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1 Introduction

This paper is a direct continuation of [10], where we have investigated the normal approximation
of random variables belonging to a fixed sum of Poisson Wiener chaoses, with special emphasis
on U -statistics living on the support of a Poisson random measure. As we will see below, strong
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motivations come from a fundamental paper by Reitzner and Schulte [25], where a first con-
nection between Malliavin operators and limit theorems in stochastic geometry was established,
and several bounds were obtained via an extensive use of product formulae for multiple integrals
(see e.g. [21, Chapter 6]) – with applications e.g. to statistics based on random graphs, or to
the Gaussian fluctuations of the intrinsic volumes of k-flats intersections of a convex body.

As discussed in more detail in Section 2, the main contribution of [10] was the derivation of
general upper bounds, expressed in terms of contraction operators, on the Wasserstein distance
between the law of a finitely chaotic random variable and of a centered Gaussian distribution. As
further demonstrated by the examples developed in this paper, we believe that contractions are
the most natural object for dealing with the normal approximation of random variables having
a finite chaotic decomposition (like U -statistics): for instance, our bounds yield conditions for
central limit theorems that are in many instances necessary and sufficient, and automatically
imply joint CLTs (with bounds) for chaotic components of different orders.

Remark 1.1. As a complement to the analysis developed in [10], one should note that bounds
based on contraction operators (such as the one appearing on formula (2.7) below) are con-
siderably simpler than those obtained by developing expectations of Malliavin operators via
diagram-type multiplication formulae (such as the one stated e.g. in [21, Theorem 6.1.1]). One
combinatorial reason for this phenomenon is that, in the jargon of diagram formulae (see [21,
Chapter 6]), computing norms of contractions requires one to assess integrals labeled by parti-
tions having blocks of size either two or four that can be arranged in a circular way (see [21, p.
49] for definitions and illustrations), whereas bounds based on diagram computations contain
integrals associated with general noncircular partitions having possibly blocks of size 3.

The theoretical findings of [10] were applied to characterize the Gaussian fluctuations of edge
counting statistics associated with general random graphs, as well as to describe a ‘Gaussian-to-
Poisson’ transition for random graphs with sparse connections. When applied to the so-called
disk graphs (see e.g. Penrose [23]), the results about Poisson limits yield Poissonized versions
of classic findings, e.g. by Jammalamadaka and Janson [7] and Silverman and Brown [31].
Note that Poisson approximations were established in [10] by the method of ‘diagram formulae’
(see [21, Chapter 7]), and then further refined (in a much more general framework) in [18] by
combining the Malliavin calculus of variations and a classic version of the Chen-Stein method.

The principal aim of the present paper is to extend the results proved in [10] in order to
study the Gaussian fluctuations of U -statistics (of a general order) with rescaled kernels, based
on the points of a marked point process. As shown in Section 8, marked point processes emerge
naturally in a number of applications, as for instance those involving Boolean models. Another
contribution of the present work is an exhaustive characterization of the fluctuations of geometric
U -statistics, thus completing the analysis initiated in [25, Section 5]: this point will be dealt
with in Section 7 by applying the classic theory of Hoeffding decompositions for symmetric
U -statistics based on i.i.d. samples (see e.g. [33]).

Remark 1.2. Some of the central limit theorems deduced in the present paper as well as in [10]
could alternatively be obtained by combining the results of [2, 7] with a standard poissonization
argument. Unlike our techniques, this approach would not yield explicit bounds on the speed of
convergence in the Wasserstein distance.

We stress that the main results of [10] and [25], that constitute the theoretical backbone of
our analysis, were obtained by means of the techniques developed in [19, 22], that were in turn
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based on a combination of the Malliavin calculus of variations and of the so-called Stein’s method
for normal approximations (see e.g. [3] for a general reference on this topic). Other remarkable
contributions to the line of research to which the present paper belongs are the following. In [4],
Decreusefond et al. present applications of the findings of [19] to the Gaussian fluctuation of
statistics based on random graphs on a torus; reference [14] contains several multidimensional
extensions of the theory initiated in [25]; the paper [18] contains some general bounds associated
with the Poisson approximation of the integer-valued functionals of a Poisson measure (further
applied in [30] to the study of order statistics); references [28] and [29] use some of the techniques
introduced in [19, 22] in order to deal, respectively, with Poisson-Voronoi approximations, and
with the asymptotic fluctuations of Poisson k-flat processes; further applications to U -statistics
are discussed in [11].

The remainder of the paper is organized as follows. Section 2 presents some background
material as well as a description of the main problems addressed in the paper. In Section
3 we discuss a preliminary example about subgraph counting, which is meant to familiarize
the reader with our approach. Section 4 contains fundamental estimates involving contraction
operators; Section 5 and Section 6 deal, respectively, with random variables living in a finite sum
of Wiener chaoses and with rescaled U -statistics with a stationary kernel; Section 7 contains
the announced characterization of the asymptotic behavior of geometric U -statistics, whereas
Section 8 is devoted to applications - in particular, to the Boolean model, and to random graphs.

2 Framework and goals

This section contains a general description of the mathematical framework of the paper, as
well as of the main problems that are addressed in the sections to follow. We start with a
synthetic description of the results proved in [10], which constitute the theoretical backbone of
our analysis. One should also note that reference [10] uses in a fundamental way the Malliavin
calculus techniques developed in [19, 22].

2.1 Asymptotic normality on the Poisson chaos: a quick overview

(i) (Framework) Throughout this section, we shall consider a measure space of the type
(Z,Z , µ), where Z is a Borel space, Z is the associated Borel σ-field, and µ is a σ-finite
Borel measure with no atoms. We shall denote by η = {η(B) : B ∈ Z , µ(B) < ∞} a
Poisson measure on (Z,Z ) with control measure µ, which we assume to be defined on
some adequate probability space (Ω,F , P ). We shall assume that F is the P -completion
of the σ-field generated by η, so that L2(P ) = L2(Ω,F , P ) coincides with the space of
square-integral functionals of η. We write η̂ = η−µ for the associated compensated Poisson
measure. For every k > 1, the symbol L2(Zk;µk) (that we shall sometimes shorten to
L2(Zk) or L2(µk) if there is no ambiguity) stands for the space of measurable functions on
Zk that are square-integrable with respect to µk. As usual, L2

s(Z
k;µk) = L2

s(Z
k) = L2

s(µ
k)

is the subspace of L2(µk) composed of functions that are µk-almost everywhere symmetric.
We shall also adopt the special notation Lp,p′(Zk) = Lp(Zk) ∩ Lp′(Zk), for p, p′ > 1.

(ii) (Multiple integrals and chaos) For f ∈ L2
s(µ

q), q > 1, we denote by Iq(f) the multiple
Wiener-Itô integral, of order q, of f with respect to η̂, that is:

Iq(f) =

∫

(Zq)′
f(x)dη̂⊗q(x). (2.1)
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Where the symbol (Zq)′ indicates that all diagonal sets have been eliminated from the
domain of integration. The reader is referred for instance to [21, Chapter 5] for a complete
discussion of multiple Wiener-Itô integrals and their properties. These random variables
play a fundamental role in our analysis, since every square-integrable functional F = F (η)
can be decomposed in a (possibly infinite) sum of Wiener-Itô integrals. This feature,
known as “chaotic representation property”, is the object of the next statement.

Proposition 2.1. Every random variable F ∈ L2(P ) admits a (unique) chaotic decom-
position of the type

F = E[F ] +
∞
∑

i=1

Ii(fi), (2.2)

where the series converges in L2(P ) and, for each i > 1, the kernel fi is an element of
L2
s(Z

i, µi).

(iii) (Wasserstein distance) Let N be a centered Gaussian variable with variance σ2 > 0.
In this paper, we will be interested in assessing the distance between the law of N and
that of a random variable F ∈ L2(P ) having the form

F = E[F ] +
k
∑

i=1

Iqi(fi), (2.3)

where k > 1, 1 6 q1 < q2 < · · · < qk are integers and, for every 1 6 i 6 k, fi is a non-zero
element of L2

s(µ
qi). The Wasserstein distance between the law of F and the law of N is

defined as

dW (F,N) = sup
h∈Lip1

E|h(F ) − h(N)|, (2.4)

where Lip1 stands for the class of Lipschitz functions with Lipschitz constant 6 1. In
the forthcoming Theorem 2.4, we shall collect results from [10], allowing one to assess
dW (F,N) by means of expressions involving the kernels of the Wiener-Itô expansion of F .

(iv) (Contractions) The main bounds evaluated in this paper are expressed in terms of the
contractions of the kernels fi (see e.g. [10, 19] for full details). Given two functions
h ∈ L2

s(Z
p;µp) and g ∈ L2

s(Z
q;µq) (for some p, q > 1), we shall use the following notation:

for every 0 6 l 6 r 6 min(q, p), and whenever it is well-defined (see the discussion at
Point (v) below), the contraction of g and h is the function in p+ q− r− l variables given
by

h ⋆lr g(x1, . . . , xp−r, x
′
1, . . . , x

′
q−r, y1, . . . , yr−l) (2.5)

=

∫

Zl

µl(dz1, ..., dzl)h(x1, . . . , xp−r, y1, . . . , yr−l, z1, . . . , zl)

×g(x′1, . . . , x
′
q−r, y1, . . . , yr−l, z1, . . . , zl).

In particular, if p = q one has that h ⋆pp g = 〈h, g〉L2(Zp), the usual scalar product of g and
h. For the sake of brevity, we shall often use multi-dimensional variables, represented by
a bold letter and indexed by their dimension: in this way, (2.5) can be rewritten as

h ⋆lr g(xp−r,x
′
q−ryr−l) =

∫

Zl

h(xp−r,yr−l, zl)g(x
′
q−r,yr−l, zl)dµ

l,
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for xq−r ∈ Zq−r, x′
p−r ∈ Zp−r, yr−l ∈ Zr−l. Finally, we observe that, if h ⋆lr g is square-

integrable, then its squared L2 norm is given by the following iterated integral:

‖h ⋆lr g‖
2
L2(Zp+q−r−l;µp+q−r−l) (2.6)

=

∫

Zp+q−r+l

h(xp−r,yr−l, zl)h(xp−r,yr−l, z
′
l)g(x

′
q−r,yr−l, zl)g(x

′
q−r ,yr−l, z

′
l)dµ

p+q−r+l.

(v) (Assumptions on kernels) The following assumption will be always satisfied by the
random variables considered in this paper.

Assumption 2.2. Every random variable of the type (2.3) considered in the sequel of
this paper is such that the following properties (1)-(3) are verified.

(1) For every i = 1, ..., d and every r = 1, ..., qi, the kernel fi ⋆
qi−r
qi fi is an element of

L2(µr).

(2) For every i such that qi > 2, every contraction of the type (z1, ..., z2qi−r−l) 7→ |fi| ⋆
l
r

|fi|(z1, ..., z2qi−r−l) is well-defined and finite for every r = 1, ..., qi, every l = 1, ..., r
and every (z1, ..., z2qi−r−l) ∈ Z2qi−r−l.

(3) For every i, j = 1, ..., d such that max(qi, qj) > 1, for every k = |qi−qj|∨1, ..., qi+qj−2
and every (r, l) verifying k = qi + qj − 2− r − l,

∫

Z

[
√

∫

Zk

(fi(z, ·) ⋆lr fj(z, ·))
2 dµk

]

µ(dz) <∞,

where, for every fixed z ∈ Z, the symbol fi(z, ·) denotes the mapping (z1, ..., zq−1) 7→
fi(z, z1, ..., zq−1).

Remark 2.3. According to [22, Lemma 2.9 and Remark 2.10], Point (1) in Assumption
2.2 implies that the following properties (a)-(c) are verified:

(a) for every 1 6 i < j 6 k, for every r = 1, ..., qi ∧ qj and every l = 1, ..., r, the
contraction fi ⋆

l
r fj is a well-defined element of L2(µqi+qj−r−l);

(b) for every 1 6 i 6 j 6 k and every r = 1, ..., qi, fi ⋆
0
r fj is an element of L2(µqi+qj−r);

(c) for every i = 1, ..., k, for every r = 1, ..., qi, and every l = 1, ..., r∧ (qi− 1), the kernel
fi ⋆

l
r fi is a well-defined element of L2(µ2qi−r−l).

In particular, every random variable F verifying Assumption 2.2 is such that Iqi(fi)
2 ∈

L2(P ) for every i = 1, ..., k, yielding in turn that E[F 4] < ∞. Note that Assumption 2.2
is verified whenever the kernels fi are bounded functions with support in a rectangle of
the type B × · · · ×B, µ(B) <∞.

(vi) (The bound B3) For F as in (2.3), let σ2 = E[F 2]. Following [10], we set

B3(F ;σ) =
1

σ

{

max
(∗)

‖fi ⋆
l
r fj‖L2(µqi+qj−r−l)

+ max
i=1,...,k

‖fi‖
2
L4(µqi )

}

, (2.7)

where max
(∗)

ranges over all quadruples (i, j, r, l) such that 1 6 l 6 r 6 qi 6 qj (i, j 6 k)

and l 6= qj (in particular, quadruples such that l = r = qi = qj = 1 do not appear in the
argument of max

(∗)
).
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(vii) (Normal approximations) Now fix integers k > 1 and 1 6 q1 < q2 < ... < qk, and
consider a family {Fλ : λ > 0} of random variables with the form

Fλ =

k
∑

i=1

Iqi(fi,λ), λ > 0, (2.8)

with kernels fi,λ verifying Assumption 2.2 for each λ. We also use the following additional
notation: (i) σ2λ = E[(Fλ)

2], (ii) Fi,λ = Iqi(fi,λ), i = 1, ..., d, and (iii) σ2i,λ = E[(Fi,λ)
2].

The next result collects some crucial findings from [10].

Theorem 2.4. (See [10]) Let {Fλ} be a collection of random variables as in (2.8),
where the integer k does not depend on λ. Assume that there exists σ2 > 0 such that
limλ→∞ σ2λ = σ2. Let N ∼ N (0, σ2).

1. For every λ, one has the estimate

dW (Fλ, N) 6 C0 ×B3(Fλ;σλ) +

√

2/π

σλ ∨ σ
|σ2λ − σ2|, (2.9)

where C0 is some constant depending uniquely on k. In particular, if B3(Fλ;σλ) → 0,

as λ→ ∞, then dW (Fλ, N) → 0 and therefore Fλ
Law
→ N .

2. Assume that fi,λ > 0 for every i, λ, and also that the family {F 4
λ : λ > 0} is uniformly

integrable. Then, the following conditions (a)–(c) are equivalent, as n → ∞: (a)
dW (Fλ, N) → 0, (b) B3(Fλ;σλ) → 0, and (c) E[F 4

λ ]− 3σ4λ → 0.

3. Let ϕ : Rk → R be a thrice differentiable function with bounded second and first
derivatives. Then, if B3(Fλ;σλ) → 0

E[ϕ(F1,λ, . . . , Fk,λ)]− E[ϕ(N1,λ, . . . , Nk,λ)] −→ 0, n→ ∞,

where (N1,λ, . . . , Nk,λ) is a centered Gaussian vector with the same covariance matrix
as (F1,λ, . . . , Fk,λ).

Remark 2.5. In the statement of Theorem 2.4, we implicitly allow that the underlying
Poisson measure η also changes with λ. In particular, one can assume that the associated
control measure µ = µλ explicitly depends on λ.

2.2 A general problem about marked point processes

In this paper, we shall mainly deal with the normal approximation of functionals of marked
Poisson point processes. Here is the general problem we are interested in.

Problem 2.6. Let X be a compact subset of Rd endowed with the Lebesgue measure ℓ, and
let M be a locally compact space, that we shall call the mark space, endowed with a probability
measure ν. We shall assume that X contains the origin in its interior, is symmetric, that is:
X = −X, and that the boundary of X is negligible with respect to Lebesgue measure. We set
Z = X × M , and we endow such a product space with the measure µ = ℓ ⊗ ν on R

d. Let
{αλ : λ > 0} be a collection of positive numbers. Define µλ = λµ, and let ηλ be a Poisson
measure on Z with control measure µλ. For every 1 6 i 6 k and every λ > 0, let hi,λ be a fixed
real function belonging to L2

s((αλX)i ×M i). Let Fλ be defined as in (2.8), where the multiple
integrals are with respect to η̂λ = ηλ − λµ, and assume that each kernel fi,λ is of the form

fi,λ(xi) = γi,λhi,λ(αλxi), xi ∈ Z
i,
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for some γi,λ > 0. Which conditions on the γi,λ, αλ and hi,λ, i = 1, . . . , k, yield the asymptotic
normality of

F̃λ =
Fλ − E[Fλ]
√

Var(Fλ)
, as λ→ ∞?

Sufficient conditions for asymptotic normality, together with explicit estimates for the quan-
tity B3 appearing in Theorem 2.4, are derived in Theorem 5.1.

Remark 2.7. (a) In the above formulation of Problem 2.6, introducing the scaling factor αλ

might seem redundant (since hi,λ also depends on λ). However, this representation is
convenient for the applications developed below, where, for each i = 1, . . . , k, the kernel
hi,λ will be assumed to converge to some global function hi that does not depend on λ.

(b) It is proved in [27, Theorem 3.5.8] that any stationary marked Poisson point process η has
intensity measure of the form µλ = λℓ⊗ ν, where λ > 0, ℓ is the d-dimensional Lebesgue
measure, and ν is a probability measure on M . In the parlance of stochastic geometry, a
stationary marked point process η = {(ti,mi)} is therefore always obtained from a ground
process η0 = {ti}, that is, from a Poisson point process with intensity λℓ, by attaching to
each point ti an independent random mark mi, drawn from M according to the probability
distribution ν.

2.3 Rescaled marked U-statistics

Following [25, Section 3.1], we now introduce the concept of a U -statistic associated with the
Poisson measure η. This is the most natural example of an element of L2(P ) having a finite
Wiener-Itô expansion.

Definition 2.8. (U-statistics) Fix k > 1. A random variable F is called a U -statistic of order
k, based on a Poisson measure η with control µ, if there exists a kernel h ∈ L1

s(µ
k) such that

F =
∑

x∈ηk
6=

h(x), (2.10)

where the symbol ηk6= indicates the class of all k-dimensional vectors x = (x1, . . . , xk) such that
xi ∈ η and xi 6= xj for every 1 6 i 6= j 6 k. As made clear in [25, Definition 3.1], the possibly
infinite sum appearing in (2.10) must be regarded as the L1(P ) limit of objects of the type
∑

x∈ηk
6=∩An

f(x), n > 1, where the sets An ∈ Zk are such that µk(An) < ∞ and An ↑ Zk, as
n→ ∞.

The following crucial fact is proved by Reitzner & Schulte in [25, Lemma 3.5 and Theorem
3.6]:

Proposition 2.9. Consider a kernel h ∈ L1
s(µ

k) such that the corresponding U -statistic F in
(2.10) is square-integrable. Then, h is necessarily square-integrable, and F admits a representa-
tion of the form (2.2), with

fi(xi) := hi(xi) =

(

k

i

)
∫

Zk−i

h(xi,xk−i) dµ
k−i, xi ∈ Zi, (2.11)

for 1 6 i 6 k, and fi = 0 for i > k. In particular, h = fk and the projection fi is in L1,2
s (µi)

for each 1 6 i 6 k.
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Remark 2.10. Somewhat counterintuitively, it is proved in [25] that the condition h ∈ L1,2(Zk)
does not ensure that the associated U -statistic F in (2.10) is a square-integrable random variable.

As discussed in the Introduction, U -statistics based on Poisson measures play a fundamental
(and more or less explicit) role in many geometric problems – like for instance those related with
random graphs. The aim of this paper is to estimate as precisely as possible the contraction
norms involved in Theorem 2.4 when F has the form of a U -statistic whose kernel h verifies some
specific geometric assumptions. As anticipated, this significantly extends the analysis initiated
in the second part of [10] – where we only focussed on U -statistics of order k = 2 with kernels
equal to indicator functions. In the sequel, we will mostly assume that, as the intensity of
the Poisson measure changes with λ > 0, the underlying kernel hλ is the restriction of a fixed
kernel h whose argument is deformed by a factor αλ > 0. The following problem will guide our
discussion throughout Sections 4, 5 and 6: it can be regarded as a special case of Problem 2.6.

Problem 2.11. Let Z, µλ, ηλ and αλ, λ > 0, be as in the statement of Problem 2.6; in particular,
ηλ is a Poisson measure on the space Z = X ×M (note that Z is independent of λ). Fix k > 1
and let h be a fixed real-valued function on (Rd)k × Mk whose restriction to (αλX)k × Mk

belongs to L1
s((αλX)k ×Mk) for every λ > 0. We are then interested in characterizing those

collections of U -statistics of the type

Fλ := F (h,X,M ;αλ, ηλ) =
∑

x∈ηk
λ, 6=

h(αλx), λ > 0, (2.12)

such that each Fλ is square-integrable and moreover

F̃ (h,X,M ;αλ, ηλ) :=
F (h,X,M ;αλ, ηλ)− E[F (h,X,M ;αλ, ηλ)]

√

Var(F (h,X,M ;αλ, ηλ))

Law
=⇒ N (0, 1),

as λ→ ∞.

Sufficient conditions for the asymptotic normality of this type of U -statistics, together with
explicit estimates for the rates of convergence, will be derived in Theorem 6.2.

Examples 2.12. (i) Assume that either αλ = 1 or h is homogeneous, meaning

h(αx) = αβh(x), ∀α > 0, ∀x ∈ R
d, (2.13)

for some β > 0. Then the random variable Fλ in (2.12) is a geometric U -statistic, where
we use the terminology introduced in [25]. Examples and sufficient conditions for normal-
ity are given in [25]. Using Hoeffding decompositions, in Section 7 we shall provide an
exhaustive characterization of their (central and non-central) asymptotic behavior.

(ii) If αλ = λ1/d, then the random variable Fλ in (2.12) verifies the identity in law

Fλ
Law
=

∑

xk∈(αλXk∩ηk1, 6=)

h(xk)

where η1 is a homogeneous marked point process on R
d ×M with control measure ℓ⊗ ν.
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3 Preliminary example: the importance of analytic

bounds in subgraph counting

Before tackling Problem 2.6 and Problem 2.11 in their full generality, we shall discuss a simple
application of Theorem 2.4-1 to CLTs associated with subgraph counting statistics in a standard
disk graph model. The aim of this section is to familiarize the reader – in a more elementary
setting – with some of the computations developed in the remainder of the paper. In particu-
lar, the forthcoming Theorem 3.3 involves U -statistics that are based on stationary kernels, a
notion that will be formally introduced in Section 4.2 in the general framework of marked point
processes. One important message that we try to deliver is that the bound (2.9) allows one to
deal at once with all possible asymptotic regimes of the disk graph model – as defined at the
end of the forthcoming Section 3.1. The idea that analytic bounds such as (2.9) may be used to
simultaneously encompass a wide array of probabilistic structures is indeed one of the staples of
present paper and [10].

Remark 3.1. The CLT presented in Section 3.2 is both a special case and a strengthening of the
findings contained in [23, Section 3.4]. Indeed, in such a reference the author deduces multidi-
mensional versions of the CLT below, but without providing explicit bounds in the Wasserstein
distance. Also, when k = 2 (that is, edge counting) the results of this section in the case of a
uniform density f (comprising the upper bounds) are a special case of [10, Theorem 4.9]. The
notation used below has been chosen in order to be loosely consistent with the one adopted in
reference [23].

3.1 Framework

We fix d > 1, as well as a bounded and almost everywhere continuous probability density f on
R
d. We denote by Y = {Yi : i > 1} a sequence of Rd-valued i.i.d. random variables, distributed

according to the density f . For every n = 1, 2, ..., we write N(n) to indicate a Poisson random
variable with mean n, independent of Y . It is a standard result that the random measure

ηn =
∑N(n)

i=1 δYi
, where δx indicates a Dirac mass at x, is a Poisson measure on R

d with control
µn(dx) = nf(x)dx (where dx stands for the Lebesgue measure). We shall also write η̂n = ηn−µn,
n > 1.

Let {tn : n > 1} be a sequence of strictly decreasing positive numbers such that limn→∞ tn =
0. For every n, we define G′(Y ; tn) to be the disk graph obtained as follows: the vertices of
G′(Y ; tn) are given by the random set Vn = {Y1, ..., YN(n)} and two vertices Yi, Yj are connected
by an edge if and only if ‖Yi − Yj‖Rd ∈ (0, tn). By convention, we set G′(Y ; tn) = ∅ whenever
N(n) = 0. Now fix k > 2, and let Γ be a connected graph of order k. For every n > 1, we
shall denote by G′

n(Γ) the number of induced subgraphs of G′(Y ; tn) that are isomorphic to Γ,
that is: G′

n(Γ) counts the number of subsets {i1, ..., ik} ⊂ {1, ..., N(n)} such that the restriction
of G′(Y ; tn) to {Yi1 , ..., Yik} is isomorphic to Γ. We shall assume throughout the following that
Γ is feasible for every n. This requirement means that the probability that the restriction of
G′(Y ; tn) to {Y1, ..., Yk} is isomorphic to Γ is strictly positive for every n.

We are interested in studying the Gaussian fluctuations, as n→ ∞, of the random variable
G′

n(Γ). In order to do this, one usually distinguishes the following three regimes.

(R1) ntdn → 0 and nk(tdn)
k−1 → ∞;

(R2) ntdn → ∞;
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(R3) (Thermodynamic regime) ntdn → c, for some constant c ∈ (0,∞).

The following statement collects some important estimates from [23, Chapter 3]. Given
positive sequences an, bn, we shall use the standard notation an ∼ bn to indicate that, as n→ ∞,
an/bn → 1.

Proposition 3.2. Under the three regimes (R1), (R2) and (R3), one has that E[G′
n(Γ)] ∼

nk−1(tdn)
k−1. Moreover there exists strictly positive constants c1, c2, c3 such that, as n→ ∞,

– under (R1), Var(G′
n(Γ)) ∼ c1 × nk(tdn)

k−1;

– under (R2), Var(G′
n(Γ)) ∼ c2 × n2k−1(tdn)

2k−2;

– under (R3), Var(G′
n(Γ)) ∼ c3 × n .

The next subsection contains the announced normal approximation result.

3.2 The CLT

For every n > 1, we set

G̃′
n(Γ) =

G′
n(Γ)−E[G′

n(Γ)]

Var(G′
n(Γ))

1/2
,

and we consider a random variable N ∼ N (0, 1). The following statement is the main achieve-
ment of the present section.

Theorem 3.3. Let the assumptions and notation of this section prevail. There exists a constant
C > 0, independent of n, such that, for every n > 1,

– under (R1), dW (G̃′
n(Γ), N) 6 C × (nk(tdn)

k−1)−1/2;

– under (R2)–(R3), dW (G̃′
n(Γ), N) 6 C × n−1/2.

In particular, under the three regimes (R1), (R2) and (R3), one has that G̃′
n(Γ) converges in

distribution to N , as n→ ∞.

Proof: By construction, the random variable G′
n(Γ) has the form

G′
n(Γ) =

∑

(x1,...,xk)∈η
k
n, 6=

hΓ,tn(x1, ..., xk),

where the function hΓ,tn : Rm → R equals 1/k! if the restriction of G′(Y ; tn) to {x1, ..., xk} is
isomorphic to Γ, and equals 0 otherwise. Plainly, hΓ,tn has the following two characteristics: (i)
hΓ,tn is symmetric, and (ii) hΓ,tn is stationary, in the sense that it only depends on the norms
‖xi−xj‖Rd , i 6= j. Using [25, Lemma 3.5], we deduce that the random variable G′

n(Γ) (that has
trivially moments of all orders) admits the following chaotic decomposition

G′
n(Γ) = E[G′

n(Γ)] +

k
∑

i=1

I η̂ni (hi),

where E[G′
n(Γ)] =

∫

(Rd)k hΓ,tndµ
k
n,

hi(x1, ..., xi) =

(

k

i

)
∫

(Rd)k−i

hΓ,tn(x1, ..., xi, y1, ..., yk−i)µ
k−i
n (dy1, ..., dyk−i) :=

(

k

i

)

h
(i)
Γ,tn

(x1, ..., xi),
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and I η̂ni indicates a (multiple) Wiener-Itô integral of order i, with respect to the compensated
measure η̂n. Writing v2n := Var(G′

n(Γ)), by virtue of (2.9) one has that the result is proved once
it is shown that, for every j = 1, ..., k and for every 1 6 l 6 r 6 i 6 j 6 k such that l 6= j, the
following holds as n→ ∞: under (R1),

‖h
(j)
Γ,tn

‖4
L4(µi

n)

v4n
= O

(

1

nk(tdn)
(k−1)

)

,
‖h

(i)
Γ,tn

⋆lr h
(j)
Γ,tn

‖2
L2(µi+j−r−l

n )

v4n
= O

(

1

nk(tdn)
(k−1)

)

, (3.14)

and, under (R2)–(R3),

‖h
(j)
Γ,tn

‖4
L4(µi

n)

v4n
= O(n−1),

‖h
(i)
Γ,tn

⋆lr h
(j)
Γ,tn

‖2
L2(µi+j−r−l

n )

v4n
= O(n−1). (3.15)

Observe that ‖h
(j)
Γ,tn

‖4L4(µi
n)

= ‖h
(j)
Γ,tn

⋆0j h
(j)
Γ,tn

‖2L2(µi
n)

, so that we just have to check the second

relation in (3.14) and in (3.15) for every (i, j, r, l) in the set Q = {1 6 l 6 r 6 i 6 j 6 k, l 6=

j} ∪ {i = r = j, l = 0}. For every (i, j, r, l) ∈ Q we define the function h
(i,j,r,l)
Γ,tn

: (Rd)α → R,
where α = α(i, j, r, l) = 4k − i− j − r + l, as follows:

h
(i,j,r,l)
Γ,tn

(x1, ..., xα) = hΓ,tn(x
(1)
k−i,x

(2)
i−r,x

(3)
r−l,x

(4)
l )hΓ,tn(x

(5)
k−j,x

(6)
j−r,x

(3)
r−l,x

(4)
l )× (3.16)

×hΓ,tn(x
(7)
k−i,x

(2)
i−r,x

(3)
r−l,x

(8)
l )hΓ,tn(x

(9)
k−j ,x

(6)
j−r,x

(3)
r−l,x

(8)
l ), (3.17)

where the numbered bold letters stand for packets of variables providing a lexicographic de-

composition of (x1, ..., xα), for instance x
(1)
k−i = (x1, ..., xk−i), x

(2)
i−r = (xk−i+1, ..., xk−r), and so

on. In this way, one has that (x
(1)
k−i,x

(2)
i−r,x

(3)
r−l,x

(4)
l ,x

(5)
k−j ,x

(6)
j−r,x

(7)
k−i,x

(8)
l ,x

(9)
k−j) = (x1, ..., xα),

and we set x
(a)
p equal to the empty set whenever p = 0. Observe that each function h

(i,j,r,l)
Γ,tn

takes values in the set {0, k!−4}; moreover, the connectedness of the graph Γ implies that the

mapping (x2, ..., xα) 7→ h
(i,j,r,l)
Γ,1 (0, x2, ..., xα), where 0 stands for the origin, has compact support.

Applying (2.6), one has that, for every (i, j, r, l) ∈ Q,

‖h
(i)
Γ,tn

⋆lr h
(j)
Γ,tn

‖2
L2(µi+j−r−l

n )
= nα

∫

(Rd)α
h
(i,j,r,l)
Γ,tn

(x1, ..., xα)f(x1) · · · f(xα)dx1 · · · dxα,

where α = 4k−i−j−r+ l, as before. Applying the change of variables x1 = x and xi = tnyi+x,
for i = 2, ..., α, one sees that

‖h
(i)
Γ,tn

⋆lr h
(j)
Γ,tn

‖2
L2(µi+j−r−l

n )

= nα(tdn)
α−1

∫

Rd

f(x)

∫

(Rd)α−1

h
(i,j,r,l)
Γ,1 (0, y2, ..., yα)f(x+ tny2) · · · f(x+ tnyα)dxdy2 · · · dyα.

Since, by dominated convergence, the integral on the RHS in the previous equation converges
to the constant

∫

Rd

fα(x)dx

∫

(Rd)α−1

h
(i,j,r,l)
Γ,1 (0, y2, ..., yα)dy2 · · · dyα,

we deduce that ‖h
(i)
Γ,tn

⋆lr h
(j)
Γ,tn

‖2
L2(µi+j−r−l

n )
= O(nα(tdn)

α−1) for every (i, j, r, l) ∈ Q. Using this

estimate together with Proposition 3.2, and after some standard computations, one sees that
relations (3.14)–(3.15) are in order, and the desired conclusion is therefore achieved.
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Remark 3.4. 1. The CLT under the regime (R1) could in principle be deduced from The-
orem 3.4 in [23], via a Poissonization argument. However, since this strategy is based on
an intermediate Poisson approximation, in this way one would obtain suboptimal rates of
convergence (in the Kolmogorov distance).

2. It is interesting to note that our proof of Theorem 3.3 is based on exactly the same change
of variables that one usually applies in variance and covariance estimates – see e.g. [23,
Section 3.3].

As anticipated, in what follows we will show that the kind of arguments displayed in the
previous proof can be extended to the framework of functionals of marked point processes.

4 Technical estimates on rescaled contractions

4.1 Framework and general estimates

In this section, we collect several analytic estimates on the norms contractions of multivariate
functions satisfying some specific geometric assumption. They will be used in further sections
to study the asymptotic behavior of U -statistics.

Remark 4.1. (Some conventions)

(a) Unless otherwise specified, throughout this section Z = X ×M , µλ and αλ, λ > 0, are
defined as in the statement of Problem 2.6. In particular, X is a symmetric compact
subset of Rd, for some fixed integer d > 1, with 0 in its interior and negligible boundary.
We shall also use the shorthand notation Zλ = αλZ = (αλX)×M , and Zk

∞ = (Rd×M)k.

(b) A point x in Z = X ×M is represented as x = (t,m), where t ∈ X is the spatial variable
and m ∈ M is the mark. A k-tuple (x1, . . . , xk) ∈ Zk

∞ is denoted by the bold letter
xk; a k-tuple (t1, . . . , tk) ∈ (Rd)k is denoted by the bold letter tk. When considering
symmetric functions f(x1, . . . , xk) on Zk, the chosen order of the xi in the argument of
f is immaterial. We will sometimes separate the set of variables xk = (xj ,xk−j), where
xj is the j-tuple formed by the j first variables and xk−j the k − j last variables. By
symmetry, one has of course that f(xk) = f(xj ,xk−j) = f(xk−j,xj).

(c) In our framework, any geometric operation θ applied to a point x = (t,m) is by definition
only applied to the spatial coordinate. For instance, the s-translation is given by θsx =
x + s = (s + t,m), whereas the α-dilatation (α > 0) is δαx = αx = (αt,m). These
conventions are canonically extended to k-tuples of points, as well as to subsets of Zk

∞.
Observe that, if t ∈ R

d and tk = (t1, ..., tk) ∈ X
k, then tk + t = (t1 + t, t2 + t, ..., tk + t).

(d) Let A ⊂ R
d. For every k > 2 there exists a canonical bijection ψk between the two sets

(A×M)k and Ak ×Mk, given by

ψk : ((t1,m1), ..., (tk ,mk)) 7→ (t1, ..., tk,m1, ...,mk), ti ∈ A, mi ∈M.

To simplify our discussion, in what follows we will systematically identify the two sets
(A×M)k and Ak×Mk by implicitly applying the mapping ψk and its inverse. For instance:
(tk,mk) ∈ (A ×M)k, where tk = (t1, ..., tk) ∈ (Rd)k and mk = (m1, ...,mk) ∈ Mk is
shorthand for ψ−1

k (tk,mk) ∈ (A ×M)k; writing xk = (tk,mk), where xk = (x1, ..., xk),
xi ∈ R

d ×M , means indeed that (tk,mk) = ψk(xk); if a function f is defined on some
subset of (Rd ×M)k, we write f(tk,mk) to indicate the quantity f(ψ−1

k (tk,mk)) (and an
analogous convention holds for functions defined on a subset of (Rd)k ×Mk).
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The following statement shows how the norms of contractions are modified by a rescaling of
the underlying kernels.

Proposition 4.2. Let α, γ, γ′ > 0, h ∈ L2(αZk;µk), h′ ∈ L2(αZq;µq), where 1 6 q 6 k. Define

f(xk) = γh(αxk), xk ∈ Zk,

f ′(xq) = γ′h′(αxq), xq ∈ Zq.

Fix 1 6 l 6 r 6 q 6 k, and set m = q + k − r − l. For every λ > 0 one has that

‖f ⋆lr f
′‖2L2(Zm;µm

λ
) = γ2(γ′)2(λα−d)m+2l‖h ⋆lr h

′‖2L2(αZm;µm), (4.18)

(the contractions f ⋆lr f
′ and h ⋆lr h

′ being realized, respectively, via µλ and µ) and for p > 1,

‖f‖p
Lp(Zk;µk

λ
)
= γp(λα−d)k‖h‖p

Lp(αZk ;µk)
. (4.19)

Proof. The proof relies on a change of variables in (2.6) where all variables are multiplied by a
factor α.

‖f ⋆lr f
′‖2L2(Zm;µm

λ
)

= γ2(γ′)2λ2l
∫

Zm

λmdµm
∫

Z2l

h(α(xk−r,yr−l, zl))h(α(xk−r ,yr−l, z
′
l))

h′(α(x′
q−r,yr−l, zl))h

′(α(x′
q−r,yr−l, z

′
l))dµ

2l

= γ2(γ′)2λm+2l

∫

αZm+2l

α−d(m+2l)dµm+2lh(xk−r,yr−l, zl)h(xk−r,yr−l, z
′
l)

h′(x′
q−r,yr−l, zl)h

′(x′
q−r,yr−l, z

′
l)

= γ2(γ′)2(λα−d)m+2l‖h ⋆lr h
′‖2L2(αZm;µm).

Formula (4.19) is proved by the same route.

4.2 Stationary kernels

The estimates of this section will be used to study the RHS of (4.18) when α = αλ depends on
λ and αλ → ∞, assuming that h and h′ are invariant in the sense described below. Note that,
if αλ → ∞ and since X has 0 in its interior, with our notation one has that

Z∞ = ∪λ>0αλZ = ∪λ>0Zλ = R
d ×M.

We say that a function h defined on Zk
∞ is invariant under translations, or stationary, if

h(tk,mk) = h(tk + t,mk)

for every t in R
d and every (tk,mk) ∈ Zk

∞. This property implies that, if tk = (t1, ..., tk),

h(tk,mk) = h(0, tk−1 − t1,mk) = h(tk−1 − t1,mk), (4.20)

where h : (Rd)k−1 ×Mk → R is given by h(sk−1,mk) = h(0, sk−1,mk) and, according to our
conventions, tk−1 = (t2, ..., tk). As usual, we identify the space (Rd)0 withe a one-point set:
this is consistent with the fact that a function on R

d is stationary if and only if it is constant.
Note that, in the previous formula (4.20), the choice of the variable t1 among the variables ti,
i = 1, ..., k, is immaterial whenever h is symmetric in its k variables. Given xk = (tk,mk) ∈ Zk

∞

and t ∈ R
d (that is, t is a spatial variable), we shall write, by a slight abuse of notation,

xk + t = (tk + t,mk): for instance, with this notation a function h on Zk
∞ is stationary if and

only if h(xk) = h(xk + t) for every t ∈ R
d and every xk ∈ Zk

∞.
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Example 4.3. Assume M = ∅. Then, a stationary symmetric kernel is given by

h(t1, ..., tk) = g(‖ti − tj‖Rd : 1 6 i < j 6 k),

where g : R
k(k−1)/2
+ → R is some symmetric mapping. For instance, if g(a1, ..., ak(k−1)) =

∏

j 1aj6δ, then h(t1, ..., tk) equals 1 or 0 according as the distance between every pair of coor-
dinates of the vector (t1, ..., tk) does not exceed δ. Kernels of this type appear in Section 3, in
the framework of subgraph counting, as well as in Section 8, where we deal with random radii
of interaction.

Remark 4.4. For technical purposes we also define, for X,X ′ ⊆ R
d,

X +X ′ = {t+ t′ : t ∈ X, t′ ∈ X ′}, X̂ = X −X = X + (−X)

and let X̌ be the largest symmetric set such that X̌− X̌ ⊆ X. Remark that if tj ∈ X, 1 6 j 6 k,
then tj − t1 ∈ X̂ , for every 1 6 j 6 k. Also, if each tj ∈ X̌ (j > 1), then one can exploit the
symmetry of X and deduce that (t1, ..., tk) = (s1, s2−s1, ..., sk−s1), for some sk = (s1, . . . , sk) ∈
Xk. It follows that if ϕ denotes the change of variables ϕ(tk) = (t1, t2 − t1, . . . , tk − t1), then
one has that X̌k ⊆ ϕ(Xk) ⊆ X × X̂k−1 (this will be useful in further change of variables). We
also set Ẑq = X̂q ×M q and Žq = X̌q ×M q.

Remark 4.5. (i) In (4.20), h is a function whose argument has k − 1 spatial variables and
k mark variables. To deal with this situation, we use the underlined symbol xk−1 =
(tk−1,mk) to indicate vectors such that the number of mark variables is one plus the
number of spatial variables. Accordingly, we write Zq = Xq ×M q+1, q > 0, to indicate
the collection of all vectors mark variable in the product space. Write also Ẑq = X̂q ×
M q+1, q > 0, Zq

∞ = (Rd)q ×M q+1, µq = ℓq ⊗ νq+1. At first reading, one can consider the
simple framework where M = ∅, in which case we have simply xq = xq = tq, Z

q = Xq, q >
1.

(ii) Let A ⊂ R
d. Analogously to the convention introduced in Remark 4.1-(d), in what follows

we shall identify the sets Aq ×M q+1 and (A×M)i×M × (A×M)q−i by tacitly applying
the canonical bijection between them (the chosen index i ∈ {1, ..., q} will be always clear
from the context).

Let us introduce some further notation, which is required in order to express our main
bounds. For the rest of the section we fix a probability density κ(t) on R

d, such that 0 < κ 6 1.

Remark 4.6. The estimates proved in this section continue to hold (up to some multiplicative
constant) whenever the density κ is bounded from above by some constant M > 0. The value
M = 1 has been chosen in order to simplify some of the formulae to follow. Note that, in the
applications developed in Section 8, the role of the upper bound for M is sometimes taken to
be different from 1.

For s > 1 and ts = (t1, . . . , ts) ∈ (Rd)s, we set

κs(ts) = κ(t1) . . .κ(ts).

Plainly, κs is a probability density on (Rd)s, satisfying 0 < κs+1(ts+1) 6 κs(ts) 6 1 for every
ts ∈ (Rd)s and ts+1 = (ts, t), with t ∈ R

d. For a measurable non-negative function h on
Zk−1
∞ , k > 1, define for p = 2, 4

Aκ,p(h) =

∫

Zk−1
∞

κk−1(tk−1)
−1h

p
(xk−1)dµ

k−1 (4.21)
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where tk−1 stands for the spatial variables of xk−1 = (tk−1,mk), mk ∈ Mk. We will simply
write Ap, whenever the density κ is unambiguously defined (as it is the case, for the rest of the
section). The following lemma is fundamental in this article, it gives estimates for the norms
and the contractions of stationary functions restricted to growing bounded domains.

Remark 4.7. Clearly, the quantities Aκ,2(h) and Aκ,4(h) defined above can be infinite. As
shown in the applications developed later in the paper, the subtle point is, given a kernel h, to
find a density κ such that Aκ,2(h), Aκ,4(h) <∞, in such way that the bounds appearing in the
forthcoming Lemma 4.9 are finite. Often, κ(x) = C(1+ ‖x‖)α for C > 0, α < 0 well chosen, but
if h presents a specific anisotropic behaviour, a more adapted density can be chosen.

The following notation is borrowed from [10].

Remark 4.8. (Asymptotic equivalence notation) Given two mappings λ 7→ γλ, λ 7→ δλ, we
write γλ ≍ δλ if there are two constants C,C ′ > 0 such that Cγλ 6 δλ 6 C ′γλ for λ sufficiently
large. We write γλ ∼ δλ if δλ > 0 for λ sufficiently large and αλ/δλ → 1.

Lemma 4.9. Let h, g be symmetric non-negative stationary functions on Zk
∞ and Zq

∞ respec-
tively, 1 6 q 6 k. Let h, g be the kernels defined by (4.20), and assume that Aκ,p(h) = Ap(h) <∞
and Aκ,p(g) = Ap(h) < ∞ for some probability density κ ∈ (0, 1]. Then, for 1 6 l 6 r 6 q 6 k
such that l 6 k − 1, setting m = k + q − r − l,

‖h ⋆rr g‖
2
L2(Zm;µm) 6 ‖h ⋆rr g‖

2
L2(Z×Zm−1

∞ ;µm)
6 ℓ(X)

√

A2(h)A4(h)A2(g)A4(g), if r = l,

(4.22)

‖h ⋆lr g‖
2
L2(Zm;µm) 6 ‖h ⋆lr g‖

2
L2(Z×Zm−1

∞ ;µm)
6 ℓ(X)

√

A4(g)A4(h), if r − l > 0,

and for p = 2, 4,

‖h‖p
Lp(λZk)

∼ λdℓ(X)‖h‖p
Lp(Zk

∞)
as λ→ ∞. (4.23)

Note that the contractions appearing in formula (4.22) are realized with respect to the measure
µ. Concerning the middle terms of the two inequalities (4.22), the symbol Z × Zm−1

∞ has to
be interpreted as follows: in the norm involving the contraction ⋆rr one of the variables in the
argument of h is integrated over Z, while the others are integrated over Z∞; in the norm involving
the contraction ⋆lr one of the variables in common between h and g is integrated over Z, while
the others are integrated over Z∞. A similar convention holds for the middle term of inequality
(4.23).

Proof: Let us start by proving (4.23).

‖h‖p
Lp(λZk)

=

∫

λZk

h(xk)
pdx =

∫

λX×λZk−1

h(xk−1 − t1)
pdt1dxk−1

= λd
∫

X×λZk−1

h(xk−1 − λt1)
pdt1dxk−1.

For every t1 ∈ X not on the boundary (i.e. almost every t1 for Lebesgue measure), since X is
symmetric, X + t1 contains 0 in its interior, whence 1λ(X+t1) converges ℓ-a.e. to 1Rd . It yields
by Lebesgue theorem on X that

‖h‖p
Lp(λZk)

∼ λdℓ(X)

∫

Zk
∞

h(xk−1)
pxk−1
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with the domination
∫

λZk

h(xk−1 − λ−1t1)
pdxk−1 6

∫

Zk
∞

h(xk−1)
pdxk−1 <∞.

The first inequality in each row of (4.22) is a trivial consequence of the fact that h and g are
non-negative. Consider first the case r − l > 0. We have

‖h ⋆lr g‖
2
L2(Z×Zm−1

∞ )
=

∫

Z×Zm+2l−1
∞

h(xk−r,yr−l, zl)g(x
′
q−r,yr−l, zl)

h(xk−r,yr−l, z
′
l)g(x

′
q−r,yr−l, z

′
l)dµ

m+2l

where we assume that the integration over Z is performed on the variable y1. Call t1 the
spatial component of y1. Since t1 appears in the argument of each of the four kernels, we can
introduce the change of variables such that t1 is subtracted from every other coordinate, that
is: t1 7→ t1,xk−r − t1 7→ xk−r,x

′
q−r − t1 7→ x′

q−r,yr−l−1
− t1 7→ y

r−l−1
, zl − t1 7→ zl, z

′
l − t1 7→ z′l.

This yields

‖h ⋆lr g‖
2
L2(Z×Zm−1

∞ )
= ℓ(X)

∫

Zm+2l−1
∞

h(xk−r,yr−l−1
, zl)g(x

′
q−r,yr−l−1

, zl)

h(xk−r,yr−l−1
, z′l)g(x

′
q−r,yr−l−1

, z′l)dµ
m+2l−1,

where we have used the positivity and stationarity of h, g. Now we apply the Cauchy-Schwarz
inequality to deduce that

‖h ⋆lr g‖
2
L2(Z×Zm−1

∞ )

6 ℓ(X)

∫

y
r−l−1

,xk−r ,x
′
q−r∈Z

m−1
∞

dµm−1

√

∫

zl,z
′
l
∈Z2l

∞

dµ2lh
2
(xk−r,yr−l−1

, zl)h
2
(xk−r,yr−l−1

, z′l)

√

∫

z̃l,z̃
′
l
∈Z2l

∞

dµ2lg2(x′
q−r,yr−l−1

, z̃l)g
2(x′

q−r,yr−l−1
, z̃′l)

= ℓ(X)

∫

y
r−l−1

∈Zr−l−1
∞

dµr−l−1

∫

xk−r∈Z
k−r
∞

dµk−r

(

∫

zl∈Zl
∞

dµlh
2
(xk−r,yr−l−1

, zl)

)

∫

x
′
q−r∈Z

q−r
∞

dµq−r

(

∫

z̃l∈Zl
∞

dµlg2(x′
q−r,yr−l−1

, z̃l)

)

6 ℓ(X)

√

√

√

√

∫

y
r−l−1

∈Zr−l−1
∞

dµr−l−1

(

∫

xk−r∈Z
k−r
∞ ,zl∈Zl

∞

dµk−r+lh
2
(xk−r,yr−l−1

, zl)

)2

√

√

√

√

∫

ỹ
r−l−1

∈Zr−l−1
∞

dµr−l−1

(

∫

x
′
q−r∈Z

q−r
∞ ,zl∈Zl

∞

dµq−r+lg2(x′
q−r, ỹr−l−1

, zl)

)2

=: ℓ(X)
√

I1
√

I2

16



where the definitions of I1 and I2 are obvious from the context. Now we call tk−r+l the k − r
spatial variables of xk−r concatenated with the l spatial variables of zl, we have

I1 =

∫

y
r−l−1

∈Z∞
r−l−1

dµr−l−1

(

∫

xk−r∈Z
k−r
∞ ,zl∈Zl

∞

dµk−r+l
κk−r+l(tk−r+l)κk−r+l(tk−r+l)

−1h
2
(xk−r,yr−l−1

, zl)

)2

6

∫

y
r−l−1

∈Z∞
r−l−1

dµr−l−1

∫

xk−r∈Z
k−r
∞ ,zl∈Zl

∞

dµk−r+l
κk−r+l(tk−r+l)κk−r+l(tk−r+l)

−2h
4
(xk−r,yr−l−1

, zl)

(4.24)

6 A4(h).

where we have used Cauchy-Schwarz inequality in the probability space

(Zk−r+l
∞ ,κk−r+l(tk−r+l)dµ

k−r+l).

Performing similar computations for I2, it follows that ‖h⋆lr g‖
2
L2(Z×Zm−1

∞ )
6 ℓ(X)

√

A4(h)A4(g).

We now consider the more difficult case r = l > 1, r < k. For zr, z
′
r ∈ (Rd)r, denote resp. by

t1 ∈ R
d and t′1 ∈ R

d the spatial variables of z1 and z′1 (meaning that z1 = (t1,m1), z
′
1 = (t′1,m

′
1)

for some m1,m
′
1 ∈M).

‖h ⋆rr g‖
2
L2(Z×Zm−1

∞ )
=

∫

Z×Zk+q−2r−1
∞

dµk+q−2r

(
∫

Zr

dµrh(xk−r, zr)g(x
′
q−r, zr)

)2

=

∫

Z×Zk+q−1
∞

dµk+qh(xk−r, zr)g(x
′
q−r, zr)h(xk−r, z

′
r)g(x

′
q−r, z

′
r)

=

∫

Z×Zk+q−1
∞

dµk+qh(xk−r − t1, zr − t1)g(x
′
q−r − t′1 + t′1 − t1, zr − t1)

h(xk−r − t1 + t1 − t′1, z
′
r − t′1)g(x

′
q−r − t′1, z

′
r − t′1)

where x1 = (t1,m1) is the variable restricted to Z, and we make the change of variables

ϕ : t1 7→ t1

xk−r − t1 7→ xk−r,

x′
q−r − t′1 7→ x′

q−r,

t′1 − t1 7→ t′1,

zr−1 − t1 7→ zr−1,

z′r−1 − t′1 7→ z′r−1.

whose Jacobian is a triangular matrix with unit diagonal, and ϕ satisfies ϕ(Z × Zk+q−1) =

X × Zk+q−1
∞ . One has that

‖h ⋆rr g‖
2
L2(Z×Zm−1

∞ )
= ℓ(X)

∫

Zk+q−1
∞

dµk+q−1h(xk−r, zr−1)g(x
′
q−r + t′1, zr−1)

h(xk−r − t′1, z
′
r−1)g(x

′
q−r, z

′
r−1).

17



Applying Cauchy-Schwarz, and exploiting once again the positivity of the involved kernels, yields
the estimate

‖h ⋆rr g‖
2
L2(Z×Zm−1

∞ )
6 ℓ(X)

√

∫

Z∞
k+q−1

dµk+q−1h(xk−r, zr−1)g
2(x′

q−r + t′1, zr−1)g(x
′
q−r, z

′
r−1)

(4.25)
√

∫

Z∞
k+q−1

dµk+q−1h(xk−r, zr−1)h
2
(xk−r − t′1, z

′
r−1)g(x

′
q−r, z

′
r−1)

(4.26)

=: ℓ(X)
√

I1
√

I2, (4.27)

where the definition of I1 and I2 is clear from the context. Assume first that q > r. Calling s′1
the first spatial variable of x′

q−r, the term under the first square root satisfies

I1 6

∫

s′1,t
′
1,xk−r,z

′
r−1∈(R

d)2×Z∞
k−1

dℓ2dµk−1

√

√

√

√

√

∫

x
′
q−r−1,zr−1∈Z

q−2
∞

dµq−r−1dµr−1g4(s′1 + t′1,x
′
q−r−1 + t′1, zr−1)

√

√

√

√

√

∫

x̃
′
q−r−1,z̃r−1Z

q−2
∞

dµq−r−1dµr−1h
2
(xk−r, z̃r−1)g

2(s′1, x̃
′
q−r−1, z

′
r−1),

(4.28)

where the double underscore means that we are integrating on a set where there are two more
mark variables than spatial variables. Now, make the changes of variables x′

q−r−1+t
′
1 7→ x′

q−r−1,
and then s′1 + t′1 7→ t′1 in their respective integrals . We have

I1 6

∫

s′1,t
′
1,xk−r,z

′
r−1∈(R

d)2×Zk−1
∞

dℓ2dµk−1

√

∫

x
′
q−r−1,zr−1∈Z

q−2
∞

dµq−r−1dµr−1g4(t′1,x
′
q−r−1, zr−1)

(4.29)
√

∫

x̃
′
q−r−1,z̃r−1∈Z

q−2
∞

dµq−r−1dµr−1h
2
(xk−r, z̃r−1)g

2(s′1, x̃
′
q−r−1, z

′
r−1).

We can now separate the integrals: writing tk−r and tr−1 for the set of spatial coordinates of

18



xk−r and z′r−1, respectively, we deduce that

I1 6

∫

t′1∈(R
d)
dℓ

√

∫

x
′
q−r−1,zr−1∈Z

q−2
∞

dµq−r−1dµr−1g4(t′1,x
′
q−r−1, zr−1)

∫

xk−r∈Z
k−r
∞

dµk−r

√

∫

z̃r−1∈Z
r−1
∞

dµr−1h
2
(xk−r, z̃r−1)

∫

s′1,z
′
r−1∈R

d×Zr−1
∞

dℓdµr−1

√

∫

x̃
′
q−r−1∈Z

q−r−1
∞

g2(s′1, x̃
′
q−r−1, z

′
r−1)dµ

q−r−1

6

√

∫

t′1∈(R
d)
dℓκ1(t′1)

−1

∫

x
′
q−r−1,zr−1∈Z

q−2
∞

dµq−r−1dµr−1g4(t′1,x
′
q−r−1, zr−1)

√

∫

xk−r∈Z
k−r
∞

dµk−rκk−r(tk−r)−1

∫

z̃r−1∈Z
r−1
∞

dµr−1h
2
(xk−r, z̃r−1)

√

∫

(s′1,z
′
r−1)∈Z

r
∞

dµrκr(s′1, tr−1)−1

∫

x̃
′
q−r−1∈Z

q−r−1
∞

g2(s′1, x̃
′
q−r−1, z

′
r−1)dµ

q−r−1

6

√

A4(g)A2(h)A2(g)

where we have used the Cauchy-Schwarz in the probability spaces

(Rd,κ(t)dt), (Zk−r
∞ ,κk−r(tk−r)dν

k−r), (Zr
∞, dµ

r
κr(tr)),

exactly as we did in (4.24). If r = l = q < k , there is no such variable as s′1 in the integral
I1, thus the previous method does not work, still there is an easier procedure. From (4.28) we
directly get, with obvious shorthand notation,

I1 6

∫

t′1,xk−r,z
′
r−1

√

∫

zr−1

g4(zr−1)

√

∫

z̃r−1

h
2
(xk−r, z̃r−1)g2(z

′
r−1) 6 A4(g)A2(h)A2(g)

Remark that the expression of I2 can be obtained from that of I1 by inverting “h” and “g”, “+t′1”
and “−t′1”, “x′” and “x”, “z” and “z′”, and “k” and “q”, the fact that q 6 k does not play any
role. Thus we get the desired estimates.

Definition 4.10. In the light of the previous statement, we call rapidly decreasing function any
stationary function h on Zk

∞ such that Aκ,p(|h|) <∞ for p = 2, 4 and some probability density
0 < κ 6 1. This terminology refers to the shape of h when d = 2: constant along diagonal
lines and uniformly decaying sufficiently fast far from the diagonal. Remark that since κ

−1 > 1,
given a rapidly decreasing function h, h has finite L2 and L4 norm on R

d.

Lemma 4.9 is an expression of the fact that, when one computes the norm of a rapidly
decreasing function h(x1, . . . , xk) on a product space Z1 × · · · × Zk, or of contractions of such
functions, the order of magnitude of the result depends only on the measure of the smallest Zi.

Remark 4.11. A sufficient condition for a function h to be rapidly decreasing is that

|h(tk−1,mk)| 6 H(tk−1),

where H is a bounded function not depending on mk and such that H converges to zero at a
subexponential speed as ‖tk−1‖(Rd)k−1 → ∞.
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5 Asymptotic normality for finite Wiener-Itô expan-

sions

N.B. Throughout this section, we apply the same conventions outlined in Remark 4.1-(a).

The analytical results of the previous section will be now used to deduce bounds on the
speed of convergence of a variable with a finite Wiener-Itô expansion – under some specific
scaling assumptions on the kernels. We will later apply these findings to U -statistics.

Theorem 5.1. Let αλ > 0 and Fλ be of the form (2.8), where the multiple integrals are with
respect to a Poisson measure on Z with control µλ = λµ, and the kernels fi,λ ∈ L2

s(Z
qi , µqiλ ) are

such that, for each 1 6 i 6 k, there is γi,λ > 0 and hi,λ ∈ L2(Zqi
λ , µ

qi) verifying

fi,λ(xi) = γi,λhi,λ(αλxi). (5.30)

Assume that for each 1 6 i 6 k there exists a nonnegative measurable function hi on Zqi
∞ such

that

1. hi is a rapidly decreasing function not identically equal to 0,

2. |hi,λ| 6 hi on Zqi
λ , for every λ > 0,

3. ‖hi,λ‖Lp(Z
qi
λ
;µqi ) ∼ ‖hi‖Lp(Z

qi
λ
;µqi ) as λ→ ∞ for p = 2, 4.

Define

mλ = λα−d
λ .

Then

Var(Fλ) = σ2λ ∼ αd
λ

k
∑

i=1

qi!γ
2
i,λm

qi
λ ‖hi‖

2

L2(Z
qi−1
λ

,µqi−1)
≍ αd

λ
k

max
i=1

γ2i,λm
qi
λ .

B3(F̃λ; 1) 6 C
√

ωλ + ω′
λ

with

ωλ : =
1

σ4λ
αd
λmax

(∗)
{(γi,λγj,λ)

2m
qi+qj−r+l
λ } (5.31)

ω′
λ : =

1

σ4λ
αd
λ max
i=1,...,k

{γ4i,λm
qi
λ }, (5.32)

where max
(∗)

is defined as in (2.7). One also has the estimate in the Wasserstein distance:

dW (F̃ ,N) 6 C
√

ωλ + ω′
λ.

Proof. Using in sequence (4.19) and (4.23), one deduces the following estimates on the variance

σ2λ =
k
∑

i=1

qi!‖fi,λ‖
2
L2(Zqi ;µ

qi
λ
)
=

k
∑

i=1

qi!γ
2
i,λm

qi
λ ‖hi,λ‖

2
L2(Z

qi
λ
;µqi )

∼ αd
λ

k
∑

i=1

qi!γ
2
i,λm

qi
λ ‖hi‖

2

L2(Z
qi−1
λ

,µqi−1)
.
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Now, in B3(F̃λ; 1), every kernel is normalized by σλ, whence every squared L2 contraction norm
must be divided by σ4λ, as well as the 4th power of the L4-norm:

B3(F̃λ; 1)
2
6

1

σ4λ
max
(∗)

‖fi,λ ⋆
l
r fj,λ‖

2

L2(Zqi+qj−r−l;µ
qi+qj−r−l

λ
)
+

1

σ4λ
max

i=1,...,k
‖fi,λ‖

4
L4(Zqi ;µ

qi
λ
)
.

Using (4.18) and (4.22), for each i, j, r, l appearing in the argument of max
(∗)

we have

‖fi,λ ⋆
l
r fj,λ‖

2

L2(Zqi+qj−r−l;µ
qi+qj−r−l

λ
)

= (γi,λγj,λ)
2m

qi+qj−r+l
λ ‖hi,λ ⋆

l
r hj,λ‖

2
L2(αλZ

qi+qj−r−l;µqi+qj−r−l)
6 C(γi,λγj,λ)

2m
qi+qj−r+l
λ αd

λ

because |hi,λ| 6 hi and hi is a rapidly decreasing function. Turning to the L4 norm, using again
(4.19) and (4.23) we have, for 1 6 i 6 k,

‖fi‖
4
L4(Zqi ;µ

qi
λ
)
6 γ4i,λm

qi
λ ‖hi,λ‖

4
L4(αλZ

qi ;µqi ) 6 C ′γ4i,λm
qi
λ α

d
λ

because hi ∈ L4(Zqi−1
∞ ) (as already observed, this is an easy consequence of the assumption

A4(hi) <∞). All the bounds are easily deduced, and the estimate on the Wasserstein distance
follows from Theorem 2.4.

One can use this result to directly have asymptotic normality for random variables having
a finite Wiener-Itô expansions. For variables with infinite expansion, one can for instance use a
truncation argument – see e.g. [28]. In the sequel, the previous findings are applied in order to
deduce asymptotic normality for U -statistics.

6 U-statistics with a stationary rescaled kernel

N.B. In this section, the notation and framework of Problem 2.11 prevail.

We assume that Fλ is a square-integrable U -statistic of the form (2.12) with h a rapidly
decreasing function on Zk

∞ (recall that a rapidly decreasing function is stationary by definition).
Recall that µ = ℓ⊗ ν, where ν is a probability measure on the marks space M . For 1 6 i 6 k,
we set

|h|i(xi) =

(

k

i

)
∫

Zk−i
∞

|h|(xi,xk−i)dµ
k−i, xi ∈ Zi

∞. (6.33)

Note that the kernels |h|i are also stationary (just use the invariance of Lebesgue measure).
We say that |h| has rapidly decreasing projections if the quantity Aκ,p(|hi|) = Ap(|hi|) (as defined
in (4.21)) is finite for some density κ, and every 1 6 i 6 k and p = 2, 4. The following statement
is the main achievement of the present section.

Remark 6.1. It is easily seen that, if h has rapidly decreasing projections, then the kernels
hi, i = 1, ..., k, defined in (2.11) necessarily satisfy Point (1) and Point (2) in Assumption 2.2.
In order to apply our results, in what follows we shall also require that the kernels |h|i (and
therefore the kernels hi) verify Assumption 2.2-(3): for instance, a sufficient condition for this
assumption to hold is that |h| 6 H, where the function H only depends on the spatial variables
tk, is bounded and has compact support.
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Theorem 6.2. In the framework of this section, assume that |h| has rapidly decreasing projec-
tions, and that the kernels |h|i(xi), i = 1, ..., k verify Part (3) of Assumption 2.2. Define

mλ = λα−d
λ .

Then

Var(Fλ) ≍ αd
λm

2k−1
λ max(1,m−k+1

λ ),

and

dW (F̃λ, N) 6 C ′α
−d/2
λ

√

max(1,m−k
λ ,m

−2(k−1)
λ )

for some C ′ > 0.

Proof. According to (2.11) the kernels fi,λ of Fλ’s Wiener-Itô decomposition are given by: for
1 6 i 6 k,

fi,λ(xi) =

(

k

i

)
∫

Zk−i

h(αλ(xi,xk−i))dµ
k−i
λ =

(

k

i

)

(λα−d
λ )k−i

∫

αλZk−i

h(αλxi,xk−i)dµ
k−i,

whence fi,λ is of the form (5.30), with

γi,λ = mk−i
λ ,

hi,λ(xi) =

(

k

i

)
∫

αλZk−i

h(xi,xk−i)dµ
k−i.

Our purpose is now is to verify Point 1 and Point 2 in Theorem 5.1 with hi = |h|i, as defined in
(6.33). Point 1 is an immediate consequence of the estimates

0 6 |hi,λ(xi)| 6

(

k

i

)
∫

Zk−i
∞

|h|(xi,xk−i)dµ
k−i = |h|i(xi).

To prove Point 2

‖hi,λ‖
p
Lp(αλZi;µi)

=

∫

Zi
λ

|h|pi,λ(zi)dµ
i =

∫

Zi
λ

∫

Z
p(k−i)
λ

p
∏

q=1

|h|(zi, z
(q)
k−i)dµ

i+p(k−i)

=

∫

Zλ

dµ

∫

Z
i−1+p(k−i)
λ

p
∏

q=1

|h|(zi−1 − z1, z
(q)
k−i − z1)dµ

i−1+p(k−i),

where zi is decomposed in (z1, zi−1) and the variable z1 has been subtracted to every other
variable present in the integral, exploiting the stationarity of h. Writing Xλ = αλX, we now
make the change of variables

ϕ(z1, zi−1, z
(1)
k−i, . . . , z

(p)
k−i) = (z1, zi−1 − z1, z

(1)
k−i − z1, . . . , z

(p)
k−i − z1),

verifying

X̌λ × Ž
i−1+p(k−i)
λ ⊆ ϕ(Z

i−1+p(k−i)
λ ) ⊆ Xλ × Ẑ

i−1+p(k−i)
λ ,
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we have

ℓ(X̌λ)

∫

Ž
i−1+p(k−i)
λ

p
∏

q=1

|h|(zi−1, z
(q)
k−i)dµ

i+q(k−i)
6 ‖hi,λ‖

p
Lp(αλZi;µi)

6 ℓ(Xλ)

∫

Ẑ
i−1+p(k−i)
λ

|h|(zi−1, z
(q)
k−i)dµ

i+q(k−i).

Since 0 < ℓ(X) <∞, one has that ℓ(X̌λ) ≍ µ(Zλ) ≍ αd
λ and for λ sufficiently large

0 <

∫

Ž
i−1+p(k−i)
λ

p
∏

q=1

|h|(zi−1, z
(q)
k−i)dµ

i+q(k−i)
6

‖hi,λ‖
p
Lp(αλZi;µi)

αd
λ

6

∫

Ẑ
i−1+p(k−i)
λ

p
∏

q=1

|h|(zi−1, z
(q)
k−i)dµ

i+q(k−i).

Both sides converge to ‖hi‖
p
Lp(Zi

∞;µi)
6 Ap(hi) < ∞ by hypothesis. We have with similar

computations

0 <

∫

Ži−1
λ

×Z
p(k−i)
∞

p
∏

q=1

h(zi−1, z
(q)
k−i)dµ

i+q(k−i)
6

‖hi‖
p
Lp(Zi

λ
;µi)

αd
λ

6

∫

Ẑi−1
λ

×Z
p(k−i)
∞

p
∏

q=1

h(zi−1, z
(q)
k−i)dµ

i+q(k−i)

and both sides converge to ‖hi‖
p
Lp(Zi

∞:µi)
, whence we have indeed ‖hi,λ‖

p
Lp ∼ ‖hi‖

p
Lp ∼ αd

λ‖hi‖
p
Lp ,

and the Point 2 is verified. Using the notation of Th. 5.1, we have that (5.31) is verified, and
for some constant C > 0

Var(F̃λ) ≍ αd
λ× max

i=1,...,k
(mi

λm
2(k−i)
λ ) ≍ αd

λm
2k−1
λ max

i=1,...,k
(m

−(i−1)
λ ) ≍ αd

λm
2k−1
λ max(1,m−k+1

λ ),

and

dW (F̃λ, N) 6 C
√

ωλ + ω′
λ

where, writing σ2λ = Var(F̃λ),

ωλ : =
1

σ4λ
αd
λmax

1
γ2i,λγ

2
j,λm

i+j−r+l
λ

=
1

σ4λ
αd
λmax

1
m

2(2k−i−j)
λ mi+j−r+l

λ

= α−d
λ m

−2(2k−1)
λ m4k

λ

max1(m
−i−j−r+l
λ )

max(1,m−k+1
λ )2

≍ α−d
λ m2

λ

max(m−3k+1
λ ,m−2

λ )

max(1,m−k+1
λ )2

= α−d
λ ×

{

1 if mλ > 1

m
−2(k−1)
λ if mλ < 1

and
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ω′
λ : =

1

σ4λ
max

i=1,...,k
γ4i,λm

i
λα

d
λ

= α−2d
λ m

−2(2k−1)
λ max(1,m1−k

λ )−2 max
i=1,...,k

m
4(k−i)
λ mi

λα
d
λ

= α−d
λ m

−2(2k−1)
λ m4k

λ max(1,m1−k
λ )−2m−3

λ max
i
m

−3(i−1)
λ

= α−d
λ m−1

λ max(1,m1−k
λ )−2 max(1,m

−3(k−1)
λ )

= α−d
λ

{

m−1
λ if mλ > 1

m−k
λ if mλ 6 1.

Taking the overall maximum yields

dW (F̃ ,N) 6 Cα
−d/2
λ

√

max(1,m−k
λ ,m

−2(k−1)
λ ).

The condition that h has rapidly decreasing projections seems a bit abstract, so we give
sufficient conditions below. The symbol κ denotes a fixed probability density taking values in
(0, 1].

Lemma 6.3. Let h be a non-negative function on Zk−1
∞ , k > 1. Define for p = 2, 4

A′
p(h) =

∫

Zk−1
∞

h
p
(xk−1)κk−1(tk−1)

1−pdµk−1.

Every projection

hj(xj−1) =

(

k

j

)
∫

Zk−j
∞

h(xj−1,xk−j)dµ
k−j, 1 6 j 6 k,xj−1 ∈ Z∞

j ,

for 1 6 j 6 k satisfies

Ap(hj) 6 A′
p(h), p = 2, 4. (6.34)

Proof. Holder’s inequality yields, for p = 2, 4,xj−1 ∈ Z∞
j−1,

h
p
j (xj−1) =

(
∫

Zk−j
∞

κk−j(tk−j)κk−j(tk−j)
−1h(xj−1,xk−j)dµ

k−j

)p

6

∫

Zk−j
∞

h
p
(xj−1,xk−j)κk−j(tk−j)

−p
κk−j(tk−j)dµ

k−j

=

∫

Zk−j
∞

h
p
(xk−j,xj−1)κk−j(tk−j)

1−pdµk−j,

whence

Ap(hj) =

∫

Z∞
j−1

κj−1(tj−1)
−1h

p
j (xj−1)dµ

j−1

6

∫

Z∞
k−1

κj−1(tj−1)
−1

κk−j(tk−j)
1−ph

p
(xk−1)dµ

k−1

6

∫

Z∞
k−1

κk−1(tk−1)
1−ph

p
(xk−1)dµ

k−1 = A′
p(h).
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As a consequence, h has rapidly decreasing projections if A′
p(h) < ∞ for p = 2, 4 for some

κ (this condition clearly implies that h is itself a rapidly decreasing function).

7 Asymptotic characterization of geometric U-statistics

In this section we work in the framework of Problem 2.11, in the special case where αλ = 1 for
every λ. As before, h ∈ L1,2(Zk) is such that each Fλ defined by (2.12) is a square-integrable U -
statistic. In the terminology of [25] each Fλ is a geometric U -statistic. In what follows, we shall
use the theory of Hoeffding decompositions (see e.g. Vitale [33]) in order to provide a complete
characterization of the asymptotic behavior of the family Fλ, as λ → ∞, yielding a substantial
generalization of the results proved in [25, Section 5]. Observe that, according to (2.11),

Fλ = E[Fλ] +

k
∑

i=1

Fi,λ := E[Fλ] +

k
∑

i=1

Ii(fi,λ), (7.35)

where

fi,λ(xi) = λk−i

(

k

i

)
∫

Zk−i

h(xi,xk−i)dµ
k−i =: λk−ihi(xi), xi ∈ Zi, (7.36)

and each multiple integral is realized with respect to the compensated Poisson measure η̂λ =
ηλ − λµ.

Also, since X is a compact set of Rd and ν is a probability measure, one has that, for every
λ, µλ(Z) = λℓ(X)ν(M) < ∞ and ηλ(Z) is a Poisson random variable of parameter µλ(Z). In
order to state our main findings, we need the definition of a Gaussian measure. The reader is
referred e.g. to [21, Chapter 5] for an introduction to Gaussian measures and associated multiple
integrals.

Definition 7.1. (i) A Gaussian measure over Z with control µ is a centered Gaussian family
of the type G = {G(B) : µ(B) <∞}, such that, for every B,C verifying µ(B), µ(C) <∞,

E[G(B)G(C)] = µ(B ∩ C).

(ii) Define µ̂ as the probability measure µ
µ(Z) . A Gaussian measure over Z with control µ̂ is a

centered Gaussian family of the type Ĝ = {Ĝ(B) : µ(B) <∞}, such that, for every B,C
verifying µ(B), µ(C) <∞,

E[Ĝ(B)Ĝ(C)] = µ̂(B ∩ C).

Remark 7.2. Using the self-similarity properties of the Gaussian distribution, one sees imme-

diately that Ĝ
Law
= µ(Z)−1/2×G. In what follows, we shall maintain the distinction between the

two Gaussian measures G and Ĝ in order to facilitate the connexion with reference [5].

The following statement is the main result of this section. Note that Point 1 corresponds to
Theorem 5.2 in [25].

Theorem 7.3. (Asymptotic characterization of geometric U-statistics) Let q1 > 1 be
the smallest integer such that ‖hq1‖L2(µq1 ) > 0, where the kernels {hi : i = 1, ..., k} are defined
according to (7.36). Then, as λ→ ∞,

Var(Fλ) ∼ Var(Fq1,λ) ∼ cλ2k−q1 ,

for some c > 0, and moreover:
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1. If q1 = 1, F̃λ converges in law to N ∼ N (0, 1) with an upper bound of the order λ−1/2 on
the Wasserstein distance.

2. If q1 > 2, then λq1/2−kFλ converges in distribution to

V (q1) := µ(Z)q1/2 × IĜq1(hq1)
Law
= IGq1(hq1), (7.37)

where IĜq1 (resp. IGq1) indicates a multiple Wiener-Itô integral of order q1, with respect to

a Gaussian measure Ĝ (resp. G) on Z with control µ̂ = µ/µ(Z) (resp. µ).

Remark 7.4. 1. It is a well-known fact that a non-zero multiple Wiener-Itô integral (with
respect to a Gaussian measure) of order strictly greater than one cannot have a Gaussian
distribution (see e.g. Janson [8, Chapter V]).

2. Observe that

E[V (q1)
2] = q1!

(

k

q1

)2 ∫

Zq1

(
∫

Zk−q1

h(xq1 ,xk−q1)µ
k−q1(dxk−q1)

)2

µq1(dxq1),

which is consistent with the estimates on the variance contained in [25, Section 5].

3. The content of Theorem 7.3 allows one to give a complete explanation of a counterexample
provided in [25, end of Section 5.1]. Consider indeed a Poisson process ηλ on Z = X =
[−1, 1], with control measure given by λdx. Define the kernel f(x1, x2) on Z2 as follows:
f(x1, x2) = 1, if x1x2 > 0 and f(x1, x2) = −1, if x1x2 < 0. Then, the random variable
Fλ =

∑

(x1,x2)∈ηλ, 6=
f(x1, x2) is a U -statistic of order 2 such that q1 = 2, and Part 2 of

Theorem 7.3 implies that λ−1Fλ converges in distribution to V (2) = IG2 (f), where G is a
Gaussian measure on Z with control equal to the Lebesgue measure. Standard results on
multiple stochastic integrals imply that V (2) is a non-Gaussian random variable having
the same law as

ξ21 − 1 + ξ22 − 1− 2ξ1ξ2
Law
= 2(ξ21 − 1),

where (ξ1, ξ2) is a two-dimensional vector of i.i.d. centered Gaussian random variables
with unit variance. In particular, one has that E[V (2)2] = 8 and E[V (2)3] = 64.

Proof of Theorem 7.3. For each 1 6 j 6 k

Var(Fj,λ) = j!‖fj‖
2
L2(Zj ;µj

λ
)
= cjλ

2k−j,

for some constant cj > 0 (independent of λ) such that cq1 > 0. By orthogonality,

Var(Fλ) = λ2k
k
∑

j=1

cjλ
−j = cq1λ

2k−q1(1 +
k
∑

q1+1

cjc
−1
q1 λ

q1−j) = cq1λ
2k−q1(1 +O(λ−1)).

It follows that, as λ→ ∞ and writing F̃q1,λ = Fq1,λ/
√

Var(Fq1,λ),

Var(F̃λ − F̃q1,λ) ≍
∑

j>q1

Var

(

Fj,λ

λk−q1/2

)

6 C1λ
−1,

for some finite constant C1 independent of λ.
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1. Assume h1 6= 0 and write f̃1 := ‖f1‖
−1
L2(Z;µλ)

f1. We can use Theorem 2.4 in the case k = 1

and q1 = 1 (together with (4.19)), in order to deduce the bound

dW (F̃1,λ, N) 6 c‖f̃1‖
3
3 = c

λ1+3(k−1)‖h1‖
3
L3

(λ1+2(k−1)‖h1‖2L2)3/2
= C2λ

3k−2−(3/2)(2k−1) = C2λ
−1/2,

for some constant C2 independent of λ. The required estimate follows from the standard
inequality dW (F̃λ, N) 6 dW (F̃1,λ, N) + Var(F̃λ − F̃1,λ)

1/2, N ∼ N (0, 1), as well as from
the estimates contained in the first part of the proof.

2. For every integer M > 1, we write [M ] = {1, ...,M}. Assume that q1 > 1, implying that,
for every i < q1

∫

Zk−i

h(xi,xk−i)µ
k−i(dxk−i) = 0,

almost everywhere dµi. Let {x1, ..., xηλ(Z)} be any enumeration of the support of ηλ inside
Z, and observe that

Fλ = k!
∑

{i1,...,ik}⊂[ηλ(Z)]

h(xi1 , ..., xik ).

The standard theory of Hoeffding decompositions (see e.g. Vitale [33]) implies that Fλ

admits a unique decomposition of the form

Fλ = k!

k
∑

i=q1

(

ηλ(Z)− i

k − i

)

∑

{j1,...,ji}⊂[ηλ(Z)]

Hi(xj1 , ..., xji),

where Hq1 = hq1
(

k
q1

)−1
µ(Z)q1−k, and each Hi is a degenerate kernel in i variables – in

the sense that
∫

Z Hi(xi−1, x)µ(dx) = 0, almost everywhere dµi−1. The strong law of large
numbers (which is a consequence of the infinite divisibility of the Poisson distribution)
implies that, for every i = q1, ..., k,

k!
(ηλ(Z)−i

k−i

)

λk−i
→ µ(Z)k−i k!

(k − i)!
,

in probability, as λ→ ∞. Using [5, Theorem 2], we also deduce that, for every i = q1, ..., k,
the class

1

λi/2

∑

{j1,...,ji}⊂[ηλ(Z)]

Hi(xj1 , ..., xji), λ > 0,

converges to

µ(Z)i/2
1

i!
IĜi (Hi),

and the conclusion follows immediately.
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8 Applications

The methods developed in the present article and in [10] are well tailored for dealing with spatial
processes enjoying some translation-invariance properties. We present below some applications.
We first consider the total mass of weighted edges of the random graph based on a fundamental
object of stochastic geometry: the boolean model. Then, we show how our results can be
applied to the study of a random telecommunication network, where devices are placed at
random locations and have random radii of interaction.

On the boolean model we consider a classical 2d-order U -statistic, but the coverage of the
random telecommunication network is quantified in terms of k-th order U -statistic, for k > 1.

Throughout this section, we use the notation

Xλ = [−λ1/d, λ1/d]d,

where d > 1 is some integer.

8.1 Random graph defined on a boolean model

The standard boolean model consists of iid random compact sets (grains) disposed at random
locations (germs) in the space. The union of such sets stands out as one of the most used and
most studied example of a stationary random closed set of Rd. The reference books [13, 27, 32]
provide a good presentation of the model and of its applications in epidemiology, forestry, or
image synthesis. The specificity of the graph based on the boolean model, where two germs
are connected if their respective grains intersect, is that the geometric behaviour of individuals
is random, meaning the geometric rule of interaction is not determined in advance. Limit
theorems are discussed for instance in [6, 15], in view of estimating parameters of the models
like for instance the intensity of the the process or specific geometric quantities related to the
typical grain. Molchanov and Heinrich [6, Section 9] mention that central limit theorems for
second and higher order quantities are possible to obtain via a laborious application of their
method. We develop here a simple procedure to deal with a random variable based on pairwise
interactions of the model, that can easily be extended to higher orders.

We now proceed with a formal description. In what follows, the mark space is the class
K of compact subsets of Rd, endowed with the Fell topology and the Borel σ-algebra (see [27]
for definition and properties). We shall denote by η a marked Poisson measure with values in
R
d × K and control measure µ = ℓ ⊗ ν, where ν is a probability distribution on K. Of actual

interest for modeling purposes is the random closed set defined by

Fη =
⋃

(x,C)∈η

(C + x),

called boolean model with grain distribution ν. We call typical grain a random compact set with
distribution ν. Denote by η◦ = {x : (x,C) ∈ η for some C ∈ K} the ground-process, and for
every x ∈ η◦, C = Cx the unique grain such that (x,C) ∈ η. For λ > 0, we call ηλ (resp. η◦λ)
the restriction of η to Zλ = Xλ × K (resp. Xλ), and Fηλ the corresponding random closed set,
obtained from Fη by removing all grains whose center lie outside Xλ. Remark that Fηλ 6= Fη∩Zλ

as x /∈ Xλ does not imply that (Cx + x) ∩Xλ = ∅.

In what follows, we consider the asymptotic normality here of variables of the type

Gλ =
∑

x 6=y∈η◦
λ

ϕ(x− y)1{(x+Cx)∩(y+Cy)6=∅} (8.38)

28



where ϕ is some even real function on R
d such that ϕ2 is integrable on every compact set (note

that these assumptions imply that Gλ has a finite second moment).
If for instance ϕ(x, y) = ‖x− y‖, Gλ is the total length of the edges of the graph where two

points of Xλ in the ground process η◦λ are connected if their respective grains touch. Notice that
the techniques used here could be used as well for a kernel ϕ(x− y;C,C ′) where the weight for
each pair of points (x, y) depends also on the grains Cx and Cy actually attached to x and y.

The variable Gλ is a U -statistic on Zλ = Xλ ×K of order k = 2 with kernel h(x, y;C,C ′) =
ϕ(x− y)1{(x+C)∩(y+C′)6=∅} on Z2

λ. The kernel h indeed belongs to L1,2(Z2
λ) because

∫

Z2
λ

|hλ(x, y;C,C
′)|pdxdydν(C)dν(C ′) 6

∫

X2
λ

|ϕ(x− y)|pdxdy <∞

for p = 1, 2. Furthermore h is stationary with respect to its spatial variables, with factorization
given by

h(x;C1, C2) = ϕ(x)1{C1∩(x+C2)6=∅}.

Let us introduce the probability that two independent germs centered respectively at 0 and
x have a non-empty intersection

χν(x) = P (C1 ∩ (x+ C2) 6= ∅), x ∈ R
d

where C1 and C2 are two iid variables in K with distribution ν. It can be shown in the frame-
work of stabilization theory (see for instance [1], Theorem 2.1) that under reasonable decay
assumptions on χν we have

lim
λ→∞

Eλ−1Gλ =

∫

Rd

ϕ(x)χν(x)dx.

Theorem 8.1. Assume that ϕ and ν satisfy, for some ε > 0, and for some bounded strictly
positive probability density,

∫

ϕ(x)pχν(x)κ(x)
1−pdx <∞ (8.39)

for p = 2, 4. Then Var(Gλ) ∼ cλ with c > 0 and

dW (G̃λ, N) 6 Cλ−1/2

for some constant C, c > 0 not depending on λ.

Proof. Let us apply directly Theorem 6.2 with the the rescaling αλ = λ−1/d on X1 (recall the
formulation of Problem 2.11, as well as Example 2.12-(ii)). A condition for asymptotic normality
with a bound on the Wasserstein distance decreasing at the speed of λ−1/2 is that h has rapidly
decreasing projections. Using Lemma 6.3 , the finiteness of (4.21) boils down to

∫

|h(x;C,C ′)|pκ(x)1−pdx <∞, p = 2, 4,

which directly is given by (8.39).

Remark 8.2. Since χν 6 1, a sufficient condition in order to have (8.39) is that the function
ϕ converges to zero at a subexponential rate, as ‖x‖Rd → ∞. The next statement contains an
example about how one can select a measure ν allowing to deal with a possibly increasing ϕ.
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Proposition 8.3. Assume that ϕ(x, y) = ‖x−y‖β for some β > −d/2 and that the typical grain
is comprised in a ball with random radius R with distribution ν(dr) = C ′

α1{r>1}r
−αdr, α > 1.

Then, if

α > 2(β + d) + 1, (8.40)

the conclusion of Th. 8.1 holds.

Proof. Let ε > 0 be such that βp + (1 − α) + (d + ε)p − ε < 0 for p = 2, 4 (the inequality for
p = 4 is sufficient), and let

κ(x) =
Cd,ε

1 + ‖x‖d+ε
, x ∈ R

d,

with the appropriate normalisation constant Cd,ε. We have

χν(x) 6 P (R+R′
6 ‖x‖)

where R′ is an idependent copy of R, which gives χν(x) 6 C‖x‖1−α for some constant C > 0.
Then, (8.39) is implied by

∫ +∞

1
rβpr1−αr(d+ε)(p−1)rd−1dr <∞

for p = 2, 4.

The functional Gλ is stabilizing, meaning it can be written as a sum of contributions over
the points of η◦λ, where the contribution of each point only depends on the intersection of η◦λ with
a random ball centered in this point (for a proper introduction and summary of results, see [9,
Chapter 4] and the references therein). Our results can be compared e.g. with the very general
Theorems 2.1 and 2.2 in [24], that imply in this specific framework the asymptotic normality of
λ−1/2(Gλ−EGλ) if α−1 > 150d (and an additional assumption on ϕ), giving a more restrictive
condition than (8.40). Note that, to our knowledge, there is no rate of convergence for CLTs
involving such polynomially stabilizing functionals in the literature.

8.2 Coverage of a telecommunications network with random user

range

The content of this section is inspired by reference [4], where Decreusefond et al. use concepts
from algebraic topology in order to study the asymptotic interactions between devices in a
telecommunications network.

In what follows, the devices are spread according to a Poisson measure on Xλ = [−λ1/d, λ1/d],
with intensity given by the Lebesgue measure. Two devices communicate within the network if
their distance is smaller than a constant, say r. To account for the good coverage of the network
by the devices, they consider, for each k > 2, the number Nk,λ of (k − 1)-simplices, i.e. of the
number of k-tuples (x1, . . . , xk) inside Xk

λ whose pairwise distances are smaller than r, meaning
that the group of k devices is indeed connected. Among other findings, the authors of [4] give
closed expressions for the moments of Nk,λ, and derive a general CLT. One should note that in
[4] the metric of the torus is used in order to avoid edge effects. The problem can also be seen
as a generalization of subgraph counting (see Section 3) with random radii of interactions, for
the particular graph of the k-simplex.
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The results contained in Section 4.2 of the present paper are precisely tailored to deal with edge
effects for stationary spatial processes, thus we shall perform an analogous study by replacing
the torus distance with the euclidean distance. We also introduce the assumption that members
of the network have a random range, i.e. we assume that to each member xi of the network
is assigned a random radius Ri, that the radii are independent and identically distributed, and
that a simplex of k members is “connected” within the network if the ball around each member
xi contains every other member of the k-tuple.

Formally, we shall consider a marked Poisson process η over R
d × R+, with intensity given

by ℓ(dx) ⊗ ν, where ν is some probability measure on R+. Every realization of η is therefore a
collection of points of the type (xi, Ri), where every Ri indicates a random radius with law ν.
For every λ, the number Nk,λ we are interested in counts the number of those {x1, ..., xk} ⊂ Xλ

that are in the support of η and such that ‖xi − xj‖Rd 6 Ri, for every i, j = 1, ..., k. The
following statement provides sufficient conditions to have a standard limit behavior (variance in
λ and convergence to the normal law at a speed at most of λ−1/2 in the Wasserstein distance).

Theorem 8.4. Denote by F the tail function of the law of R1, that is: F (r) = P [R1 > r] =
ν((r,∞)]. If for some ε > 0

∫

R+

F (r)r4d−1+εdr <∞,

we have, for every k > 2 and as λ→ ∞,

Var(Nk,λ) ∼ ckλ

dW (Ñk,λ, N) 6 Ckλ
−1/2

for some Ck, ck > 0 independent of λ. Here, Ñk,λ indicates a centered and renormalized version
of Nk,λ, whereas N is a centered Gaussian random variable with unit variance.

Proof. The random variable Nk,λ is the U -statistic of order k on (Xλ × R+)
k with symmetric

kernel

h((xi, ri)i=1,...,k) = 1{‖xi−xj‖6ri; 16i,j6k}.

Such a kernel is clearly stationary with respect to spatial translations. Let ε′ = ε
(k−1) and put

κ(x) ≍ (1 + ‖x‖)−(d+ε′). According to Theorem 6.2 and Lemma 6.3, a sufficient condition for
the result is

I =

∫

Zk−1
∞

h
p
(xk−1)

k
∏

i=2

‖xi‖
(d+ε′)(p−1)dµ(xk−1) <∞

for p = 2, 4. We have, setting x1 = 0,

I =

∫

(Rd)k−1

k
∏

i=2

‖xi‖
(d+ε′)(p−1)

∫

Rk
+

k
∏

i=1

1{ρi>maxl=1...k ‖xi−xl‖}dν(ρ1) . . . dν(ρk)dxk−1

6

∫

(Rd)k−1

k
∏

i=2

(

‖xi‖
(d+ε′)(p−1)

∫

R+

1{ρi>‖xi‖}dν(ρi)

)

dxk−1

6

(
∫

R+

r(p−1)(d+ε′)+d−1F (r)dr

)k−1

,
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after doing a spherical change of variables for each xi, whose Jacobian is smaller than ‖xi‖
d−1,

which concludes the proof because (p− 1)(d + ε′) + d− 1 = pd− 1 + ε 6 4d− 1 + ε.
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