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Abstract

This paper presents a multiagent-based model of insect development on a dead body and a three 
layers Decision Support System architecture able to perform retrodictive (abductive) reasoning 
from multiagent-based models or more generally, complex systems models. This architecture is 
used in order to compute post-mortem intervals from entomological data sampled on cadavers. 
Knowing  the  exact time of  a  death is  fundamental  in  criminal investigations. Thus,  it  is 
necessary for experts to guarantee the reliability of their results. We show that post-mortem 
interval  estimated  with  traditional  entomological  methods  can  lead  to  important 
overestimations.  Indeed,  these  methods  do  not  take  into  account  all  the  interdependent 
processes involved in  the  development  of  insects such as  fly  population dynamics in  the 
ecosystem  or  the  gregarious  behavior  of  insect  larvae that  can  lead to  local  temperature 
increases on the body. Forensic Entomology is widely used in several countries; it  is then 
important to develop new methodologies and tools to improve the efficiency and reliability of 
entomological expertises. ForenSeek – the implementation of the model and Decision Support 
System architecture – aims to be a software program that can be used as a post-mortem interval 
estimation tool and as a virtual laboratory, to simulate colonization and development cases.

Keywords: forensic entomology, multiagent-based simulations, decision support systems, 
retrodictive reasonning.
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1    Introduction

Forensic  entomology  is  widely  used  in  criminal 
investigations  to  determine  post-mortem  intervals 
(PMI) and possibly information about the victim such 
as  death  location  [1].  This  is  done  studying 
entomofauna,  i.e. insects,  mainly  maggots  (flies 
larvae), found on the corpse. PMI is usually estimated 
by  experts  using  analytic  models  of  insect 
development. These models can be easily employed to 
perform retrodictive (abductive) reasoning but do not 
take  into  account  the  ecosystemic  context.  Thus, 
estimations  performed using these methods are often 
overestimated  and  not  as  precise  as  they  could  be. 
This paper presents ForenSeek [2]: a multiagent-based 
model of  insect  development  on a dead body and a 
Decision  Support  System (DSS)  architecture  able to 
perform PMI estimations using this model. 

2    Introduction to Forensic Entomology

2.1     Overview of the corpse colonization process

A cadaver  is  an important  source  of  nutriments  for 
insects,  especially  for  necrophagous Diptera  species. 
A few hours after the death, the first Diptera females 
are  attracted  by  the  body  and,  under  specific 
conditions  lay eggs on it, mainly on natural  orifices. 
Diptera  insects  have  to  achieve  their  development 
cycle to become adults. Once the eggs hatch, Diptera 
larvae colonize the body to feed.

Three  larval  stages  named  L1,  L2  and  L3  will 
succeed.  Each  one  of  them  is  defined  by 
morphological characteristics and a specific behavior. 
When a larva ends its development cycle, it leaves the 
corpse  to  find  a  suitable  place  for  pupariation,  an 
inactive stage where the larva eventually turns into an 
adult fly (Fig. 1).

Larvae  unintentionally  cooperate  to  speed  up  their 
development  period,  aggregating themselves.  Indeed, 
each larva emits heat. This can cause an important and 
local  increase  of  temperature.  When  temperature 
exceeds viable limits, the aggregate scatters.

Many species will succeed on the body. Each one of 
them  is  interested  by  a  particular  stage  of 
decomposition.  The  first  necrophagous  species  to 

colonize  the  cadaver  are  Diptera  but  in  advanced 
stages it is common to find Coleoptera species. 

As  many  living  organisms,  the  development  of 
Diptera  is  temperature-dependent.  Thus,  the 
development  rate  a of  an  individual  is  given  as  a 
function  f of the temperature  T varying in the time t, 
i.e.:

da
dt

= f T t   (1)

Various  development  models  have  been  developed, 
some assuming the increase of development is linear 
in  the  viable  temperature  interval,  some  are  more 
complex.  A  review  of  development  models  can  be 
found in [3]. We will not discuss the validity of those 
models in this paper.

2.2    Forensic expertises methodology

When  a  cadaver  is  discovered,  investigators  take 
samples  of  eggs,  larvae  or  pupae  from  the  body. 
Entomologists determine the species and accumulated 
rates  of  development  (denoted  a)  of  the  oldest 
individuals.  Then, for each one of  them, the laying 
time  1 (considered to be close to the time of death) 
can be calculated from the following equation:

a=∫
1

2

f T t dt  (2)

where 2 represents the time of the cadaver discovery. 
Data  from  the  nearest  meteorological  station  are 
usually used in order to estimate the temperature T(t). 

Considering that the temperature  at any point  of the 
body  is  equal  to  the  temperature  recorded  by  the 
nearest  meteorological  station  is  not  exact  for  three 
reasons.  Firstly, ecosystem specificities can  radically 
influence the temperature around the body as shown in 
[4].  Secondly,  corpse  thermal  inertia  is  important, 
especially  in the first  hours  after  death  [5].  Thirdly, 
the heat generated by larvae aggregates can raise the 
temperature  locally  up  to  20  °C.  This  phenomenon 
and  its  consequences  on  PMI  estimation  have  been 
discussed by many authors  [1]. Thus in many cases, 
entomological  expertises  results  are  inaccurate  and 
given with an important margin of error.

The model presented in the next part  focuses on the 
second and third causes of inaccuracy: it describes the 
whole  process  of  corpse  decomposition,  and  insect 
colonization and development. 

3    Model description

In order to understand the process of decomposition, 
we  have  to  take  all  the  interdependent  processes 
involved  into  account;  i.e. compute  at  any  moment: 
the temperature felt by each larva on the corpse, the 
state of the body, the amount of Diptera females about 
to lay in the ecosystem attracted by the cadaver,  the 
laying  behavior  of  those  Diptera  females,  the 

Fig. 1 Development cycle of Diptera species



development rate, the stage, the behavior,  etc. of each 
maggot on the body.

A multiagent-based model  describes  each  actor  of a 
system as a computational  agent,  i.e.  an autonomous 
and communicating computer system possibly situated 
in an environment.  Thus,  the model  is composed  of 
different  types  of  agents  and  an  environment 
representing  the  corpse.  An  agent  encapsulates  two 
kinds of models: those which define the evolution of 
its properties and those which define the modalities of 
its interactions with the environment and other agents. 
In  this  way,  we can  easily  reuse  models  previously 
developed  in  independent  contexts.  Model's  agent 
types and environment are described in this section.

3.1    Multiagent system environment

Agent  environment  represents  the  cadaver  in  2 
dimensions.  It is divided into 2cm*2cm square cells. 
A set of variables V is attached to cells:

V={h ,s ,d t , n , t}  (3)

where  h represents  the hydrometry,  dt the density of 
tissue,  s  the  value  of  a  presence  signal  emitted  by 
Larva agents,  n the  nutritional  resources,  and  t the 
temperature of a given cell. h, dt, n and t are called cell 
variables.  Cell  variables  have  their  own  behaviors: 
diffusion and evaporation coefficients are attached to 
them and model their intrinsic dynamics. The shape of 
the modeled body is roughly simplified. However, we 
respect strictly its proportions,  the properties of each 
type  of  tissues.  Simulations  and  field  observations 
have shown that the shape of the body does not affect 
larvae  development  although body specificities  such 
as wounds can affect colonization. 

3.2    Larva agent

A  Larva agent  represents  a  Diptera  larva.  It 
implements  development,  mortality,  feeding  and 
behavior  sub-models.  Larva  agents  life  cycle  is 
composed  of  three  steps:  a  growing  step,  when  the 
agent updates its properties (development rate, stage, 
speed, length,  etc.), a consuming step when the agent 
modifies  its  local  environment  (increasing  the 
temperature,  decreasing  the  nutritional  resources, 
propagating a presence signal, etc.) and a moving step 
when  the  agent  moves  in  the  environment.  The 
moving step is divided into  s sub-steps (fundamental 
moves from a cell to a next one), where  s represents 
the  speed  of  the  agent,  depending  on  species  and 
development  rate.  Fundamental  moves are computed 
recursively and determine complex and realistic paths. 

A fundamental  move relies on a simple probabilistic 
algorithm: it uses environment properties to compute 
an utility measure of its  neighboring  cells and then a 
probability of moving there.  Let  N be the set of the 
agent's  neighboring  cells.  The probability to go in a 
cell  ce,  denoted  P(ce), is  computed  from  V and  the 
Larva agents density, dL, in ce. Thus, the set of choice 
criteria for a Larva agent to go in a given cell, denoted 
C, is:

C={h ,s ,d t , n , t ,d L}  (4)

For  each  criterion,  it  is  possible  to  compute  the 
corresponding  utility  measure  from  maggot 
physiological  models.  The  utility  of  a  criterion  c 
measured in a cell ce is denoted u(c(ce)). To compute 
P(ce),  we  postulate  that  choice  criteria  are 
independent.  Thus  for  each  neighboring  cell, we 
compute  the  probability  that  the  agent goes  there 
according  to  all  the  choice  criteria  taken 
independently:

∀ ce∈N ,∀c∈C , pc ce=
u c ce

∑
∀ ce '∈N

ucce '   (5)

pc(ce) is then the probability of the agent to go in the 
cell  ce,  according  to  the  criterion  c.  Once  pc(ce)  is 
computed  for  each  c in  C and  each  ce in  N,  local 
probabilities have to be merged.  P(ce) represents the 
probability that the agent is attracted by all the choice 
criteria simultaneously:

∀ ce∈N , P ce=
phce∩...∩ pd L

ce

∑
∀ ce '∈N

p hce' ∩...∩ pd L
ce '  (6)

The  behavior  of  larvae  and  thus  maggot  groups 
simulated  with  this  algorithm  is  realistic   and  the 
global behavior  of the mass  exhibits  some emergent 
properties,  such  as  thigmotactism  (a  tendency  to 
follow the linear discontinuities  of an environment). 
The  key  improvement  of  this  model  for  PMI 
calculation, is the estimation of heat felt by larvae in 
complex  maggot  masses  frequently  observed  on  a 
body  which  enhances  the  estimation  of  larvae 
development [6].

3.3    Layer agent

A  Layer agent  implements  Diptera  population  and 
laying sub-models. It creates and situates Larva agents 
in  the  environment.  We  use  models  developed  by 
Goulson  et  al.  [7]  to  predict  populations  of  Diptera 
species in an ecosystem from weather variables such 
as  hygrometry,  pluviometry,  or  temperature.  The 
general form of this model is given by the following 
equation:

ln P t1=a  b0⋅ ln P t  b1⋅W 1  b2⋅W 2  (7)

where  Pt is  the  population  at  time  t,  Pt+1,  the 
population  at  t+1,  W1 and  W2 are  weather  variable 
values, and a, b0, b1 and b2 are free parameters. 

It  is  obvious  that  geographical  location,  and  in 
particular  latitude,  affects  Diptera  populations.  For 
that  reason,  trapping  experiments  are  in  progress  at 
Institut  de  Médecine  Légale  et  Sociale  de  Lille 
(Forensic  and  Social  Medicine  Institute  of  Lille)  to 
determine  population  models  specific  to  North  of 
France.

Population  models  tell  us  how  many  female  flies 
could possibly lay on the corpse. It is  also important 
to  know  how  many  flies  will  effectively lay  on  the 



corpse  and  when.  Bird  &  Allen  [8]  developed  a 
generic  laying  model  where  the  probability  of  a 
Diptera to be present in the environment is given as a 
function  of the attractiveness  of  the cadaver  and the 
nychtemeral  (day-night)  cycle.  Each  species  has  a 
different  attractiveness  model  (each  species  is 
attracted  by  a  specific  stage  of  decomposition). 
Attractiveness, denoted at,  is a function of time since 
death given by the following equation:

at t =e
t−s 2

2⋅w  (8)

where  t is the time since death,  s the time when the 
corpse is the most attractive and w the laying window. 
t, s and w are expressed in hours. s and w are proper to 
each species.

The  oviposition  probability  of  a  Diptera  female, 
denoted  o(n,  p),  depends mainly  on the nychtemeral 
cycle  n and the flies activity peak,  pa,  which is the 
time of the day when flies are the most active.  We use 
the  generic  definition  of  o(n,  p)  given  in  [8].  The 
resulting  laying  probability  p(at(t),o(n,  pa))  is  given 
by the following equation: 

p at t , o n , pa=at t⋅o n , pa  (9)

Each  female  lays  200  eggs  on  uncovered  natural 
orifices,  basically  on the face and the anus,  with an 
equivalent probability.
Many factors  can affect  Diptera colonization.  As we 
stated  earlier,  body  specificities  can  lead to unusual 
situations: in the case of wounds or amputations,  the 
laying  sites  can  be  totally  modified,  in  the  case  of 
special  body  treatment,  such  as  partial  or  total 
cremation,  insect  succession  is  generally  altered. 
Many of such factors such as transportation or burial 
could be cited. The fact is we only have a qualitative 
knowledge of  the consequences  of such specificities 
on Diptera laying behavior.  For this reason,  we only 
consider simple situations where the cadaver does not 
exhibit  specificities.  This  is  clearly  a  strong 
restriction. However, most cases are simple. 

3.4    Temperature agent

A Temperature agent computes  the temperature of the 
body using Henssge sub-model (know in medicolegal 
literature  as  Henssge  equation  [5]).  It  is  a  popular 
model of temperature cooling of a dead body based on 
Newton law of cooling. The temperature of the body 
is then a function of the ecosystem temperature.

The  main  problem  with  this  approach  is  that  we 
consider  the  body  as  a  monolithic  temperature  unit. 
Based  on  [9,10],  a  thermal  cellular  automata  model 
which predicts  temperature  at any point  of the body 
according to conduction and convection laws has been 
developed. This model integrates the heat emitted by 
larvae  as  a  fundamental  parameter  for  temperature 
prediction.

3.5    Model execution

Simulating  the  decomposition  process  consists  in 
defining an environment (a corpse or more generally a 
nutritive substrate) and launching a Temperature agent 
and  Layer agents  (one  per  species  present  in  the 
ecosystem) according to  the appropriate ecosystemic 
context  (climatic  data,  body  specificities,  etc.).  A 
scheduler controls the system execution.

4    DSS architecture

The  PMI  estimation  tool  can  be  divided  in  three 
functional  layers:  a  simulator implementing  the 
multiagent predictive model presented in the last part, 
an hypothesis evaluator and a solution space explorer. 
The  purpose  of  this  architecture  is  to  use  the 
predictive  model  to  perform retrodictive  (abductive) 
reasoning.  Abductive  reasoning,  sometimes  called 
inference to the best explanation, consists basically in 
discovering  the  most  probable  cause  c of  a  fact  f 
knowing  the rule  r which  transform  c into  f.  In our 
case,  this definition has to be modified: inference to 
the  best  explanation  is  by  definition  a  conjectural 
form  of  reasoning,  however  results  of  a  criminal 
expert  cannot  be  conjectural.  Thus,  we  will  try  to 
identify  all the possible causes  C = {c1, ...,  cn} (each 
possible time of death) of a fact f (entomological data 
about  a  victim)  knowing  the  rule  r (the  model  of 
Diptera  colonization  and  development  presented  in 
section 3) which can transform an element of C into f .

4.1    Hypothesis evaluator

This  functional  layer  determines  a  “compatibility 
measure” between a set of expert observations and an 
hypothesis (in PMI estimation case, the time of death). 
Basically, it consists in transforming the observations 
into  a  set  of  control  rules.  These  rules  are 
implemented  into  agents  called  Observers which 
continuously  monitor  some simulation variables and, 
if a rule is violated, log the causes and, if necessary, 
order  the  simulation  manager  agent  to  restart  the 
simulation.  Running  several  simulations  assures  to 
explore  “all  the  possible  futures”  (or  at  least  a 
representative  part   of  them)  that  the  evaluated 
hypothesis  implies.  When  a  stop  condition  (e.g.  a 
condition  about  the  number  of  runs)  is  positively 
evaluated, a compatibility measure of the hypothesis, 
expressed  as a  possibility  measure,  is  returned  (Fig.
2).

The  multiagent  nature  of  the  model  imposes  to 
determine an efficient method to monitor simulations. 

Fig. 2 Hypothesis evaluator



Multiagent monitoring is a difficult problem that has 
been  essentially  studied  in  the  context  of 
heterogeneous agents deployed in a real environment 
[11,12].  These  approaches  are  based  on  message 
exchanges  monitoring  to  determine  agent  plans  or 
prevent overloads of system components.  In a model 
like  ours,  composed  of  a  large  number  of  reactive 
agents,  the  problematics  are  quite  different:  for 
instance  we  cannot  monitor  message  exchanges 
because  the  agents  communicate  through  the 
environment  using  pheromone-like  signals.  Our 
approach  is  close  to  the  report  based  monitoring 
method  in  which  each  agent  reports  its  state  to  a 
supervisor.  The major  drawbacks  of this method are 
bandwidth and CPU requirements needed when many 
agents must report their state (which is the case here) 
as shown in [11]. But, is it necessary for all the agents 
to report their state ? In other words, is the monitored 
information  carried  by all  the  agents  or  a  subset  of 
them ? these considerations bring us to the concept of 
filtrated report based monitoring.

We use the group concept to monitor simulations. In a 
multiagent system, a group is generally described as a 
collection of agents,  sharing common characteristics, 
goals,  etc. [13].  Our  framework  uses  a  very  simple 
group  definition:  A  group  is  defined  as  a  set  of 
constraints on agent properties. An agent is a member 
of  a  group  iff it  respects  these  constraints.  A group 
represents  the  set  of  agents  carrying  the  necessary 
information  to  compute  the  value  of  a  monitored 
variable.  Constraints  are evaluated by the simulation 
agents  themselves;  thus,  they  “filter”  the  set  of 
observed  agents.  Then  an  Observer,  computes  the 
value  of  a  monitored  variable  and  evaluates  the 
corresponding control rule. 

When initiating the PMI estimation process, a control 
rules generator,  transforms  expert  observations  into 
group  definitions, which  are  implemented  into  the 
simulation  agents,  and  control  rules, which  are 
implemented into Observer agents.

An  expert  observation  is  an  information  about  the 
state of the entomofauna at the  body discovery time. 
We  implement  four  types  of  observations:  species 
found on the body, for each species, the development 
rate of the oldest individual and its larval instar (stage 
of  development),  and  finally  the  abundance  of 
entomofauna.  These  data  are  traditionally  used  by 
forensic entomologists to determine a PMI. For each 
information, two kinds of control rules are generated: 
those which are evaluated during the simulation and 
those which are evaluated at  the end. The first  kind 
allows Observers to stop a simulation before its end by 
exploiting properties  of monitored  variables  such as 
monotony. This can save CPU time and be useful to 
compute the next hypothesis to evaluate. 

4.2    Solution space explorer

This layer uses the hypothesis evaluator to explore the 
solution  (hypothesis)  space.  It  is  composed  of  two 
heuristics  H1 and  H2 and  a  memory  that  stores 
hypothesis evaluation results. H1 implements the ADD 

(Accumulated Degree Day) method to determine  the 
first hypothesis to be evaluated. Entomologists usually 
perform  PMI  estimations  using  this  simple  method 
which assumes a linear relation between temperature 
and development rate. It gives a first approximation of 
the time of death. Once the first hypothesis has been 
evaluated,  H2 computes  the  next  hypothesis  to  be 
evaluated using, for the moment, a simple dichotomy 
method.  It  allows  the  solution  space  to  be  fairly 
explored.

5    Implementation and preliminary results

This  system  has  been  implemented  as  a  MadKit 
plugin.  MadKit  is  a  multiagent  platform based on a 
powerful  organizational  model  called  AGR  (Agent, 
group,  role)  [13,14].  The  entomological  model  has 
been developed using the TurtleKit API [15]. 

In  this  section  preliminary  results  about  interesting 
aspects of ForenSeek are presented.

5.1    Behavior of Larva Agents

We  reproduced  in  this  experiment  the  2m*2m 
artificial environment of blood and agar-agar used in 
the  laboratory  to  study  larval  behaviors.  The 
temperature  is  constant  at  20°C.  We  monitored  the 
density of 1000 Larva agents in the environment over 
time,  expressed in hours,  during  100 hours  (Fig. 3). 
The darker the image, the denser the maggot mass is. 
Once  they  hatched,  Larva agents  optimize  their 
density by forming a large mass (t = 24).

After  a  few  hours  (t  =  44),  the  mass  reaches  an 
environment  edge  and  then  splits  into  several  small 
groups (t = 65). The small  groups keep hugging the 
walls until the end of the experiment (t = 100). This is 
an interesting illustration of thigmotactism, a behavior 
systematically observed in such experiments.

It  would be difficult  to present  systematic  results  of 
the  behavior  of  Larva agents,  however  we will  see 

Fig. 3 Gregarious behavior of maggots



how it  affects  PMI estimations.  PMI computed with 
the ADD method and PMI computed using our model 
are compared in the next section.

5.2    Influence of temperature on PMI estimation

ForenSeek can be a good way to analyze practices in 
Forensic  Entomology.  In  this  section,  we  study  the 
influence  of  the  temperature  felt  by  larvae  on  PMI 
estimation; we intend to show here that methodologies 
traditionally used in Forensic Entomology can lead to 
important PMI overestimations. This demonstration is 
based on a computer experiment where the simulated 
increase  of  temperature  due  to  maggot  mass  is 
important.  We monitored the temperature felt by six 
randomly  chosen  Larva agents  of  Lucilia  sericata 
species  (to  simulate  the  sampling  process  of 
entomological  expertise)  over  time.  The  ecosystem 
temperature is constant at 18°C. About 2000 eggs are 
laid soon after death on natural orifices (the cadaver is 
naked). Results show clearly a difference between the 
temperature  felt  by  larvae  and  the  ecosystem 
temperature as it has been reported in real cases (Fig.
4). 

We can see that in their egg stage of development, the 
temperature felt by larvae follows the cooling of the 
body.  A few hours  after  hatching,  larvae  warm  the 
local temperature to their optimal temperature (about 
35  °C).  Temperature  regulation  is  maintained  until 
larvae  gradually  leave  the  body  to  end  their 
development cycle.

The temperature felt by larvae during pupariation is of 
course  the  environmental  temperature.  From 
beginning to end, the difference between temperatures 
felt  by  larvae  is  negligible.  Thus,  next  figures  and 
observations  will  be  arbitrarily  based  on  the 
temperature felt by the first sampled larva. The Fig. 5 
shows the impact on the development rate evolution, 
considering  the  temperature  felt  by  larvae  and 
considering the ecosystem temperature. Then, we can 
analyze  the  difference  between  a  PMI  estimation 
computed from data taken from [16] and using ADD 
method  and  the computation  performed  by the DSS 
(which is accurate in this simple case). We assumed 

that  there  was  no  lack  of  precision  during  the 
development  rate  identification  process.  The  result, 
presented in  Fig. 6 shows (logically) that the longer 
the PMI, the more important the error with the ADD 
method is.

This result has to be seen as an extreme case. It shows 
that  in  particular  cases  (when  Diptera  colonization 
starts just after death and the increase of temperature 
due  to  maggot  mass  is  important)  PMI  estimations 
performed  with traditional  methods  are  not  accurate 
and lead to important errors. 

To confirm this result, more systematic studies should 
be  done  to  compare  PMI  estimations  manually 
performed  by  experts  and  by  a  DSS  such  as 
ForenSeek. On the other hand, it could be interesting 
to  analyze  the  accuracy  of  temperature  increase 
predictions computed by ForenSeek and “guessed” by 
experts.

6    Conclusion

This  paper  presents  a  multiagent  DSS  based  on  an 
original  model of corpse decomposition by maggots. 
This model encapsulates various models developed in 
independent contexts (ethology, ecology, entomology, 
etc.).  We showed  that  this  software  program  allows 
forensic analysts and entomologists to determine more 
reliable  PMI  estimations  in  particular  cases. 
Experiments  are  in  progress  to  extend  this  to  more 
general cases. Moreover ForenSeek can be used as a 
virtual laboratory to perform complex simulations.

Fig. 4 Simulated increase of temperature

Fig. 6 Evolution of PMI overestimation

Fig. 5 Development rate evolution
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