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Abstract—Smartphones, PDA, Sensors, Actuators, Phidgets
and Smart Objects (i.e. objects with processing and networking
capabilities) are more and more present in everyday’s life.
Merging all these technologies with the Internet is often
described as ’Internet of Things’ (IoT). In the IoT vision,
Things around us provide a pervasive network of interacting
and interconnected devices. However building IoT applica-
tions is a long and arduous work, reserved for specialists,
requiring specific knowledges in terms of network protocols
and programming languages. The lack of widespread and
easy-to-configure solutions is an obstacle for the development
of this area. A universal framework, offering simplification
and standardization, could facilitate the emergence of this
promising field in terms of applications and business. IoT
needs a solid foundation for rapid, simple development and
deployment of new services. In this paper, we present D-
LITe, a universal framework for building IoT applications over
heterogeneous sets of small devices. D-LITe offers solutions
for deploying application’s logic, and executing it on Smart
Objects despite their heterogeneity. An implementation of D-
LITe on tiny devices, such as TelosB motes, allows to show that
our framework is realistic even with the constraints of such
devices.

Keywords-Web of Things; Services Choreography Architec-
ture; Distributed logic;

I. INTRODUCTION

Objects become more and more clever and interacting

devices. Manufacturers introduce processing power and net-

working technologies in common objects leading to the

concept of Smart Objects and to IoT or Web of Things (WoT

is the web version of IoT, easier to use for end-users). In

this paradigm, Things offer a digital environment, sensing

and acting on real world. Users are able to deal with their

digital environment. “Home automation” is an example of

IoT, in which people organize services offered by things

present in their living environment. But there is a main

issue that still prevents the raise and wide deployment of

IoT: The multitude of Smart Objects (such as Sensors) uses

different languages (C, NesC, Java...), different Application

Programming Interfaces (Arduino, ZigBee Application...),

different Operating Systems (TinyOS, Contiki...) through

different network protocol stacks (IEEE 802.15.4, Zigbee,

6LowPAN) that may be mutually incompatible unlike the

widely spread IP Network used by more powerful objects.

Creating an application dealing with each kind of smart

objects becomes a specific work, performed for a specific

type of hardware (Operating System, Network technology)

and with specific programming tools (languages, API). It

involves the need of a gateway to be accessed from the

Internet and to communicate with other objects. Another

issue is the deployment of applications, mainly consisting

of ROM flashing on each smart object, that requires human

intervention and manipulation. This leads to important time

and cost overhead.

Creating IoT applications is complex and time-consuming,

hardware dependant, and hardly scalable. In this paper we in-

tend to solve these problems by proposing a universal frame-

work and architecture: D-LITe, a new Distributed Logic for

Internet of Things sErvices creation and deployment. D-

LITe allows to design simple, scalable and easy-to-maintain

applications and deploys them over heterogeneous platforms.

The reminder of this paper is organized as follows: First, we

present the related works (Section II) and the background

(Section III) attached to our solution. The overall design of

D-LITe is described in Section IV, while Section V focuses

on the protocols and languages used by D-LITe. Section VI

deals with the Implementation and Validation of D-LITe.

Finally, concluding remarks and future research directions

are given.

II. RELATED WORKS

Internet of Things has many definitions [6]. The IoT

paradigm incorporates other technologies such as pervasive

or ubiquitous computing as well as ambient intelligence

(AmI) [7], [12]. To realize IoT applications, programmers

or users have to deal with multiple devices that are not in-

teroperable. There are many approaches on how to program

such network applications. We consider macro programming

as described in [17] “programming the sensor network as

a whole, rather than writing low-level software to drive

individual nodes”. Many objects that think come with pro-

cessing capabilities, but no code to use it. “for years, closed

networks” were “deployed for a specific application... we

argue that the next generation WSN require customizable



architecture” [24]. Giving every node the ability to interact

with any other seems to be a solid basis for building

distributed applications. Authors in [24] propose to give

standard access to nodes to offer such a customizable

architecture.

Every node in IoT applications should be reachable and us-

able. However no common architecture is provided. ZigBee

Alliance [4] has developed adequate protocols for Sensors.

ZigBee is a complete solution, based on the use of the IEEE

802.15.4 at the lower layer. It defines the reminder of the

network architecture up to services (called ZigBee Profiles).

For example, ZigBee Home Automation is one of those

Profiles “enabling smart homes that can control appliances,

lighting, environment, energy management, and security as

well as expand to connect with other ZigBee network” [5].

Nevertheless many technologies (SmartPhone, PC, sensors,

actuators...) are involved in Home Automation so that a gate-

way is mandatory to connect to other networks (Internet).

An end-to-end communication could be degraded by such

a gateway. Protocol’s conduct, exchanges between nodes,

the size of exchanged messages can be so different that

their translation may be particularly difficult. The specialized

protocol’s dynamics on one side may be unsuitable for the

other side. All these differences can be difficult to solve,

or just very penalizing in terms of adaptation, effectiveness,

and response time.

Dynamicity, scalability and reconfiguration are also issues.

Users may want to use the computing capabilities of

smart objects and take advantage of the versatility of pro-

grammable devices. Changing the interactions of household

objects when integrating a new device, or simply changing

the behaviour of the total application is an expected asset of

the IoT. Until now human interventions are still required

to set and update nodes. Reprogramming “over the air”

(OAP, Over the Air Protocol) answers that issue [30]. OAP

is proposed in SYNAPSE [25], Deluge [18] or Dynamic

TinyOS [22]. SYNAPSE and DELUGE mainly focus on how

to organize a reliable transfer on a non-reliable wireless net-

work, while Dynamic TinyOS deals with efficient software

updating, but is strongly coupled with TinyOS Operating

System.

Our aim is to provide a solution loosely coupled to network

protocol stack, operating system, language and hardware.

III. BACKGROUND AND VISION

Such as Generic Virtual Machine for a high-level pro-

gramming language1, D-LITe constitutes a basic framework

for building simple and universal applications. Many con-

cepts of quite distant areas are melt in D-LITe to give

the end-user a simple way to design and deploy logical

applications on nodes.

1JVM for Java, for example, or Parrot for Perl

A. From Internet to Smart Objects

D-LITe nodes need to be accessed from the Internet. IPv6

Protocol seems to be a good candidate for that purpose,

because this standard is most likely to be used to deal with

billions of nodes. By using header compression mechanisms,

6LowPAN [27] proposes a solution for IPv6 compatibility

over IEEE 802.15.4 networks. It gives universal access to

data collected by sensors and actions done by actuators.

Even if 6LowPAN is restricted to support only UDP, nodes

are able to offer all kind of Web’s well-known services

because it uses IP. 6LowPAN turns motes from connected

data collectors into real small data servers.

B. Accessing services : SOAP, REST and CoAP

In an end-to-end communication, motes can be consid-

ered as service providers. To access the provided services,

Service Oriented Architecture (SOA) is a well-known so-

lution [14]. The idea of using such paradigm for Sensor

Network is presented in TinySOA [24]. SOA introduces

loose coupling between services and applications as well as

hardware independence. Many protocols realize SOA. One

of them is SOAP [3], but it is a very verbose protocol (i.e.

consuming bandwidth and requiring important processing).

Sensors Networks have a very limited bandwidth, that is why

D-LITe is organized according to REST approach. REST

architecture [15] is an alternative to SOAP for distributed

applications, and has many advantages. Using standard

HTTP methods, REST is lightweight and simple to adapt

to our purpose. However a major issue remains: because

of smart objects’ memory size, TCP and moreover HTTP

(needed by REST architecture) are very hard to fit [6] in

constrained devices. To address this issue, CoAP [26] offers

the same characteristics as REST: CoAP "extends the REST

architecture to a suitable form for the most constrained

nodes" of Sensors Network [28]. Furthermore, CoAP is

build over 6LowPAN, and already exists in Contiki operating

system [11] for Wireless Sensor Networks. By implementing

HTTP over UDP, and using compression of HTTP methods,

CoAP is designed to simply permit translations between

standard and universal REST commands from the Internet

and a 6LowPAN Network, while being particularly suitable

to the limited payload of smart objects.

C. Services : Choreography and Orchestration

We consider that an important part of IoT applications can

be designed as a collaboration between nodes. The whole

application’s logic can be spread into small autonomous

part on each node. To combine services offered by motes

(data collected or possible actions), SOA is divided in two

approaches : Services Orchestration or Services Choreog-

raphy [23], [10]. They mainly differ in the centralized ap-

proach of orchestration compared to the collaborative form

of choreography. D-LITe uses the Choreography concept. In

our Choreography, there is no central controller, each node



is autonomous. The node knows what to do, and reacts to

context’s change. In D-LITe’s choreography, each node is

like a dancer. Each dancer knows his steps, and reacts on

events of the very near environment. There is no centralized

control of any supervisor ; decisions are mainly made at

the lowest level. On the contrary, in the usual definition

of services orchestration, a central point would control all

exchanges. The central point would call the services offered

by nodes and compute results. No nodes would act on its

own. Because it uses choreography, D-LITe delegates small

parts of the global application to each participant, using

processing capacities closer to the needs, saving bandwith

and therefore energy.

D. Designs Patterns used in D-LITe

D-LITe uses Gang of Four (GoF) [16] Design Pattern (DP)

Observer and Strategy. Some protocols propose Observer

DP in Sensor Networks. Using such protocols, nodes can

subscribe to others that publish data as in mqtt [20] or in

TinyCops [19]. However mqtt is not based on 6LowPAN but

on Zigbee, and TinyCops is a TinyOS module. Consequently

they are not usable in a heterogeneous environment. D-LITe

implements this DP on its own.

Strategy DP dynamically changes an object’s behaviour.

Basically, Strategy delegates one object’s logic to another

object, chosen inside a set of objects each implementing

a different version of the same command. This can be

managed and changed “on the fly”.

D-LITe is inspired by Strategy. D-LITe installs a static piece

of code on each node. That code offers an access to a

dynamic part of the application that can be configured or

changed. This dynamic part is under the control of a rule

analyzer. The rule analyzer can execute a logical description

of node’s expected behaviour depicted by a “set of rules”.

This logical description is variable, can be set through the

network and dynamically changed.

E. Finite State Transducers (FST)

To describe our choreography, a tool to program each

node is required. As presented in Section IV-C, we chose

to use macro-programming approach shown for example

in [29], [21]. D-LITe uses Finite State Transducers (FSTs)

to describe the application’s logic. Describing this logic

with an Automaton rather than a programming language is

somewhat limited, but has absolute advantages: universality,

very low memory footprint for the parser, and very concise

expression of the description. Automata are hardware inde-

pendent, text-based, and easy to learn. FST are Finite State

Machines (FSM) with an additional output Alphabet. They

are often used in Natural Language Processing. In D-LITe,

input and output alphabets are the messages exchanged by

nodes through the network. States are the node’s reaction

to received messages. The idea of using a Transducer to

Figure 1. D-LITE overall architecture : User can discover all nodes
capabilities then describe his needs by creating rules. D-LITe deploys these
rules that each node follows.

program a sensor, and the rule’s approach, were inspired by

J. Baliosian and al papers [8], [9].

IV. D-LITE : AN ARCHITECTURE TO DEPLOY

APPLICATION’S LOGIC

D-LITE is organized to enable the writing of small

cooperating units realizing an application, like the cells of a

spreadsheet are used in end-user development.

A. Overview of D-LITe Distributed Framework

D-LITe is a distributed framework for realizing IoT ap-

plications. It consists in building applications as a collab-

oration of smaller logical units. A mote2 is more than a

simple sensor or actuator. Because of its small computing

capabilities, this kind of node can do additional processing.

For this purpose, D-LITe is installed on each node. As it

uses standard protocols (IPv6 and REST), D-LITe offers a

universal access, hiding specificity of the different hardwares

used. The REST access given by D-LITe is used to deploy

orders (configuration, FST) on each node. As shown in

Figure 1:

1) An end-user collects information about nodes capabil-

ities.

2) He expresses his need : he describes a sequence of

interactions between elements.

3) This sequence is then transformed as a set of FSTs

(one FST per node).

4) Each node will receive its own FST and other config-

uration information.

The D-LITe architecture allows an end-user to transmit rules

and configuration to each node. Each D-LITe enabled node

contains a rules analyzer to execute the FST. D-LITe nodes

also have a messaging service to interact with each other

(Figure 2).

2Like Crossbow TelosB or Imote, Oracle SunSpot, or Aduino Uno. D-
LITe is mainly design for motes, even if some more powerful hardwares
are supported



Figure 2. Each D-LITe node received its rules ; from now it is ready
to execute them. A node obeys the FST’s rules according to messages it
receives from other nodes or from its own hardware (sensors). It changes
state (that may impact the real world if it’s an actuator) and sends messages
to its observers. These will react to that message.

B. Distributed Application Choreography

D-LITe is based on the idea that Internet of Things

applications can often be seen as a Finite State Machines

choreography. D-LITe enables to depict each part of the

application’s logic as FSTs which will be executed in several

nodes. Each FST (a set of rules) can be dynamically and

quickly send to the proper node. An end-user has to organize

his thoughts to describe his application as a choreography of

Transducers, just like he organizes his formulas in each cell

of a spreadsheet (Figure 1). When a node receives a message

or changes state, it affects other nodes, just like cells in

a spreadsheet react to changes in other cells; Updating

their content results in a chain reaction on depending cells

(Figure 2).

As choreography starts, every node may receive a message,

because something has happened. That message is inspected

by the algorithm in charge of the FST’s execution. If a

rule matches the current state and this received message,

the node’s state changes, and the output message defined in

the rule is sent to Observers.

C. Node’s Logic Representation using Transducers

A Finite State Transducer has a formal representation as

a 6-tuple T (Q,Σ,Γ, I, F, δ). D-LITe defines the meaning of

each element as follow:

• Q represents all States for a particular node,

• Σ are Input Messages handled by a particular node,

• Γ are Output Messages a particular node can send,

• I is the Initial State (only one in D-LITe),

• F stands for Final States,

• δ contains transitions (which are our “set of rules”).

ǫ element stands for empty. The main adaptation introduced

in D-LITe is Input Messages and Output Messages in place

Figure 3. Example 1: a simple node for lighting. Press and Release are
real Messages. On and Off are real States.

of alphabets. Figures 3, 4 and 5 are simple examples of

applications, using two types of nodes : switches and lights.

1) Example 1: a switch and a light: In the very simple

example given in Figure 3, a switch (sensor) and a light

(actuator) can be set this way: When the light receives a

“up” message, it moves to “ON” state. When it receives a

“down” message, it sets its state to “OFF”. When somebody

presses the switch button, its state moves to “Pressed”, and

it sends an “up” message. Similarly when somebody presses

it again, it moves to “Released” state , and it sends a “down”

message. The two FST representing this two nodes are:

• for the switch: Q = (“Pressed′′, “Released′′), Σ =
(“Press′′, “Release′′), Γ = (“up′′, “down′′), I =
(“Released′′), F = (ǫ) and δ is described in Figure 3.

• For the light: Q = (“on′′, “off ′′), Σ =
(“up′′, “down′′), Γ = (ǫ), I = (“off ′′), F = (ǫ) and

δ is described in Figure 3.

This is the way an end-user can simply program a

standard switch/light pair.

2) Example 2: Introducing a new state: Figure 4 intro-

duces a new behaviour not planned in the process of light

switching : a delay. Our application offers a Time service (a

time message is send every 10 seconds). When receiving the

“down” message, the light stays on, and waits for a “time”

message from the Time service. On receiving this “time”

message, the light switches off. To realize this feature, we

introduce a logical state on the on/off light process : a Wait

State.

This state has no physical action but represents the fact

that the light is now waiting for another message. This is a

logical state. After receiving this time event, the light moves

to the “Off” state, and really switches off. To implement this

example, the switch FST remains unchanged. However, the

light FST becomes : Q = (“on′′, “off ′′, “WaitState′′),
Σ = (“up′′, “down′′, “time′′), Γ = (ǫ), I = (“off ′′),
F = (ǫ) and δ is described in Figure 4. We also add the

light as an observer of Time service.



Figure 4. Example 2, introducing a logical state : Wait State (On and Off
are real states of light actuator).

3) Example 3: a semantic loss: Figure 5 represents a

3-way (or more) switching. The user merely needs to define

a single message (for example “action”) to be sent by each

switch when the button is used (vs. two messages in previous

examples). No matter how the button is now (pressed or

released), the light’s state has to change.

For this purpose, the user explains that “Press” or “Release”

events on the switch send a unique message : “action” (a

poor semantic message). There is no other state needed on

the switch. The light subscribes to all switches, and each

switch sends only “action” message when pressed or re-

leased. By receiving the “action” message, the light changes

state from “on” to “off” and vice versa. The corresponding

two FSTs are:

• For each switch: Q = (“Nop′′), Σ =
(“Press′′, “Release′′), Γ = (“action′′),
I = (“Nop′′), F = (ǫ) and δ is described in

Figure 5.

• For the light: Q = (“on′′, “off ′′), Σ = (“action′′),
Γ = (ǫ), I = (“off ′′), F = (ǫ) and δ is described in

Figure 5.

D. Specific States and Messages

6LowPAN and CoAP make our node able to communicate

with others, and to be dynamically configured. The use of

FST is a simple way to express a sequence of logical actions.

But in spite of these capabilities, our architecture is not really

Figure 5. Example 3, losing semantic on switches to solve a 3-way
switching problem.

sensing and acting on the real world. This is only logic. To

make a link between D-LITe and the real environment, we

propose two Types of Messages and States : Real or Logical

(Figure 2)

Logical messages or states are useful for reasoning. For

example, if we want a light not to switch off immediately

when we push a button, we can introduce a logical state :

“waiting” (see Figure 4). This state has no impact on the real

world but merely means that someone starts the process of

switching off. Then a Real State is used. “on” and “off” are

such states. When the FST moves to them, the light really

switches “on” or “off”. In Figure 4, rules explain that on

receiving the time message while being in “waiting” state,

the light really switches off by going in “off” state.

Messages are treated the same way. Many of them are logical

messages defined by the user to describe his logical steps

in the sequence of actions. The others are real messages

sent by the hardware (i.e. the sensing part of the sensor).

For example, “Press” and “Release” (cf. Figure 3, 4 and 5)

are Real Message sent by hardware to its FST each time

someone uses the switch’s button.

The only interaction between D-LITe and hardware comes

from the notion of Real Messages and Real States. That is

why D-LITe is loosely coupled to hardware. Thus, in our

FST T (Q,Σ,Γ, I, F, δ), few elements of Q and Σ are in

contact with the real world. All Real Messages and Real

States are detected during the discovery phase. In Figure

3, 4 and 5, Real States and Real Messages are written in

green and bold.



Table I
SALT ORDERS : SALT HAS 2 MAIN PURPOSES. THE FIRST (ORDER)

DESCRIBES NODE’S LOGIC. THE SECOND (INPUT) ANNOUNCES A

MESSAGE.

variable value with description

order init state=xxx must initialize state to
’xxx’

order rule Rule Message A rule the transducer must
obey: see details below

order link uri=[aa:bb::cccc] uri contains the IPv6 ad-
dress of one observer

input xxx Message service : a node
(or the hardware) sends
’xxx’ to this node

V. D-LITE LANGUAGE (SALT)

D-LITe is organized to allow the design and the deploy-

ment of applications depicted as a choreography of logical

Finite State Transducers. D-LITe proposes a description

language ( SALT : Simple Application Logic description

using Transducers) to configure nodes and allow them to

communicate.

A. SALT description

On each D-LITe node, rule analyzer and communication

features are installed. To describe his application’s logic, a

user needs a language to:

• Delete all settings, i.e. start a new application.

• Set the Initial State, i.e. set FST’s starting state.

• Express each Rule, i.e. describe the node’s FST.

• Attach Observers, i.e. allow a node to send messages

to a specific list of other nodes.

There is also other needs. A node must be able to:

• Describe itself, i.e. give its real messages/states during

discovery phase.

• Communicate with others, i.e. send messages to its

observers, and receive messages from other nodes.

B. SALT Messages format

SALT uses a very simple textual form to express and fulfill

all the above mentioned tasks. The use of this format instead

of other standardised ones, such as JSON for instance, is

motivated by the fact that the parser for standardised ones

are usually heavy and could not fit the node’s memory

limitation. Hence, we use a name=value form to limit

bandwidth and memory consumption. Names and values

should not be more than 6 characters long (on our Contiki

implementation).

The format used by SALT messages is described in table I.

DLITe’s FST is fully described by its initial state (order

is set to init) and the set of rules (order is set to rule).

Observers list is given by order link. As the choreography

starts, messages are exchanged between nodes using input

message.

Rule’s Message is a one-liner (see table II) that gives a

Table II
SALT RULES : FST (TRANSITIONS, STATES, INPUT AND OUTPUT

MESSAGES) ARE DESCRIBED IN A ONE-LINER.

in order=rule&state=xxx&msg=yyy&Nstate=zzz&Smsg=aaaa

variable description

state=xxx if current state is “xxx”...

msg=yyy ... if “yyy” message is received...

Nstate=zzz ...then the node moves to “zzz” new state...

Smsg=aaa ...and sends “aaa” message to Observers.

description of each FST’s transition. All states, input and

output alphabets are deduced from the complete set of rules.

C. SALT Usage

SALT messages are exchanged between the end-user or

a node and other nodes (Figure 2). We use CoAP [26],

complying Internet standards, to have a small overhead and

to be accessible from everywhere. Therefore, the Capillary

Internet3 can be reached through CoAP. Table III shows a

complete list of SALT messages that are sent to a node,

using CoAP’s PUT method.

D. CoAP Methods

CoAP methods are used in D-LITe for following purposes:

• DELETE : Clean FST, current state, and observers list.

• GET : Obtain node’s description (i.e. the Real

states/messages supported by hardware).

• PUT : Give configuration’s orders to the node (i.e.

Initial state, observers list, and the FST’s rules) (using

SALT’s “order” messages).

• POST : Messages service, to be managed by FST (using

SALT’s “input” message).

Figure 6. D-LITe Node’s services. Each node has its FST sent by the
user, and receives and sends messages through standard network protocols.



Table III
SALT MESSAGES FOR A D-LITE NODE : AFTER RESETTING THE NODE,

THE USER SETS ITS INITIAL STATE, ITS FST, AND ITS OBSERVER

order=init&state=rlsd
order=rule&state=rlsd&msg=push&Nstate=prsd&Smsg=up
order=rule&state=prsd&msg=push&Nstate=rlsd&Smsg=down
order=link&uri=[fe80::f0:1:303]

E. An Example : Simple Configuration of a Node

Let us take the simple example of a switch controlling

another device. In this case, the following SALT messages

are exchanged with the switch’s node: First an end-user uses

the GET CoAP’s method to retrieve information about the

node, especially its real states and messages. After designing

the choreography, the end-user broadcasts the logic to each

node. He uses DELETE to clear all rules and current state

on each node. Then, he sends (cf. Table III) initial state,

all rules representing the FST, and Observers’ list using the

PUT method.

The switch is initialised in state “rlsd”. The two rules

explain that on receiving the “push” message, the switch

will alternately be “rlsd” or “prsd” (in this case, “push” is a

real message, generated by hardware. “rlsd” and “prsd” are

logical states, defined by the user). The latest order links the

switch to node fe80::f0:1:303, which is the IPv6 address of

the light controlled by this switch. This light (fe80::f0:1:303)

must then be configured to react to messages sent by our

node (not shown in this example).

Each node is now ready, and the choreography can start.

Nodes communicate with others using the POST method,

receiving and sending messages following FST instructions,

as shown in Figure 6.

VI. IMPLEMENTATION AND VALIDATION

A. Implementation on Netkit, Contiki, Cooja, and Telos B

To test our architecture, we realized a simulation using

Coapy [1] to implement the services offered by a D-LITe

node. Nodes were simulated on a virtual network with

Netkit 4. Our objective was to test our language.

Once virtual nodes were collaborating under Netkit with

Coapy, we decided to implement our code on Contiki [13].

Contiki offers 6LowPAN, CoAP and REST implementa-

tions, and runs on real nodes like TelosB or MicaZ. It

comes with Cooja, a network simulator of emulated motes.

Our D-LITe implementation (Figure 7) has been tested in

the Cooja emulator and on real Nodes (TelosB). Coapy is

used as a client to send commands from a PC. We wrote

Scripts sending initial state, rules and observers list for each

example presented in Section IV-C. We also use a Firefox’s

plugin handling CoAP called Copper 5 to get values or send

3end-to-end Internet, from everywhere to nodes
4a Network Simulator (http://wiki.netkit.org)
5https://addons.mozilla.org/en-US/firefox/addon/copper-270430/

Figure 7. DLITe implementation on TelosB.

commands to nodes directly from a PC.

D-LITe’s code uses 6LowPAN and CoAP API provided by

Contiki (Figure 7). SALT messages decoding and FST rule’s

analyzer is implemented in our D-LITe’s code. The binary

size of D-LITe for a TelosB is 47KB. TelosB has 48KB

program flash memory for storing programs and 10KB RAM

for data. Programming TelosB is done by flashing the ROM

through a USB connector. In our architecture, the software

is divided in two parts. One is D-LITe framework (the fixed

part) and the other is the FST’s description (the variable

part written by users). We flash D-LITe once on a node, and

store it in ROM. No more physical contact with the node

will be required. Then, each user’s program (i.e. the FST’s

description) is sent through the network, at any time, and

stored in RAM. The FST is then executed by the D-LITe

framework. All manipulated data are 6 characters long. A

rule’s length is 24 Bytes (4 words of 6 characters, 2 states

and 2 messages). Our implementation can handle up to 50

rules. Each Observer is stored in 16 Bytes (IPv6 address’s

size). We planned a maximum of 20 Observers. These data

describing FST’s behaviour represent 1526 Bytes of the

10KB RAM available [2].

B. Validation use case 1 : a simple example

This is the classical way to control an on/off device

(Figure 3). We just want the switch to control light. FST’s

details were shown before (cf. Section IV-C).

5 orders are used to configure the switch. The first one is a

call to the DELETE CoAP method. The following 4 orders

are sent with the PUT method (Table III) : One to define the

initial state, then the 2 rules, and finally the observer (the

light).

4 orders are sent to the light device: the DELETE CoAP

method to clean the FST, then the initial state (dark), and

finally 2 rules (when receiving “on”, go to “light” state

(which is a real state), and when receiving “off”, go to

“dark” state (which is also a real state)).

The whole code is sent in 9 CoAP packets. SALT messages



total size is 309 bytes, which is far less than the 10KB avail-

able RAM memory. Those messages represent the whole

application code. 2 rules are stored in light’s RAM (48 Bytes

used). 2 rules and 1 observer’s address are stored in switch’s

RAM (64 Bytes used).

C. Validation use case 2 : Introducing a logical state

Figure 4 shows a simple example of the use of a logical

state. With D-LITe, it is possible to deploy a new program

that supersedes the one shown above. The switch doesn’t

need to be updated, so we keep it unchanged. A DELETE

method is used to clean the light’s FST. Initial state is set to

“dark”. The light needs 3 rules: One for “off” to “on”, one

for “on” to “Wait”, and the last when receiving the “time”

event to really switch “off”. And finally, we send the IPv6

address of the light to the time service, as light becomes an

observer of this service.

In this example, 10 CoAP packets are send on the network.

Switch’s RAM usage is still 64 Bytes on the switch, and 88

Bytes are used on the light.

D. Validation use case 3 : using loss of semantic

Dealing with more than two switches to control a light

can be done with D-LITe. In that case, each node has just

to send a signal to make the light change its state. If the

light is on and someone presses the button, the light’s state

needs to be changed. Switch’s former state and message’s

type do not matter. Figure 5. After deleting FSTs in each

node, each switch is initiated to state “nop”. 2 rules are sent

to explain that “press” and “released” messages generate

the same “action” output and go to “nop” state. Each node

receives an order to register the light as listener. Setting the

light is as simple. FST is deleted, then initial state is set to

“dark”, and 2 rules describe a flip-flop : “action” message

changes state from “dark” to “light” and vice versa.

This application uses 4 CoAP packets to configure the

light. Each switch needs 5 packets to be set. 2 rules and

1 observer’s address for each switch represent 64 Bytes of

node’s RAM.

VII. CONCLUSION

D-LITe splits the application in two parts. A fixed part is

installed once on each node physically (flashed on ROM for

example). That part offers generic services and access. The

second part is dynamically uploaded through the network.

This one allows to describe the application’s logic using very

simple textual form (i.e. SALT). This architecture gives D-

LITe some advantages. Any changes is simple and fast to

deploy. No physical access to a node is needed to completely

re-adapt its behaviour. The logic is not very hard to describe.

It uses a textual form. It is hardware independent. Pro-

gramming is based on nodes cooperation, each participating

node supporting a small part of the overall application.

The vision of the application is a choreography of FSTs,

exchanging messages and reacting to received ones. Even

if the possibilities of FSTs are restricted, our architecture

covers many usual IoT’s use cases. Our implementation on

TelosB shows that D-LITe can run on constrained devices

(48KB) (TelosB RAM’s size (10KB) can store up to 50 rules

and 20 observers). The D-LITe framework is easy to access

and operate by standard and well-known tools as it is based

on IPv6 and REST. We are already using D-LITe to test

applications, and see where it can be adapted.

The main contribution of this paper was to show that it

is possible to quickly and easily develop IoT applications

in a standardized way, and quickly and easily spread them

over any kind of hardware through the Capillary Internet.

In the future, we will mainly work on how to improve the

architecture, offer reliability, and give it some configuration

automation.
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