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Abstract

This paper presents a new multi-scale method for the homogenization analysis of
hyperelastic solids undergoing finite strains. The key contribution is to use an in-
cremental nonlinear homogenisation technique in tandem with a model reduction
method, in order to alleviate the complexity of multiscale procedures, which usu-
ally involve a large number of nonlinear nested problems to be solved. The problem
associated with the Representative Volume Element (RVE) is solved via a model re-
duction method (Proper Orthogonal Decomposition). The reduced basis is obtained
through pre-computations on the RVE. The technique, coined as Reduced Model
Multiscale Method (R3M), allows reducing significantly the computation times, as
no large matrix needs to be inverted, and as the convergence of both macro and
micro problems is enhanced. Furthermore, the R3M drastically reduces the size of
the data base describing the history of the micro problems. In order to validate the
technique in the context of porous elastomers at finite strains, a comparison between
a full and a reduced multiscale analysis is performed through numerical examples,
involving different micro and macro structures, as well as different nonlinear models
(Neo-Hookean, Mooney-Rivlin). It is shown that the R3M gives good agreement
with the full simulations, at lower computational and data storage requirements.
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1 Introduction

Homogenization of heterogeneous solids in a geometrically and physically non-
linear regime is a challenging problem in computational mechanics [52,11].
Furthermore, the question of characterizing the behaviour of heterogeneous
media undergoing finite deformations arises in many modern applications, such
as biological tissues [24], and reinforced rubbers [56]. Whereas homogenization
techniques have been widely used and have proved to be efficient tools in the
context of linear heterogeneous materials, most of them are not suitable to deal
with large deformations, complex loading paths, and cannot account for an
evolving micro-structure. Foundations of the homogenization of heterogeneous
materials are outlined in Willis [63], Suquet [59], Müller [45], Nemat-Nasser
and Hori [46], Ponte Castañeda and Suquet [52] and Miehe et al. [41], among
others. Determining an effective energy-density function for describing the
overall behaviour of composites was extended to finite deformation elasticity
in the pioneering works of Hill [19], Hill and Rice [20] and Ogden [48].

Analytical approaches are in many circumstances restricted, especially with
regard to the geometry of the representative micro-structure and its consti-
tutive response which is often assumed to be linearly elastic. In the context
of hyperelastic media, some estimates exist for special loadings [18], as well
as other estimates based on various types of ad hoc approximations, mostly
for low-density foams (see i.e., [10,12]). Bounds on the overall strain energy-
density functions of geometrically nonlinear composites were determined by
Ogden [49] and Ponte Castañeda [51]. More recently, Ponte Castañeda [53] and
Lopez-Pamies and Ponte Castañeda [35] developed a variational procedure for
determining the effective properties of composites undergoing finite deforma-
tions and obtained some specific results for the class of transversely isotropic
composites, and generated estimates for effective behaviour and loss of ellip-
ticity in hyperelastic porous materials with random microstructures subjected
to finite deformations. deBotton et al. [4] have considered the response of a
transversely isotropic fiber-reinforced composite made out of two incompress-
ible neo-Hookean phases undergoing finite deformations. They developed an
expression for the effective energy density function of the composites in terms
of the volume fractions of the phases.

Modelling heterogeneous materials by meshing the whole structure, including
all heterogeneities, leads to giant computations. Such an approach may be
practicable for some very specific structures where the heterogeneities are
quite big, and where the material is linear. Recently, some attempt have been
made to re-formulate this global problem and consequently to try to reduce
the computational cost [29].

Alternatively, computational or incremental homogenization techniques have
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been developed, which are essentially based on the solution of two (nested)
boundary value problems, one for the macroscopic and one for the microscopic
scale. In techniques of this type, e.g. [58,16,61,14,57,41,42,38,8,9,62,15,28],
among others, the macroscopic deformation (gradient) tensor is calculated for
every material point of the macrostructure and is next used to formulate kine-
matic boundary conditions to be applied on the associated microstructural
representative volume element (RVE). After the solution of the microstruc-
tural boundary value problem, the macroscopic stress tensor is obtained by
averaging the resulting microstructural stress field over the volume of the mi-
crostructural cell. As a result, the (numerical) stress-strain relationship at
every macroscopic point is readily available.

Techniques of this type offer the following advantages: (a) large deformations
and rotations on both micro and macro level can be incorporated; (b) arbitrary
behaviour, including physically non-linear and time-dependant behaviour can
be used to model the micro level; (c) detailed microstructural information,
including a physical and/or geometrical evolution of the microstructure, can be
introduced in the macroscopic analysis; (d) different discretization techniques
(finite element, meshfree methods, boundary element methods...) can be used
at both levels.

Most of these techniques are called first-order, in which the assumption that
the microstructural length scale is infinitely small compared to the character-
istic macro structural size. Second-order homogenization have been proposed
by Kouznetsova et al. [28] to handle problems where both length scales become
comparable, or when highly localized deformations occur. A similar approach
have been proposed by Feyel in [9]. Direct micro-to-macro transitions based on
finite element formulations of inelastic heterogeneous materials in the large-
strains context have recently been considered for example by Smit et al. [57],
Miehe et al. [41], Kouznetsova et al. [27] and Miehe et al. [44].

Despite the cost is far less expensive than the brute force approach, these
techniques still lead to large computations, as many non-linear problems have
to be solved, while the data necessary for the incremental resolution have to
be stored for each problem, generating a large database. One solution is the
use of parallel computations [8].

Alternatively, model reduction can significantly reduce time and data stor-
age requirements. In [39,40], Michel and Suquet proposed an approximate
model for describing the overall hardening of elastoplastic or elastoviscoplas-
tic composites using non uniform transformation fields, generalizing the idea
of Dvorak [6]. This analysis delivers effective constitutive relations for nonlin-
ear composites expressed in terms of a reduced number of internal variables
which are the components of the microscopic plastic field over a finite set of
plastic modes. In the mentioned work, the plastic modes were chosen as actual
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plastic fields in the composite under some specific loadings.

The proper orthogonal decomposition (POD), is a powerful and elegant method
for data analysis, aimed at obtaining low-dimensional approximate descrip-
tions of a higher-dimensional process. The POD provides a basis for the modal
decomposition of an ensemble of functions, such as data obtained in the course
of experiments or numerical simulations. The most striking features of the
POD is its optimality: it provides the most efficient way of capturing the
dominant components of an infinite-dimensional process with only a finite
number of modes, often surprisingly few modes [3,22]. The technique seems
adapted to the aforementioned multiscale approaches, where numerous non-
linear problems have to be solved repeatedly.

The central contribution of this paper is the development of a reduced model
multiscale method (R3M), proposed for homogenization of nonlinear hyper-
elastic problems at finite strains. In the context of R3M, a reduced model
substitutes the full problem describing the nonlinear micro problem. The re-
duced basis is obtained through a POD procedure. For this purpose, pre-
computations are performed on the RVE subjected to different applied loads.
The main aim of this work is to evaluate the capabilities of the method in the
context of non-linear hyperelastic problems at finite strains and to compare
it with a full computation. For sake of simplicity, we will focus on problems
where no loss of ellipticity occurs.

The layout of this paper is as follows. In section 2, an overview of Proper Or-
thogonal Decomposition is provided. In section 3, the boundary-value problem
associated with non-homogeneous hyperelastic material is formulated. In sec-
tion 4, the reduced model multiscale method (R3M) is presented. Finally, the
R3M is evaluated through different numerical examples in section 5.

2 Model reduction using the proper orthogonal decomposition

The proper orthogonal decomposition [37] is obtained by a procedure which
goes back at least to the papers of Pearson [50] and Schmidt [54], and which
reappears under a multitude of names, such as the Karhunen-Loève transform
(KLT) [26,34], principal component analysis [21], proper orthogonal eigenfunc-
tions [36], factor analysis [17], and total least squares [13]. The singular value
decomposition algorithm [13] is a key to the understanding of these methods.

The POD was initially designed to analyze random process data by intro-
ducing new coordinate systems based on its statistical properties. It does not
only provide structures within random data, but also leads to more efficient
way of coordinate description. These characteristics make the POD a suitable
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tool for various tasks ranging from data analysis and compression to model
order reduction. The POD identifies a useful set of basis functions and the di-
mension of the subspace necessary to achieve a satisfactory approximation of
the system. The POD also facilitates the resolution of the partial differential
equations through their projection into a reduced-order model [1].

Applications of this approach are found in many engineering and scientific dis-
ciplines, such as random variables analysis, image processing, signal analysis,
data compression, process identification and control in chemical engineering,
oceanography, etc. [22]. The POD has been used to obtain approximate, low-
dimensional descriptions of turbulent fluid flows [22,37], structural vibrations
and chaotic dynamical systems [7]. Many recent investigations have examined
impacting systems [1,2] and thermics [47].

In particular, the KLT best approximates a stochastic process in the least
square sense. It can be formulated for both continuous and discrete time. In the
following, we focus on the discrete KLT for incremental nonlinear mechanical
analysis. The mathematical theory of the KLT relies on the properties of
Hilbert spaces. A Hilbert space H is a vector space that is complete as a metric

space and has a scalar product 〈., .〉. The norm is defined as ‖ψ‖ =
√

〈ψ,ψ〉 for

ψ ∈ H and the metric is defined as d(ψ,φ) = ‖ψ − φ‖ for ψ,φ ∈ H. Without
loss of generality we will consider in his paper Hilbert spaces only in ℜN . The
concept of orthogonality and orthonormality is crucial for the derivation of
the KLT: two vectors ψi,ψj ∈ H are orthonormal if

〈

ψi,ψj

〉

= δij. A basis
Ψ of a Hilbert space is orthonormal if any two distinct vectors ψi, ψj ∈ Ψ
are orthogonormal.

We consider a solid D-dimensional body subjected to a time-dependent quasi-
static loading during a time interval I = [0, T ] discretized by S instants
{t1, t2, ..., tS}. Let qi denote the DN -dimensional vector formed by the dis-
placement components of N points of the solid recorded at an instant ti ∈ I.

Next, we consider a time-dependant vector qR(t) ∈ ℜDN and the following
expansion:

qR(t) = φ0 +
M
∑

m=1

φmξm(t) (1)

with M < DN , φ0 and φm (m = 1, ...,M) are constant vectors belonging to
ℜDN , and ξm(t) are scalar functions of time t. The time dependent vectors
qR(t) given by (1) is required to minimize:

S
∑

i=1

∥

∥

∥q(ti)− qR(ti)
∥

∥

∥

2
(2)

5



with the constraints:

〈

φi,φj

〉

= δij (3)

Solving this constrained optimization problem gives φ0 (see i.e. [31,5]) as:

φ0 = q̄ =
1

S

S
∑

i=1

q(ti) (4)

and φi (i = 1, ..., DN) as the eigenvectors of the eigenvalue problem:

Qφi = λiφi
(5)

Above, Q is the covariance matrix defined by:

Q = UUT (6)

where the matrix U is a (DN×S) matrix with the centred vectors as columns:

U = {q(t1)− q̄,q(t2)− q̄, ...,q(tS)− q̄} (7)

Note that Q is a semi-definite (DN ×DN) matrix, whose eigenvalues λi are
decreasingly ordered: λ1 ≥ λ2 ≥ ...λM ≥ ... ≥ λDN ≥ 0.

A reduced model can be obtained by using only a small number M of basis
functions in Eq. (1). If M < DN , it can be shown (see i.e. [31]) that the error
induced by the K-L procedure is given by:

ǫ(M) =
S

∑

i=1

∥

∥

∥q(x, ti)− qR(x, ti)
∥

∥

∥ =





DN
∑

i=M+1

λi





1/2

(8)

where M is the number of selected basis functions.

The number of basis functions M is then chosen such that

(

∑DN
i=M+1 λi

)1/2

(

∑DN
i=1 λi

)1/2
< δ (9)

where δ is a given tolerance error parameter, small compared to one.
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3 Formulation of the inhomogeneous hyperelastic material prob-
lem

3.1 Macro problem

let Ω0 be the open domain in ℜD that a D-dimensional solid occupies in its
reference configuration and let ∂Ω0 denote the boundary of Ω0. The current
configuration and the associated boundary of the solid are referred to as Ω(t)
and ∂Ω(t). We define ∂Ω0u and ∂Ω0σ as the portions of the prescribed dis-
placements and tractions, respectively. We assume that ∂Ω0 = ∂Ω0u ∪ ∂Ω0σ

and ∂Ω0u∩∂Ω0σ = ⊘. Let u(t) ∈ H1(Ω0, t) the macroscopic displacement field
for a given instant t ∈ I. The current position vector x(t) of a particle of the
solid at t is related to its reference position X by:

x(X, t) = X + u(X, t) (10)

Let F̄ = ∇Xu + 1 the macroscopic deformation gradient tensor. The macro-
scopic nominal stresses tensor P̄ is related to F̄ by:

P̄ =
∂Ψ̄(F̄)

∂F̄
(11)

where Ψ̄ represents the strain-energy function describing the homogenized
material. At both the micro and macro scales, Ψ = Ψ(F) is assumed to be
continuous and satisfy the principle of frame invariance, i.e. Ψ(QF)=Ψ(F) for
all orthogonal tensors Q. Furthermore, the reference configuration is taken to
be stress-free, so that Ψ(1) = 0.

We assume quasi-static deformations of the body over the time interval I (here
the time denotes the loading increment, which varies with time). The problem
to solve is defined as follow:

∇ · P̄ + B̄ = 0 and P̄F̄T =
(

P̄F̄T
)T

in Ω0 (12)

where B̄ is a body force term. In (12), the second equation is due to the
moment equilibrium. The boundary conditions are defined by:











u(X) = ū(X) on ∂Ω0u

P̄N = t̄ on ∂Ω0σ

(13)

At both the macro and micro scales, P is related to the Cauchy stress σ by
P = JσF−T , J = det(F). The weak form associated with the balance equation
(12) is given as follows:
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Find u ∈ H1(Ω0) verifying the boundary conditions u = ū on ∂Ω0u such that,
∀t ∈ [0, T ]:

∫

Ω0

P̄(t) : ∇X(δu)dΩ =
∫

Ω0

S̄ : δĒdΩ =

∫

Ω0

B̄ · δudΩ +
∫

∂Ω0σ

t̄ · δudΓ ∀δu ∈ H1
0 (Ω0) (14)

or in a more compact form:

δW̄int = δW̄ext (15)

where H1(Ω0) and H1
0 (Ω0) are the usual Sobolev spaces. In (14) S denotes the

second Piola Kirchhoff stress tensor, related to P through P = FS, and δE is
expressed by:

δE =
1

2

[

FT
∇X(δu) + ∇X(δu)TF

]

(16)

In order to solve the nonlinear problem (14), an incremental procedure is
required, e.g. a Newton-Raphson procedure, implying the linearization of (14),
which leads to the set of linear increments [23]:

D∆uδWint(u, δu) =
∫

Ω0

[

∇X(δu) : ∇X(∆u)S̄

+ F̄T
∇X(δu) : C̄e : F̄T

∇X(∆u)
]

dΩ (17)

where C̄e denotes the fourth-order homogenized material elasticity tensor. We
note that in the case of inhomogeneous hyperelastic materials, Ψ̄ is not known
in general. The elasticity tensor C̄e can thus not be expressed in closed-form.
In order to determine the macroscopic stress-strain relationship, we formulate
the problem describing structure at the microlevel in the former section.

3.2 Micro problem

Let Ω0
µ be a representative volume element at the micro scale in the neighbour-

hood of a macro point X (see figure 1). We assume that Ω0
µ has a characteristic

length much smaller than the characteristic dimension of the structure. Fol-
lowing similar definitions from former section, and denoting by (.)µ the micro
quantities, we assume the existence of a strain energy function Ψ(t) such as
the microscopic nominal stresses are related to the microscopic gradient of the
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transformation by:

P =
∂Ψ(F)

∂F
(18)

with F = ∇Xuµ + 1. The weak form associated with the balance equation
over Ω0

µ is defined by:

Find uµ(t) ∈ H1(Ω0
µ) satisfying uµ = ūµ on ∂Ω0

µu such that, ∀t ∈ [0, T ]:

∫

Ω0
µ

P(t) : ∇X(δu)dΩ =

∫

Ω0
µ

B · δudΩ +
∫

∂Ω0
µσ

t · δu dΓ ∀δu ∈ H1
0 (Ω0

µ) (19)

where B is the local body force term and t are the applied tractions. To com-
plete the problem, we need to specify some appropriate boundary conditions
for the micro problem. This point will be detailed in the next section. At the
microscale, we assume that the behaviour of different constituents is known. In
this work, we consider a porous material with a hyperelastic model describing
the behaviour of the matrix. More precisely, the compressible Mooney-Rivlin
model is characterized by the energy function [23]:

Ψ = c(J − 1)2 − d log(J) + c1(I1 − 3) + c2(I2 − 3) (20)

where I1, I2 and J are given by:

I1 = Tr(C) , I2 =
1

2

[

Tr(C)2 − Tr(C2)
]

, J =
√

det(C) (21)

with C = FTF the right Cauchy-Green tensor. In (20) c, c1 and c2 are material
constants and d defines a (dependent) parameter with certain restrictions. By
recalling the assumption that the reference configuration is stress-free we may
deduce from (20) that d = 2(c1 +2c2). A special case of the strain-energy (20)
is found by taking c2 = 0, leading to the compressible neo-Hookean model.

Linearization of (19) is obtained by substituting the macro quantities for the
micro ones in (17). The associated stress tensors and elasticity tensors are
given in appendix 7.1 (Eq. (46) and (50), respectively), in the special case of
the Mooney-Rivlin model (20). The matrix forms obtained through a Galerkin
(finite element) discretization, are given in appendix 7.2.

In the micro domain, we assume that the current position of the material
points is the superposition of an average field and a fluctuating field w(Xµ)
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induced by the presence of heterogeneities:

xµ = F̄Xµ + w(Xµ) (22)

we thus have:

F = F̄ + ∇Xw(Xµ) (23)

3.3 Coupling between scales

In the present paper, we aim at solving iteratively the problems (14) in the
structure and (19) in each macro integration point. The coupling between
the scales is performed in the following way: (a) specific deformation-driven
boundary conditions are imposed on the RVE; (b) after solving the micro
problem, the macro stress are recovered by an averaging procedure of the micro
stresses. An iterative procedure, e.g. Newton-Raphson technique, is then used
to satisfy (14) and (19) at every integration point. In order to specify the
boundary conditions on the RVE, we note the additional constraint:

F̄(X) =
1

Ω0
µ

∫

Ω0
µ

F(Xµ)dΩ (24)

where F̄(Xµ) denotes the homogenized gradient of the transformation asso-
ciated with the point of the macrostructure X. Introducing (22) in (24), it
reads:

F̄(X) =
1

Ω0
µ

∫

Ω0
µ

F̄(x)dΩ +
1

Ω0
µ

∫

Ω0
µ

∇Xw(Xµ)dΩ

= F̄(x) +
1

Ω0
µ

∫

∂Ω0
µ

w(Xµ)⊗NdΓ (25)

which imposes:

1

Ω0
µ

∫

∂Ω0
µ

w(Xµ)⊗NdΓ = 0 (26)

with N the unit outward normal on ∂Ω0
µ. The condition (26) is satisfied for

the following local boundary conditions:

(i) w(Xµ) = 0 on ∂Ω0
µ and (ii) w+(Xµ) = w−(Xµ) on ∂Ω0

µ
(27)
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The first condition (27 (i)) is satisfied by using homogeneous deformations on
the boundary

xµ = F̄Xµ ∀Xµ ∈ ∂Ωµ or uµ =
[

F̄− 1
]

Xµ ∀Xµ ∈ ∂Ωµ (28)

The second condition (27 (ii)) states a non-trivial periodicity of the superim-
posed fluctuation w on ∂Ω0

µ. Here the boundary is understood to be decom-
posed into two parts ∂Ω0

µ = ∂Ω+
µ ∪ ∂Ω−

µ with outward normals N+ = −N−

at two associated points X+
µ ∈ ∂Ω+

µ and X−

µ ∈ ∂Ω−

µ . A third condition can
be expressed, associated with homogeneous stress t = P̄N on the boundary
∂Ω0

µ ≡ ∂Ω0
µσ [43].

In this work, we consider only the condition (28) for the sake of simplicity.

The macro stresses are recovered through:

P̄(t) =
1

Ω0
µ

∫

Ω0
µ

P(Xµ, t)dΩ (29)

Using the equilibrium of couples acting on the micro-structure [43]:

∫

∂Ω0
µ

(t⊗ xµ − xµ ⊗ t) dΓ = 0 (30)

and the identity:

P̄ =
1

Ω0
µ

∫

∂Ω0
µ

t⊗XµdΓ (31)

together with (28) we have:

P̄F̄T =
1

Ω0
µ

∫

∂Ω0
µ

(t⊗Xµ) F̄T dΓ =
1

Ω0
µ

∫

∂Ω0
µ

[

F̄ (Xµ ⊗ t)
]T

dΓ

=
1

Ω0
µ

∫

∂Ω0
µ

[(

F̄Xµ

)

⊗ t
]T

dΓ =
1

Ω0
µ

∫

∂Ω0
µ

[xµ ⊗ t]T dΓ =
1

Ω0
µ

∫

∂Ω0
µ

t⊗ xµdΓ

Using (30) we finally obtain:

1

Ω0
µ

∫

∂Ω0
µ

t⊗ xµdΓ =
1

Ω0
µ

∫

∂Ω0
µ

[xµ ⊗ t]T dΓ

And thus:

P̄F̄T =
(

P̄F̄T
)T
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Reduced basis Φ

F

P

µ

µ

Ω  µ
0

B

Fig. 1. R3M resolution scheme.

Table 1. Equations of the multilevel analysis.

Macro problem Micro problem
∫

Ω0
P̄(u) : ∇X(δu) = δW̄ext

∫

Ωµ
0

P(uµ) : ∇X(δu) = δW
µ
ext

P̄ = 1
Ωµ

0

∫

Ωµ
0

P(uµ)dΩ Boundary conditions on ∂Ωµ
0 via F̄(x)

which confirms the symmetry of the macroscopic Kirchhoff stress by means of
the boundary conditions (28).

The coupling between the micro and macro problems is illustrated in figure 1.
The different equations are outlined in Table 1.

It is worth noting that there is no practical way of calculating the tangent
matrix associated with the macro non-linear problem. One solution is to ap-
proximate this matrix using a perturbation method [8]. Computing tangent
matrix in this way requires the solution of four (2D) or six (3D) finite element
problems whose cost is not negligible. In this work we have used the tangent
matrix associated with the homogeneous material describing the matrix of the
porous structure, for the sake of simplicity.
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4 The reduced model multiscale method (R3M)

The R3M is a multiscale analysis, in which the problem associated with
the lower scale is solved numerically by using the POD. Following similar
approaches [58,16,61,14,57,41,42,38,8,9,62,15,28], the computational homoge-
nization is performed through a nested solution scheme for the coupled multi-
scale numerical analysis. A numerical computation of the representative vol-
ume element is carried out simultaneously in order to obtain constitutive equa-
tions at the macroscopic scale. All non-linearities come directly from the mi-
croscale. It requires simultaneous computation of the mechanical response at
two different scales: the macroscopic (which is the scale of the whole structure)
and the underlying microscopic RVE at each macroscopic integration point.
Macroscopic phenomenological relations are unnecessary, even in non-linear
case. The macro-mechanical behaviour arises directly from what happens at
the microscopic scale, phenomenological constitutive equations being written
only at this scale. The main contribution of R3M is to alleviate the numer-
ous computations associated with nonlinear micro problems, by using a model
reduction method. The main ingredients of R3M are given as follow:

(1) Multilevel numerical analysis;
(2) pre-computations on the RVE in order to obtain the reduced basis;
(3) resolution of the micro problem using POD;

The formulation of (1) has been presented in section 3. A detailed presentation
of points (2) and (3) is made in the next sections.

4.1 Pre-computations of the reduced basis

In order to obtain a reduced basis which approximates reasonably the full
model, it is crucial to define precisely the pre-computations that will gener-
ate the basis. Usually, several simulations are performed for different values
of parameters describing the model, e.g. those associated with boundary con-
ditions, or with material parameters. In our specific problem, the model is
defined by the four parameters associated with the boundary conditions on
the RVE, i.e. the four components of the macroscopic tensor F̄. One arising
question is to determine the different combinations of parameters (evolving in
time) that will generate an accurate solution with the obtained reduced basis.
In the present context, we propose a minimal number of sampling simulations
in order to construct the reduced basis. For that purpose, we propose the no-
tion of kinematically minimal basis, i.e. the one that can reproduce exactly
the essential boundary conditions.

In our specific problem, the boundary conditions on the RVE are defined
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according to (28). We thus have:

u|∂Ω0
µ

= [F− 1]Xµ =







γ11 γ12

γ21 γ22













X1µ

X2µ





 (32)

We then define the following loading tests on the RVE:

F∗

1 =







(γ11 + 1) 0

0 1





 F∗

2 =







1 γ12

0 1





 (33)

F∗

3 =







1 0

γ21 1





 F∗

4 =







1 0

0 (1 + γ22)





 (34)

It is worth noting that the proposed sampling simulations are necessary but
not sufficient. This means that it does not guarantee that each displacement
field inside of the micro domain can be reproduced, due to the nonlinear
character of the problem. Additional sampling experiments may be carried
out, in order to improve the accuracy of the POD solution, including other
combinations of the parameters. As reported in [33], the focused data sampling
leads to a very accurate reduced model, but does not lead to a reduced-order
basis that can accurately capture the solution space for a range of parameter
space. It has been shown in (see i.e. [33]) that in the general case the POD
cannot be expected to approximate well the response away from the response
paths generated individually by the evolution of the different parameters. For
that purpose, an adaptation of the basis may improve the method. Several
techniques have been proposed to alleviate this drawback of POD, see e.g.
[60,55,32]. Such developments are beyond the scope of this study.

We recommend to choose the amplitude of the parameters associated with
the boundary conditions such that they cover the range of applications. The
procedure is described below.

We choose the amplitudes of γij by performing a preliminary simulation on
the macrostructure. A simulation at the macro scale is carried out using the
Mooney-Rivlin model (20) in order to determine P̄ at each integration points.
We thus store the maximum and minimum values of each components of F̄,
the amplitudes of γij are then chosen according to:

γij ∈
{

Fmin
ij − δij; F

max
ij − δij

}

(35)

which gives an estimation of the amplitudes associated with the boundary
condition parameters. In the above, γij can be either positive or negative.
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Box 1. Pre-computations of the reduced basis

1. FOR each test case α (see section 4.1)

1.1. Solve, for t = t1, t2, ..., tS , the problem (19) using standard procedures

Collect the centred vectors as columns of the matrix Uα

Uα = {q(t1)− q̄,q(t2)− q̄, ...,q(tS)− q̄}

with q̄ = 1
S

∑S
i=1 q(ti)

Collect the matrix Uα in V such as:

V = {U1;U2; ...;Uα}

END

2. Construct the covariance matrix

Q = VVT

3. Solve the eigenvalue problem:

Qφk = λkφk

4. Construct the reduced basis

Φ = {φ1,φ2, ...,φM}

where M is chosen according to (9)

4.2 Resolution of the micro problems using POD

The discretization of the linearized problem associated with (19) using a
Galerkin procedure, i.e. the finite element method (other methods could alter-
natively be considered, i.e. meshfree methods or boundary elements method)
leads to the following discrete system of equations, by applying an incremental
procedure:

Kk
µ∆qk+1 = fext(µ) − fk

int(q
k
µ) (36)

where Kk
µ is the tangent matrix computed from (53), fext(µ) and fk

int denote the
internal and external forces vectors, respectively, computed from (59). In the
following, The superscript k denotes the iteration index, while the subscript
n denotes the increment index.

The central contribution of R3M is to reduce the problem (36) into a small
system of linear equations using POD. Let Φ a set of basis function such
as Φ = {φ1,φ2, ...,φM}, as defined in the former section. The increment of
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displacement is expanded, by the Ritz basis of M functions φm, as:

∆qk+1 =
M
∑

m=1

φm∆ξk+1
m (37)

Introduction of (37) in (36) leads to:

Kk
µΦ∆ξk+1 = fext(µ) − fk

int(q
k
µ) (38)

where ξ = {ξ1, ξ2, ..., ξM}. Pre-multiplication of (38) with ΦT leads to:

ΦTKk
µΦ∆ξk+1 = ΦT

[

fext(µ) − fk
int(qµ)

]

(39)

After resolution of (39), the reduced variables are updated according to:

ξk+1 = ξk + ∆ξk+1 (40)

We note that : (a) the resolution of (39) only involves the inversion of a M×M
matrix instead of a ND × ND for the full problem, with M << ND (we
recall that N and D denote the number of nodes and the space dimension,
respectively); (b) the storage of ξk at each integration point involves only
M × P real number table, with P the number of integration points on the
macro structure, P being of the order of N . If three scales are involved, the
size of the database in the full multilevel method (i.e. FE2 [8,9] growths with
O(N3), with N the number of nodes, assumed to be of the same order in the
micro and micro problems. In the R3M, the complexity of the database remains
O(M2N). It is worth noting that such simulation would still involve large
computations in both approaches. Nevertheless, the R3M is fully compatible
with parallel approaches, but remains less expensive than full approaches, as
it will be demonstrated in the next section.

4.3 General algorithm of R3M

The general algorithm is outlined in Box 1, 2, and 3. A schematic view of
the resolution strategy is depicted in figure 1. In Box 2 and 3, q denotes
the generalized displacement vector, while u denotes the displacement vector
associated with one element containing an integration point.
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Box 2. Resolution of the MACRO problem

LOOP over all time steps

Given qn:

Initialize qn+1 = qn :

WHILE ‖R‖ > TOL (R = fext − fint)

LOOP over all integration points Xi:

Compute F̄(Xi) = 1 + ∇X

(

uk
n+1

)

Given [ξ(Xi)]n, compute P̄(Xi) and [ξ(Xi)]n+1 from the micro domain;

go to Box 3.

Compute the elementary contributions
[

fint(e)(Xi)
]k+1

n+1
,
[

KT (e)(Xi)
]k+1

n+1

and assemble them in [fint]
k+1
n+1 and [KT ]k+1

n+1

END

Solve [KT ]k+1
n+1 ∆qk+1

n+1 = fext − [fint]
k+1
n+1

Update displacements:

qk+1
n+1 = ∆qk+1

n+1 + qk
n+1, k ← k + 1

END

END

5 Numerical examples

5.1 Analysis on some various representative volume elements

The main objective of the proposed approach is to solve the microscopic prob-
lem using a POD model reduction method. As described in section 4.1, the
reduced basis is generated by performing some simulations and then collecting
snapshots of the solution so as to select influent modes (see Box 1). Neverthe-
less, these pre-computations are carried out for some specific values of param-
eters describing the model. In the present context, these parameters are the
four components of the 2D-macroscopic deformation tensor F̄, which define
the boundary conditions on the RVE through the relation (28). In the mul-
tiscale analysis (see Boxes 2 and 3), the microscopic problem is solved using
arbitrary combinations of the boundary conditions, provided by the macro-
scopic scale, that do not necessarily match the values of the parameters used in
the pre-computations. The aim of this first example is two fold: on one hand,
we evaluate the accuracy of the solution provided by the reduced model, away
from the parameter paths used in the pre-computations; on the other hand, we
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Box 3. Resolution of the MICRO problem

Given F̄(Xi), [ξ(Xi)]n:

Set ξn+1 = ξn ≡ [ξ(xi)]n :

WHILE ‖R‖ > TOL (R = ΦT f
µ
int)

Reconstruct displacement field in the micro domain from the reduced basis:

[qµ]rn+1 = Φξr
n+1

LOOP over all integration points [Xµ]j ≡ X
µ
j :

Compute F(Xµ
j ) = 1 + ∇X

(

[uµ]rn+1

)

Compute P(Xµ
j ) from constitutive equation

Compute the elementary contributions
[

f
µ
int(e)(X

µ
j )

]r+1

n+1
,
[

K
µ
T (e)(X

µ
j )

]r+1

n+1

and assemble them in [fµ
int]

r+1
n+1,

[

K
µ
T

]r+1

n+1

END

Solve the reduced problem and update reduced variables:

ΦT
{

[

K
µ
T

]r+1

n+1

}

Φ∆ξr+1
n+1 = −ΦT [fµ

int]
r+1
n+1

ξr+1
n+1 = ∆ξr+1

n+1 + ξr
n+1, r ← r + 1

END

[ξ(xi)]n+1 = ξr+1
n+1

Compute the average stress in the micro domain:

P̄(Xi) = 1
Ω0

µ

∫

Ω0
µ
P(Xµ)dΩ

aim at evaluating the influence of some features of the model on the accuracy
of the POD solution and on the number of selected modes. These features are:
(a) the geometrical complexity of the domain; (b) the constitutive model; (c)
the number of pre-computations used to construct the reduced basis.

To test the influence of the geometrical complexity, four models of RVE have
been constructed, as depicted in figures 2 (a)-(d), with increasing complexity.
In the following, these models are referred to as RVE1, RVE2, RVE3 and
RVE4, respectively.

Two material models are used: (a) a Mooney-Rivlin model described by Eq.
(20) with parameters c1 = 6.3.105 N/m2, c2 = −0.012.105 N/m2 and c =
20.105 N/m2 and (b) A Neo-Hookean model described by the Eq. (20) with
parameters c1 = 6.3.105 N/m2, c2 = 0 N/m2 and c = 100.105 N/m2 . The
second model is nearly incompressible, and thus involves more geometrical
non-linearities. These two models will be used to determine the influence of
the geometrical nonlinearity on the number of selected basis.
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(a) (b)

(c) (d)

Fig. 2. Different RVE used for the analysis (a) RVE1, 452 d.o.f.; (b) RVE2, 744
d.o.f; (c) RVE3, 1056 d.o.f.; (d) RVE4, 1612 d.o.f;

Two sampling experiments are carried out to construct the reduced basis. In
the first experiment, four simulations are conducted, in which each of the four
parameters describing the boundary conditions varies independently. The re-
duced basis is then constructed using the set of obtained samples, as described
in Box 1. In the second experiment, an additional simulation is performed,
combining several parameters, whose evolution is described in figure 3. In the
second case, the reduced basis is constructed using five samplings. The resut-
ling numbers of modes for δ = 1.10−7 in Eq. (9) and γ = 0.25 are given in
Table 2, γ being described in figure 3. The first nine representative modes
associated with sampling experiment 2, RVE4 and Neo-Hookean model, are
depicted in figure 4. The associated normalized eigenvalues βi = λi/λmax are
indicated.

From Table 2, we can notice that for the proposed example, the number of
modes is almost independent of the number of degrees of freedom of the full
model, but is also independent of the geometrical complexity of the full model.
Nevertheless, we can observe that the size of the reduced basis is larger for the
Neo-Hookean model. This can be explained by the fact that an increase in the
material parameter c in Eq. (20) induces a higher level of incompressibility,
which leads to more geometrical non-linearities. For both material models,
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Fij(t)

tTmax/2 Tmax

1

1+γ

γ

F11(t)

F22(t)
F12,F21(t)

Fig. 3. Evolution of the components of the boundary conditions used in the pre–
computations.

Table 2. Analysis of the reduced basis size.

4 sampling 5 sampling

simulations simulations

Model Total nb. Nb. reduced Max. nb. reduced Max.

of d.o.f. modes error % modes error %

RVE 1 Moon.-Riv. 452 18 1.5% 22 1.4 %

Neo-Hook. 21 7% 25 2.5%

RVE 2 Moon.-Riv. 744 19 3% 23 2.2%

Neo-Hook. 22 8% 25 3%

RVE 3 Moon.-Riv. 1056 19 1.8 % 23 1.5 %

Neo-Hook. 23 15% 26 4.6 %

RVE 4 Moon.-Riv. 1612 21 3.1 % 24 1.8 %

Neo-Hook. 25 12 % 29 4.7 %

the number of modes is higher when adding the sampling experiment with
the parameter evolution described in figure 3. It is shown that the resulting
displacement fields can not be reproduced accurately with the minimal basis,
obtained with independent evolution of the parameters.

In order to test the accuracy of the reduced basis away from the sampling
paths, we impose boundary conditions on the different RVE using the evolution
of the different parameters F̄11, F̄12, F̄21 and F̄22 as depicted in figure 5. The
different curves describing the evolution of the parameters with respect to time
have been chosen as quadratic functions, such as the load passes continuously
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β1 = 1.00 β2 = 2.12.10−1 β3 = 4.35.10−2

β4 = 1.97.10−2 β5 = 2.10.10−5 β6 = 1.93.10−5

β7 = 2.71.10−6 β8 = 7.15.10−8 β9 = 3.00.10−8

Fig. 4. First nine modes of the reduced basis using RVE4.

from a pure biaxial traction state, for t = Tmax/2, to a complex combined
shear/traction loading, for t = Tmax.

The deformed configurations of the RVE 4 with Neo-Hookean model corre-
sponding to full analysis (1612 dof) and reduced model (29 dof) are compared
in figure 6. We can observe that the values of stress are similar. For a more
in-depth analysis of the accuracy, the relative error:

e = 100
P full

ij − P reduced
ij

∣

∣

∣P full
ij

∣

∣

∣

(41)

between full and reduced analysis has been computed for each test of Table 2.
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Fig. 5. Values of F11, F12, F21 and F22 along the simulation.

Fig. 6. Deformed configurations of RVE 4 at time t = Tmax: (a) full analysis (1612
d.o.f.); (b) reduced model (29. d.o.f.)

The results are indicated in Table 2. We can observe that the reduced model
constructed with the first sampling experiment induces higher errors than with
the second sampling experiment, which implies an additional sampling path.
A comparison of the homogenized stresses obtained for a particular case, by
choosing RVE 3 and Neo-Hookean model, is provided in figure 7.

From figure 7 (a), we can notice that for t > Tmax/2, there is a divergence
between the reduced and full model solutions, which suggests that the basis
generated by the evolution of the parameters can not reproduce accurately
the solution for the Neo-Hookean model. The reduced basis produced by the
additional sampling experiment provides a much better solution, as can be seen
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Fig. 7. Comparison between full and reduced solutions.

in figure 7 (b). A complete study for the different geometrical and material
models is provided in Table 2. The same conclusions can be drawn for the
different RVE models. The error is much smaller for the Mooney-Rivlin model,
because the geometrical non-linearities are lower for this model. Thus, the bi-
axial traction state does not give rise to much additional uncorrelated modes.
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(a) (b)

L l

l<<L

pt. C

pt. A

pt. B

Fig. 8. (a) Geometry of the problem; (b) finite element model.

5.2 Traction test

In the former example, no coupling between the micro and macro scales has
been considered. Here a complete multi-scale analysis is carried out. A porous
material whose matrix is characterized by the compressible Mooney-Rivlin
model (20) considered. The following numerical parameters are chosen: c1 =
6.3.105 N/m2, c2 = −0.012.105 N/m2 and c = 20.105 N/m2.

The diameters of the holes are taken to be very small compared to the char-
acteristic length of the specimen. The macro structure consists of a two-
dimensional square plate submitted to plane strains traction, as depicted in
figure 8 (a). Due to the symmetry of the problem, only a quarter of the plate
is modelled. The FE model of the macrostructure is depicted in figure 8 (b),
and consists in 400 nodes and a total of 722 integration points.

In order to perform a multiscale analysis, we associate a representative volume
element (RVE) with each integration point of the macrostructure FE model.
The FE model of the RVE is shown in figure 2. The porosity of the material
is 0.03. The full FE model of the RVE involves 832 degrees of freedom. Dis-
placements on the boundary (X2 = L/2) of the macrostructure are imposed,
corresponding to stretches ranging from 0% to 40%.

In order to obtain the reduced basis, preliminary computations are performed
on the RVE, obtained by the POD procedure described in section 2 and Box
1. Here, the reduced basis has been constructed using only the minimal num-
ber of sampling experiments proposed in section 4.1. The number of basis is
determined by choosing δ = 10−7 in (9). For this particular problem, 20 modes
are selected, which remains much smaller than the 832 d.o.f. of the full model.
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Fig. 9. Deformation of the macro and micro structures.

A full multiscale computation is performed, according to the procedure de-
scribed section 4.3. We carry out two simulations, one using the full RVE
model, which will be used as a reference solution, and one using the reduced
model, implying only 20 modes. The deformation of the macrostructure and
of the microstructures associated with points A, B and C (see figure 8 (b))
are plotted in figure 9.

We compare for the points A, B and C the homogenized stresses P̄11, P̄12,
P̄21 and P̄22 obtained through the full and reduced approaches, during the
simulation. The stresses are plotted versus the deformation of the macroscopic
structure defined by: ǫ = 2ūy(x2 = H)/L. We recall that the same reduced
basis is used for the resolution of problems associated with all the integration
points of the macrostructure. The results are depicted in figures 10 (a), 11 (a)
and 12 (a). The relative error in percent is given in figures 10 (b), 11 (b) and
12 (b).

Remarkably, the same reduced basis is able to reproduce accurately the kine-
matics associated with the arbitrary linear boundary conditions, as defined in
(27 (i)). Less than 0.25% error was observed for the points studied, which are
representative of the different loads in the structure.

To evaluate the accuracy of the solution with respect to the number of basis
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Fig. 10. Comparison between R3M and full multiscale computation (point A).

functions, a convergence analysis is carried out. We have computed, for point
C, the cumulated error:

e(M) =
∫ T

0

∥

∥

∥P red
ij (M)− P full

ij

∥

∥

∥ dt (42)

with respect to the number of basis functions M . The values of δ (see Eq. (9))
are also indicated. The results are depicted in figure 13.
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Fig. 11. Comparison between R3M and full multiscale computation (point B).

From figure 13 we can observe that the error decreases quickly with the num-
ber of basis functions. Above 20 modes (δ = 10−7), the gain in accuracy is
not significant. Nevertheless, the value of δ is obviously problem-dependent.
The question of deciding which modes should be preserved in the model has
been evocated in Lall et al. [30] Typically, the low-frequency modes are kept.
However there are many situations where this is not the best choice: in par-
ticular, in control systems where the frequency at which an accurate model is
necessary is at crossover, and may not correspond to the low frequency modes
of the system. It has also been reported in Joyner et al. [25] that in some
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Fig. 12. Comparison between R3M and full multiscale computation (point C).

cases, that further increase of number of eigenfunctions up to the optimal
number of empirical eigenfunctions does not improve accuracy and may even
deteriorates accuracy because the eigenfunctions with small eigenvalues are
contemned with round-off errors.

The time computations as well as the size of the database needed to describe
the history of the macroproblems are given in Table 3. The times are normal-
ized with respect to the minimum value.
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Table 3. Comparison between full and reduced analysis.

Reduced (20 dof) Full (832 dof)

Nb. of iterations until convergence 2 5

in each micro problem

Minimum nb. increment with stable solution 10 40

for the whole solution at the macro level

Relative CPU time (whole simulation) 1 16.8

Size of the database 115 kb 4.8 Mb

(history of microproblems)

We observe from table 3 and figure 14 that the time computations associated
with the global micro/macro analysis are significantly reduced as well as the
size of the database. This gain in CPU time is mainly due (a) to the inversion
of much smaller matrices in the resolution of the successive nonlinear problems
associated with the RVE; (b) the Newton-Raphson algorithm converges faster
using the reduced basis, i.e. less iterations are needed to find the solution
of the nonlinear micro problems; (c) larger time steps can be used at the
macrolevel, which saves a large amount of microproblems to be solved. In
this example, only 10 loading increments were necessary to achieve the whole
simulation using R3M, against 40 for the full approach. The minimum time
steps length was chosen such that no divergence occurs at the microlevel. The
time associated with each macro iteration decreases as the solution converges
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Fig. 14. Time associated with each Newton iteration of the macro problem using
full and reduced approaches.

for both approaches, (see figure 14). When the solutions of the microproblems
begin to converge, less iterations are involved at the macrolevel.

Finally, we have computed the forces acting on the upper surface (X2 = L/2)
of the macrostructure during the deformations, according to

p(t) =
∫

Γ(X2=L)
P(t)N dΓ (43)

The X2- component of p(t) is depicted in figure 15 for the porous hyperelastic
material, using full analysis and R3M. Excellent agreement is observed com-
pared to the full solution. As a comparison, the response of an homogeneous
material using the Mooney-Rivlin model (20) is also plotted.

5.3 Compression of elastomer bushing

An annular bushing composed of a metal inner sleeve, an outer metal sleeve,
and an elastomer layer, is subjected to a vertical prescribed displacement as
shown in Fig. 16. The annular bushing constitutes the macro structure. Due
to the relatively higher stiffness of the metal sleeves, only the elastomer layer
is modelled with the outer surface completely fixed and the inner surface
moved as a rigid surface in the vertical direction. The elastomer is modelled
as a Neo-Hookean hyperelastic material, with properties of Eq. (20) given as
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Fig. 16. Geometry of the elastomer bushing problem.

c1 = 6.3.105 N/m2, c2 = 0 N/m2 and c = 100.105 N/m2. Due to symmetry
conditions, only a half of the structure is modelled. The finite element model
consists of 126 nodes and a total of 204 integration points.

Here again, we consider porous material, the model of the RVE is identical as
in former example. New pre-computations are performed for this new model
in order to construct the reduced basis, considering the different parameters
of the model, and the values of the stress in the macrostructure. For this prob-
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Fig. 17. Deformation of the macro and micro structures.

lem, 29 modes are selected, when δ = 10−7 is used. The higher number of basis
functions can be explained by the fact that an increase in the material pa-
rameter c in (20) induces a higher level of incompressibility, which introduces
more geometrical non-linearities, as already noted in the example of section
5.1.

A multiscale analysis is performed, using a full (reference solution) and re-
duced approach. The deformation of the macrostructure and some represen-
tative microstructures are depicted in figure 17. This model involves larger
deformations at the microscale.

In this work, no contact algorithm was implemented in order to take into
account the auto-contact of the hole boundaries during compression. We thus
have stopped the simulation such as no interpenetration of the hole boundary
occurs.

The comparison of homogenized stresses P̄11, P̄12, P̄21 and P̄22 are depicted in
figures 18 (a), 19 (a) and 20 (a). The associated relative errors are depicted
in figures 18 (b), 19 (b) and 20 (b).

The Von Mises stress field associated with the porous material in the current
configuration is computed according to:

σ̄y =

√

3

2
σ̄D : σ̄D (44)
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Fig. 18. Comparison between R3M and full multiscale computation (point A).

where σ̄D is the deviatoric part of σ̄, σ̄D = σ̄− 1
3
Tr(σ̄). The associated field

representation is depicted in figure 21.

Good agreement between full and reduced (R3M) approaches is noticed.
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6 Conclusion

A reduced Model Multiscale Method for the nonlinear homogenization of hy-
perelastic media in large deformations has been presented. A reduced model
procedure has been used to solve the nonlinear problems associated with the
microscale. A significant gain in time saving is observed, mainly due to (a)
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Fig. 20. Comparison between R3M and full multiscale computation (point C).

only small matrices are inverted; (b) in the context of the Newton-Raphson,
the reduced solution of the micro problem converges faster than the full solu-
tion; (c) larger time steps (loading increments at the macro level) can be used
while maintaining convergence of micro problems, which saves a great amount
of nonlinear problems to be solved at the micro level. Moreover, the database
describing the evolution of the micro domains is drastically reduced, as the
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solution can be expressed by a small number of reduced variables.

In this study, the effectiveness of R3M has been examined through porous
hyperelastic problems, involving tension, compression and shear at the mi-
crolevel at finite strains. A comparison with the full solution, which is used as
a reference solution, proves the good accuracy of R3M for different examples
with complex loadings at the micro level. A systematic study has been per-
formed to determine the factors affecting the size of the reduced basis. In the
present context of hyperelastic media, it seems that the number of selected
modes is almost independent of the geometrical complexity as well as the total
number of degrees of freedom of the full model. Nevertheless, the size of the
reduced basis increases with the geometrical non-linearities of a model (i.e.
the level of incompressibility). We have also shown that the choice of the pre-
computations used to construct the basis is crucial for obtaining an accurate
solution.

Possible improvements of the method entails the development of a reduced
basis adaptation procedure, in order to handle more sever nonlinearities, more
complex boundary conditions, or path-dependent problems. These topics are
currently being actively investigated.
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7 Appendix

7.1 Stress and elasticity tensor for the Mooney-Rivlin models

The second Piola-Kirchhoff stress tensor is related to C by:

S = 2
∂Ψ(C)

∂C
(45)

Using (20) and (45) we find, after some manipulations:

S = 2(c1 + c2I1)1− 2c2C + [2cJ(J − 1)− d]C−1 (46)

The first Piola-Kirchhoff stress tensor is related to S through:

P = FS (47)

The fourth-order elasticity tensor in the material description Ce is defined by:

Ce = 2
∂S(C)

∂C
=

∂S(E)

∂E
= 4

∂2Ψ

∂C∂C
(48)

for the elasticities in the material description, with the major symmetries:

Ce = CeT or Cijkl = Cklij (49)

Using (20) and (48) we obtain the following form of the elasticity tensor Ce

for the compressible Mooney-Rivlin model:

Ce = 4c21⊗ 1 + 2cJ(2J − 1)C−1 ⊗C−1

−2 [2cJ(J − 1)− d]C−1 ⊙C−1 − 4c2I (50)

with

(

C−1 ⊙C−1
)

ijkl
=

1

2

(

C−1
ik C−1

jl + C−1
il C−1

jk

)

(51)

and Iijkl = δikδjl.
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7.2 Matrix forms

The incremental nonlinear problem requires solving:

KT∆u = f ext − f int (52)

with:

KT = KM + KG (53)

KM
IJ =

∫

Ω0

BM
I DBM

J dΩ (54)

KG
IJ =

∫

Ω0

BF
I TBF

J dΩ (55)

BM
I =





















F11
∂NI

∂X
F21

∂NI

∂X

F11
∂NI

∂Y
F21

∂NI

∂Y

F12
∂NI

∂X
F22

∂NI

∂X

F12
∂NI

∂Y
F22

∂NI

∂Y





















BF
I =





















∂NI

∂X
0

∂NI

∂Y
0

0 ∂NI

∂X

0 ∂NI

∂Y





















(56)

T =





















S11 S12 0 0

S21 S22 0 0

0 0 S11 S12

0 0 S21 S22





















(57)

where ∂NI

∂X
denote the spatial derivatives of the shape functions associated with

node I.

D =





















C1111 C1112 C1121 C1122

C1211 C1212 C1221 C1222

C2111 C2112 C2121 C2122

C2211 C2212 C2221 C2222





















(58)

f int
I =

∫

Ω0

BF
I ΞdΩ, f ext

I =
∫

Ω0

NIBdΩ +
∫

∂Ω0

NItdΩ (59)
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where N is a matrix containing the shape functions and:

Ξ =





















P11

P12

P21

P22





















(60)
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