dif-
ferent tilt angles are combined together: it will be important to determine what influence this
has on the fitted parameters (e.g. on the HWHM of the opposition peak). Also, removing the
wavelength-independent interparticle opposition effect will affect the relative amplitudes of the in-
trinsic opposition peak deduced at different filters: obtaining an unbiased view of the wavelength
trends of opposition peak is important for the physical interpretation of the observations. Our
plan for the future is to expand our photometric modeling to cover a larger range of observing
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geometries relevant for Cassini, and moreover cover a larger set of dynamical models. Clearly, this
will help to provide improved constraints for both the photometric properties of ring particles, as
well as for the local structure of rings, influenced by the particles’ physical properties and their size
distribution.
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Fig. 1.— An illustration of the opposition brightening due to reduced interparticle shadowing.
A side view of a dynamical simulation model is displayed, together with opposition phase curves
calculated for two different observing elevations. An nS = 3.09 power law phase function with Bond
albedo 0.5 is assumed. The curves display I/I(D = 0), where I(D = 0) is the theoretical brightness
for a classical zero volume density ring. The curves for the single scattering (ss) component and total
brightness including multiple scattering (ss+ms) are shown separately, with solid and dashed lines
(for B = 4◦ the multiply-scattered component is negligible). At large elevation angles (B = 26◦)
the light rays are able to penetrate to central layers, where the typical particle separations are
comparable to particle size: such a high volume density leads to a broad opposition brightening
curve. On the other hand, at small elevation angles (B = 4◦) the reflection happens mainly in
the rarefied upper layers, where particle separations are large compared to their size: such a small
effective volume density leads to a much narrower opposition effect.
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Fig. 2.— Examples of the ansa I/F profiles for Beff = 4.5◦ (left) and for Beff = 23.5◦ (right).
Solid lines collect the observations in F555W filter close to common phase angles α ∼ 6◦, ∼ 2◦, and
∼ 0.5◦. The almost overlapping curves correspond to profiles extracted from adjacent east/west
ansa images: note that for Beff = 4.5◦ the images for the two lowest phase angles had spokes
in the east ansa (McGhee et al. 2005), affecting the mid B ring profiles (the affected portions of
these images are omitted from all subsequent analyses). At right, the profile at exact opposition
is also shown (for B = 22.9◦). Here, as in all the subsequent plots, the corrected I/F is shown,
compensating for the small differences in B and B′ during each subset of observations.
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Fig. 3.— Same as Fig. 2, except that the profiles have been divided by that at α ∼ 6◦. Comparison
of the two opening angles illustrates a clear elevation angle dependence in the magnitude of relative
opposition brightening (at least for the common interval 0.5◦ < α < 6◦).
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Fig. 4.— Opposition phase curves of different ring regions at different elevation angles, with I/F

normalized to that at α = 6◦. The C ring (upper row), the B ring (middle) and the A ring (lower)
regions are the same as those studied in French et al. (2007b). From left to right the elevation
angle increases from Beff = 4.5◦ to 26.1◦. Curves for two different filters are shown, F336W and
F814W. The lines indicate log-linear fits of the form I/F = a ln α + b, obtained using values for
α > 0.25◦. Also shown are the residuals of the fits (deviation of small symbols from unity). This fit
range, excluding the near to opposition data points, was chosen in order to give a similar coverage of
phase angles for all elevations: note that for Beff = 23.6◦ there are additional small α measurements
falling outside the fitted range.
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Fig. 5.— Phase curves for the C, B, and A ring regions in the F555W filter, with the data from
different elevation angles collected in each frame. The lines indicate the log-linear fits obtained
using data values with α > 0.25◦ (same as in Fig. 4 for F336W and F814W filters).
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Fig. 6.— The wide component of the opposition brightening measured in terms of OE =
I(0.5◦)/I(6◦), obtained from log-linear fits. The upper row shows OE as a function of Beff for
the three studied C, B, and A ring regions, for three different filters. In the lower row, OE has
been normalized to that at Beff = 26.1◦.
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Fig. 7.— Grid of dynamical and photometric simulation models performed with different optical

depths and widths of particle size distributions. The interparticle shadowing enhancement of the

single scattering, fe = Iss/Iss(D = 0), is plotted as a function of phase angle α; here Iss(D = 0)

is the theoretical single scattering intensity for classical zero volume density ring, whereas Iss is

the simulated value including the shadowing effects between finite sized particles. The simulation

results are indicated by symbols, while the solid curves indicate Hapke (2002) SH fits to them. The

dynamical simulations use the Bridges et al. (1984) elasticity law, and a power law size distribution

dN/dR = R−q, with q = 3 and Rmax = 5 m; the minimum size is Rmin = 0.1 − 1.0 m. Simulations

performed with dynamical optical depths τdyn = 0.1 − 2.0 are shown. Self-gravity is not included,

and thus the systems remain homogeneous in all planar directions. Photometric Monte Carlo

calculations are performed for elevations B = Beff = 4◦, 10◦, 15◦, 26◦, using a Lambert surface

element scattering law. The numbers in the frames indicate the path optical depth τpath = − ln p,

where p is the probability of a photon to pass through the particle layer, and the calculated normal

optical depth τ = τpath sin B.
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Fig. 8.— The half-width half-maximum (HWHM) for the interparticle shadowing effect in the single
scattered component fe = Iss/Iss(D = 0), obtained directly from the simulated fe(α) curves (left),
from Hapke SH fits (middle), and from linear-exponential fits (right) to some of the simulations
displayed in Fig. 7.
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Fig. 9.— The interparticle shadowing enhancement of the single scattering, fe = Iss/Iss(D = 0)
evaluated at α = 6◦ (left) and α = 0.5◦ (middle). At the right, the ratio OEe = fe(0.5◦)/fe(6◦) is
shown.
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Fig. 10.— Opposition phase curves in selected simulation models, including the multiply-scattered
contribution: solid and dashed lines indicate the single scattered intensity normalized to α = 6◦,
while dotted lines indicate the same for the total singly + multiply-scattered radiation. The ns =
3.09 power-law phase function is used, with Bond albedo 0.5; the gray dash-dotted curve indicates
the contribution from the power-law phase function alone, amounting to about 1.11 for the interval
α = 0◦ to 6◦. The shaded region indicates the range α = 0.5 − 6◦ used in the comparison of
simulated and observed intensities in Section 4.
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Fig. 11.— The left panels show the extended opposition effect as a function of Beff , measured by
OE = I(α = 0.5◦)/I(α = 6◦), for the three different ring regions: solid and open symbols stand
for observations in the F336W and F814W filters, respectively. The right panels show the same
normalized to that at Beff = 20◦. Also shown is the interparticle shadowing effect in simulations
performed with various widths of the size distribution: the C, B, and A ring data are compared to
simulations with dynamical optical depth τdyn = 0.1, 2.0, and 1.0, respectively.
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Fig. 12.— The left column shows the original HST phase curves for 6 different sets of Beff , all nor-
malized to α = 6◦. In the middle column, the intrinsic component gi(α) = fi(α)P (α) / [fi(6◦)P (6◦)]
is shown, obtained by dividing out the interparticle shadowing contribution, determined by the best
match to the elevation angle dependence of OE in Fig. 11: this interparticle shadowing contribution
(fe(α) / fe(6◦)) is shown at right. The C, B, and A ring data are compared to simulations with
dynamical optical depths τdyn = 0.1, 2.0, and 1.0, respectively, using a size distribution 0.1− 5.0 m
for the C ring, and 1.0 − 5.0 m for the B and A rings. Only the F336W filter is shown. The lines
do not represent fits to the data, but simply connect the observations for each Beff .
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Fig. 13.— The intrinsic component of opposition brightening in all five filters, after removing the
interparticle shadowing contribution displayed in Fig. 12 (for F336W the points are the same as the
middle column of Fig. 12). Thick blue curves indicate the CB/SH (simplified Hapke 2002 model)
fits to the data; the lower curve shows the SH contribution separately, while the CB contribution
corresponds to the ratio between the two curves. For comparison, the original HST phase curves
at Beff = 23◦ − 26◦ are also shown (thin curves, small orange crosses); the ratio between orange
and blue curves indicate the magnitude of the interparticle shadowing contribution. The HWHM
and residual RMS for both fits are indicated.
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Fig. 14.— Wavelength dependence of linear-exponential model fits for the C, B, and A ring regions.
The upper row corresponds to the data set used in French et al. (2007b): the Beff ≈ 26◦ data
(Cycles 10-12) are combined with the Cycle 13 opposition data point for Beff ≈ 23◦, without
any normalization of the I/F levels. The frames display the HWHM, amplitude, and normalized
slope from the fits. In the middle row, all original data for Beff ∼ 23◦ and ∼ 26◦ are combined
(Cycles 9-13), after proper normalization of the I/F levels to Beff = 23◦; the interparticle shadowing
component has not been eliminated (this corresponds to the thin curves and small orange symbols in
Fig. 13). The lower row combines the data from all elevation angles, after removal of the interparticle
shadowing component (corresponding to the thick curves and large symbols in Fig. 13).
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Fig. 15.— Same as Fig. 14, except for CB/SH fits. The frames display the coherent backscatter-
ing HWHM= 0.72hcb (left column) and amplitude Bc0 (middle column), and the shadow hiding
contribution at zero phase angle, SH(0◦) = A0(1 + Bs0) (right column).
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Fig. 16.— The tilt effect on the brightness of the A and B rings, for α ∼ 6◦ (upper frame) and
α ∼ 0.5◦ (lower frame). Radial F555W brightness profiles at the ansa have been grouped together
by Beff and averaged, and then normalized by the low ring elevation profile with Beff = 4.5◦. Note
the positive tilt effect for the B ring and the negative (inverse) tilt effect for the A ring.
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Fig. 17.— Comparison of the B and A ring tilt effects, for non-opposition (α ∼ 6◦) and near oppo-
sition (α ∼ 0.5◦), for two filters. Since the low phase angle Beff = 4.5◦ images were contaminated
by spokes, we have made the normalization to Beff = 10◦, and omit the affected region (105, 000 -
112, 000 km). Note how the B ring positive tilt effect is marginally larger for the larger λ in the
case of α ∼ 6◦, indicating that some fraction of the brightness increase is due to multiple scattering
increasing with elevation, as proposed by Lumme et al. (1983); however, the contribution is small
compared to that of elevation-dependent opposition brightening.
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Fig. 18.— Upper panel: Observed I(Beff = 26◦)/I(Beff = 4.5◦) versus Voyager PPS optical depth,
plotted in F814W and F333W filters for α = 6◦. The dash-dotted curve indicates the theoretical
ratio of singly scattered intensities: the values exceeding this curve indicate positive (B ring) or
negative (mid A ring) tilt effect. The middle panel frame shows the the same, but using scaled
intensities: RB = Î(26◦)/Î(4.5◦), where Î(r) = I(r)/Iss(D=0)(τpps(r)); here, the theoretical singly
scattered ratio is unity. Lower row: the difference RB(F814W )−RB(F336W ), which represents the
contribution of multiple scattering. Also shown are simulation models using both Lambert phase
and ns = 3.09 power law phase functions: solid and dotted lines stand for simulations with size
distributions of 0.1 - 5.0 m and 0.5-5.0 m, respectively. The assumed particle albedos for F333W
and F814W filters are 0.36 and 0.87, respectively, when the Lambert phase function is used, and
0.21 and 0.57 in connection with the power law phase function: with these assumptions the modeled
I/F values for 0.5-5.0 m size distribution match the observations at Beff = 26◦, α = 6◦.
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Fig. 19.— Comparison of the observed B and A ring tilt effects with photometric models, for
α ∼ 6◦ and for α ∼ 0.5◦. We have extracted the intensity at the ring ansa vs Beff at the indicated
radial ranges. The upper row displays observations for the B and A rings, together with results of
photometric models, using non-gravitating particle simulations, with size distribution from 0.5 to
5.0 m, and with τdyn = 2.0 and τdyn = 0.5. In the lower row, the A ring observations are compared
with the self-gravitating SIZE and IDE models explored in Salo et al. (2004) and French et
al. (2007a). The ns = 3.09 power-law phase function with albedo A=0.5 is assumed.
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Fig. 20.— Modeled contributions to the C ring opposition effect, measured in terms of I/I(6◦),
shown for Beff = 23◦ and Beff = 4.5◦ (upper and lower frames, respectively), on logarithmic (left)
and linear (right) scales. The models are for F336W filter: the vertically banded shaded regions
indicate the SH (gray) and CB (black) contributions to the intrinsic component, obtained from a
SH-CB fit to HST data from all elevations, after removal of the modeled interparticle contribution;
they are identical for both Beff ’s. The shaded region indicates the interparticle contribution, which
depends on Beff . The interparticle contribution is calculated for the best fitting model of Section
4 (dynamical optical depth τdyn = 0.1, Ws = 50, Bridges et al. (1984) coefficient of restitution
formula; photometric calculations use a Lambert law with A = 0.5). Symbols indicate the HST
observations at the F336W filter, for the indicated Beff . The dashed line indicates the relative
change of an ns = 3.07 power law phase function.
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Fig. 21.— Same as Fig. 20, except for the B ring region. The interparticle shadowing model
is calculated for dynamical optical depth τdyn = 2.0, Ws = 5, Bridges et al. (1984) coefficient of
restitution formula.
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Fig. 22.— The behavior of the modeled B ring I/F for a full range of phase angles (dynamical
optical depth τdyn = 2.0, Ws = 5, Bridges et al. (1984) coefficient of restitution formula is assumed;
together with Lambert phase function with Bond albedo A = 0.5). At left, the single scattering
contribution is shown, for three different Beff ’s. For comparison, the classical D = 0 single scattering
contribution is also shown by a dashed line. At the right, the same single scattering model curves
are shown, normalized to D = 0 curve. Also shown by dashed lines are corresponding ratios when
both single and multiple scattering are included.
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Fig. 23.— Comparison of the modeled tilt effect for a range of phase angles: the dynami-
cal/photometric parameters are the same as in Fig. 22.
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Table 1. C Ring: 78,000-83,000 km

F336W F439W F555W F675W F814W

α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr

Cycle 6 |Beff | = 4.30◦ − 4.66◦

0.4605 0.1235 0.4607 0.1514 0.4609 0.1680 0.4611 0.1840 0.4613 0.1962

1.9249 0.0955 0.4617 0.1524 0.4619 0.1692 0.4621 0.1860 1.9257 0.1554

1.9315 0.0966 1.9251 0.1201 1.9253 0.1319 1.9255 0.1489 5.6708 0.1322

5.6705 0.0780 1.9318 0.1198 1.9320 0.1367 5.6709 0.1230 ... ...

5.6711 0.0774 5.6704 0.0980 5.6704 0.1104 ... ... ... ...

... ... 5.6710 0.0973 5.6709 0.1107 ... ... ... ...

Cycle 7a |Beff | = 10.01◦ − 10.29◦

0.2997 0.0880 0.2998 0.1108 0.2998 0.1204 0.2998 0.1351 0.2999 0.1377

0.3000 0.0879 0.3000 0.1109 0.3000 0.1209 0.3000 0.1311 0.3001 0.1385

0.4948 0.0818 0.4946 0.1027 0.4944 0.1115 0.4943 0.1210 0.4941 0.1274

0.4958 0.0811 0.4956 0.1016 0.4954 0.1094 0.4952 0.1209 0.4951 0.1260

0.9774 0.0733 0.4957 0.1014 0.9770 0.1014 0.9767 0.1099 0.9765 0.1169

0.9843 0.0717 0.9772 0.0930 0.9837 0.0985 0.9834 0.1087 0.9832 0.1132

1.9911 0.0650 0.9839 0.0911 1.9906 0.0905 1.9904 0.0999 1.9901 0.1043

1.9979 0.0645 0.9840 0.0910 1.9975 0.0893 1.9972 0.0992 1.9970 0.1027

6.0165 0.0554 1.9908 0.0831 6.0165 0.0790 6.0165 0.0858 6.0165 0.0903

6.0168 0.0546 1.9977 0.0818 6.0168 0.0779 6.0168 0.0862 6.0169 0.0893

... ... 6.0165 0.0717 ... ... ... ... ... ...

... ... 6.0165 0.0714 ... ... ... ... ... ...

... ... 6.0165 0.0716 ... ... ... ... ... ...

... ... 6.0165 0.0714 ... ... ... ... ... ...

... ... 6.0168 0.0706 ... ... ... ... ... ...

Cycle 7b |Beff | = 15.40◦ − 15.49◦

0.3156 0.0659 0.3156 0.0825 0.3158 0.0885 0.3158 0.0975 0.3159 0.1016

0.3160 0.0661 0.3157 0.0830 0.3162 0.0890 0.3163 0.0957 0.3164 0.1022

0.6866 0.0586 0.3161 0.0826 0.6861 0.0798 0.6859 0.0878 0.6857 0.0914

0.6927 0.0575 0.6864 0.0747 0.6923 0.0777 0.6921 0.0841 0.6918 0.0903

1.1982 0.0533 0.6925 0.0718 1.1978 0.0724 1.1975 0.0784 1.1973 0.0846

1.2042 0.0537 1.1980 0.0672 1.2034 0.0737 1.2031 0.0800 1.2029 0.0853

6.2567 0.0417 1.2036 0.0687 6.2567 0.0589 6.2566 0.0656 6.2566 0.0684

6.2568 0.0407 1.2038 0.0687 6.2567 0.0576 6.2567 0.0636 6.2567 0.0676

... ... 1.2039 0.0687 ... ... ... ... ... ...

... ... 6.2567 0.0545 ... ... ... ... ... ...

... ... 6.2567 0.0530 ... ... ... ... ... ...

Cycle 8 |Beff | = 20.05◦ − 20.17◦

0.2956 0.0542 0.2957 0.0682 0.2958 0.0718 0.2959 0.0790 0.2959 0.0826

0.2971 0.0544 0.2957 0.0680 0.2958 0.0727 0.2973 0.0795 0.2973 0.0848

0.4244 0.0523 0.2957 0.0681 0.2958 0.0725 0.4233 0.0771 0.4231 0.0806

0.4257 0.0506 0.2972 0.0693 0.2972 0.0738 0.4251 0.0741 0.4249 0.0776

6.1038 0.0346 0.4240 0.0664 0.4235 0.0702 6.1037 0.0534 6.1036 0.0580

6.1052 0.0340 0.4241 0.0662 0.4236 0.0707 6.1049 0.0527 6.1049 0.0562

... ... 0.4242 0.0666 0.4238 0.0700 ... ... ... ...
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Table 1—Continued

F336W F439W F555W F675W F814W

α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr

... ... 0.4255 0.0643 0.4253 0.0675 ... ... ... ...

... ... 6.1038 0.0455 6.1037 0.0494 ... ... ... ...

... ... 6.1051 0.0444 6.1050 0.0474 ... ... ... ...

... ... 6.1051 0.0442 6.1050 0.0475 ... ... ... ...

... ... 6.1052 0.0443 6.1050 0.0471 ... ... ... ...

Cycle 9 |Beff | = 23.54◦ − 23.69◦

0.2681 0.0487 0.2682 0.0622 0.2683 0.0657 0.2684 0.0710 0.2685 0.0746

0.2702 0.0488 0.2682 0.0620 0.2684 0.0651 0.2705 0.0706 0.2706 0.0744

0.5852 0.0443 0.2703 0.0617 0.2704 0.0649 0.5862 0.0655 0.5864 0.0688

0.5870 0.0437 0.2703 0.0617 0.2704 0.0644 0.5880 0.0640 0.5882 0.0678

1.9914 0.0369 0.5854 0.0565 0.5858 0.0604 1.9925 0.0562 1.9929 0.0602

1.9915 0.0368 0.5856 0.0565 0.5860 0.0594 1.9927 0.0556 6.0951 0.0514

6.0947 0.0313 0.5873 0.0558 0.5876 0.0590 6.0950 0.0472 6.0954 0.0531

6.0952 0.0319 0.5874 0.0557 0.5878 0.0582 6.0954 0.0501 ... ...

... ... 1.9918 0.0483 1.9922 0.0515 ... ... ... ...

... ... 1.9919 0.0479 1.9923 0.0509 ... ... ... ...

... ... 6.0948 0.0407 6.0949 0.0434 ... ... ... ...

... ... 6.0948 0.0405 6.0949 0.0429 ... ... ... ...

... ... 6.0948 0.0405 6.0950 0.0434 ... ... ... ...

... ... 6.0953 0.0419 6.0953 0.0449 ... ... ... ...
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Table 2. B Ring: 100,000-107,000 km

F336W F439W F555W F675W F814W

α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr

Cycle 6 |Beff | = 4.30◦ − 4.66◦

0.4605 0.2681 0.4607 0.4421 0.4609 0.5588 0.4611 0.6222 0.4613 0.6515

1.9249 0.1875 0.4617 0.4432 0.4619 0.5592 0.4621 0.6207 1.9257 0.5055

1.9315 0.2043 1.9251 0.3298 1.9253 0.4261 1.9255 0.4948 5.6708 0.4406

5.6705 0.1595 1.9318 0.3595 1.9320 0.4640 5.6709 0.4211 ... ...

5.6711 0.1601 5.6704 0.2875 5.6704 0.3737 ... ... ... ...

... ... 5.6710 0.2862 5.6709 0.3740 ... ... ... ...

Cycle 7a |Beff | = 10.01◦ − 10.29◦

0.2997 0.2904 0.2998 0.4820 0.2998 0.6062 0.2998 0.6760 0.2999 0.7053

0.3000 0.2932 0.3000 0.4845 0.3000 0.6087 0.3000 0.6795 0.3001 0.7071

0.4948 0.2735 0.4946 0.4597 0.4944 0.5813 0.4943 0.6507 0.4941 0.6734

0.4958 0.2774 0.4956 0.4650 0.4954 0.5794 0.4952 0.6590 0.4951 0.6701

0.9774 0.2497 0.4957 0.4652 0.9770 0.5447 0.9767 0.6118 0.9765 0.6351

0.9843 0.2523 0.9772 0.4263 0.9837 0.5474 0.9834 0.6261 0.9832 0.6359

1.9911 0.2249 0.9839 0.4331 1.9906 0.5028 1.9904 0.5775 1.9901 0.5874

1.9979 0.2246 0.9840 0.4326 1.9975 0.5059 1.9972 0.5821 1.9970 0.5908

6.0165 0.1768 1.9908 0.3935 6.0165 0.4227 6.0165 0.4789 6.0165 0.4988

6.0168 0.1785 1.9977 0.3965 6.0168 0.4221 6.0168 0.4881 6.0169 0.4963

... ... 6.0165 0.3228 ... ... ... ... ... ...

... ... 6.0165 0.3223 ... ... ... ... ... ...

... ... 6.0165 0.3228 ... ... ... ... ... ...

... ... 6.0165 0.3218 ... ... ... ... ... ...

... ... 6.0168 0.3255 ... ... ... ... ... ...

Cycle 7b |Beff | = 15.40◦ − 15.49◦

0.3156 0.2935 0.3156 0.4891 0.3158 0.6099 0.3158 0.6928 0.3159 0.7053

0.3160 0.2947 0.3157 0.4890 0.3162 0.6153 0.3163 0.6863 0.3164 0.7118

0.6866 0.2661 0.3161 0.4895 0.6861 0.5673 0.6859 0.6475 0.6857 0.6582

0.6927 0.2672 0.6864 0.4508 0.6923 0.5756 0.6921 0.6427 0.6918 0.6672

1.1982 0.2469 0.6925 0.4545 1.1978 0.5495 1.1975 0.6175 1.1973 0.6417

1.2042 0.2426 1.1980 0.4288 1.2034 0.5440 1.2031 0.6129 1.2029 0.6368

6.2567 0.1867 1.2036 0.4223 6.2567 0.4405 6.2566 0.5088 6.2566 0.5189

6.2568 0.1862 1.2038 0.4217 6.2567 0.4441 6.2567 0.5139 6.2567 0.5231

... ... 1.2039 0.4216 ... ... ... ... ... ...

... ... 6.2567 0.3381 ... ... ... ... ... ...

... ... 6.2567 0.3419 ... ... ... ... ... ...

Cycle 8 |Beff | = 20.05◦ − 20.17◦

0.2956 0.2971 0.2957 0.4951 0.2958 0.6180 0.2959 0.7049 0.2959 0.7174

0.2971 0.2968 0.2957 0.4940 0.2958 0.6241 0.2973 0.6932 0.2973 0.7214

0.4244 0.2814 0.2957 0.4951 0.2958 0.6183 0.4233 0.6774 0.4231 0.6886

0.4257 0.2818 0.2972 0.4924 0.2972 0.6201 0.4251 0.6785 0.4249 0.6899

6.1038 0.1890 0.4240 0.4731 0.4235 0.5935 6.1037 0.5202 6.1036 0.5417

6.1052 0.1899 0.4241 0.4725 0.4236 0.5995 6.1049 0.5300 6.1049 0.5402

... ... 0.4242 0.4727 0.4238 0.5940 ... ... ... ...
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Table 2—Continued

F336W F439W F555W F675W F814W

α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr

... ... 0.4255 0.4752 0.4253 0.5957 ... ... ... ...

... ... 6.1038 0.3459 6.1037 0.4568 ... ... ... ...

... ... 6.1051 0.3496 6.1050 0.4561 ... ... ... ...

... ... 6.1051 0.3493 6.1050 0.4606 ... ... ... ...

... ... 6.1052 0.3494 6.1050 0.4563 ... ... ... ...

Cycle 9 |Beff | = 23.54◦ − 23.69◦

0.2681 0.2992 0.2682 0.4980 0.2683 0.6286 0.2684 0.7115 0.2685 0.7241

0.2702 0.2991 0.2682 0.4974 0.2684 0.6223 0.2705 0.7090 0.2706 0.7229

0.5852 0.2706 0.2703 0.4970 0.2704 0.6261 0.5862 0.6644 0.5864 0.6751

0.5870 0.2702 0.2703 0.4961 0.2704 0.6212 0.5880 0.6665 0.5882 0.6779

1.9914 0.2286 0.5854 0.4588 0.5858 0.5847 1.9925 0.6038 1.9929 0.6219

1.9915 0.2288 0.5856 0.4583 0.5860 0.5781 1.9927 0.5970 6.0951 0.5538

6.0947 0.1929 0.5873 0.4590 0.5876 0.5868 6.0950 0.5318 6.0954 0.5438

6.0952 0.1928 0.5874 0.4591 0.5878 0.5804 6.0954 0.5341 ... ...

... ... 1.9918 0.4068 1.9922 0.5277 ... ... ... ...

... ... 1.9919 0.4061 1.9923 0.5229 ... ... ... ...

... ... 6.0948 0.3531 6.0949 0.4669 ... ... ... ...

... ... 6.0948 0.3538 6.0949 0.4622 ... ... ... ...

... ... 6.0948 0.3531 6.0950 0.4664 ... ... ... ...

... ... 6.0953 0.3493 6.0953 0.4578 ... ... ... ...
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Table 3. A Ring: 127,000-129,000 km

F336W F439W F555W F675W F814W

α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr

Cycle 6 |Beff | = 4.30◦ − 4.66◦

0.4605 0.2768 0.4607 0.4358 0.4609 0.5275 0.4611 0.5746 0.4613 0.6017

1.9249 0.2126 0.4617 0.4409 0.4619 0.5300 0.4621 0.5769 1.9257 0.4918

1.9315 0.2100 1.9251 0.3497 1.9253 0.4247 1.9255 0.4806 5.6708 0.3935

5.6705 0.1600 1.9318 0.3512 1.9320 0.4326 5.6709 0.3755 ... ...

5.6711 0.1609 5.6704 0.2772 5.6704 0.3396 ... ... ... ...

... ... 5.6710 0.2733 5.6709 0.3405 ... ... ... ...

Cycle 7a |Beff | = 10.01◦ − 10.29◦

0.2997 0.2594 0.2998 0.4071 0.2998 0.4943 0.2998 0.5417 0.2999 0.5658

0.3000 0.2592 0.3000 0.4057 0.3000 0.4891 0.3000 0.5375 0.3001 0.5601

0.4948 0.2436 0.4946 0.3832 0.4944 0.4652 0.4943 0.5116 0.4941 0.5339

0.4958 0.2446 0.4956 0.3883 0.4954 0.4676 0.4952 0.5218 0.4951 0.5301

0.9774 0.2202 0.4957 0.3883 0.9770 0.4366 0.9767 0.4796 0.9765 0.4993

0.9843 0.2247 0.9772 0.3544 0.9837 0.4375 0.9834 0.4886 0.9832 0.4998

1.9911 0.1976 0.9839 0.3603 1.9906 0.3993 1.9904 0.4490 1.9901 0.4596

1.9979 0.1994 0.9840 0.3600 1.9975 0.4033 1.9972 0.4533 1.9970 0.4636

6.0165 0.1516 1.9908 0.3239 6.0165 0.3278 6.0165 0.3622 6.0165 0.3789

6.0168 0.1530 1.9977 0.3303 6.0168 0.3271 6.0168 0.3705 6.0169 0.3790

... ... 6.0165 0.2590 ... ... ... ... ... ...

... ... 6.0165 0.2590 ... ... ... ... ... ...

... ... 6.0165 0.2594 ... ... ... ... ... ...

... ... 6.0165 0.2582 ... ... ... ... ... ...

... ... 6.0168 0.2631 ... ... ... ... ... ...

Cycle 7b |Beff | = 15.40◦ − 15.49◦

0.3156 0.2369 0.3156 0.3697 0.3158 0.4442 0.3158 0.4940 0.3159 0.5037

0.3160 0.2382 0.3157 0.3702 0.3162 0.4486 0.3163 0.4898 0.3164 0.5105

0.6866 0.2129 0.3161 0.3711 0.6861 0.4081 0.6859 0.4540 0.6857 0.4638

0.6927 0.2146 0.6864 0.3371 0.6923 0.4175 0.6921 0.4554 0.6918 0.4709

1.1982 0.1965 0.6925 0.3435 1.1978 0.3942 1.1975 0.4335 1.1973 0.4513

1.2042 0.1944 1.1980 0.3214 1.2034 0.3897 1.2031 0.4296 1.2029 0.4469

6.2567 0.1470 1.2036 0.3154 6.2567 0.3128 6.2566 0.3538 6.2566 0.3620

6.2568 0.1497 1.2038 0.3158 6.2567 0.3176 6.2567 0.3602 6.2567 0.3669

... ... 1.2039 0.3158 ... ... ... ... ... ...

... ... 6.2567 0.2497 ... ... ... ... ... ...

... ... 6.2567 0.2550 ... ... ... ... ... ...

Cycle 8 |Beff | = 20.05◦ − 20.17◦

0.2956 0.2253 0.2957 0.3505 0.2958 0.4209 0.2959 0.4713 0.2959 0.4798

0.2971 0.2233 0.2957 0.3506 0.2958 0.4249 0.2973 0.4600 0.2973 0.4795

0.4244 0.2125 0.2957 0.3504 0.2958 0.4213 0.4233 0.4481 0.4231 0.4558

0.4257 0.2132 0.2972 0.3491 0.2972 0.4203 0.4251 0.4533 0.4249 0.4598

6.1038 0.1402 0.4240 0.3335 0.4235 0.4015 6.1037 0.3382 6.1036 0.3518

6.1052 0.1437 0.4241 0.3333 0.4236 0.4043 6.1049 0.3480 6.1049 0.3567

... ... 0.4242 0.3331 0.4238 0.4014 ... ... ... ...
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Table 3—Continued

F336W F439W F555W F675W F814W

α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr α I/Fcorr

... ... 0.4255 0.3375 0.4253 0.4054 ... ... ... ...

... ... 6.1038 0.2409 6.1037 0.3041 ... ... ... ...

... ... 6.1051 0.2466 6.1050 0.3068 ... ... ... ...

... ... 6.1051 0.2455 6.1050 0.3097 ... ... ... ...

... ... 6.1052 0.2461 6.1050 0.3069 ... ... ... ...

Cycle 9 |Beff | = 23.54◦ − 23.69◦

0.2681 0.2199 0.2682 0.3414 0.2683 0.4118 0.2684 0.4572 0.2685 0.4671

0.2702 0.2200 0.2682 0.3412 0.2684 0.4083 0.2705 0.4571 0.2706 0.4669

0.5852 0.1976 0.2703 0.3424 0.2704 0.4130 0.5862 0.4241 0.5864 0.4318

0.5870 0.1950 0.2703 0.3418 0.2704 0.4099 0.5880 0.4189 0.5882 0.4285

1.9914 0.1665 0.5854 0.3129 0.5858 0.3827 1.9925 0.3788 1.9929 0.3908

1.9915 0.1667 0.5856 0.3125 0.5860 0.3772 1.9927 0.3743 6.0951 0.3473

6.0947 0.1381 0.5873 0.3107 0.5876 0.3786 6.0950 0.3329 6.0954 0.3394

6.0952 0.1378 0.5874 0.3098 0.5878 0.3743 6.0954 0.3323 ... ...

... ... 1.9918 0.2732 1.9922 0.3395 ... ... ... ...

... ... 1.9919 0.2730 1.9923 0.3360 ... ... ... ...

... ... 6.0948 0.2372 6.0949 0.2992 ... ... ... ...

... ... 6.0948 0.2375 6.0949 0.2966 ... ... ... ...

... ... 6.0948 0.2369 6.0950 0.2989 ... ... ... ...

... ... 6.0953 0.2334 6.0953 0.2924 ... ... ... ...
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Table 4. Log-linear fits to normalized HST phase curves1

F336W F439W F555W F675W F814W

Beff a b a b a b a b a b

C Ring 78,000 - 83.000 km

26.1 -0.0048 0.0377 -0.0060 0.0491 -0.0061 0.0521 -0.0063 0.0561 -0.0067 0.0606

23.6 -0.0055 0.0412 -0.0067 0.0529 -0.0068 0.0559 -0.0071 0.0612 -0.0071 0.0650

20.1 -0.0066 0.0461 -0.0079 0.0589 -0.0082 0.0627 -0.0086 0.0685 -0.0086 0.0725

15.4 -0.0082 0.0557 -0.0097 0.0707 -0.0100 0.0759 -0.0105 0.0829 -0.0112 0.0878

10.2 -0.0110 0.0736 -0.0127 0.0932 -0.0139 0.1015 -0.0153 0.1115 -0.0159 0.1164

4.5 -0.0182 0.1088 -0.0217 0.1348 -0.0232 0.1503 -0.0248 0.1657 -0.0257 0.1751

B Ring 100,000 - 107,000 km

26.1 -0.0321 0.2488 -0.0451 0.4337 -0.0501 0.5594 -0.0527 0.6317 -0.0550 0.6564

23.6 -0.0340 0.2533 -0.0460 0.4359 -0.0513 0.5568 -0.0564 0.6365 -0.0551 0.6505

20.1 -0.0352 0.2529 -0.0476 0.4345 -0.0530 0.5531 -0.0574 0.6290 -0.0577 0.6448

15.4 -0.0361 0.2524 -0.0501 0.4325 -0.0573 0.5503 -0.0599 0.6227 -0.0630 0.6406

10.2 -0.0380 0.2484 -0.0548 0.4247 -0.0611 0.5389 -0.0640 0.6101 -0.0684 0.6276

4.5 -0.0424 0.2299 -0.0624 0.3917 -0.0741 0.4993 -0.0811 0.5568 -0.0850 0.5784

A Ring 127,000 - 129,000 km

26.1 -0.0243 0.1781 -0.0325 0.2885 -0.0356 0.3562 -0.0363 0.3921 -0.0379 0.4076

23.6 -0.0260 0.1844 -0.0334 0.2961 -0.0361 0.3616 -0.0394 0.4034 -0.0388 0.4137

20.1 -0.0270 0.1907 -0.0344 0.3067 -0.0373 0.3740 -0.0405 0.4162 -0.0405 0.4270

15.4 -0.0299 0.2024 -0.0396 0.3248 -0.0440 0.3970 -0.0450 0.4393 -0.0474 0.4528

10.2 -0.0355 0.2193 -0.0499 0.3526 -0.0539 0.4308 -0.0568 0.4779 -0.0600 0.4937

4.5 -0.0464 0.2413 -0.0648 0.3896 -0.0749 0.4729 -0.0779 0.5183 -0.0827 0.5402

1a and b are the fit parameters in
I(α)

F
= a ln α + b (Eq. 4; phase angle α expressed in degrees, natural logarithm).
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Table 5. Log-linear fits to HST phase curves: the derived parameters1

F336W F439W F555W F675W F814W

Beff OE I/F (6◦) OE I/F (6◦) OE I/F (6◦) OE I/F (6◦) OE I/F (6◦)

C Ring 78,000 - 83,000 km

26.1 1.4125 0.0291 1.3869 0.0384 1.3696 0.0412 1.3467 0.0449 1.3436 0.0485

23.6 1.4386 0.0313 1.4070 0.0409 1.3862 0.0437 1.3640 0.0485 1.3359 0.0523

20.1 1.4741 0.0344 1.4390 0.0448 1.4238 0.0480 1.4018 0.0531 1.3732 0.0572

15.4 1.4945 0.0410 1.4495 0.0534 1.4298 0.0580 1.4084 0.0640 1.4092 0.0678

10.2 1.5104 0.0538 1.4465 0.0705 1.4534 0.0765 1.4541 0.0840 1.4511 0.0878

4.5 1.5932 0.0762 1.5602 0.0960 1.5296 0.1088 1.5078 0.1213 1.4940 0.1291

B Ring 100,000 - 107,000 km

26.1 1.4164 0.1913 1.3177 0.3528 1.2652 0.4696 1.2436 0.5373 1.2449 0.5579

23.6 1.4393 0.1924 1.3238 0.3534 1.2739 0.4650 1.2619 0.5354 1.2479 0.5519

20.1 1.4606 0.1899 1.3389 0.3492 1.2877 0.4580 1.2713 0.5261 1.2650 0.5414

15.4 1.4785 0.1877 1.3628 0.3428 1.3178 0.4477 1.2886 0.5154 1.2964 0.5278

10.2 1.5245 0.1802 1.4175 0.3264 1.3537 0.4294 1.3211 0.4954 1.3365 0.5051

4.5 1.6849 0.1539 1.5543 0.2799 1.5024 0.3665 1.4900 0.4114 1.4958 0.4261

A Ring 127,000 - 129,000 km

26.1 1.4494 0.1345 1.3504 0.2303 1.3025 0.2924 1.2760 0.3271 1.2775 0.3397

23.6 1.4680 0.1379 1.3515 0.2362 1.3018 0.2970 1.2946 0.3327 1.2800 0.3442

20.1 1.4711 0.1423 1.3483 0.2452 1.3016 0.3072 1.2925 0.3438 1.2836 0.3545

15.4 1.4980 0.1490 1.3874 0.2539 1.3433 0.3182 1.3115 0.3587 1.3206 0.3678

10.2 1.5663 0.1557 1.4712 0.2632 1.4010 0.3342 1.3750 0.3762 1.3860 0.3862

4.5 1.7297 0.1581 1.5885 0.2735 1.5498 0.3387 1.5114 0.3787 1.5240 0.3921

1OE ≡ I(α = 0.5◦)/I(α = 6.0◦)



ACCEPTED MANUSCRIPT 
– 70 –

Table 6. CB-SH (simplified Hapke) model parameters for the intrinsic opposition effect1

Ring Filter Ai BC0 BS0 hC hS SH(0) HWHM RMS

C ...... F336W 0.725 0.516 0.781 0.0036 0.052 1.290 0.147 0.0183

F439W 0.837 0.447 0.559 0.0030 0.029 1.305 0.125 0.0163

F555W 0.841 0.452 0.526 0.0030 0.032 1.284 0.125 0.0193

F675W 0.844 0.489 0.477 0.0032 0.036 1.247 0.131 0.0135

F814W 0.852 0.467 0.469 0.0030 0.034 1.251 0.122 0.0155

B ...... F336W 0.930 0.467 0.201 0.0039 0.031 1.116 0.162 0.0154

F439W 0.975 0.426 0.084 0.0028 0.019 1.057 0.114 0.0147

F555W 0.991 0.395 0.047 0.0022 0.006 1.037 0.091 0.0148

F675W 0.993 0.431 0.000 0.0024 -0.000 0.993 0.100 0.0164

F814W 0.996 0.416 0.046 0.0024 0.000 1.041 0.099 0.0136

A ...... F336W 0.693 0.559 0.578 0.0036 0.165 1.093 0.147 0.0218

F439W 0.535 0.500 0.940 0.0027 0.591 1.039 0.113 0.0183

F555W 0.524 0.461 0.928 0.0025 1.920 1.009 0.104 0.0191

F675W 0.518 0.480 0.921 0.0024 43.44 0.994 0.098 0.0213

F814W 0.518 0.481 0.924 0.0023 —– 0.997 0.093 0.0166*

1Intrinsic effect normalized to α = 6◦ (=gi(α) defined by Eq. (22)). The Ai, BC0, BS0, hC , hS

are the original parameters in the fits, while SH(0) = Ai(1 + BS0) and HWHM= 0.72hc expressed

in degrees.
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Table 7. Linear-exponential model parameters for the intrinsic opposition effect1

Ring Filter a′ b′ d′ k′ a′/b′ k′/b′ HWHM RMS

C ...... F336W 0.632 1.248 0.301 -2.3252 0.507 -0.033 0.208 0.0195

F439W 0.603 1.223 0.283 -2.0944 0.493 -0.030 0.196 0.0202

F555W 0.590 1.210 0.285 -1.9575 0.487 -0.028 0.198 0.0211

F675W 0.579 1.193 0.292 -1.7778 0.485 -0.026 0.202 0.0159

F814W 0.551 1.192 0.288 -1.7842 0.462 -0.026 0.199 0.0190

B ...... F336W 0.492 1.095 0.307 -0.9147 0.449 -0.015 0.213 0.0150

F439W 0.423 1.050 0.212 -0.5067 0.403 -0.008 0.147 0.0152

F555W 0.389 1.025 0.170 -0.2875 0.379 -0.005 0.118 0.0153

F675W 0.367 1.001 0.194 -0.0456 0.367 -0.001 0.134 0.0153

F814W 0.372 1.004 0.184 -0.0684 0.370 -0.001 0.128 0.0152

A ...... F336W 0.544 1.113 0.249 -1.1088 0.489 -0.017 0.173 0.0209

F439W 0.469 1.056 0.192 -0.5569 0.444 -0.009 0.133 0.0188

F555W 0.420 1.027 0.174 -0.2891 0.409 -0.005 0.120 0.0192

F675W 0.416 1.011 0.173 -0.1587 0.411 -0.003 0.120 0.0209

F814W 0.416 1.014 0.164 -0.1740 0.411 -0.003 0.114 0.0168

1Intrinsic effect normalized to α = 6◦ (=gi(α) defined by Eq. (22)). The a′, b′, d′, k′ are the

original fit parameters, a/b′, k′/b′ indicate the normalized amplitude of the exponential part, and

the normalized linear slope, the HWHM= d′ ln 2 expressed in degrees.
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Table 8. Modeled intrinsic and interparticle opposition effects at Beff = 23◦1

Filter OEi(0.5◦) OEe(0.5◦) OE(0.5◦) OEi(0.0◦) OEe(0.0◦) OE(0.0◦) OEobs(0
◦)

C Ring 78,000 - 83,000 km, model: τdyn = 0.1, 0.1 − 5.0 m

F336W 1.35 1.05 1.42 1.86 1.07 1.99 2.02

F439W 1.32 1.05 1.39 1.79 1.07 1.92 1.96

F555W 1.30 1.05 1.37 1.76 1.07 1.89 1.94

F675W 1.28 1.05 1.35 1.76 1.07 1.88 1.91

F814W 1.28 1.05 1.34 1.73 1.07 1.86 1.88

B Ring 100,000 - 107,000 km, model: τdyn = 2, 1 − 5.0 m

F336W 1.18 1.20 1.42 1.57 1.22 1.91 1.94

F439W 1.09 1.20 1.31 1.42 1.22 1.74 1.77

F555W 1.05 1.20 1.26 1.35 1.22 1.66 1.70

F675W 1.03 1.20 1.24 1.34 1.22 1.63 1.66

F814W 1.03 1.20 1.24 1.34 1.22 1.63 1.67

A Ring 127,000 - 129,000 km, model: τdyn = 1, 1 − 5.0 m

F336W 1.18 1.21 1.43 1.62 1.24 2.00 2.02

F439W 1.09 1.21 1.32 1.46 1.24 1.81 1.85

F555W 1.05 1.21 1.27 1.38 1.24 1.71 1.75

F675W 1.04 1.21 1.25 1.37 1.24 1.70 1.73

F814W 1.04 1.21 1.25 1.37 1.24 1.70 1.73

1The symbols OE(0.5◦) ≡ I(0.5◦)/I(6◦), and OE(0◦) ≡ I(0◦)/I(6◦). The total opposition effect is the

product of the intrinsic and external (interparticle) contributions; OE(0◦) = OEi(0◦)×OEe(0◦), OE(0.5◦) =

OEi(0.5◦) × OEe(0.5◦).
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Table 9. Modeled intrinsic and interparticle opposition effects at Beff = 4.5◦1

Filter OEi(0.5◦) OEe(0.5◦) OE(0.5) OEi(0.0◦) OEe(0.0◦) OE(0.0◦)

C Ring 78,000 - 83,000 km, model: τdyn = 0.1, 0.1 − 5.0 m

F336W 1.35 1.21 1.63 1.86 1.46 2.72

F439W 1.32 1.21 1.59 1.79 1.46 2.62

F555W 1.30 1.21 1.57 1.76 1.46 2.58

F675W 1.28 1.21 1.55 1.76 1.46 2.57

F814W 1.28 1.21 1.54 1.73 1.46 2.54

B Ring 100,000 - 107,000 km, model: τdyn = 2, 1 − 5.0 m

F336W 1.18 1.45 1.72 1.57 1.58 2.48

F439W 1.09 1.45 1.58 1.42 1.58 2.25

F555W 1.05 1.45 1.52 1.35 1.58 2.14

F675W 1.03 1.45 1.50 1.34 1.58 2.11

F814W 1.03 1.45 1.50 1.34 1.58 2.12

A Ring 127,000 - 129,000 km, model: τdyn = 1, 1 − 5.0 m

F336W 1.18 1.48 1.74 1.62 1.63 2.64

F439W 1.09 1.48 1.61 1.46 1.63 2.39

F555W 1.05 1.48 1.56 1.38 1.63 2.26

F675W 1.04 1.48 1.53 1.37 1.63 2.24

F814W 1.04 1.48 1.53 1.37 1.63 2.24

1The symbols OE(0.5◦) ≡ I(0.5◦)/I(6◦), and OE(0◦) ≡ I(0◦)/I(6◦). The total opposition

effect is the product of the intrinsic and external (interparticle) contributions; OE(0◦) =

OEi(0
◦) × OEe(0◦), OE(0.5◦) = OEi(0.5◦) × OEe(0.5◦). The last column lists the observed

I(0.5◦)/I(6◦).


