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Numerical results using a colocated finite volume scheme
on unstructured grids for incompressible fluid flows

E. Chénier, R. Eymard, O. Touazi*
LETEM, Université de Marne-la-Vallée, Bat. Lavoisier, 77454 Marne-la-Vallée Cedex, France

Abstract

This paper presents numerical results, using a new finite volume scheme on unstruc-
tured grids for the incompressible Navier-Stokes equations. The discrete unknowns are
the components of the velocity, the pressure and the temperature, colocated at the centers
of the control volumes. The scheme is stabilized, using an original method leading to local
redistributions of the fluid mass, which simultaneously yields the control of the kinetic
energy and the convergence of the scheme. Different comparisons with the literature (2D
and 3D lid driven cavity, backward facing step, differentially heated cavity) allow to assess
the numerical properties of the scheme.

1 Introduction

The problem of finding approximate solutions for the incompressible Navier-Stokes equations

has been extensively studied and numerous schemes have already been presented in the lit-

erature (see the review article [1] and the important numerical works concerning the finite
element methods [2, 3, 4, 5] and references therein).

In the engineering framework, finite volume schemes have been widely used on Cartesian
grids or orthogonal meshes, following the pioneering works of [6]. Historically, unstructured

grid solvers have been mainly developed in the framework of density-based numerical method
for compressible flows. Most of the numerical developments of finite volume schemes for

incompressible flows have been performed on structured grids in the spirit of the classical
Marker And Cell scheme (MAC), formulated originally by Harlow and Welch [7]. Amongst the
attempts to extend the MAC-scheme to unstructured meshes, Nicolaides [8] proposed the “dual

mesh” or “covolume” method taking advantage of the fact that an unstructured tetrahedral
mesh, under the Delaunay condition, can be associated to a Voronoi tessellation. However,
most of the grid solvers so obtained are of low order accuracy due to reconstructions from

staggered data : these methods tend to be first order accurate on nonuniform meshes. Some
numerical improvements had been proposed to increase the convergence speed [9]. Note also
some recent mathematical works on the convergence of a finite volume scheme for unstructured
staggered grids (see |10, 11] for the Stokes problem and [12] for the Navier-Stokes equations).

* E-mail address: tonaziQuniv-mlv.fr
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An obvious alternative of using staggered meshes is to express all the variables on the same
grid. This method has become popular for pressure-based solvers since the work of Rhie
and Chow [13]. For instance, Mathur and Murthy [14, 15] proposed a colocated SIMPLE-
based solver with a dissipation term in the mass equation to avoid spurious oscillations on
pressure modes. The gradients on faces are however not easy to define and give rise to several
expressions according to the authors [14], [15], [16]; an inconsistent gradient expression may
lead to a residual error on the diffusion fluxes within grid refinement. Therefore Perron et
al. |17] have proposed a novel approach where variables are located at cell-circumcenters, the
time discretization being based upon the fractional time step method [18]. The decoupling
method allowed by this time discretization leads to compute an intermediate normal velocity
on faces, which prevents from the classical spurious pressure oscillations. On the contrary, a
coupled stabilization strategy, which leads to a global matter redistribution, has been applied
to a colocated finite element method for the steady linear Stokes problem [19].

Using some of these ideas, we present here an original colocated finite volume scheme to
solve the Navier-Stokes equations in the framework of incompressible flows on structured or
unstructured grids, focusing both on numerical implementation and comparisons to benchmark
solutions (the mathematical proof of convergence of the scheme is detailed in [20]). The key
points of this scheme are the following:

1. the unknowns are colocated at some particular points, called centers of the control
volumes;

2. the only requirement for the finite volume grids is that each interface between two
adjacent control volumes is orthogonal to the line joining their centers;

3. the discrete gradient of the pressure and the discrete divergence of the velocity are dual
operators, and the nonlinear convective term in the momentum equation is discretized
so that the discrete kinetic energy is time decreasing;

4. a stabilization term is introduced in the mass equation, leading only to a local redistri-
bution of the matter, thus preserving the global convergence;

(@21

the set of discrete equations is simultaneously solved by an under-relaxed Newton’s
method with a direct or an iterative linear solver (in this paper, the BICGSTAB method
is used).

The outlines of this paper are the following. In Section 2 are presented the numerical scheme
and the main features of its practical implementation. In Section 3, 2D and 3D numerical
examples are provided for either isothermal flows or natural thermal convection. Conclusions
are then drawn in Section 4.

2 Numerical method

We consider the incompressible fluid flow under the Boussinesq approximation in a 2D or
3D space domain, denoted by €1, the time variable varying between 0 and 7. The mass,
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momentum and energy equations are

o) - I 2
a'z‘ﬁr V. (T®v)+ ;Vp —-vAT = f(T),
)

—T+V.(0T) —aAT = s,

ot

where ¥(x,t) is the velocity field, p(z,t) is the pressure field, T'(z,t) is the temperature field,
v is the kinematic viscosity, a is the thermal diffusivity, p is the density and j? and s are
source terms such as buoyant forces and heat source or sink. In addition to the conservative
equations, initial (at ¢ = 0) and boundary (on 99) conditions are imposed. At last, we
suppose that the domain Q is completely recovered by a family M of control volumes. We
now introduce convenient notations which are summarized in Figure 1 in the 2D-case:

e for all control volume K (K € M), we denote by Ex the set of its edges and by Ex ext
the subset of its edges located at the boundary 99,

e for all control volume K (K € M), we denote by my its area (if d = 2) or its volume
(if d = 3) and by Xk its “center”;

e for all control volume K (K € M), we denote by N the set composed by the neighbors
of K:

edge, assuming that the straight line (Xx, X1) is orthogonal to ox;

e for any neighboring control volume L of K (L € N), we denote by mgy, the interface
length (d = 2) or area (d = 3) between K and L, by 7k the unit vector, normal to
ok, and oriented from K to L and by dg the distance between Xx and Xy

e for each edge o located at the boundary domain (¢ € g ext), we denote by X, the
orthogonal projection of X on o, by g, the unit vector normal to o outward K and
by dr ., the distance between Xg and X,.

Finite volume meshes which meet the above geometrical requirements can easily be found:

e rectangular grids (d = 2) or right parallelepipedic (d = 3) grids are the simplest exam-
ples,

circumcircle),

e Voronoi tesselations (d = 2 and d = 3) offer very powerful grid possibilities. Recall that
the control volume K is defined in this case as the set of points closer to Xy than to
any other X : the interfaces are then included in the midhyperplanes between centers
X and X, thus ensuring by construction the required orthogonality property. Two
important advantages can be drawn from the use of such meshes. First, grid refinement
strategies can easily be designed within the knowledge of an a posteriori error estimate.
Indeed, a refinement procedure of such a mesh consists in the introduction of new points,
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which only lead to a local modification of the mesh. Secondly, this method allows for
meshing any 2D and 3D domains, whatever the complexity of their geometry, the nature
of their boundaries (curved or planar). Note that powerful tools for the generation of
Voronol tesselations are available on the web.

The time interval [0, 7] is discretized by t* =0 < ¢t < ... <" <"t < . <tV =T,

The scheme consists in computing, at each time step n = 0,..., N — 1 and for all K € M,
approximation values 7j:t, pit and TiH of the continuous unknowns expressed at the center
cell Xg and at time 7, (X, "), p(Xge, ") and T(X g, t" 1), These discrete unknowns

are solutions of algebraic relations which are from now on explained in details.

2.1 Scheme for unsteady problems

Forall n =0,...,N -1, the conservative equations are expressed in time with a second order
centered scheme, namely the Cranck-Nicholson scheme, where the unknowns are the discrete
fields gm L, pnt1/2 and T

ﬁ'l—fn—i—l/ﬁz ]
gl ogn . 1/9 1/9 1= 1/2 1/2 2 rne1/2
A+l n + V. (’?7”+ 12 g gt/ ) + ;\7[)"'" 2 _pAgt2 = /2
Tn-|~1 _n o o 19N e { e IR
T vi (,Un, +1/27m J.,Z) _aATVHY2 _ gntl)2

with 07F1/2 = 0.5 x (¢ + g*F1), T2 = 0.5 x (T™ +T"*1). For convenience, the equations
are rewritten using only the unknowns 742, pn+1/2 and 77 +1/2;

Vot = 0 (1)
grtl/2 _gn . ‘ 1o . ;
2Lt_n+1 t:_+ V‘(W+]/Z®W+l/z>+1VP“+1/2—VM’”’+W = flr™?) (@

L p

pn+l/2 _pn

pres . N v (6*17,+1/2Tn+1/2) _ CYATTL+1/2 — 8n+1/2 (3)

The spatial discretization is based on the finite volume method. The continuous equations
(1-3) are integrated in any control volume K € M and Green’s formula is applied:

e Mass equation

Y. Fro@H?) =0

EER oxt

Z Frr (2—;71{]/2) +

LeNy

with

L
Fio = / U(x) - fig o ds(x)
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e momentum equation

M( / () da - /A U”‘(:v)d(a:)) +

Z QI(L —m--{---J/Z nl]/2 + Z gK —Vn+1/2 Tlfl/Z) / ._’(Tr1+1/2( ))dJ‘
¥

LCNK ()’Cé[g ext <

with

QKL(Q' p) = / (('U(:B) S )U(x) + ;p(:l:)n;(,; —vVU(z) - Ky ) ds(x)
TKI

o2

. A T SN
G0 (U,p) m/ (v(m)‘n;(,(,v(;x) + ;p(:c)-nh;g ------ vVi(x) -nK,(,> ds(z)

e energy equation

?{Az -#nrl 2 prt1/2y 4 M ,F;n--{--»l/z’Tn--?—»l/Z m/ 200 da
> oY il )= | ") da,

L ‘L—_,.«\:r Uegkwﬁzxt

with

»

((0(@) - i) T (@) — aVT () -siks) ds(z)

i@, T) = [ ((00) ik ) T(@) ~ aVT(@) ik ) ds(a)

The integrals Frr(V), Fk.o QKJ(Up) th(i’p) Hir (U, T) and Hy (0, T) are approxi-
mated by the following centered expressions:

. - _. U +01, = MK
F (UK, VL, K, L) = mrrH5E ik — Ak (L — i),
K = movg nK
r — > T+, 1, PLAPK =
G 1Tk, U, prc,p1) = Frp(Ux, UL, pr, pr) 575 + smpcp PPl
MK ;
— KL (U — Uk)
S (g oo N 1,
Gk,o(UK, PK) = FkoUk + 5MePKTKe = Ve (Vo — TK)
= 57 7 — T +TJ ML
Hg (Ui, e, px. L, T, Tr) = Frr(Uk, 7L7PK7PL) L — B (T, — Tk)
Hy o(VUk, prc, Tk ) = Frolkx —ag= (T — TK)

with Aip being a stabilization parameter defined on each interface between two control vol-
umes K and L which will be discussed in Subsection 2.5.

Consequently, the scheme for transient problems writes:

; +-1/2 ,n+i _______
> FrrlUk, tn,pr,pn)" P+ Y Fg = 0
LeNk O'ggl(,e,xt
mﬁﬂiﬁm( n+1/2 o )+
[;n+1 tn VK
) o n+1/2 ~ s --1/2 -n41/2
> G (U, Tr,prc,pr)" /% + > GrolUk,pr)"" / = mrf(TE?)
LeNk OEEK oxt
2 myg n+1/2
rtt mn
e+l o n ( K o IK)+
= o \neR1/2 = o \n+1/2 0 n+1/2
S Hir(k, 0, pk. 00 T, T2 4+ > Hio(Ok, Te)" ™2 = mksy
LeNk Ueg}&',exf

(4)

<t
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Hence the finite volume scheme is completely determined under the knowledge of the position
of the edges and of the centers of the control volumes. The computing time needed for
preparing the data before finding an approximate solution appears to be negligible in practice.

2.2 Properties of the scheme

For a given time step index n, we denote by Uaq, par and Ty the piecewise constant functions

respectively defined by the values iy 1/ 2, p?("r 12 and ’I’;\L,H/ ?for all z in K. Defining the
discrete gradient operator v M by
» n—}-l/z + 741/ /2
mi(Vaps)x = 9 mir’ 5 PE firer + > mopy i o,
LeNw CEER ext

the relation >y cne MKLAKL + 2 pegy o MoK 0 = 0 leads to

— D -
mig(Vaprm)k = Y, mgr—t—— KL,

which shows that the discrete gradient operator V, is the dual of the discrete divergence
operator V o+ defined by

?—’sn+1/2 n; —n+1/2
S SN , K Uy, o
mi (V- Tk = Y, miL 5 KL,

in the sense that it meets the property

A i Vapm(z) - tm(z) do = — / pa(E)V - T () da.

We can then prove an important consequence (which cannot be drawn from schemes where
this dual property is not satisfied): the scheme (4) prevents from the increase of the discrete
kinetic energy. Indeed, let us assume that the boundary conditions are such that v, = 0 and
f = (). We then multiply the discrete momentum balance by ¢ ,\fl/ ? and sum over K € M.
Thanks to the dual property of the discrete operators and to the discrete conservation of the
fluid mass (which makes the nonlinear terms vanish; such a property is only obtained for
constant space steps on the MAC scheme), we thus obtain

—n+1\2 =1 \2
I Z mi (@) (V)
n+1l _ 4n ¢
t t mKEM 2 / 2 /
KL —n+1/2 —n+1/2.2 n+1/2 n+1/2.2
+ Z At (V (7, o U )"+ Ak(py e Pk ) )
o=0ry "KL

m n1/2.
FY Y gy ~ o0,

KeMm O'Gf:/(’ext Ko
and prove the following kinetic energy inequality
m+1 )

Z mKU—+

(i”+1—572'> Z MKIL (_?—H /2 _m+1/) + Z Z ;71(; ” ('Zﬁ[(+1/2>2 < Z M~

d K1

C=OKI KeM 0€EK oxt UKo KeM
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2.3 Upstream weighting version of the scheme

(U +0L ) Fircr|dicr
v

For a too large grid size, the local Reynolds number, , or Péclet number,

Tim o
|5 (T +0L) ArcrldrL

=~ , can greatly exceed 1 at the interface between neighboring control volumes
K and L. In such a case and to keep the scheme stable, it can be useful to substitute

in the approximated transport terms, the centered expression Frr(Uk,vr,pr,pr) =55~ or

Frp (U, U1, prc. 0 L)w by the corresponding upstream weighting expressions given by
max(Fx 1, (Vs , UL, pic, pr), 0)0x + min(F 1, (U, U1, pr, pr), 0)vL, or

max(Fr (U, U, pr,pL), 0)Tk + min(Fx 0k, UL, prc, pL), 0) 1L

It is also possible to introduce local upstream weights which depend on the local Reynolds
or Péclet numbers. We do not present examples of the use of such a scheme in this paper,
since we focus in the numerical examples on the precision of the results. Therefore we use

. . . . . FllH il b
sufficiently fine grids, choosing the size of the mesh h such that LI LR %, are small
enough, according to an average norm of the velocity ||¢/

v C

2.4 Scheme for the steady problem

The steady scheme is directly deduced from (4). The relations for determining discrete values
for the steady unknowns Uy, px, Tk, for K € M are given by:

> Fxp(Uk,Un.px.p) + Y. Fro = 0
L GNA’ » ’”ESK,ext

> Griolik,iL,px.p0)+ >, Gro(Uk,pK) = mgf(Tk) (5)
Le./\/,[{ Uegl(,e.\“t

> Hgp(Uk, 0, pk.00. T, o)+ Y HiolUk, Tx) = mgsk
LGJ\J"K Uegi\’,ext

2.5 The stabilization method and the parameter Ay,

It is well known that a stabilization method is necessary to prevent from the apparition of
oscillations in colocated schemes since, intuitively speaking, the number of pressure unknowns
is too large compared to that of velocity unknowns. This problem has been handled in the
literature by different methods (see for instance [21]). One of them consists to use a time-
stepping or SIMPLE-like algorithm to decouple the pressure and velocity unknowns and then
solve the pressure unknowns by a finite volume Laplacian operator which differ from the
discrete divergence operator applied to the discrete gradient operator.

In this work, we have preferred to simultaneously solve the velocity and the pressure unknowns
in order to preserve the accuracy of the scheme at the boundary of the domain. Therefore,
an explicit stabilization method is introduced, following some ideas of [19] in the framework

for all pairs of neighboring control volumes, where A is adjusted with respect to the studied
problem, h is the maximal size of the control volumes and « € [0, 2] is an adjustable exponent.
A drawback of this method is that it yields some redistribution of the fluid mass over the

whole domain.
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An original stabilization method has therefore been introduced. The family of control volumes
M has been partitioned into disjoint subsets including groups of neighboring control volumes.
The criterion to be respected is that the distance between two control volumes belonging to
the same subset is bounded by Ch, where h is the maximum size of the control volumes and,
C is about 2 or 3 for example. Then the stabilizing parameter Agp, is chosen equal to A for
any pair of neighboring control volumes K and L belonging to the same subset, 0 otherwise.
The value X is a positive value, chosen large enough for preventing from the apparition of
instabilities.

We have implemented the following algorithm for partitioning M:

e for ¢ = 1to M, if K; and all its neighbors do not yet belong to a subset, initialize a new
one by K; and all its neighbors;

include K; in this subset.

We shall present in a further paper the mathematical study of the convergence of this stabilized
scheme. Note that a crucial difference with the stabilization of [19] is that there is no need to let
A tend to 0 with the size of the mesh, which means that the presence of a finite stabilization
does not decrease the quality of the approximation. The numerical examples given below
illustrate this kind of property.

2.6 Numerical implementation of the scheme

The schemes (4) or (5) resume to a set of linear and nonlinear equations under the following

- ntl/2 ntl/2 nbl/2 . . .
case the components of @y 2 P % and TRF 2 for all K € M, and in the steady case

the components of Uk, px and Tk. For example, with M control volumes for a 3D thermal

o N . e (©
Newton’s method consists in first selecting an initial guess [Jk )

of (xr],_1 nr, which we
thN EIPN
choose equal to the values given at the beginning of the time step for a transient problem.

Then at the iteration [, the solution [5:[,;” ] ~of the following linear system
Ty

g ()] [0, =~ [es([+),)],

iy
is computed either by a direct solver or by an iterative one, BICGSTAB in our examples. The

under-relaxation factor 6

do
¢ (
’ [()a:g )} ,
Y
is then calculated, taking for dy a small enough value preventing from oscillations of the
iterative method. Note that the quadratic convergence of Newton’s method is preserved close

f = min 1
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. . - . . .
enough to the solution ( [éazg )} H < dp), obviously as long as the linear systems are precisely
7y

solved. A new approximation of the nonlinear system is determined by the relation

040) = [0+ 0 sl

/ j
The iterations are stopped when [51& )] is lower than a given criterion (indeed much smaller

J
than dy). It is worth to point out that the precision of the solver is only related to the Newton

criterion, and not to the accuracy of the solution of the linear solver.

3 Numerical studies

Computations have been performed on a personal computer with a 3 GHz Pentium 4 processor
with 1Go of memory.

3.1 Analytical test: the decaying vortices

We verify the temporal and spatial accuracy of this numerical scheme by simulating the
solution

u(z,y,t) = —cos(wx)sin(ny)exp(—2w*t/Re)

v(z,y,t) = sin(mz)cos(my)exp(—272t/Re)
08(277) + cos(2 :

p(z,y,t) = —(Ob( mz) + cos(2my) exp(—4n*t/Re)

4

on the square [—0.5,0.5] x [—0.5,0.5] domain, simply by imposing the above time dependent
values of the velocity at the boundary of the domain and introducing its values at ¢ = 0
as initial conditions in the domain. The computations were performed for Re = 10 using a
regular square grid.

We use the direct linear solver for the meshes 40 x 40, 80 x 80 and 160 x 160 and the iterative
solver BICGSTAB for the finest grid 320 x 320, keeping the time step constant at At = 0.001.
The difference between the analytical and computed velocity is presented in figure 2(a), and
shows the spatial second order accuracy of the scheme.

Next, by varying the time step and by keeping the mesh size constant, namely the finest grid
320 x 320, we study the temporal accuracy. Figure 2(b) presents the variation of the difference
between the analytical and computed velocity and shows that the time integration scheme is
second-order accurate too.

3.2 Closed isothermal cavity test cases

We consider in this section different lid-driven problems. The Reynolds number, Re, is based
upon the imposed tangential velocity along the moving wall and the length of one side of the
cavity.
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2d-square cavity

Computations have been performed in the case of a 2d-square lid driven cavity with Re =
1000, using square meshes. Our results are compared with the numerical works of Botella
and Peret |22] achieved with a spectral method (SP) using Chebyshev polynomials.

The values of the velocity extrema along the centerlines of the cavity and the values of the
stream function at the square center (Tab. 1) are in excellent agreement with the benchmark
reference. For the coarsest grid, the relative difference with the reference does not exceed 2%.

For the finest grid, the stabilizing and relaxation parameters are A = 1077 and &y = 100,
respectively. The computation time is about 26 minutes using the linear solver BICGSTAB
with an ILU preconditioning based on 6 levels.

2d-inclined cavity

In the case of a 30° inclined driven cavity, we compare our results with Mathur and Murthy’s
ones, obtained on a 6400 triangular finite volume cells (FV) for Re = 1000 [15]. Figures
3(a) and 3(b) illustrate, for a coarse Voronoi meshes, the hexagonal grid and the groups of
neighboring control volumes used to stabilize the checkerboard pressure modes.

The horizontal and vertical components of the velocity at the centerlines, drawn in figure
4, are in agreement with those of [15] (the values of [15] have been scanned before plotting;
since the range of the vertical component is small, the corresponding values of [15] are only
imprecisely known, and a drawing at the same scale as u would lead to confounded curves).
The minimum of the horizontal component of the velocity along the vertical centerline and its
location are reported in Table 2 and are in agreement with [15].

minutes. The linear solver BICGSTARB is used with an ILU preconditioning based on 5 levels.

3d lid-driven cavity

The computational domain is the [0, 1] x [0,1] x [0, 1]-cube. A tangential velocity is imposed
orthogonal 36 x 36 x 36 grid refined at the boundaries: the side of the control volumes satisfies
a geometric series with a ratio equal to 1.2.

The velocity profiles are successfully compared with the unstructured finite volume (FV) [23]
and trilinear finite element (FE) [24] methods for Re = 400 and Re = 3200 (Fig. 5).

The extremum values of the velocity components as well as their location are summarized in
Table 3. Most of the results are in agreement, except for the coordinate x corresponding to
the maximal vertical component w of the velocity, with Re = 3200.

The stabilizing parameter is A = 107>, The computation time is respectively about 7 and 80
minutes for Re = 400 and Re = 3200, using a 3-levels ILU preconditioning.

10
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3.3 Open channel: the backward facing step

We consider the laminar flow of a Newtonian fluid over the 0.94 backward facing step in a
channel of height 1.94. A Poiseuille velocity profile is prescribed at the inlet boundary and the
value of the pressure is imposed at the outlet. Computations have been performed for Reynolds

H the height of the channel before the downward step (H = 1). We use a Voronoi mesh with
39306 non-uniformly distributed cells (essentially of hexagonal shape). Figure 6(a) shows an
enlargement of the grid in the vicinity of the backward facing step, whereas the groups of the
neighboring control volumes are shown in Figure 6(b).

Table 4 reports the good agreement of the reattachment lengths of the first and the second
vortices divided by the step height for Re = 800.

The stabilization and relaxation parameters are respectively equal to A = 10~% and dy = 100
for a CPU time of 6 minutes for Re = 800. The linear solver BICGSTAB is used with an ILU
preconditioning based on 5 levels.

3.4 Natural convection flow

We consider the two-dimensional natural convection flow in a square cavity filled with air
(Pr = 0.71), differentially heated on its vertical walls and isolated on the others. Computa-
tions have been performed for Ra € [10°%,10%], on a nonuniform orthogonal grid, the side of the
control volumes following a sinusoidal distribution. Results are compared with the benchmark
solutions of Le Quéré |25] obtained with a pseudo-spectral Chebyschev method (SP).

Table 5 presents, for Ra = 10® and for different meshes, the values of velocity extrema along
the centerlines of the cavity, the average Nusselt number at the hot wall and the stream
function at the center of the cavity.

dg = 100 for a CPU time of 85 minutes. The linear solver BICGSTAB is used with an ILU
preconditioning based on 2 levels.

4 Conclusion

Considering the above numerical examples, the properties shown on the new finite volume
scheme presented in this paper confirm that it can be successfully used in a relatively wide
range of test cases. Its implementation is quite simple, thanks to the fact that this scheme
only involves simple geometric factors and is a natural finite volume scheme, such that all the
differential operators have been approximated at the interfaces between control volumes. An
upstream version of the interface terms could be used in the case of coarse meshes, permitting
that this scheme be used in an industrial framework. The accuracy of the results on classical
tests of the literature is correct for small or acceptable computing times, even in one 3D case.
The question of the use of this scheme on larger meshes then arises. Indeed, its computational
cost seems to be higher than that of a pressure-corrector based method, since it leads to linear
systems coupling all the unknowns. Let us observe that a pressure-corrector based method,

11
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applied to the steady linear Stokes problem, can be viewed as an iterative method, belonging
to the class of Gauss-Seidel methods. The rate of convergence of such a method is then linear.
Hence, the scheme that we study in this paper uses Newton’s method, which is a fixed point
method with a quadratic rate of convergence. All the computing performances are then linked
with the linear solver which is used. Since the structure of the coupled linear systems is similar
to that of the initial Stokes problem, a pressure-corrector based method could then be used
as a preconditioner. We have preferred here to use a preconditioner based on an incomplete
factorization, in order to be able to enforce, if needed, the robustness of the iterative method.

So we expect that our further works will confirm this analysis, and that it will be possible to
handle larger problems, by developing faster preconditioners (a way will be to use libraries of
linear solvers dedicated to parallel computers). Another direction of research is the determi-
nation of an optimal coupling between the precision of the nonlinear resolution and that of
the linear systems. Let us finally mention that we are actually developing a version of the
scheme for the Navier-Stokes equations without using Boussinesq’s approximation, and for
weakly compressible problems. We have already obtained encouraging results.
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Table 1: Lid driven cavity, Re = 1000

nx xny 80 x 80 150 x 150 220 x 220 [22] (96 x 96, SP)
Umaz (0.5,y) || 0.3813 (1.9%) | 0.3870 (0.4%) | 0.3877 (0.2%) 0.3886
0.172727 (0.5%) 0.171785

Y

0.175 (1.9%)

0.173333 (0.9%)

Umax (41»'., 0.5)

0.37125 (1.5%)
0.844 (0.2%)

0.37543 (0.4%)
0.8433 (0.1%)

0.37607 (0.2%)
0.8432 (0.1%)

0.37695
0.8422

—0.5205 (1.3%)
0.09 (0.8%)

—0.5251 (0.4%)
0.09 (0.8%)

~0.5260 (0.2%)
0.0909 (0.1%)

—0.5271
0.0908

0.11705 (1.6%)

0.11801 (0.7%)

0.11867 (0.2%)

0.11893
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Table 2: Inclined lid driven cavity, Re = 1000

Present work [15]
Number of cells || 5643 14040 29737 6400, FV
Umin(0.5,y) || —0.194 | —0.197 (1.6%) | —0.197 (1.6%) | —0.194 (1.6%)
Y 0.78 0.78 0.78 0.78
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Table 3: The values of the velocity extrema u(0.5,05, 2) and w(z,0.5,0.5) for Re = 400 and

Re = 3200

Re = 400 Re = 3200
Present work [23], FV [24], FE Present work [23], FV
46 656 cells 24389 nodes 50 x 52 x 50 97 336 nodes
Umin(0.5,05,2) || — 0.221 (1.4%, %) | - 0218 - 0.238 || — 0.286 (0.85%) | - 0.285
z 0.229 (0.9%, 11%) 0.227 0.257 0.06 0.06
Winaz (2,0.5,0.5) 0.20 (5%) 0.187 0.230 (5%) 0.214
x 0.15 0.15 0.0626 (20%) 0.050
Winin(2,0.5,0.5) ~0.37 (3%) ~0.360 0.428 (3%) 0.415
x 0.87 (1.2%) 0.86 0.95 0.95
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Table 4: Reattachement lengths, Re = 800

1st vortex 2nd vortex
(z/s) (z/s)
Armaly et al. (experimental results) [26] 14.2 20.0
Chiang et al. [27] 12.3 20.8
Kim & Moin [28] 12.0
Kaiktsis et al. [29] 11.9
Present work 12.2 20.1
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Table 5: Natural convection, Ra = 108

Solver

100 x 100

direct

Present work
200 x 200

direct

300 x 300

iterative

[25]
128 x 128, SP

Umax (O .5, Y )

y

300.525 (6.7%)
0.930 (0.22%)

313.677 (2.5%)
0.930 (0.22%)

317.463 (1.4%)
0.925 (0.33%)

321.876
0.928

Urnax (557 05)

2200.95 (0.9%)
0.012

2215.67 (0.3%)
0.012

2218.47 (0.17%)
0.012

2222.39
0.012

52.37 (0.1%)

52.34 (0.04%)

52.33 (0.02%)

52.317

30.232 (0.07%)

30.228 (0.06%)

30.210 (0.03%)

30.209
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Figure 1: Control volume and geometry definitions
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Figure 3: Voronoi mesh and groups of neighboring control volumes
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