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Abstract

Natural convection in horizontal differentially heated annuli is numerically inves-

tigated both by linear stability analysis and by solving the three-dimensional flow

equations for a radius ratio R = 1.7. The governing equations were solved numer-

ically by using a finite volume method. The stability of the basic crescent-shaped

flows to three-dimensional disturbances is investigated. The existence of a stability

region corresponding to a reversal from 3D- to 2D-flows is predicted for the first

time. Three-dimensional computations show that multiple solutions are possible in

the new stability region according to the initial conditions. Computations performed

at supercritical Rayleigh numbers for the oscillatory régime elucidated the influence

of the annulus length. Conflicting results reported in the archival literature are

clarified.
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Nomenclature

A aspect ratio, = L∗/d∗

d∗ gap width of the annulus,

= r∗o − r∗i , [m]
f radial function, = ηr + 1

g gravity acceleration, [m/s2]

k wavenumber

L∗ annular length, [m]

Nu local Nusselt number

Nu average Nusselt number

Pr Prandtl number, = α/ν

p pressure

R radius ratio, = r∗o/r
∗
i

Ra Rayleigh number,

= gβ(T ∗
i − T ∗

o )d∗3

/ (να)
r dimensionless radial coordi-

nate, = (r∗ − r∗i )/d
∗

r∗ radial coordinate, [m]

t time

T dimensionless temperature,

= (T ∗ − T ∗
r )/(T ∗

i − T ∗
o )

T ∗ temperature, [K]

T ∗
r reference temperature,

= (T ∗
i + T ∗

o )/2, [K]

~V velocity vector,

= u~er + v~eθ + w~ez
Vp phase velocity

Greek symbols

α thermal diffusivity, [m2/s]

β coefficient of thermal

expansion, [K−1]
η Reduced radius aspect ratio,

= R − 1
ν kinematic viscosity, [m2/s]

ω pulsation

θ azimuthal coordinate

Subscripts

c critical value

i inner cylinder

o outer cylinder

Superscripts

∗ dimensional quantity

(G. Lauriat).
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1 Introduction

Natural convection in square or rectangular cavities, with horizontal or verti-

cal isothermal walls, has been extensively studied and a large variety of flow

patterns has been discussed in the archival literature. When studying natu-

ral convection in horizontal differentially heated annulus, it can be considered

that both orientations of the thermal gradients are simultaneously applied, in

the upper/lower regions and lateral regions, respectively. Thus, a rich diversity

of flow structures is encountered according to the radius ratio of the cylinders,

R.

The two-dimensional air flow patterns were classified as a function of the radius

ratio in a recent paper by Petrone et al. [1]: in addition to the usual couple of

counter-rotating crescent-shaped cells, located within each transversal section

of the annulus, various multi-cellular flow patterns were predicted. A map of

2D-stable flow patterns, based on two-dimensional linear stability calculations,

was established in the (R, Ra)-parameter space. This map clearly highlights

the regions where multiple solutions may exist.

To our best knowledge, the first three-dimensional numerical investigations

were published around the mid-eighties by Tanaka et al. [2] and Rao et al.

[3] for high Prandtl number fluids (Pr = 5 · 103). For R = 2, A = 4 and

1.25 · 103 ≤ Ra ≤ 1.25 · 104, the flow was shown weakly affected by the

end walls: the fluid particle trajectories lie essentially in the cross-section of

the annulus, as for two-dimensional solutions, with a very small axial depen-

dency. This flow pattern was classified as helical. For a smaller radius ratio

(R = 1.428), A = 6.66 and 1500 < Ra < 8100, the flow results from a combi-
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nation of two origins of fluid motions and is named as spiral flow. In the lower

region of the annulus, the helical structure persists whereas counter-rotating

transverse rolls (with respect to the annulus axis) develop in the upper part

of the annular space. These rolls correspond to a thermal instability of the

helical flow and they occur between two almost parallel plates differentially

heated, as in the Rayleigh-Bénard configuration.

Using air as the working fluid in a large-gap annulus of small aspect ratio

(R = 2.64, A = 1.625), Fusegi and Farouk [4] showed the effect of the end

walls on fluid motions for 103 ≤ Ra ≤ 104. Vafai and Ettefagh [5] studied the

transient flows and the influence of the aspect ratio (A ≥ 6.5) for R = 2.6 and

116 ≤ Ra ≤ 104. The flow in the core region of these annuli remains nearly

two-dimensional, the extent of the core region decreasing however with Ra.

For narrow gap annuli (R = 1.2), 6 ≤ A ≤ 50 and Ra ≈ 3 · 103, Cadiou [6]

explained the onset of the steady three-dimensional spiral flow by the propaga-

tion of disturbances from the end walls towards the core region of the annulus.

The elapsed time necessary to destabilize the two-dimensional pattern in the

mid-axial plane was assumed almost proportional to the aspect ratio of the

annulus. Recently, Dyko et al. [7] confirmed the occurrence of the spiral flow

structure for moderate-gap annuli (1.2 ≤ R ≤ 1.6), while the two-dimensional

counter-rotating crescent-shaped cells were observed in an annulus of larger

radius ratio (R = 2.2). In this latter case, the viscous shear forces produce

transverse cells near each of the end walls. For narrow-gap annuli (R ≤ 1.2),

Dyko and Vafai [8,9] found complex flow patterns produced by the combina-

tion of upper transverse rolls with two-dimensional multi-cellular flows. These

flow patterns are similar to those discussed in Petrone et al. [1].
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Most of these numerical results are in quite good agreement with the map

established by Powe et al. [10] and based upon a number of experiments.

For radius ratios larger than R = 1.71 the flow structure is mainly two-

dimensional, at first steady and then oscillatory above a critical Rayleigh

number much higher than the Rayleigh numbers considered in all the three-

dimensional numerical simulations published so far. For moderate radius ra-

tios (1.24 ≤ R ≤ 1.71), a thermal instability occurs in the upper region

of the annulus, and a three-dimensional spiral flow emerges at supercritical

Rayleigh numbers. For small radius ratios (R < 1.24), the basic unicellular

steady régime (crescent-shaped cells) changes to a steady multi-cellular flow

régime. For 1.3 ≤ R ≤ 6.3, Grigull and Hauf [11] experimentally observed

both three-dimensional spiral and two-dimensional crescent-shaped flows in

the range 1680 ≤ Ra ≤ 21, 000. For Ra < 1680 or Ra > 21, 000, the flows

develop essentially in the two-dimensional cross-section of the annulus.

The linear stability analysis, performed by Choi and Kim [12] for moderate

radius ratios (1.24 ≤ R < 1.71), showed the onset of disturbances in the

transverse section of the annulus above critical Rayleigh numbers close to

2000. Theses perturbations look like the transverse rolls observed as well in

experimental works as in numerical simulations. However, this linear stability

analysis does not predict the two-dimensional flows observed above Ra =

2.1 · 104 by Grigull and Hauf [11]. Moreover for 1.71 ≤ R ≤ 2, the computed

thresholds are about one order of magnitude smaller than the values reported

by Powe et al. [10] on their stability map (see Fig.6 in [12]).

In this paper, we examine natural convection in air-filled annuli. Most of the

discussion is focused on the case R = 1.7. The stability of the basic two-

dimensional, crescent-shaped flows to small three-dimensional disturbances
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was investigated first. The existence of a stability region corresponding to a

reverse transition from 3D- to 2D-flows is predicted for the first time. Hav-

ing determined the critical Rayleigh numbers, three-dimensional computations

were performed for annuli with solid end walls. The governing equations for

the primitive variables were solved numerically in the transient form by us-

ing a finite volume method with second order time and space discretizations.

The numerical implementation was adapted for a vectorial computer, with

efficient solvers for the Helmholtz and Poisson problems. It is shown that mul-

tiple solutions are possible in the new stability region according to the initial

conditions. Computations carried-out for supercritical Rayleigh numbers in

the oscillatory régime elucidated the influence of the annulus length and the

results are compared to the experiments conducted by Grigull and Hauf [11].

2 Physical model

2.1 Governing equations

A schematic of the horizontal air-filled annulus considered for the purpose of

the present analysis is shown in Fig. 1. The annulus of length L∗ is formed by

two co-axial cylinders of radii r∗i < r∗o, held at uniform temperatures T ∗(ri) =

T ∗
i > T ∗(ro) = T ∗

o and bounded by two impermeable and adiabatic plates.

The flow is assumed to be laminar and incompressible with constant physical

properties except the density in formulating the buoyancy effect. By scaling

the axial coordinate by the annulus gap d∗ = r∗o − r∗i , the velocity components

by the thermal diffusivity velocity α/d∗, by introducing the dimensionless

temperature difference T = (T ∗ − T ∗
r )/(T ∗

i − T ∗
o ) where T ∗

r = (T ∗
i + T ∗

o )/2
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is the reference temperature, and the dimensionless radial coordinate r =

(r∗ − r∗i )/d
∗, then the dimensionless governing equations write in cylindrical

coordinates (r, θ, z):

∇̃.~V = 0

∂

∂t
(fu) + ∇̃.

(
u~V

)
− ηv2 = −f

∂p

∂r
− RaPrf T cos θ + Pr

(
∇̃2u −

2η2

f

∂v

∂θ
−

η2u

f

)

∂

∂t
(fv) + ∇̃.

(
v~V
)

+ ηuv = −η
∂p

∂θ
+ RaPrf T sin θ + Pr

(
∇̃2v +

2η2

f

∂u

∂θ
−

η2v

f

)

∂

∂t
(fw) + ∇̃.

(
w~V

)
= −f

∂p

∂z
+ Pr∇̃2w

∂

∂t
(fT ) + ∇̃.

(
T ~V

)
= ∇̃2T

where η = r∗o/r
∗
i − 1 and f = ηr + 1. The spatial operators are defined as

follows:

∇̃.(X~V ) =
∂(fXu)

∂r
+

∂(ηXv)

∂θ
+

∂(fXw)

∂z

and

∇̃2X =
∂

∂r
(f

∂X

∂r
) +

∂

∂θ
(
η2

f

∂X

∂θ
) +

∂

∂z
(f

∂X

∂z
)

where X(r, θ, z) is a scalar quantity.

The problem is then characterized by four dimensionless parameters: the

Prandtl number, Pr = ν/α, the Rayleigh number based on the annulus thick-

ness, Ra = gβ(T ∗
i − T ∗

o )d∗3

/(να), the radius ratio, R = r∗o/r
∗
i , and the axial

aspect ratio, A = L∗/d∗.
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The corresponding boundary conditions are

u = v = w = 0, T = +0, 5 at r = 0

u = v = w = 0, T = −0, 5 at r = 1

u = v = w = 0,
∂T

∂z
= 0 at z = 0 and z = A

Taking into account the symmetry of both the flows observed in the exper-

iments and the dominant disturbances computed by our stability analyses,

only the half annulus is considered for the three-dimensional simulations with

symmetry conditions applied at θ = 0 and π. These conditions imply:

∂u

∂θ
= 0, v = 0,

∂w

∂θ
= 0,

∂T

∂θ
= 0, at θ = 0 and θ = π

2.2 Heat transfer

The local Nusselt number at any axial location on the cylinder surfaces was

calculated by

Nu(θ, z) = −ln(R)

(
rc +

1

η

)
∂T

∂r

∣∣∣∣∣
rc

where rc stands for ri = 0 or ro = 1.

The overall mean Nusselt number was evaluated from the spatial average of

the total heat transfer as:

Nu3D =
1

πA

A∫

0

π∫

0

Nu(θ, z) dθdz
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We defined also the mean Nusselt number at the mid-axial plane as:

Nuc =
1

π

π∫

0

Nu
(
θ,

A

2

)
dθ

The difference between the inner and outer cylinder mean Nusselt numbers,

Nui and Nuo, respectively, indicates the importance of 3D-effects in the core

region of the annulus since Nui = Nuo = Nu2D at steady state conditions.

3 Numerical methods

3.1 Grid distributions

The governing equations with the boundary conditions were solved numeri-

cally in the primitive variable formulation by using a finite volume method

on a staggered but structured grid. For a half-annulus, the mesh defined by

[ri, ri+1] × [θj , θj+1] × [zk, zk+1] was built up as:

ri =
tanh

(
cr

(
2 i−1

Nr
− 1

))
+ tanh(cr)

2 tanh(cr)
, i = 1, Nr + 1

θj = π
exp

(
πcθ

j−1
Nθ1

)
− 1

exp(πcθ) − 1
, j = 1, Nθ1

+ 1

zk = A
tanh

[
cz

(
2k−1

Nz
− 1

)]
+ tanh (cz)

2 tanh (cz)
, k = 1, Nz + 1

For the computations of the basic two-dimensional steady states and the dom-

inant disturbances, the full angular domain was considered:

θj =





π
exp

(
2πcθ

j−1
Nθ2

)
− 1

exp(πcθ) − 1
, j = 1,

Nθ2

2
+ 1

2π − θNθ2
+2−j, j =

Nθ2

2
+ 1, Nθ2

+ 1
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The variables Nr, Nz, Nθ1
are any integers and Nθ2

is an even integer. In

order to adjust the grid distribution at the upper part of the annulus (near

θ = π) and in the wall regions, three strictly negative real parameters (cr, cθ

and cz) were introduced. If one of these three parameters was zero, the grid

distribution was uniform in the corresponding direction.

3.2 Three-dimensional temporal scheme

The transport terms of the momentum and energy equations were discretized

by using a second-order centered scheme. The time integration was performed

by an implicit second-order Euler scheme and an Adams-Bashforth extrapo-

lation for the diffusion and transport terms, respectively. The time splitting

method [13] was used to uncouple velocity and pressure fields. The Helmholtz

equations, stemming from the Euler scheme, were solved by an incremental

factorization method which consists in rewriting first the transport equations

by introducing the time increment of the variable instead of the variable it-

self. The 3D-Helmholtz operator is then transformed into a product of three

elementary 1D-Helmholtz operators, each of them acting in one space direc-

tion (a more detailed explanation is given in the Appendix A.1). The pressure

correction equation (1/f)∇̃2φ(n) = S(n), resulting from the use of the Goda

scheme [13], was solved by computing the solution φ(n) = p(n+1)−p(n) into the

eigenspaces of the partial second-order derivatives (∂2)/(∂θ2) and (∂2)/(∂z2).

This procedure, similar to the diagonalization technique often used with spec-

tral or pseudospectral methods [14], is well suited to the present problem. It

is described in Appendix A.2.

The second-order space and time discretizations are successfully checked by
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introducing volumetric source terms in the governing equations (Appendix B).

3.3 Stability analysis

The procedure used to conduct the linear stability analysis was described in

Petrone et al. [1] for two-dimensional perturbations. Briefly, it consists first in

the calculation of a two-dimensional basic flow by solving the steady conser-

vative equations by using the Newton-Raphson method. The most unstable

perturbation, developed in Fourier series in the z-direction, is then obtained

with the Arnoldi method for each wavenumber k.

For a given wavenumber, the threshold parameter Rac is iteratively evaluated

by using the Lagrange method. It consists in solving the implicit non-linear

equation λ(Rac) = 0 as follows:

Let us assume that two Rayleigh number values Ra(0) and Ra(1) were deter-

mined so that the growth rates λ(0) and λ(1) of the dominant perturbation

satisfy λ(0) × λ(1) < 0. Starting from i = 0, the algorithm converges toward

Rac:

(1) Ra(i+2) =
Ra(i) × λ(i+1) + Ra(i+1) × λ(i)

λ(i) + λ(i+1)

(2) The basic flow and then the growth rate λ(i+2) are computed at Ra(i+2);

(3) • If λ(i+2) is small enough then Rac ≈ Ra(i+2), stop.

• If λ(i+2) × λ(i) < 0, then Ra(i+3) = Ra(i) else Ra(i+3) = Ra(i+1)

(4) i = i + 2, go to step (1).

For long enough annuli, the critical Rayleigh number Rac∞ = mink(Rac)

(respectively Rac∞ = maxk(Rac)) for a destabilizing (respectively stabiliz-

ing) transition is computed by a quadratic interpolation based on the nearest
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threshold values Rac(k).

4 Results

Stability analysis and simulations were conducted for air (Pr = 0.7) with the

radius ratio set to R = 1.7, except in the comparison section.

4.1 Comparisons with the three-dimensional results of Dyko et al. [7]

The simulations were first performed to match with results recently published

by Dyko et al. [7]. For comparison purposes, isothermal patterns and velocity

vectors were plotted in the vertical (r, z) upper section of the annulus.

The computations were carried out for A = 6.66, R = 1.6, at Ra = 103 and

Ra = 2 ·103 with a grid resolution defined by (Nr, Nθ, Nz) = (40, 120, 280) and

(cr, cθ, cz) = (0,−0.75,−0.25). Figures 2a-b show the onset of upper transverse

rolls produced by thermal instabilities. Despite a convection of the thermal

field slightly more pronounced in Fig. 2b than in Dyko et al. [7], the isotherms

agree qualitatively well.

For R = 2.2 and A = 8.33, simulations were performed at Ra = 103, 4 ·

103 and 104. The mesh was (Nr, Nθ, Nz) = (40, 120, 600) and (cr, cθ, cz) =

(0,−0.75,−0.25). In contrast with the previous solutions for a smaller ra-

dius ratio, transverse rolls do not develop in the upper region of the annulus

(Figs. 3a-c) while increasing Ra enhances the convective transfer. As it can be

seen, the isotherms are almost horizontal except near the end walls where the

no-slip conditions are at the origin of rolls confined close to the boundaries.

Although the isotherms are graphically similar with [7], some small differences
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are noticeable close to the end walls. The isotherms of Fig. 3b-c seems to be

more distorted for Ra = 4 · 103 and less affected by the convective cells at

Ra = 104. The streamlines and isotherms, drawn in the vertical mid cross-

section at z = A/2, are also in good agreement with those presented in [7]. At

last, the angular averages of the Nusselt numbers evaluated at the walls for

z = A/2 differ from the results of [7] by less than 3.5%.

4.2 Stability analysis

At small enough Rayleigh numbers (i.e. Ra <∼= 2000), the flow is mainly

two-dimensional, the three-dimensional effects being noticeable close to the

end walls only. Therefore, the flow is composed of the well-studied couple of

counter-rotating crescent-shaped cells, symmetrically located in each of the π

-annular sections. The linear stability analysis may be thus performed for two-

dimensional basic flows, with the axial disturbances expressed in Fourier series

in the z-direction. The effects of finite length annuli with no-slip conditions

on the end walls are thus not taking into account in the results discussed in

the present section.

A previous work showed that the 2D crescent-shaped flows were stable with

respect to two-dimensional disturbances up to Ra < 10, 000 [1]. The present

study indicates that the basic flow is in fact destabilized at a smaller Rayleigh

number value, Rac1 = 2045, by the onset of a 3D perturbation with a wavenum-

ber close to π (kc1 = 3.07). The superimposition of basic flow and perturbation

gives rise to upper transverse rolls, named as the spiral flow. These results are

in excellent agreement with the linear stability analysis by Choi and Kim [12].

Increasing Ra leads to a reverse transition to stable two-dimensional flows.
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The transition occurs above a critical value Rac2 = 7612 with a wavenumber

kc2 = 4.07. The destabilizing and stabilizing transitions are driven by the same

steady perturbation mode, respectively amplified or damped when increasing

Ra.

The crescent-shaped flow is then linearly stable until the onset of an oscilla-

tory disturbance occurring at Rac3 = 19, 947. This mode is three-dimensional

with a wavenumber close to π again (kc3 = 3.2) and a dimensionless pulsation

ωc3 = 50.

It is worth noticing that

(1) the critical value Rac3 is about ten times larger than the first instability

threshold Rac1;

(2) the two-dimensional linear stability region Rac2 < Ra < Rac3 is about

twice more extended than the instability region defined by Rac1 < Ra <

Rac2 .

The discrepancy between the linear stability results of Choi and Kim [12],

indicating that the flow is three-dimensional above Rac1, and experimental

results [10,11], showing that 2D flows exist for larger Rayleigh numbers, is

thus clarified for the first time.

4.3 Three-dimensional simulations

Three-dimensional simulations were performed in order to study the flows at

Rayleigh number values lying in the stability and instability regions predicted

by the stability analysis conducted for annuli of infinite length.

Using the symmetry properties of both the basic flows and of the perturba-
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tions, computations were restricted to half-annular spaces with symmetrical

azimuthal conditions for θ = 0 and π. Except for the last simulation, where

the grid parameters and the annulus aspect ratio will be specified later on,

the mesh used for all the other computations was defined by (Nr, Nθ, Nz) =

(60, 120, 360) with (cr, cθ, cz) = (0,−0.5, 0) and the axial aspect ratio was kept

constant with A = 6. A finer grid, (Nr, Nθ, Nz) = (90, 180, 540), was also used

but not any noticeable differences in the flow quantities was exemplified. The

time step was lying in the range 10−3 ≤ ∆t ≤ 2.5 · 10−4.

4.3.1 First instability region

A simulation was performed for Ra = 6000, namely in the first instability

region ]Rac1, Rac2 [. In agreement with the results of Dyko et al. [7], the flow

was found steady. Fluid particles, injected in the vertical (r, z) upper section

of the annulus, follow first a spiral motion in the upper part of the cavity

and are then ejected in the core region in which a helical motion is observed

(Fig. 4). This thermal instability of the crescent-shaped flow gives rise to

transverse convective rolls that strongly modify the isothermal pattern in the

axial direction (Fig. 5). In contrast to the flow pattern shown in Fig. 2b (Ra =

2000, A = 6.66 and R = 1.6), which was symmetric with respect to the vertical

mid-plane, the present flow possesses an odd number of transverse cells (7 cells)

and, consequently, the reflection symmetry is broken. This symmetry breaking

was also predicted by Dyko and Vafai [9] for narrow annuli R < 1.2.
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4.3.2 Stability region

Three-dimensional stability analyses of two-dimensional flows have shown that

the purely two-dimensional solution is linearly stable at Ra = 104. In order

to see what can be observed in real three-dimensional situations, two three-

dimensional simulations were performed by using different initial conditions.

First, by starting the computations with a quiescent fluid at uniform tem-

perature T = 0 as initial conditions, the flow remains steady and mainly

two-dimensional in the core region of the annulus. Figure 6a shows that the

isotherms plotted in the upper vertical (r, z)-plane are almost independent of

the axial coordinate, except near the end walls where transverse cells form

because of the viscous shear associated with the no-slip boundary condi-

tion. However, these two cells do not affect the almost two-dimensional flow,

which remains stable within the core region. The relative difference between

the inner and outer cylinder mean Nusselt numbers at the mid-axial plane

z = A/2, Nui = 1.699 and Nuo = 1.732, respectively, is only 2%. In addition,

the Nusselt number computed from a two-dimensional simulation, for which

Nu2D = Nui = Nuo = 1.715, and the overall Nusselt number calculated by

the three-dimensional model, Nu3D = 1.691, differ from 1.40%. Therefore, the

three-dimensionality caused by the end wall cells has a weak effect on the heat

transfer rate, and the flow may be assumed as two-dimensional, in agreement

with the predictions of the linear stability analysis performed for an annulus

of infinite length.

The second simulation was carried out by using the developed three-dimensional

flow computed for Ra = 6000 as an initial condition. Figure 5 shows that the

initial number of transverse rolls is n = 7. The converged solution is steady

and fully three-dimensional, but the number of tranverse rolls is reduced to
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n = 6, as indicated in Fig. 6b. However, the reflection symmetry with respect

to the vertical mid cross-section is not satisfied even with this even number

of transverse rolls. Such a symmetry breaking, not usual for an even number

of transverse rolls, is caused by different stretchings of the end wall cells. The

relative difference between the inner and outer cylinder mean Nusselt numbers

at the mid-axial plane is now approximately equal to 40% (Nui = 1.612, Nuo

= 2.253), indicating the importance of the heat transfer in the axial direction.

However, the difference between Nu2D = 1.715 and Nu3D = 1.788 is about

4% only. It can be thus concluded that the heat transfer rate may be eval-

uated with a reasonable accuracy from results of 2D-simulations. At last, it

is worth noting that a similar three-dimensional flow pattern was observed in

the experimental work by Grigull and Hauf [11] for neighbouring parameters,

namely R = 1.64 and Ra = 13, 160. To explain their result, it is suggested that

the increase in the temperature difference applied between the cylinder sur-

faces required to reach Ra = 13, 160 was slow, so that the three-dimensional

pattern achieved in the instability region was preserved.

It can thus be concluded that the flow converges towards different solutions

according to the initial condition for Rac2 < Ra < Rac3. This multiplicity does

not contradict the linear stability analysis, which only gives a sufficient crite-

rion for the amplification of disturbances of infinitesimal amplitudes. To com-

plete this work, an energetic stability analysis could be performed to confirm

if the two-dimensional flow is indeed unstable with respect to finite amplitude

disturbances.
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4.3.3 Second instability region

The last simulations were carried out in the second instability region, for

Ra = 22, 000 > Rac3 and for various axial aspect ratios.

For R = 1.7 and A = 6, the flow converges towards a steady flow, the

structure of which being mainly two-dimensional. Also, the Nu-values show

that axial heat transfer is almost negligible since (Nuo − Nui)/Nui = 0.23%

(Nui = 2.1347) while the relative difference between Nu2D = 2.1413 and

Nu3D = 2.1108 is about 1.44%. On one hand, this flow pattern is quite sur-

prising because of the linear stability predictions. On the other hand, this

result agrees well with the two-dimensional flow observed experimentally by

Grigull and Hauf [11] for Ra > 21, 000 and 1.3 ≤ R ≤ 6.3. By assuming that

the too small aspect ratio could prevent the amplification of 3D-oscillatory

disturbances, a new computation was carried-out for a longer annulus, i.e.

A = 20.

For A = 20, the grid parameter was (Nr, Nθ, Nz) = (40, 80, 810) and (cr, cθ, cz) =

(0,−0.25, 0). The flow obtained was then oscillatory with a pulsation ω ≈ 50,

very close to ωc3 which is the pulsation predicted by the linear stability anal-

ysis at the threshold Rac3. Nevertheless, the flow seems to stay essentially

two-dimensional (Fig. 7) with the largest axial components of velocity located

near the end walls. For example, the streamfunctions, illustrated by the fluid

particle tracking in the core region and at a fixed time, look like those of

two-dimensional patterns. However, a careful inspection of the axial compo-

nent of the velocity in the upper vertical (r, z)-plane shows a weak spatial

oscillatory behavior. Figure 8 displays that the number of oscillations in the

axial direction is approximatively n = 11. For the aspect ratio A = 20, the

approximate wavenumber which can be deduced is 2πn/A, namely k = 3.45.
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The difference between this wavenumber and the wavenumber of the marginal

disturbance (kc3 = 3.2) is thus small. One can deduce that the spatial and

temporal properties of the three-dimensional flow are in good agreement with

the three-dimensional stability analysis. To improve the understanding of this

complex flow, a spatio-temporal diagram was established for temperature, in

the upper vertical (r, z)-plane (θ = π) near the cold cylinder (r = 0.9). Such

a diagram is obtained by plotting the temperature variation ∆T , defined by

the difference between its instantaneous value and its time-averaged value, as

a function of the axial coordinate. Figure 9 illustrates the crests and holes

resulting from opposite propagating waves, from the core region towards the

end walls. The interactions of these waves produce the stationary interfer-

ogram pattern shown in Fig. 9, with the checkerboard patterns located in

the core region of the annulus. The phase velocity of the propagating waves

is approximately Vp ≈ 13.7. It is in agreement with the perturbation analy-

sis, ωc3/kc3 = 15.9. Considering the weakness of the axial component of the

velocity within the core region, we suggest to classify this flow as mainly two-

dimensional.

In conclusion, these simulations for two very separate aspect ratios have shown

that the flows are characterized by 2D-patterns in the core region of the an-

nulus. These results agree with the experimental observations by Grigull and

Hauf [11] for Ra > 21, 000 and 1.3 ≤ R ≤ 6.3, at least near the instability

threshold.
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5 Conclusion

The present work examined natural convection of air between two concen-

tric horizontal cylinders differentially heated. Most of the computations were

performed for the radius ratio R = 1.7. The investigation encompassed both

linear stability analyses and complementary numerical solutions.

Three-dimensional linear stability analysis of two-dimensional numerical so-

lutions showed that the first critical Rayleigh number above which the flow

is unstable and three-dimensional, Rac1 , agrees with previously published re-

sults. The new findings presented in this paper consist in establishing that

two other transitions occur. The first transition (at Rac2) corresponds to a

reverse transition to 2D-solutions whereas the second transition (at Rac3) is

characterized by transient amplifications of disturbances. The critical Rayleigh

number for the onset of unsteady three-dimensional flow, Rac3 , is one order

of magnitude higher than Rac1 .

Three-dimensional simulations were conducted for the different states. In agree-

ment with previous studies, the spiral flow engendered by the amplification

of thermal instabilities in the upper part of the annulus was predicted for

Rac1 < Ra < Rac2 . Multiple solutions are possible in the new stability region

(Rac2 < Ra < Rac3) highlighted by the linear stability analysis. They are ei-

ther two- or three-dimensional according to the initial conditions. Simulations

performed for Ra = 22, 000 > Rac3 have shown that the results depend on the

axial aspect ratio of the annulus. For an annulus of to small length, the onset

of the oscillatory disturbances, predicted by the stability study, is delayed and

a steady flow is obtained. For long enough annuli, the flow is oscillatory and

the wavenumber and pulsation match very well those obtained by the pertur-
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bation analysis. This oscillatory flow is characterized by propagating waves

near the end walls and by steady waves in the core region of the annulus.

Both solutions obtained at Ra = 22, 000 are essentially two-dimensional, in

agreement with experimental observations by Grigull and Hauf [11].
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Appendix

A Numerical schemes

A.1 Helmholtz solver

In order to exemplify the use of the Helmholtz solver, we consider the energy

equation modified in terms of the temperature increment δT n = T (n+1)−T (n):

(
1 −

2∆t

3f
∇̃2

)
T (n+1) =Sn+1

T

(
1 −

2∆t

3f
∇̃2

)
δT (n) =Sn+1

T −

(
1 −

2∆t

3f
∇̃2

)
T (n)

where Sn+1
T contains the convective terms and ∆t is the time step. By using

the following second-order approximation

(
1 −

2∆t

3f
∇̃2

)
δT n =

(
1 −

2∆t

3

(
1

f

∂

∂r

(
f

∂

∂r

)
+

η2

f 2

∂2

∂θ2
+

∂2

∂z2

))
δT n

=

[(
1 −

2∆t

3

(
1

f

∂

∂r

(
f

∂

∂r

))) (
1 −

2∆t

3

(
η2

f 2

∂2

∂θ2

))

(
1 −

2∆t

3

(
∂2

∂z2

))
+ O

(
∆t2

)]
δT n

accounting for that δT n = T (n+1) − T (n) ≡ O(∆t) the Helmholtz equation is

approximated by

(
1 −

2∆t

3f
∇̃2

)
δT n =

(
1 −

2∆t

3

(
1

f

∂

∂r

(
f

∂

∂r

)))(
1 −

2∆t

3

(
η2

f 2

∂2

∂θ2

))

(
1 −

2∆t

3

(
∂2

∂z2

))
δT n + O

(
∆t3

)

The second order time approximation is recovered by dividing by ∆t. Such a

method allows the substitution of the resolution of the hepta-diagonal matrix
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by tri-diagonal matrices:





(
1 −

2∆t

3

(
1

f

∂

∂r

(
f

∂

∂r

)))
δT1 = Sn+1

T −

(
1 −

2∆t

3f
∇̃2

)
T (n)

(
1 −

2∆t

3

(
η2

f 2

∂2

∂θ2

))
δT2 = δT1

(
1 −

2∆t

3

(
∂2

∂z2

))
δT n = δT2

A.2 Poisson solver

Let Si,j,k the discrete right-hand side term of the Poisson equation

(1/f)∇̃2φ(n) = S(n)

and note Rk,l, Ak,l and Zk,l the finite volume components of the radial (R),

azimuthal (A) and axial (Z) matrices for the discrete approximations of the

partial second-order derivatives. The Poisson equation writes :

(Ri,i+1φi+1,j,k + Ri,iφi,j,k + Ri,i−1φi−1,j,k)+

1

f 2
i

(Aj,j+1φi,j+1,k + Aj,jφi,j,k + Aj,j−1φi,j−1,k)+

(Zk,k+1φi,j,k+1 + Zk,kφi,j,k + Zk,k−1φi,j,k−1) = Si,j,k

where φi,j,k is an approximation of φ(ri, θj, zk). Using both a tensorial notation

and the Einstein convention for summation between indices, we obtain:

Ri,lφl,j,k + δil

1

f 2
l

Aj,mφl,m,k + Zk,nφi,j,n = Si,j,k

with δil is the Krönecker symbol. By introducing, for the azimuthal and axial

coordinates, the matrices of eigenvectors PA and PZ and the eigenvalues ΛA
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and ΛZ satisfying A = PAΛA
(
PA

)−1
and Z = PZΛZ

(
PZ

)−1
:

Ri,lφl,j,k+δil

1

f 2
l

PA

j,pΛ
A

p,p

((
PA

)−1
)

p,m

φl,m,k+PZ

k,qΛ
Z

q,q

((
PZ

)−1
)

q,n

φi,j,n = Si,j,k

By multiplying the above relation by
((

PA
)−1

)

p,j

and
((

PZ
)−1

)

q,k

:

Ri,l

((
PA

)−1
)

p,j

((
PZ

)−1
)

q,k

φl,j,k + δil

f2

l

ΛA
p,p

((
PA

)−1
)

p,m

((
PZ

)−1
)

q,k

φl,m,k+

ΛZ
q,q

((
PA

)−1
)

p,j

((
PZ

)−1
)

q,n

φi,j,n =
((

PA
)−1

)

p,j

((
PZ

)−1
)

q,k

Si,j,k

and using the following notations φl,p,q =
((

PA
)−1

)

p,j

((
PZ

)−1
)

q,k

φl,j,k and

Si,p,q =
((

PA
)−1

)

p,j

((
PZ

)−1
)

q,k

Si,j,k, the Poisson equation writes:

(
Ri,l + δil

1

f 2
l

ΛA

p,p + δilΛ
Z

q,q

)
φl,p,q = Si,p,q

Thus, the calculation of φl,p,q from Si,p,q needs to solve Nθ × Nz tri-diagonal

matrices of size Nr. To improve the efficiency of the Poisson solver for regular

meshes in the axial direction, Fast Fourier Transforms were used as suggested

by Whilhelmson and Ericksen [15] and generalized by Schumann and Sweet

[16].

B Space and time accuracy

The convergence properties were checked by introducing source terms into

the Navier-Stokes and energy equations [17]. The tests were performed for

Ra = 1000, R = 3 and A = 1. As reported by Raspo et al. [18], the projection

method, namely the Goda’s method [13], may reduce the spatial accuracy of

the scheme, especially near the solid walls. Thus, the second order accuracy of
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the scheme can only be rigorously checked for analytical solutions with zero

normal pressure gradients at the boundaries.

B.1 Spatial study

Let EQ(X) = 0 and X the steady governing equations and the set of the

unknowns, namely the velocity components, the pressure and the temperature

fields. The discrete equations are noted ÊQ(X̂i,j,k) = 0 where X̂i,j,k is an

approximation of X(ri, θj , zk). Let

u(r, θ, z) = sin2(πr) cos(θ) sin2(πz)

v(r, θ, z) =− sin2(πr) sin(θ) sin2(πz) −
f

η
π sin(2πr) sin(θ) sin2(πz) −

f

η
π sin2(πr) sin(θ) sin(2πz)

w(r, θ, z) = sin2(πr) cos(θ) sin2(πz)

T (r, θ, z) = sin(πr) cos(θ) cos(πz) + cos
(

π

3
(r + 1)

)

p(r, θ, z) = cos(πr) cos(θ) cos(πz)

the steady analytical field satisfying the continuity equation and all the bound-

ary conditions. Obviously, such a field cannot satisfy the momentum and en-

ergy equations. Therefore, it is necessary to introduce source terms, which are

the residuals of these two equations for the analytical solution. The difference

between the analytical and numerical fields, solution of the discrete problem

ÊQ(X̂i,j,k) = EQ(X)(ri, θj , zk)

must tend toward 0 with the mesh size h = 1/N :

lim
h→0

‖X̂i,j,k − X(ri, θj , zk)‖∞ = 0
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As shown by the slopes of the curves in figure B.1, the scheme is indeed

second-order accurate in space discretization.

B.2 Temporal study

The method used to check the temporal accuracy is similar to that presented

in the previous section. Let

u(r, θ, z) =
[
sin2(πr) cos(θ) sin2(πz)

]
sin(πt)

v(r, θ, z) =
[
− sin2(πr) sin(θ) sin2(πz) − f

η
π sin(2πr) sin(θ) sin2(πz)−

f
η
π sin2(πr) sin(θ) sin(2πz)

]
sin(πt)

w(r, θ, z) =
[
sin2(πr) cos(θ) sin2(πz)

]
sin(πt)

T (r, θ, z) = [sin(πr) cos(θ) cos(πz)] sin(πt)

p(r, θ, z) = [cos(πr) cos(θ) cos(πz)] sin(πt)

an oscillatory field satisfying the mass equation and, for sake of simplicity,

homogeneous thermal boundary conditions.

If the numerical scheme is both stable and consistent then the numerical so-

lution X̂i,j,k of

3X̂n+1
i,j,k − 4X̂n

i,j,k + X̂n−1
i,j,k

2∆t
− ÊQ(X̂n+1

i,j,k )=

[
dX

dt
− ÊQ(X)

]
(ri, θj , zk, (n + 1)∆t)

must converge toward the analytical field:

lim
∆t→0

{
max

n

∥∥∥X̂n+1
i,j,k − X (ri, θj , zk, (n + 1)∆t)

∥∥∥
∞

}
= 0
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Remark that the discrete expression of the volumetric source term is used to

limit the effect of the finite space accuracy on the temporal convergence.

As illustrated in figure B.2, the time accuracy of the scheme is of second order.

It is worth noticing that slopes of the curves decrease for the smallest time

steps due to the time splitting method that produces the so-called numerical

boundary layer.
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Fig. 1. Geometry.

(a) Ra = 1000

(b) Ra = 2000

Fig. 2. Isotherms and velocity vectors in the vertical (r, z) top section, for R = 1.6

and A = 6.66.
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(a) Ra = 103

(b) Ra = 4 · 103

(c) Ra = 104

Fig. 3. Isotherms and velocity vectors in the vertical (r, z) top section, R = 2.2,

A = 8.33.
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Fig. 4. Two streamlines for R = 1.7, A = 6 and Ra = 6 · 103.

Fig. 5. Isotherms and velocity vectors in the vertical (r, z) top section for R = 1.7,

A = 6 and Ra = 6 · 103.
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(a) Fluid flow initialized by rest conditions.

(b) Fluid flow initialized by the 3D-flow at Ra = 6 · 103.

Fig. 6. Isotherms and velocity vectors in the vertical (r, z) top section achieved by

two initial conditions, for R = 1.7, A = 6 and Ra = 104.

Fig. 7. Isosurfaces of the axial component of the velocity and streamlines for R = 1.7,

A = 20 and Ra = 22, 000.
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Fig. 8. Axial velocity distribution in the vertical (r, z) top section for R = 1.7,

A = 20 and Ra = 22, 000.
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Fig. B.1. Spatial convergence analysis, ∆X = |X̂i,j,k − X(ri, θj , zk)‖∞.
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