
Services Collaboration in Wireless Sensor and Actuator Networks: Orchestration

versus Choreography

Sylvain Cherrier∗, Yacine M. Ghamri-Doudane†, Stéphane Lohier∗, and Gilles Roussel∗

∗ Université Paris-Est , Laboratoire de l’Institut Gaspard Monge (LIGM)

77454 Marne-la-Vallée Cedex 2
† Ecole Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise (ENSIIE)

1 square de la résistance,91025 Evry Cedex

Email: [firstname.lastname]@univ-paris-est.fr

Abstract—Wireless Sensor and Actuator Networks (WSAN)
and permanent connections to the Internet converge to be an
emerging and promising field: Machine-To-Machine (M2M)
services. To take advantages of this new field, hardware and
software infrastructure compliance must be verified. Services
expected by M2M alter the organization of WSAN. The
software design in this area can be divided into two main
categories: a centralized approach (Orchestration) where a
monolithic application collects data and sends orders, and
a distributed approach (Choreography) in which nodes offer
and use services in a collaborative way. In this paper, we
study the impact of these two architectures over WSAN. First,
a mathematical analysis shows the improvement offered by
choreography, thanks to the use of shorter paths between
nodes. Then, an application experiments these two architec-
tural designs to measure the impact on a real testbed. Both
the theoretical mathematical analysis and the real platform
experiment gives better results for the Choreography in terms
of network reliability and path length. Our work quantifies
the benefits obtained and provides histograms and numerical
results.

Keywords-Machine-To-Machine; Choreography; Orchestra-
tion; Wireless Sensor and Actuators Network; Services Ori-
ented Architecture

I. INTRODUCTION

The world of sensors, actuators and “smart objects”

is subject to strong constraints: very limited energy, low

throughput rates, restricted processing power and memory

space, etc. However the small contribution provided by each

node is useful, and can help dealing with user’s needs. Part

of this ability to process information is primarily used to

organize the network. At first glance, applications using this

type of “smart objects” are organized around a central node

called the sink. All information is uploaded to the sink,

which is the link between the inside network and the world.

The sink is unique: it often has boundless energy and a much

better processing power.

When merging into the wider world of M2M universal

exchanges and interactions between objects, the use of

WSN changes. From M2M perspective, WSAN is no more

a redundant array of multiple similar sensors responsible

for carrying out many measures of the same physical

quantity. WSAN is rather a highly varied collection of

small specialized objects, very different and complementary,

responsible for coordinating actions or measures. From that

point of view, the whole behaviour is modified. Data flows

change from a “many-to-one” kind to a “one-to-one” node’s

communication, directly between sensors and actuators. Data

types, message frequencies and uses become more hetero-

geneous. The sink role is reduced to a simple gateway to

the wide Internet. Giving each component universal access

from and to the Internet was the first step. The next step

is the definition of new types of software designs that take

into account WSAN constraints (i.e. mainly optimizing the

network’s lifetime) and M2M needs.

The first architectural approach inherited from WSN (Or-

chestration) is centralized: a unique application, responsible

for offering access and control to users, is located some-

where outside the WSAN, behind the sink. It gathers all the

data collected. After processing them, the central application

deduces actions to perform. Orders are then transmitted

to the actuators present in the network. This centralized

approach involves a specific traffic pattern in the network.

The paths from nodes to sink (and sink to each node)

are massively used, leading to congestion and high energy

consumption.

The other approach advocates a distributed application logic

instead of the centralized one, when application character-

istics allow its implementation. This approach, also known

as Choreography, tries to process data and to give decision-

making to the nodes themselves. Each node holds a part

of the application, and executes some process over the data.

Small interacting parts of the application are distributed over

the network. Computing is performed inside the network,

and communications can often be better disseminated over

the network. When it is possible, decisions are made at

node’s level, no need to send information to any central

application.

In this paper, we perform a thorough study of the impact

on the network performance of these two different software

designs for M2M over such a WSAN structure. Services

Choreography and Orchestration solutions are compared

in terms of network traffic loads and communication path

length to determine the impacts of each approach regarding

a more efficient and responsive design.

The reminder is organized as follows: first, we present the

related works and the background (Section II) attached to

our approach. Our mathematical analysis is described in

Section III, while Section IV focuses on testbed experiments

and results. Finally, concluding remarks and future research

directions are given.

II. BACKGROUND AND RELATED WORK

WSAN and M2M can be classified into multiple classes.

One of them is “data-centric”, which means that several

sensors of the same type collect data from their environ-

ment. This is for example used in building or environment

monitoring. In that case, users are mainly interested in

values. Data are sent to the sink, or the sink looks for the

value of a physical measurement [11]. To save energy, a

cluster oriented solution can be adapted, because physically

adjacent sensors detect approximately the same value, the

same event, at the same time. Here, compression algorithm

and data aggregation are the effective solution.

But building M2M by the integration of WSAN in a superset

leads to a different view of its use. M2M is made up of inter-

actions between an eclectic collection of multiple objects to

give the user a digital vision and use of his environment.

Previous views of WSN presented in [8] such as “WSN

performing a specific task”, or “sending messages not to

individual nodes but to geographical location or regions”

may not apply to WSAN when put inside the M2M realm.

Multiple components with highly diversified characteristics

(a mix of heterogeneous sensors and actuators) are working

together. Tilting from a “sensing” to an “interacting” vision,

WSAN (as part of M2M) is more “event-centric” than “data-

centric”.

This direct interaction between sensors and actuators is

also called “coordination” [2]. In this paper, the authors

described the direct “sensor-actuator” communication as

“Automated Architecture”, while the usual mode is called

“semi-Automated Architecture” because it needs a central

controller, on the sink or beyond. Owing to industrial

improvements, processing capabilities of smart objects in-

crease, and the implementation of full Internet protocols

suite becomes possible [6]. Therefore, at application level,

considering the whole WSAN as a Service Oriented Ar-

chitecture (SOA) makes sense [10]. Hence, in a services

approach, the “semi-Automated Architecture” can be seen

as a Services Orchestration, and “Automated Architecture”

is implemented by a Services Choreography.

The main difficulty for a real distributed application lies

in the heterogeneity, especially in WSAN where hardware,

Operating Systems and languages are various. Such diversity

is opposed to a distributed organization of the software [3],

because “the source code of a node is tangled and tightly

Figure 1. A network represented as a tree. For example, path length
between node N9 and N13 is:
1) in a Choreography : 3 hops (R2-R7-N13)
2) in an Orchestration : 5 hops (R2-Sink-R2-R7-N13)

coupled”, “Middleware interface and its composing compo-

nents are not precisely identified”, and “WSN codes devel-

opment is done in an ad-hoc manner”.

This orientation towards services collaboration rather than

basic hardware coding releases the coupling between de-

vices (such as in “Message-Oriented Middleware” presented

in [7]). It also offers an easy way (when feasible) to design

collaborative applications between nodes [4]. But this new

organization forces us to think about new perspectives and

issues in managing this highly constrained network. “Many

protocols and algorithms have been proposed for WSNs

[but] they may not be well-suited for the unique features

and application requirements of WSANs” [2]. Furthermore,

in “semi-Automated Architecture” (the traditional WSN

application design, that we call in our services point of

view an Orchestration), communication latency are not

minimized and “transmitting the sensing data to the sink

usually causes fast energy depletion of nodes which are

around the sink” [9]. We are interested here in quantifying

the effects of these two architectural designs.

III. PROBLEM STATEMENT

A. Choreography and Orchestration

In the case of hierarchical networks of organizations,

most protocols build solutions in tree form. Considering our

network as a tree (see Figure 1), it is possible to evaluate

the impact of application’s design on this architecture. The

way each node sees and uses the WSAN depends on that

design. For example, consider an application build following

an Orchestrated design. If node 9 is a sensor, and node 13

an actuator, the user may want node 13 to react to events

detected by node 9. In that case, node 9 has a specific vision

of the network (see Figure 2). Each message goes to node 2,

then to the sink. After its trip through the outside network

in direction of the central application, a second message

containing the decided action comes back, relayed by the

sink, going through node 2 to node 7, and then to node

13, its destination. The path from node 9 to node 13 is five

Figure 2. From application perspective, the node is seen as the root of a
new tree. Here, the path from node 9 to node 13, as seen by node 9 in a
Choreography (left), or in an Orchestration (right)

hops long. Note that node 2 is solicited twice: a first time

on the way up to the sink, and a second time when the

action message comes back. All the network’s components

behaviour is driven by the central application. All data must

go to the sink, to be forwarded to the application, and then

an action comes back in the network.

In a Choreography, the global application is designed as a

direct collaboration between nodes. In that architecture, the

limited processing capacity of each node may be used to

compute data closer to where it has been sensed, instead

of being sent to a central application. Processing data

consumes less energy than transmitting it (12.7 times less

on a TelosB, 2.5 times less on a MicaZ 1). Avoiding a

hop and its transmission is always a good idea, especially

if it is to relieve a node that is already overloaded (R2 in

our example). In Choreography, a node sends information

directly to an (or some) other node(s), and not to a central

decision point. The logic of the application is distributed,

and spread over the network. The decision about the action

to take is made directly on nodes.

Depending on the application’s design, node’s view of the

global network is different. In a Choreography, as shown

in Figure 2, the path from node 13 to node 9 is made of 3

hops. The message is delivered more quickly, with less risk

of getting lost. Node 2 has only one message to transmit.

Collision risks decrease. In Orchestration, the same needs

of communication between nodes involve higher number of

hops (Figure 2).

B. The vision from application layer

WSAN are characterized by their strong constraints (en-

ergy, memory, throughput), but also by the advantage of

having a processing power, however small it may be. The

way these objects are used and interact is also a new domain.

It’s interesting to take advantage of the local processing

power to relieve the entire network, because it results in

less energy consumption and lower radio traffic.

In our study, we adopt the perspective of the programmer,

and our approach is based on services. We do not evaluate

1See data sheet on MemSic WebSite (http://www.memsic.com/)

Figure 3. Extreme cases in Orchestration/Choreography comparison

here the appropriateness of the proposed network organiza-

tion, but rather the consequences of the two application’s

design approach. We consider our network as a tree of

nodes to represent the standard organization inside a WSAN.

Although there may be nuances in each solutions proposed,

this simplification has no impact on experiment’s validity,

because Choreography is more likely to get benefits of im-

provements provided by various network routing protocols.

It is clear that Choreography uses some shorter ways in

many cases (in facts, to all nodes that are on the path to the

sink, or connected to that path, see Figure 2). All the other

nodes are at the same distance in the two organizations.

Our study focuses on qualifying and quantifying the con-

sequences of that design’s choice in terms of path length,

network reliability and possible deductions we can make

about network lifetime.

IV. MATHEMATICAL APPROACH OF PATH LENGTH

CALCULATION

A. Best and worst cases

Our mathematical approach is mainly based on the

calculation of the path length when two nodes try

to communicate. Each path in the tree presented in

Figure 1 can be considered in two ways, Choreography

or Orchestration, changing the vision from each node

(Figure 2). This characterization depends on the software

design running in the node.

A mathematical analysis gives the best and the worst case

shown in Figure 3. All nodes are numbered from the sink

(0) to the last node (n). Path length is the distance between

a node i and a node j. In the first place, let’s study the linear

model of Figure 3(A), where node 7 is only accessible

through node 6, which is accessible from node 5, etc. By

adding the length of all possible paths (i.e. for all i and j),

and dividing by the number of all possible couples (i , j), we

get the average path length µ(n) for n nodes (we divide by

two not to count the path from i to j plus the path from j to i).

µ(n) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

distancei,j

Figure 4. Algorithm used to build the tree. The sink (S) searches its
neighbours, which in turn look for their neighbours, and so on.

This formula can be simplified in

µ(n) =
2

|P |

∑

P

distancei,j

with P = set of possible couples of n nodes

In the case of Orchestration, the path goes from node i to the

sink (node 0), and then back from node 0 to j. The distance

between two nodes i and j is equal to (i+ j).

µo(n) =
2

|P |

∑

P

(i+ j) = n+ 1 (1)

Considering Choreography, the distance between two nodes

i and j is the shortest path in the tree, and equals (j − i).

µc(n) =
2

|P |

∑

P

(j − i) =
1

3
(n+ 1) (2)

After simplification, the average path length between two

nodes in a linear structure of n nodes is n+1 in the case of

Orchestration. For a Choreography, the average path length

is 1/3(n+1). In the best case, a Choreographed architecture

reduces the average path length by 3.

Figure 3 (B) shows a one hop tree. In that case, the path

length between two nodes is always 2 hops. There is no

difference between Choreography and Orchestration. This

is the worst case, in which Choreography is strictly equal

to Orchestration, and brings no improvement.

So, the best case is encountered when the tree is very

thin, and each node has no sibling. On the contrary, a one-

hop tree is the worst case, giving a strict equality between

Choreography and Orchestration. However, Choreography

always offers shorter average path length, except in the worst

case scenario where both designs are equivalent.

B. Our probabilistic model for the general case

To study the general case, we have randomly positioned

nodes on a square (Figure 4) with the sink (the root) in the

Figure 5. Comparison between Choregraphy and Orchestration for a
reduced height and very wide tree (depth 3).

centre. The radio range is set through a radius parameter.

We use Unit Disk Graph (UDG) to simulate the accessibility

of each node. Any node at a distance less than this value

is considered accessible, otherwise inaccessible. The sink

starts to find reachable nodes. These nodes try to reach other

nodes, and so on (Figure 4). The resulted tree is analysed

when used by Orchestration and by Choreography. The

simulation gives the distribution of numbers of paths by

length for each design.

Figures 5, 6 and 7 show our results when comparing these

two designs, depending on nodes density, number of nodes,

and the three following parameters : Tree Maximum Height

(THmax), Internal Nodes Maximum number (INmax) and

Nodes Maximum number (Nmax). These parameters are

used to build different types of trees. They correspond for

example to the parameters Lmax, Rmax and Cmax used in

ZigBee [1].

All simulations are based on an area containing 100 nodes.

For each graph, we vary the three parameters (THmax,

INmax and Nmax) to build the structure of the tree. Then,

we count the length of each path from each node to all other

nodes. This is done according to Orchestrated architecture

(via the sink) and then to Choreographed architecture (using

the shortest path in the tree). Each analysis is the averaged

distribution of a set of 1000 tests. The average of 10 analyses

is plotted on Figures 5, 6 and 7.

C. Results given by the probabilistic model

Our first result (Figure 5) represents the distribution

of paths length for a reduced height and wide tree (a 3

maximum height tree, with 20 children maximum by node,

of which 6 are internal nodes maximum). Even with these

values that do not favour the Choreography, path length is

generally and significantly shorter than in Orchestration. It

results in a shorter response time, a reduction of total energy

Figure 6. Comparison between Choreography and Orchestration for usual
values given in ZigBee presentation.

Figure 7. A favorable case for Choreography.

consumption, and a smaller risk of information loss for a

non-reliable network such as WSAN.

Our second plot (Figure 6) is the path length distribution

calculated using usual parameters values than can be found

in the literature [1] (THmax=3, INmax=6, Nmax=20). The

resulting tree is less compacted than the first one, because

each level has fewer internal nodes. Our calculations show

a significant increase in the number of paths of maximum

length in the Orchestration case.

The last graph (Figure 7) shows the differences when the

network configuration parameters are favourable to Choreog-

raphy: important tree height, few internal nodes and leaves at

each level. Once more, the Choreography is a more efficient

organization.

Finally, the 10 analyses we conducted allowed us to obtain

the average path length standard deviation of our various

simulations. In facts, these standard deviation values are

Table I
THEORETICAL AVERAGE PATH LENGTHS ACCORDING TO THE

APPLICATION DESIGN

.

A n nodes network
Average path length

Orch. Chor. Ratio C./O.

Worst Case (THmax=0) 2 2 100%

THmax=3 INmax=3 Nmax=10 6.96 5.67 81 %

THmax=3 INmax=6 Nmax=20 6.85 4.90 72 %

THmax=3 INmax=10 Nmax=20 6.36 4.53 71 %

THmax=10 INmax=3 Nmax=5 16.40 8.59 52 %

Best case (THmax=n) (n+1) 1/3(n+1) 33 %

so low that we could not even plot them on the graphs.

They mostly represent less than 1% of the number of paths,

showing that there is very little variation between different

estimates.

Finally, Table I gives the compatibility of our results while

comparing the two models: the “best and worst cases"

vs “general case". Results given by the general case are

positioned between the extreme cases. As the tree height

increases, the path length gains from the Choreography

are becoming more pronounced. They are accentuated by

a small number of internal nodes, reaching a reduction by

nearly 2 in the case presented on Figure 7.

To sum up with the mathematical analysis, we have shown

that for any kind of tree, the Choreography is always a

better choice. Compared to an Orchestrated architecture,

the gain in terms of path length vary from 1 to 3 times

better. The improvement depends on the characteristics of

the given network topology and the nodes involved in the

communication.

V. TESTBED EXPERIMENTS AND RESULTS

A. TestBed description

To experiment these two architectures with a real imple-

mentation, we developed specific software on Contiki [5].

Contiki is a Free Software operating system for different

sensors hardware, such as TelosB, MicaZ2 or Sensinode3

devices. Contiki comes with Cooja, a network simulator

connecting emulating TelosB devices running Contiki. The

choice of Cooja instead of other network simulators, such

as NS-2 or NS-3, is motivated by the fact that we wanted to

see the real effects of an architectural design over a running

implementation. Launching our tests over a testbed gives a

better view for evaluating the real consequences of a design.

Contiki uses an implementation of 6LowPan, and a routing

protocol called RPL, in charge of building the routing paths

(i.e. the tree). The programmer does not provide any param-

eter for that tree, and has no control over it (see Figure 8

and 9). In addition, the tree may be rebuilt dynamically if

needed. The retrieved data from Contiki are: number of sent,

received and forwarded IP packets. These data show the

2From Memsic http://www.memsic.com/
3From Sensinode http://www.sensinode.com/

Figure 8. Tree given by Contiki during Orchestration experiment #50.
High level routers are 16, 7 and 13.

Figure 9. Orchestration experiment #60: node 16 is no more a router.
Node 18 is now in charge of node 22 and 6. 13 becomes more important.

entire network activity (including both our application and

network inner requirements). Our application enables us to

obtain the number of messages that have been successfully

received.

In this paper, the word packets is used to mean the whole

network activity whereas messages refers to application

layer.

B. Description of the experiment

Our mathematical analysis attempted to exhaustively enu-

merate all possible paths in the tree according to the two

architectures in order to deduce profiles of path lengths.

Theses analyses examines the impact when we vary the tree

shape.

But on a testbed, the programmer has no control over the

building of the tree. In addition, replicating the exhaustive

communication from node to node of our mathematical

study is not representative of a real M2M application. To test

the impact of the application design on any wireless network,

we performed the following program: each node chooses

only one recipient to simulate the interaction between a

sensor and an actuator. Once the actuator chosen, each

node sends 30 messages. Our test consists in counting the

number of messages actually arrived on the destination (an

application layer view), and the number of IP packets that

were sent or routed by each router at each level of the tree (a

network view). Results are achieved using both architectures:

either by sending directly to the recipient (Choreography)

or through the sink (Orchestration). The operating mode of

this test provides a view of the benefits of the Choreography

without having particularly promoted it. Indeed, the random

choice of the actuator and the dynamic changes of the tree

in 6LoWPAN (see Figure 8 and 9) give an overview of the

design effects.

We developed 3 softwares in Contiky 2.5:

• For each node

– A Choreography client/server: While listening to

others, this program sends data directly to only one

node.

– An Orchestration client/server: Only listening and

sending to the sink. Messages contain the id of the

real destination’s node.

• On the sink

– A normal sink: we use code given in Contiki’s rpl-

udp example (being the tree root).

– An Orchestrated sink: this sink analyses each

received message, and relays it to its final desti-

nation. It plays two roles: the sink, and the central

application.

We use 21 nodes plus a sink. According to our preliminary

tests, this seems to be enough to have significant results.

Nodes are positioned randomly. Experiments are run 100

times for each architecture. The only differences is the way

of transmitting messages: through the sink for Orchestration,

and using the shortest path for Choreography.

C. Testbed’s first result : nodes activity by level

We made numerous tests to eliminate insignificant results.

The design of our test is to regularly change the randomized

couple sensor-actuator (in order to respect the diversity of

realities, there is no evidence that a sensor and an actuator

are neighbours in the tree). We eliminated the first results

of the list because they were likely to be distorted by the

construction of the tree. We kept about thirty results in the

middle of the experiment. To identify the major trends, we

grouped these measures into three classes corresponding to

loading rates of top level routers (i.e. nodes 16, 7 and 3

in Figure 8). Classes are: low, average and high top level

activity. On the graph, we also give the overall reliability of

the network observed for each class.

Our first graph (Figure 10) shows the Orchestration results.

Each bar represents the average number of IP packets

forwarded by all nodes at a given level. This chart shows

activity at each level, and how data traffic is mainly concen-

trated on high level nodes. In comparison, the deeper in the

tree a node is, the less it is requested. From level 3, traffic

becomes insignificant.

This graph gives another interesting value: the percentage

of application messages that reached their destination. The

reliability of the application increases when network activity

Figure 10. In an Orchestration, top level routers are heavily used because
all data must travel to the sink, and come back to actuators.

decreases on top level nodes. Because all application mes-

sages cross the network towards the sink in the Orchestration

design, the whole network reliability is highly correlated

with the high load of these nodes. The more top level nodes

are loaded, the less reliable the network is. Furthermore,

even if the saturation level is not reached, we find that the

design of Orchestration implies high activity mainly on these

top level elements, consuming quickly their energy. There

is little network activity at level 2, and almost not deeper.

A Choreography shows a different profile (see Figure 11).

With the same 3 classes of average network activity at top

level nodes, the forwarding effort is spread over different

tree levels. Low level nodes are more used. Figure 11 shows

that levels 2, 3 and 4 handle more packets, while traffic on

top level decreases. So we have a better activity distribution

among the network, and reliability is obviously improved

compared to the Orchestration.

D. Testbed’s global view: activity and network reliability

Reading raw results (before average) shows significant

differences on the percentage of application messages reach-

ing their destination. We focus on any possible link between

the first level transmissions and the overall reliability of the

network. The way of designing applications has a strong

impact on network reliability and activity distribution.

Figures 12 and 13 plot the percentage of packets that

reached their destination compared to the activity of the top

level nodes. The network is stressed with important data

rates, leading to significant packet losses. In the case of

Orchestration, top level nodes activity is strongly linked to

network reliability, and their overload leads to a degradation

of the entire network accessibility. A global trend can be

Figure 11. In a Choreography, there is non negligible chance that a
message reaches its destination without crossing all tree levels.

Figure 12. The more first level is overload, the less reliable is the network.
Orchestration saturates top level nodes.

deduced from Figure 12. The little variations are due to few

tree modification during the experiment (Figures 8 and 9).

On the contrary, in the Choreography, the correlation does

not appear so clearly (Figure 13). Traffic is better distributed

within the network. The top level nodes are not involved

in all communications. Network reliability reaches higher

values, and is less dependent on top level nodes activity.

These two graphs show clearly how application’s design

impacts the network. For the same purpose, choosing to

collect information and to take decision outside the network

Figure 13. In a Choreography, there is no correlation between reliability
and first level activity. The network works better, more depending on
destination of the messages rather than their number.

(Orchestration) mainly affects top level nodes, and results

in a higher energy consumption that eventually forces the

choice of another path (by rebuilding the tree), quickly

running all combinations out of energy, causing a total halt

of the network. In contrast, obviously designing the same

application as a Choreography spreads the network activity

most randomly. Various nodes are involved, the network is

more reliable and has longer lifetime.

VI. CONCLUSION

By integrating M2M paradigm, the characteristics of

WSAN have changed: more different and various type

of nodes, heterogeneous flows over the network, variable

contents and sending frequencies. All these aspects lead

to an organizational transformation from “many-to-one” to

“one-to-one’, and finally different expectations from users.

Exchanges in M2M are more diffuse. Network transmissions

frequency is irregular and subject to bursts.

In this paper, we first use probabilistic models to show how

the design of an application has an impact on the average

length of paths. Our results show that the choreography

(when it can be implemented) may propose paths of length

up to 3 times shorter than an orchestrated design of the

same application. Different distributions of the path length

are presented. Then, the information collected during our

testbed experiment shows measures of the real impact.

When application’s design is orchestrated, it leads to an

overload of top level nodes that is hardly managed by the

network. By relieving them of a non negligible part of the

traffic, choreography improves network quality and reduces

power consumption at top level nodes, whose role in the

overall accessibility is crucial. And the choreography never

gets worse results than the orchestration in terms of path

length. M2M applications over WSAN benefit from the

use of choreography, as distributed software optimizes the

longevity and reliability of the whole network.

In the future, we will continue to explore the pros and

cons of such applications design on wireless network based

on highly constrained devices with a perspective of M2M

oriented approach.

ACKNOWLEDGMENT

The authors would like to thank Cyril Nicaud for his

expertise on trees, distributions and for the mathematical

formulation of the problem.

REFERENCES

[1] Zigbee alliance. http://www.zigbee.org/.

[2] I. Akyildiz and I. Kasimoglu. Wireless sensor and actor
networks: research challenges. Ad hoc networks, 2(4):351–
367, 2004.

[3] B. "Alkazemi and E. Felemban. "towards a framework
for engineering software development of sensor nodes in
wireless sensor networks". In "Proceedings of the 2010
ICSE Workshop on Software Engineering for Sensor Network
Applications", pages 72–75. ACM, 2010.

[4] A. Barros, M. Dumas, and P. Oaks. Standards for web ser-
vice choreography and orchestration: Status and perspectives.
In Business Process Management Workshops, pages 61–74.
Springer, 2006.

[5] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a lightweight
and flexible operating system for tiny networked sensors. local
computer networks. In Annual IEEE Conference on, 0, pages
455–462, 2004.

[6] A. Dunkels, T. Voigt, and J. Alonso. Making TCP/IP viable
for wireless sensor networks. In Proceedings of the First
European Workshop on Wireless Sensor Networks (EWSN
2004), work-in-progress session, Berlin, Germany. Citeseer,
2004.

[7] S. Hadim and N. Mohamed. Middleware: Middleware chal-
lenges and approaches for wireless sensor networks. IEEE
Distributed Systems Online, 7(3):1–23, 2006.

[8] M. Kuorilehto, M. Hännikäinen, and T. Hämäläinen. A
survey of application distribution in wireless sensor networks.
EURASIP Journal on Wireless Communications and Network-
ing, 2005(5):774–788, 2005.

[9] A. Nayak and I. Stojmenović. "Wireless sensor and actuator
networks: algorithms and protocols for scalable coordination
and data communication". Wiley-Interscience, 2009.

[10] Z. Shelby. Embedded web services. Wireless Communica-
tions, IEEE, 17(6):52–57, 2010.

[11] T. "Watteyne, A. Molinaro, M. Richichi, and M. Dohler.
"from manet to ietf roll standardization: A paradigm shift
in wsn routing protocols". "Communications Surveys &
Tutorials, IEEE", (99):1–20, 2010.

