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MULTIPLICITY FREE SPACES WITH A ONE DIMENSIONAL QUOTIENT

. Recently, the author has shown that the algebra of differential operators on such spaces which are invariant under the semi-simple part of the group is a Smith algebra ([17]). We give here the classification of these spaces which are indecomposable, up to geometric equivalence. We also investigate whether or not these spaces are regular or of parabolic type as a prehomogeneous vector space.

Introduction

A multiplicity free space is a representation of a connected reductive group G on a finite dimensional vector space V (everything is defined over C) such that every irreducible representation of G appears at most once in the associated representation of G on the space C[V ] of polynomials on V (see Section 2 for details). For a survey on multiplicity free spaces we refer to [START_REF] Benson | RATCLIFF -On multiplicity free actions[END_REF]. Multiplicity free spaces, which were introduced by V. Kac in [START_REF] Kac | Some remarks on nilpotent orbits[END_REF], play now an important role in invariant theory and harmonic analysis (see for example [START_REF] Howe | Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond[END_REF], [START_REF] Howe | UMEDA -The Capelli identity, the double commutant theorem, and multiplicity-free actions[END_REF], [START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF], the references in [START_REF] Benson | RATCLIFF -On multiplicity free actions[END_REF], see also [START_REF] Kobayashi | Multiplicity-free representations and visible actions on complex manifolds[END_REF] for a more general concept). Various characterizations of multiplicity free spaces, which are summarized in Theorem 2.3.2 below, were obtained by ), Howe-Umeda ( [START_REF] Howe | UMEDA -The Capelli identity, the double commutant theorem, and multiplicity-free actions[END_REF]), Knop ([9]). A corollary of these characterizations is that a multiplicity free space is always a prehomogeneous space (in fact even under a Borel subgroup). This is the reason why prehomogeneous vector spaces occur so often in this paper. The classification of multiplicity free spaces was achieved independently by Benson-Ratcliff ( [START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF]) and Leahy ( [START_REF]LEAHY -A Classification of Multiplicity Free Representations[END_REF]) after partial classifications by Brion ( [START_REF]BRION -Représentations exceptionnelles des groupes semi-simples[END_REF]) and Kac ([6]).

In this paper we are interested in a specific family of multiplicity free spaces, the so-called multiplicity free spaces with a one dimensional quotient which were introduced by T. Levasseur in [START_REF]LEVASSEUR -Radial components, prehomogeneous vector spaces, and rational Cherednik algebras[END_REF]. This means roughly speaking that the categorical quotient V //G ′ has dimension one, where G ′ is the semi-simple part of G (see Definition 2.4.1 below). In his paper T. Levasseur proves that if (G, V ) is a multiplicity free space with a one dimensional quotient, then the radial component of the (non-commutative) algebra D(V ) G ′ of G ′ -invariant differential operators is a Smith algebra over C. In a recent paper ( [START_REF]RUBENTHALER -Invariant differential operators on a class of multiplicity free spaces[END_REF]) we showed that the full algebra D(V ) G ′ is a Smith algebra over its center, which is a polynomial algebra.

The purpose of this paper is to give the complete classification of all multiplicity free spaces with a one dimensional quotient, including irreducible and non irreducible representations. Our classification is obtained up to geometric equivalence, which is the natural equivalence relation among multiplicity free spaces. It is worthwhile noticing that the list of irreducibles already appears in [START_REF]LEVASSEUR -Radial components, prehomogeneous vector spaces, and rational Cherednik algebras[END_REF]. Moreover our investigations lead in all cases (irreducibles and non irreducibles) to some extra informations like parabolicity, regularity, and explicit fundamental relative invariants of the underlying prehomogeneous vector spaces.

In section 2 we recall general facts about multiplicity free space. We give first a brief account of the theory of prehomogeneous vector spaces (2.1) and also recall the definition of parabolic type prehomogeneous spaces (2.2), including their weighted Dynkin diagrams which encode many informations (see Definition 2.2.1 and Remark 2.2.2). General definitions and results about multiplicity free spaces can be found in 2.3. and 2.4. In 2.5, as an example, we describe an important family of irreducible multiplicity free space with a one dimensional quotient, namely the irreducible regular prehomogeneous vector spaces of commutative parabolic type. Section 3 contains the main result, the classification theorem of the multiplicity free spaces with a one dimensional quotient (Theorem 3.3). The corresponding lists (Tables 2 and3) take place at the end of the paper. Section 4 is devoted to the proof of Theorem 3.3. The proof uses case by case examinations from the list by Benson and Ratcliff ( [START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF]) and some tools from the theory of prehomogeneous vector spaces.

Notations: In this paper we will denote by GL(n), SL(n), SO(n) the general linear group , the special linear group, the special orhogonal group of complex matrices of size n respectively. As usual we will denote by Sp(n) the symplectic group of 2n × 2n complex matrices. We will also denote by gl(n), sl(n), o(n), sp(n) the corresponding Lie algebras. The vector space of m × n complex matrices will be denoted by M m,n , and the space of square n × n matrices will be denoted by M n . Finally Sym(n) will denote the n × n symmetric matrices and AS(n) will denote the skew symmetric matrices. If n is even and if x ∈ AS(n), then P f (x) stands for the pfaffian of the matrix x.

Multiplicity free spaces. Basic definitions and properties

Prehomogeneous Vector Spaces.

Let G be a connected algebraic group over C, and let (G, ρ, V ) be a rational representation of G on the (finite dimensional) vector space V . Then the triplet (G, ρ, V ) is called a prehomogeneous vector space (abbreviated to P V ) if the action of G on V has a Zariski open orbit Ω ∈ V . For the general theory of P V 's, we refer the reader to the book of Kimura [START_REF] Kimura | Introduction to Prehomogeneous Vector Spaces[END_REF] or to [START_REF] Sato -T | KIMURA -A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF]. The elements in Ω are called generic. The P V is said to be irreducible if the corresponding representation is irreducible. The singular set S of (G, ρ, V ) is defined by S = V \ Ω. Elements in S are called singular. If no confusion can arise we often simply denote the P V by (G, V ). We will also write g.x instead of ρ(g)x, for g ∈ G and x ∈ V . It is easy to see that the condition for a rational representation (G, ρ, V ) to be a P V is in fact an infinitesimal condition. More precisely let g be the Lie algebra of G and let dρ be the derived representation of ρ. Then (G, ρ, V ) is a PV if and only if there exists v ∈ V such that the map:

g -→ V X -→ dρ(X)v
is surjective (we will often write X.v instead of dρ(X)v). Therefore we will call (g, V ) a P V if the preceding condition is satisfied. Let (G, V ) be a P V . A rational function f on V is called a relative invariant of (G, V ) if there exists a rational character χ of G such that f (g.x) = χ(g)f (x) for g ∈ G and x ∈ V . From the existence of an open orbit it is easy to see that a character χ which is trivial on the isotropy subgroup of an element x ∈ Ω determines a unique relative invariant P χ . Let S 1 , S 2 , . . . , S k denote the irreducible components of codimension one of the singular set S. Then there exist irreducible polynomials P 1 , P 2 , . . . , P k such that S i = {x ∈ V | P i (x) = 0}. The P i 's are unique up to nonzero constants. It can be proved that the P i 's are relative invariants of (G, V ) and any nonzero relative invariant f can be written in a unique way f = cP n 1 1 P n 2 2 . . . P n k k , where n i ∈ Z and c ∈ C * . The polynomials P 1 , P 2 , . . . , P k are called the fundamental relative invariants of (G, V ). Moreover if the representation (G, V ) is irreducible then there exists at most one irreducible polynomial (up to multiplication by a non zero constant) which is relatively invariant. The prehomogeneous vector space (G, V ) is called regular if there exists a relative invariant polynomial P whose Hessian H P (x) is nonzero on Ω. If G is reductive, then (G, V ) is regular if and only if the singular set S is a hypersurface, or if and only if the isotropy subgroup of a generic point is reductive. If the P V (G, V ) is regular, then the contragredient representation (G, V * ) is again a P V . Regular P V 's are of particular interest, due to the zeta functions that one can associate to their real forms ( [START_REF] Sato -T | SHINTANI -On zeta functions associated with prehomogeneous vector spaces[END_REF]).

Remark 2.1.1. Let us mention a well known Lemma from the Theory of P V 's , which will be used in section 4. If (G, V ) is a P V , and if X 0 is a generic point, then the characters arising as characters of relative invariants are the characters of the quotient group G/H where H is the normal subgroup of G generated by the derived group [G, G] and the generic isotropy subgroup G X 0 . This group does not depend on X 0 . For details, see [START_REF] Kimura | Introduction to Prehomogeneous Vector Spaces[END_REF], Proposition 2.12. p.28.

PV's of parabolic type.

A P V (G, V ) is called reductive if the group G is reductive. Among the reductive P V 's there is a family of particular interest, the so-called P V 's of parabolic type. Let g be a simple Lie algebra over C. Let h be a Cartan subalgebra of g, and let Σ be the root system of (g, h). We fix once and for all a system of simple roots Ψ for Σ. We denote by Σ + (resp. Σ -) the corresponding set of positive (resp. negative) roots in Σ. Let θ be a subset of Ψ and let us make the standard construction of the parabolic subalgebra p θ ⊂ g associated to θ. As usual we denote by θ the set of all roots which are linear combinations of elements in θ, and put

θ ± = θ ∩ Σ ± . Set h θ = θ ⊥ = {X ∈ h | α(X) = 0 ∀α ∈ θ}, l θ = z g (h θ ) = h ⊕ α∈ θ g α , n ± θ = α∈Σ ± \ θ ± g α
Then p θ = l θ ⊕ n + θ is the standard parabolic subalgebra associated to θ. There is also a standard Z-grading of g related to these data. Define H θ to be the unique element of h θ satisfying the linear equations

α(H θ ) = 0 ∀α ∈ θ and α(H θ ) = 2 ∀α ∈ Ψ \ θ.
The above mentioned grading is just the grading obtained from the eigenspace decomposition of ad H θ :

d p (θ) = {X ∈ g | [H θ , X] = 2pX}.
Then we obtain easily:

g = ⊕ p∈Z d p (θ), l θ = d 0 (θ), n + θ = p≥1 d p (θ), n - θ = p≤-1 d p (θ).
It is known (using a result of Vinberg [START_REF] Vinberg | On the classification of the nilpotent elements of graded Lie algebras[END_REF]) that (l θ , d 1 (θ)) is a prehomogeneous vector space. In fact all the spaces (l θ , d p (θ)) with p = 0 are prehomogeneous, but there is no loss of generality if we only consider (l θ , d 1 (θ)). These spaces have been called prehomogeneous vector spaces of parabolic type ( [START_REF]RUBENTHALER -Espaces vectoriel préhomogènes, sous-groupes paraboliques et sl2 -triplets[END_REF]). There are in general neither irreducible nor regular. But they are of particular interest, because in the parabolic context, the group (or more precisely its Lie algebra l θ ) and the space (here d 1 (θ)) of the P V are embedded into a rich structure, namely the simple Lie algebra g. For example the derived representation of the P V is just the adjoint representation of l θ on d 1 (θ). Moreover the Lie algebra g also contains the dual P V , namely (l θ , d -1 (θ)).

There is an easy criterion to decide wether or not an irreducible P V of parabolic type is regular and in fact most of the reduced irreducible reductive regular P V 's from Sato-Kimura list are of parabolic type (for details we refer to [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF], [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] and [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]). As these P V 's are in one to one correspondence with the subsets θ ⊂ Ψ, we will describe them by the mean of the following weighted Dynkin diagram:

Definition 2.2.1. The diagram of the P V (l θ , d 1 (θ)) is the Dynkin diagram of (g, h) (or Σ ) where the vertices corresponding to the simple roots of Ψ \ θ are circled (see an example below).

This very simple classification by means of diagrams contains nevertheless some immediate and interesting information concerning the P V (l θ , d 1 (θ)) (for all these facts, see [START_REF]RUBENTHALER -Espaces vectoriel préhomogènes, sous-groupes paraboliques et sl2 -triplets[END_REF], [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF], [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] or [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]):

Remark 2.2.2.
a) The Dynkin diagram of l ′ θ = [l θ , l θ ] (i.e. the semi-simple part of the Lie algebra of the group) is the Dynkin diagram of g where we have removed the circled vertices and the edges connected to these vertices. b) In fact as a Lie algebra l θ = l θ ′ ⊕ h θ and dim h θ = the number of circled vertices. c) The number of irreducible components of the representation (l θ , d 1 (θ)) is also equal to the number of circled roots, and hence the parabolic P V (l θ , d 1 (θ)) is irreducible if and only if p θ is maximal. More precisely, if α is a (simple) circled root, then any nonzero root vector X α ∈ g α generates an irreducible l θ -module V α , and d 1 (θ) = ⊕ α∈Ψ\θ V α is the decomposition of d 1 (θ) into irreducibles. The decomposition of the representation (l θ , d 1 (θ)) into irreducibles can also be described by using the eigenspace decomposition with respect to ad(h θ ), as we will explain now. For each α ∈ h * , let α be the restriction of α to h θ and define

g α = {X ∈ g | ∀H ∈ h θ , [H, X] = α(H)X}.
Then g 0 = l θ and for α ∈ Ψ \ θ, we have V α = g α . Hence we can write d 1 (θ) = ⊕ α∈Ψ\θ g α . Moreover one can notice (always for α ∈ Ψ \ θ) that V α = g α = β∈σ α 1 g β , where σ α 1 is the set of roots which belong to α + span(θ). d) One can also directly read the highest weight of V α from the diagram. The highest weight of V α relatively to the negative Borel sub-algebra b

- θ = h ⊕ α∈ θ -g α is α = α | h(θ) .
Let ω β (β ∈ θ) be the fundamental weights of l ′ θ (i.e. the dual basis of (H β ) β∈θ ). For each circled root α (i.e. for each α ∈ Ψ \ θ ), let J α = {(β i )} be the set of roots in θ (= non-circled) which are connected to α in the diagram. From elementary diagram considerations we know that J α may be empty and that there are always no more than 3 roots in J α . If J α = ∅, then V α is the trivial one dimensional representation of l θ . If J α = ∅, then the highest weight α of V α is given by α = i∈Jα c i ω β i where c i = α(H β i ) and where α(H β i ) can be computed as follows:

(R)

     if ||α|| ≤ ||β i ||, then α(H β i ) = -1 ; if ||α|| > ||β i || and if α and β i are connected by j arrows (1 ≤ j ≤ 3), then α(H β i ) = -j .
Let us illustrate this with an example.

Example 2.2.3. Consider the following diagram:

α 1 t g β 1 t β 2 t β 3 t β 4 t β 5 t < t g α 2 C 7
This diagram is the diagram of a P V of parabolic type inside g ≃ sp(7) ≃ C 7 . The Lie algebra l θ is isomorphic to A 5 ⊕ h θ ≃ sl(6) ⊕ h θ where dim h θ = number of circled roots = 2. There are two irreducible components V α 1 and V α 2 , and the highest weight of (A 5 , V α 1 ) (resp. (A 5 , V α 2 )) relatively to the Borel subalgebra b - θ is ω 1 (resp. 2ω 5 ), where ω i (i=1,. . . ,5) are the fundamental weights of A 5 corresponding respectively to β 1 , . . . , β 5 .

Multiplicity free spaces.

For the results concerning multiplicity free spaces we refer the reader to the survey by Benson and Ratcliff ( [START_REF] Benson | RATCLIFF -On multiplicity free actions[END_REF]) or to [START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF] . Let (G, V ) be a finite dimensional rational representation of a connected reductive algebraic group

G. Let C[V ] be the algebra of polynomials on V . Then G acts on C[V ] by g.ϕ(x) = ϕ(g -1 x) (g ∈ G, ϕ ∈ C[V ]
). As the space C[V ] n of homogeneous polynomials of degree n is stable under this action, the representation (G, C[V ]) is completely reducible. Let D(V ) be the algebra of differential operators with polynomial coefficients. The group G acts also on D(V ) by

(g.D)(ϕ) = g.(D(g -1 .ϕ)) (g ∈ G, D ∈ D(V ), ϕ ∈ C[V ]). Definition 2.3.1.
Let G be a connected reductive algebraic group, and let V be the space of a finite dimensional (complex) rational representation of G. The representation (G, V ) is said to be multiplicity free if each irreducible representation of G occurs at most once in the representation (G, C[V ]).

From now on "multiplicity-free" will be abbreviated to "M F ". Let us give some results concerning M F spaces (see [START_REF] Benson | RATCLIFF -On multiplicity free actions[END_REF], [START_REF] Howe | UMEDA -The Capelli identity, the double commutant theorem, and multiplicity-free actions[END_REF], [START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF]): Vinberg and Kimelfeld ([23]), another proof can be found in [START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF] . Part 2) is due to Howe and Umeda ([5], Proposition 7.1). The first assertion of Part 3), also noted in [START_REF] Howe | UMEDA -The Capelli identity, the double commutant theorem, and multiplicity-free actions[END_REF],

Theorem 2.3.2. 1) A finite dimensional representation (G, V ) is M F if and only if (B, V ) is a prehomogeneous vector space for any Borel subgroup B of G (and hence each M F space (G, V ) is a P V ). 2) A finite dimensional representation (G, V ) is M F if and only if the algebra D(V ) G of invariant differential operators with polynomial coefficients is commutative. 3) If (G, V ) is a MF space, then the dual space (G, V * ) is also MF. More generally if (G, W ⊕ V ) is a representation of G where W and V are G-stable, then (G, W ⊕ V ) is MF if and only if (G, W ⊕ V * ) is MF. Proof. (Indications) Part 1) is due to
is a consequence of the G-equivariant isomorphism C i [V * ] ≃ (C i [V ]) * . The second assertion of 3) is Corollary 3.3 in [10].
Note that the commutativity of D(V ) G for a M F space is just a consequence of the definition, since we have a simultaneaous diagonalization of all the operators in D(V ) G .

If (G, V ) is a M F space, and if B is a Borel subgroup of G, then, as we have seen (G, V ) and (B, V ) are prehomogeneous spaces. Let us denote by ∆ 0 , ∆ 1 , . . . , ∆ k , . . . , ∆ r the fundamental relative invariants invariants of the P V (B, V ), indexed in such a way that ∆ 0 , ∆ 1 , . . . , ∆ k are the fundamental relative invariants of the P V (G, V ) and such that the other invariants are ordered by decreasing degree. It is worthwhile noticing that at least ∆ r is of degree one as the highest weight vectors of the irreducible components of V * must occur. The nonnegative integer r + 1 (= the number of fundamental relative invariants under B) is called the rank of the M F space (G, V ).

Multiplicity free spaces with a one dimensional quotient.

Let us now define the main objects this paper deals with. Definition 2.4.1. (T. Levasseur [START_REF]LEVASSEUR -Radial components, prehomogeneous vector spaces, and rational Cherednik algebras[END_REF]) 1) A prehomogeneous vector space (G, V ) is said to be of rank one 1 if there exists an homogeneous polynomial

∆ 0 on V such that ∆ 0 / ∈ C[V ] G and such that C[V ] G ′ = C[∆ 0 ]. 2) A multiplicity free space (G, V ) is said to have a one-dimensional quotient if it is a P V of rank one. (This implies that the categorical quotient V //G ′ has dimension 1.)
Although the following result is implicit in [START_REF]LEVASSEUR -Radial components, prehomogeneous vector spaces, and rational Cherednik algebras[END_REF] we provide a proof here. Proposition 2.4.2.

1 It is worth noticing that if (G, V ) is multiplicity free, then its rank as a P V is not at all the same as its rank as a M F space.

If (G, V ) is a P V of rank one, then the polynomial ∆ 0 is the unique fundamental relative invariant of (G, V ). More precisely a P V (G, V ) is of rank one if and only if it has a unique fundamental relative invariant.

Proof. We can write

G = G ′ C where G ′ = [G, G] is the derived group of G and where C = Z(G) • ≃ (C * ) p is the connected component of the center of G. Let g ∈ C. Then ∆ 0 (g -1 x) is again G ′ -invariant. As C[V ] G ′ = C[∆ 0 ]
and as ∆ 0 (g -1 x) has the same degree as ∆ 0 we obtain that ∆ 0 (g -1 x) = χ(g)∆ 0 (x) with χ(g) ∈ C * . Therefore ∆ 0 is a relative invariant. Suppose that ∆ 0 is not irreducible. Then ∆ 0 = P 1 . . . P m , where the polynomials P i are irreducible relative invariants and ∂ • (P i ) < ∂(∆ 0 ). We should have

P i ∈ C[∆ 0 ], which is impossible. Hence ∆ 0 is irreducible. If f is another fundamental relative invariant then we would have f ∈ C[∆ 0 ] which is impossible. It remains to prove that if a P V (G, V ) has a unique fundamental relative invariant ∆ 0 then it is of rank one. As ∆ 0 is non constant we have of course that ∆ 0 / ∈ C[V ] G . Let P ∈ C[V ] G ′ . If P = P 0 + P 1 + • • • + P m whith ∂ • (P i ) = i, then each P i is G ′ -invariant. Therefore we can suppose that P has fixed degree n (i.e. P ∈ C[V ] G ′ ∩ C[V ] n ). Let C[V ] n = p i=0 M i be the decomposition of C[V ] n into G ′ -isotypic components. We suppose that M 0 is the isotypic component of the trivial G ′ -module (M 0 = C[V ] G ′ ∩ C[V ] n ). Hence P ∈ M 0 . As G = CG ′ , the group G stabilizes each M i . Therefore we can write M 0 = M χ
where the G-isotypic components M χ of M 0 are indexed by characters χ of G and given by

M χ = {ϕ ∈ M 0 | ϕ(z -1 x) = χ(z)ϕ(x), ∀z ∈ C, x ∈ V }.
Hence P = P χ , P χ ∈ M χ , and for z ∈ C, g ′ ∈ G ′ and x ∈ V we have P χ (zg ′ x) = χ -1 (z)P χ (g ′ x) = χ -1 (z)P χ (x). Therefore each P χ is a relative invariant. But (G, V ) has a unique fundamental relative invariant namely ∆ 0 . Hence P χ = c χ ∆ j 0 (c χ ∈ C). The exponent j does not depend on χ, since all the P χ 's have the same degree. Therefore all the characters χ are the same, namely χ = λ j 0 where λ 0 is the character of ∆ 0 . This implies that M 0 = M λ j 0 , and that

P = c∆ j 0 . Hence C[V ] G ′ = C[∆ 0 ].
The following result gives a criterion to decide whether or not a P V has rank one. It will be useful in section 4 for the classification of the M F spaces with a one dimensional quotient.

Proposition 2.4.3.

Let G be a connected algebraic group and let (G, V ) be a P V . We suppose that

V = V 1 ⊕ V 2
where V 1 and V 2 are G-stable subspaces, and that (G, V 1 ) is a rank one P V . Let (x 0 , y 0 ) be a generic element in V , with x 0 ∈ V 1 and y 0 ∈ V 2 . Let G x 0 be the isotropy subgroup of x 0 . We suppose also that the prehomogeneous vector space (G x 0 , V 2 ) has no nontrivial relative invariant (this property does not depend on the choice of (x 0 , y 0 )). Then (G, V ) is a rank one P V .

Proof. For the fact that (G x 0 , V 2 ) is a P V and that y 0 is generic for this P V we refer to [START_REF]RUBENTHALER -Decomposition of reductive regular prehomogeneous vector spaces[END_REF]. As (G, V 1 ) is a rank one P V it has a unique fundamental relative invariant f (x) by Proposition 2.4.2. Define ∆

0 (x, y) = f (x) (x ∈ V 1 , y ∈ V 2 )
. Then, as it is irreducible, ∆ 0 (x, y) is a fundamental relative invariant of (G, V ). Let ϕ(x, y) be a fundamental relative invariant of (G, V ) and consider the function y -→ ϕ(x 0 , y). For g ∈ G x 0 , we have ϕ(gx 0 , gy) = ϕ(x 0 , gy) = χ ϕ (g)ϕ(x 0 , y). Hence y -→ ϕ(x 0 , y) is a relative invariant of (G x 0 , V 2 ). But by hypothesis (G x 0 , V 2 ) has no nontrivial relative invariant, hence for all y ∈ V 2 , we have ϕ(x 0 , y) = ψ(x 0 ) (constant with respect to y). But as this is true for any generic x 0 ∈ V 1 , we obtain that ϕ(x, y) = ψ(x) , for all x ∈ V 1 and all y ∈ V 2 . In other words ϕ does only depend on the x variable. As ϕ is irreducible, so is also ψ. And ψ is then a relative invariant of (G, V 1 ), hence ψ = cf (c ∈ C), or equivalently ϕ(x, y) = c∆ 0 (x, y). Then Proposition 2.4.2 implies that (G, V ) is a rank one P V .

Notation: If (G, V
) is a M F space with a one dimensional quotient, we will sometimes say that (G, V ) is QD1.

2.5. An exemple: the regular commutative PV's of parabolic type.

Among the P V 's of parabolic type there is a family, the so-called regular commutative P V 's of parabolic type, which are MF spaces with a one dimensional quotient. We will give here a brief description of these objects. Notations and conventions are the same as in section 2.2. The P V 's of parabolic type we are going to describe are irreducible. Therefore there is only one circled root which we denote by α 0 (and then θ = Ψ \ {α 0 }). In this section we will impose the extra condition that the coefficient of α 0 in the highest root is 1. This implies that d p (θ) = {0} for p = 0, 1, -1. Hence p θ = l θ ⊕ d 1 (θ), and the nilradical d 1 (θ) of p θ is a commutative subalgebra. Therefore the spaces (l θ , d 1 (θ)) are called commutative P V 's of parabolic type. It is known that these P V 's are all MF spaces ( [START_REF] Muller | SCHIFFMANN -Structure des espaces préhomogènes associés à certaines algèbres de Lie graduées[END_REF]). By Proposition 2.4.2 those which have a one dimensional quotient are exactly those which have a non trivial relative invariant. From [START_REF] Muller | SCHIFFMANN -Structure des espaces préhomogènes associés à certaines algèbres de Lie graduées[END_REF] these are also exactly those which are regular, and the list is given in Table 1 below. As they are irreducible, and as the center of l θ is one-dimensional, these spaces are automatically indecomposable and saturated (see Definition 3.1 below). 

The classification

Let us now explain the classification of M F spaces with a one dimensional quotient. We begin to describe briefly the classification of all M F spaces. Kac ([6]) determined all the cases where the representation (G, V ) is irreducible. Brion ( [START_REF]BRION -Représentations exceptionnelles des groupes semi-simples[END_REF]) did the case where G ′ = [G, G] is (almost) simple. Finally Benson-Ratcliff and Leahy did the rest, independently ([1], [START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF], [START_REF]LEAHY -A Classification of Multiplicity Free Representations[END_REF], [START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF]).

Definition 3.1. (see [START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF] )

1) Two representations (G 1 , ρ 1 , V 1 ) and (G 2 , ρ 2 , V 2 ) are called geometrically equivalent if there is an isomorphism Φ : V 1 -→ V 2 such that Φ(ρ 1 (G 1 ))Φ -1 = ρ 2 (G 2 ). 2) A representation (G, V ) is called decomposable if it is geometrically equivalent to a represen- tation of the form (G 1 ×G 2 , V 1 ⊕V 2 , where V 1 and V 2 are non-zero. It is called indecomposable if it is not decomposable. 3) A representation (G, V ) is called saturated if the dimension of the center of ρ(G) is equal to the number of irreducible summands of V . Remark 3.2.
The notion of geometric equivalence is quite natural, once one has remarked that the notion of M F space depends only on ρ(G). Is is worthwhile pointing out that any representation is geometrically equivalent to its dual representation (see Theorem 2.3.2). Finally note that any representation can be made saturated by adding a torus.

Theorem 3.3. The complete list, up to geometric equivalence, of indecomposable saturated M F spaces with a one dimensional quotient is given by Table 2 (irreducibles) and Table 3 (non irreducibles) at the end of the paper.

Proof

This section is devoted to the proof of Theorem 3.3. The classification tables show that indecomposable saturated M F spaces are either irreducible (see for example Table I p. 153 in [START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF]) or they have two irreducible summands (see Table II p. 154 in [START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF]). Using Proposition 2.4.2, we have only to decide whether or not a given M F -spaces has a unique fundamental invariant.

For the irreducible M F spaces we have checked this by a case by case computation. For the non-irreducible M F spaces, we also check which one have a one dimensional quotient by a case by case examination, using sometimes the criterion given by Proposition 2.4.3.

We also indicate whether or not these spaces are regular of of parabolic type as a prehomogeneous vector spaces. 1, and a particular case of (4) in Table 2.

4.1.2. SO(n) × C * (n ≥ 3).
It is well known that the natural representation of SO(n)×C * on C n has a unique fundamental relative invariant, namely the nondegenerate quadratic form Q. Therefore it is QD1. It is also well known that this space is a P V of commutative parabolic type, corresponding to the diagrams t h t t tp p p p p p p t > t B p+1 if n = 2p + 1 and t h t t tp p p p p t t t

d t D p+1 if n = 2p.
This corresponds to case (1) in Table 2.

4.1.3. Sp(n) × C * (n ≥ 2).
This P V is of parabolic type (corresponding to the diagram t g t tp p p p p p p p p t t < t ). According to the table in ( [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] or [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]) it has no non-trivial relative invariant, hence it is not QD1.

4.1.4. S 2 (SL(n)) × C * (n ≥ 2).
Up to geometric equivalence this is the representation of GL(n) on Sym(n) given by g.X = gX t g (g ∈ GL(n), X ∈ Sym(n)). This P V is of commutative parabolic type corresponding to the diagram t t tp p p p p p p p p t t < t g C n . The unique fundamental relative invariant is the determinant, therefore it is QD1. It corresponds to case (2) in Table 2. 4.1.5. Λ 2 (SL(n)) × C * (n ≥ 4). Up to geometric equivalence this is the representation of GL(n) on AS(n) given by g.X = gX t g (g ∈ GL(n), X ∈ AS(n)). This P V is of commutative parabolic type corresponding to the diagram t t t tp p p p p t t t g

d t D n .
It is well known that there is no relative invariant if n is odd, and that for n even the unique fundamental relative invariant is the pfaffian. Therefore it is QD1 if and only if n = 2p. It corresponds to case (3) in Table 2.

4.1.6. SL(n) ⊗ SL(m) * × C * (n, m ≥ 2). By Remark 3.2, this representation is geometrically equivalent to case SL(n) ⊗ SL(m) × C * (n, m ≥ 2) which is considered in Table 1 of Benson-Ratcliff ([2]
). This is the representation of SL(n) × SL(m) on the space M n,m given by (g 

1 , g 2 ).X = g 1 Xg -1 2 , g 1 ∈ SL(n), g 2 ∈ SL(m), X ∈ M n,m .
G = GL(2) × Sp(n) acting on V = M 2n,2 by (g 1 , g 2 ).X = g 2 X t g 1 , g 1 ∈ GL(2), g 2 ∈ Sp(n), X ∈ M 2n,2
This is a regular irreducible P V of parabolic type (not commutative), corresponding to the diagram t t g t p p p p p p p p p t t < t C n+2

(see [START_REF] Sato -T | KIMURA -A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF], [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF], [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]). Hence it is QD1. According to the computations in [START_REF] Sato -T | KIMURA -A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF] (Proposition 17 p.100-101), the fundamental relative invariant is f (X) = P f ( t XJX), where X ∈ M 2n,2 (C),

where

J = 0 Id n -Id n 0
, and where P f (.) is the pfaffian of a 2 × 2 skew symmetric matrix.

It is case (6) in Table 2.

4.1.8. SL(3) ⊗ Sp(n) × C * (n ≥ 2)
. This is a non regular irreducible P V of parabolic type corresponding to the diagram t t t g p p p p p p p p p t t < t of type C n+3 , it is known ( [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] or [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]) that it has no non-trivial relative invariant, hence it is not QD1.

4.1.9. SL(n) ⊗ Sp(2) × C * (n ≥ 4). This again is an irreducible P V of parabolic type corresponding to the diagram t t tp p p p p p p p p t g t < t , of type C n+2 . It is known ( [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] or [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]) that this P V has a non-trivial relative invariant if and only if n = 4. Hence this space is QD1 if and only if n = 4, and then it is regular. In this case the group SL(4) × Sp(2) acts on M 4 by (g 1 , g 2 ).X = g 1 Xg -1 2 , and the fundamental relative invariant is the determinant. It is case [START_REF] Kimura | Introduction to Prehomogeneous Vector Spaces[END_REF] in Table 2.

4.1.10. Spin(7) × C * . This space is known ( [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] or [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]) to be an irreducible regular P V of parabolic type inside F 4 corresponding to the diagram t t > t t g . Here the space has dimension 8 and the action is obtained by embedding Spin(7) into SO [START_REF] Kobayashi | Multiplicity-free representations and visible actions on complex manifolds[END_REF]. The fundamental relative invariant is the nondegenerate quadratic form which defines SO [START_REF] Kobayashi | Multiplicity-free representations and visible actions on complex manifolds[END_REF]. It is case [START_REF] Kobayashi | Multiplicity-free representations and visible actions on complex manifolds[END_REF] According to the table in ( [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] or [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]) it has no non-trivial relative invariant, hence it is not QD1.

4.1.13. G 2 × C * .
According to [START_REF] Sato -T | KIMURA -A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF], p. 146, number (25) of Table, this is an irreducible regular P V whose fundamental relative invariant is a quadratic form, hence it is QD1. According to the diagramatical rules in Remark 2.2.2 d) it is not of parabolic type. But it has nevertheless an interesting connection with P V 's of parabolic type, see [START_REF]RUBENTHALER -Non-parabolic prehomogeneous vector spaces and exceptional Lie algebras[END_REF], Theorem 6.1. p. 381. It is case [START_REF]LEAHY -A Classification of Multiplicity Free Representations[END_REF] in Table 2. 4.1.14. E 6 × C * . This space is known ( [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF] or [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]) to be an irreducible regular P V of parabolic type inside E 7 corresponding to the diagram t t t t t t t h . It is the 27-dimensional representation of E 6 . Its fundamental relative invariant has degree 3, it is known as the Freudenthal cubic. This is the case (5) in Table 2.

Non-irreducible MF spaces.

Here we examine the cases arising in Table II of [START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF]. We keep the same notations for the representations as before. In addition we adopt also the following notation from [START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF]. If (G 1 , V 1 ) and (G 2 , V 2 ) are representations of two semi-simple groups G 1 and G 2 which share a common simple factor H, then the notation G 1 ⊕ H G 2 denotes the image of the representation on V 1 ⊕ V 2 where the common factor H acts diagonally. For example SL(n) ⊕ SL(n) SL(n) denotes the direct sum representation (SL(n), C n ⊕ C n ), and Spin(8) ⊕ Spin( 8) SO( 8) denotes the action of Spin( 8) on C 8 ⊕ C 8 via the Spin representation on the first C 8 factor and via the natural representation of SO( 8) on the second factor.

(SL(n)

⊕ SL(n) SL(n)) × C * 2 (n ≥ 2).
This space is a parabolic P V corresponding to the diagram t t t tp p p p p t t t g

d t g D n+1 .
Lets us show that this space is QD1 if and only if n = 2. The representation is given by

(g, λ, µ).X = gX λ 0 0 µ , where g ∈ SL(n), X ∈ M n,2 , λ, µ ∈ C * . Set X 0 =        1 0 0 1 0 0 . . . . . . 0 0        . A simple computation shows that the isotropy subgroup G X 0 of X 0 is the subgroup of SL(n) × C * 2 consisting of triplets of the form (   λ -1 0 0 µ -1 β 0 δ   , λ, µ).
Then, an easy calculation shows that dim G-dim G X 0 = 2n, and hence the point X 0 is generic. Moreover the preceding computation of G X 0 shows that, if n > 2, the subgroup generated by the derived group SL(n) × {1} × {1} and G X 0 is the full group SL(n) × C * 2 . According to Remark 2.1.1 this proves that if n = 2 there exists no non-trivial relative invariant and hence the space is not QD1. If n = 2, the space is the space M 2 and then the determinant is the only fundamental relative invariant. This is a particular case of (1) in Table 3.

(SL(n)

* ⊕ SL(n) SL(n)) × C * 2 (n ≥ 2). This is the representation of SL(n)×C * 2 on M 1,2 ×M 2,1 given by (g, λ, µ)(u, v) = (λug -1 , µgv) where λ, µ ∈ C * , g ∈ SL(n), u ∈ M 1,2 and v ∈ M 2,1
. This a parabolic P V corresponding to the diagram t g tp p p p p t t tp p p p p t t g A n+1 It is easily seen that the quadratic form f (u, v) = uv is the unique fundamental relative invariant and as the generic isotropy subgroup is reductive, this P V is regular. This is a particular case of a family of so-called Q-irreducible P V 's of parabolic type. We refer the reader interested into details to Lemma 4.8 in [START_REF]RUBENTHALER -Decomposition of reductive regular prehomogeneous vector spaces[END_REF]. It is case (1) in Table 3.

4.2.3. (SL(n) ⊕ SL(n) Λ 2 (SL(n)) × C * 2 (n ≥ 4).
The representation is given by (g, λ, µ).(u, x) = (λgu, µgx t g) where λ, µ ∈ C * , g ∈ SL(n), u ∈ C n , x ∈ AS(n). This P V is not of parabolic type except for the cases where n = 5, 6, 7 which correspond respectively to the following diagrams: 3.

• Suppose now that n = 2p+1 is odd. Rather than the group SL(n)×C * 2 , we will here consider the Lie algebra

g = gl(n)× C acting on V = C n ⊕ AS(n) by (U, λ)(v, x) = (λv + U v, U x+ x t U ) where λ ∈ C, U ∈ gl(n), v ∈ C n , x ∈ AS(n). Once we identify gl(n) with sl(n) × C this is essentially the derived representation of (SL(n) ⊕ SL(n) Λ 2 (SL(n)) × C * 2 . Consider the point X 0 = (v 0 , x 0 ) ∈ C n ⊕ AS(n) where v 0 =      0 . . . 0 1     
and where x 0 = J 0 0 0 . An easy computation shows that the isotropy subalgebra g X 0 is given by

g X 0 = {( A 0 0 -λ , λ), λ ∈ C, A ∈ Sp(p)}.
As dim g-dim g X 0 = dim V , the point X 0 is generic. The Lie algebra g X 0 is the Lie algebra of a reductive subgroup. Hence this space is regular. As [g, g] = sl(n), the Lie algebra generated by g X 0 and [g, g] is equal to sl(n), and hence g/sl(n) ≃ C. According to Remark 2.1.1, there exists exactly one (up to constants) fundamental relative invariant, and hence this space is QD1. Keeping the same notations as above it is easy to see that the polynomial

f (v, x) = P f ( x v -t v 0 ), v ∈ C n , x ∈ AS(2p + 1)
is a fundamental relative invariant. These spaces are Q-irreducible in the sense of [START_REF]RUBENTHALER -Decomposition of reductive regular prehomogeneous vector spaces[END_REF] (see Remark 4.15 in [START_REF]RUBENTHALER -Decomposition of reductive regular prehomogeneous vector spaces[END_REF]). It is case (2)(b) in Table 3.

4.2.4. (SL(n) * ⊕ SL(n) Λ 2 (SL(n)) × C * 2 (n ≥ 4)
. This P V is always of parabolic type. The corresponding diagram is the following:

t g t t tp p p p p t t t g d t D n+1
Up to geometric equivalence we can take here

G = GL(n) × C * acting on V = M 1,n ⊕ AS(n) by (g, λ).(v, x) = (λvU -1 , U x t U ).
• Suppose first that n = 2p is even. The restriction of the representation to AS(n) is a regular P V whose fundamental relative invariant is the pfaffian. The partial isotropy of

J = 0 Id p -Id p 0 ∈ AS(n) is equal to Sp(p) × C * ,
and it is well known that the action of Sp(p) × C * on M 1,n has non non-trivial relative invariant. Therefore, from Proposition 2.4.3, we obtain that this M F space is QD1. As the fundamental relative invariant does not depend on all variables, it is not regular. It is case (3) in Table 3.

• Suppose now that n = 2p + 1 is odd. Rather than the group action, we will consider here the infinitesimal action. In other words we consider the Lie algebra g = gl(n) × C acting on

V = M 1,2p+1 ⊕ AS(2p + 1) by (U, λ)(v, x) = (λv -vU, U x + x t U ) where λ ∈ C, U ∈ gl(n), v ∈ C n , x ∈ AS(n).
Consider the element X 0 = (v 0 , x 0 ) ∈ V which is defined by v 0 = (1, 0, . . . , 0) and x 0 = J 0 0 0 ∈ AS(2p + 1) with J = 0 Id p -Id p 0

. A computation shows that the isotropy subalgebra g X 0 is the set of couples of the form (

A B 0 D , λ), -where A = α β γ -t α with α = λ, 0 . . . 0 A 1 , A 1 ∈ M p-1,p ; β = 0 0 0 b , b ∈ Sym(p-1); γ ∈ Sym(p).
-where B = 0 B , B ∈ C 2p-1 -and where D, λ ∈ C. Then one verifies that dim gdim g X 0 = dim V , and hence X 0 is generic. Moreover the Lie subalgebra generated by g X 0 and [g, g] = sl(n)× {0} is equal to g. According again to Remark 2.1.1, this shows that there is no non-trivial relative invariant, and therefore this space is not QD1.

(SL(n)

⊕ SL(n) (SL(n) ⊗ SL(m)) × C * 2 (n, m ≥ 2).
It is convenient here to replace this representation by the representation (G, V ) where

G = GL(n) × GL(m) acts on V = M n,1 ⊕ M n,m by (g 1 , g 2 )(v, x) = (g 1 v, g 1 xg -1 2 ), g 1 ∈ GL(n), g 2 ∈ GL(m), v ∈ M n,1 , x ∈ M n,m
. Due to Remark 3.2, this representation is geometrically equivalent to the first one. It is not of parabolic type except for the following cases: n = 3, m ∈ N : t t tp p p p p p p t t g t t g • Suppose n = m. Then the component M n,n = M n has a unique fundamental relative invariant, namely the determinant. The point X 0 = (e 1 , Id n ), where e 1 is the first vector of the canonical basis of M n,1 ≃ C n , is generic. And the partial isotropy subgroup G (0,Idn) is the diagonal subgroup {(g, g) ∈ GL(n) × GL(n)}. Therefore the action of G (0,Idn) on M n,1 has no relative invariant. According to Proposition 2.4.3 this space is QD1 in the case m = n.

d t D m+3 n = 4, m = 2 : t t t t g t g t E 6 n = 4, m = 3 : t t
As the fundamental relative invariant does not depend on all variables, it is not regular. It is case (4)(a) in Table 3.

• Supose that n < m. A simple calculation shows that the point X 0 = (e 1 , x 0 ) where x 0 = Id n 0 is generic and that its isotropy subgroup G X 0 is the set of pairs of matrices of the form (A, A 0 B C ), where B ∈ M m-n,n , C ∈ GL(mn), and where

A = 1 A 1 0 A 2 ,
with A 1 ∈ M 1,n-1 and A 2 ∈ GL(n-1). This implies that the subgroup of G = GL(n)×GL(m) generated by G X 0 and the derived group SL(n) × SL(m) is G itself. Hence from Remark 2.1.1, we know that there is no non-trivial relative invariant, and therefore it is not QD1.

• Suppose that n > m + 1. Then the element X 0 = (e n , x 0 ) where x 0 = Id m 0 is generic and the isotropy subgroup G X 0 is the set of pairs of matrices of the form (

A B 0 C , A)
where

A ∈ GL(m), where B ∈ M m,n-m is of the form B = B ′ 0 with B ′ ∈ M m,n-m-1 ,
and where

C ∈ GL(n -m) is of the form C = C 1 0 C 2 1 with C 1 ∈ GL(n -m -1)
and

C 2 ∈ M 1,n-m-1 .
Again this implies that the subgroup generated by G X 0 and [G, G] is equal to G. Hence by Remark 2.1.1, we obtain that this space has no non-trivial relative invariant, and hence it is not QD1.

• Suppose finally that n = m + 1. Then the same calculation as before holds. But now as n-m = 1, the isotropy subgroup G X 0 is the set of pairs of matrices of the form (

A 0 0 1 , A)
where A ∈ GL(m). The subgroup G generated by

G X 0 and [G, G] is equal to {(g 1 , g 2 ) ∈ G | det(g 1 ) = det(g 2 )}
. This implies that dim G/ G = 1 and hence by Remark 2.1.1, we obtain that this space has one fundamental relative invariant, and therefore it is QD1. As the generic isotropy subgroup is reductive, it is regular. It is easy to see that f (v, x) = det(v; x), where (x; v) is the n × n matrix obtained by putting the column vector v left to the m × n matrix x, is the fundamental relative invariant. It is case (4)(b) in Table 3.

4.2.6. (SL(n) * ⊕ SL(n) (SL(n) ⊗ SL(m)) × C * 2 (n ≥ 3, m ≥ 2).
It is convenient here to consider the representation (G, V ) where

G = GL(n) × GL(m) acts on V = M 1,n ⊕ M n,m by (g 1 , g 2 )(v, x) = (vg -1 1 , g 1 xg -1 2 ), g 1 ∈ GL(n), g 2 ∈ GL(m), v ∈ M 1,n , x ∈ M n,m .
This representation is geometrically equivalent to the original one. This P V is of parabolic type and corresponds to the diagram: It is convenient to consider here the group

G = C * × GL(2) × Sp(n) which acts on V = M 1,2 ⊕ M 2n,2 by (λ, g 1 , g 2 ).(v, x) = (λv t g 1 , g 2 x t g 1 ), where λ ∈ C * , g 1 ∈ GL(2), g 2 ∈ Sp(n), v ∈ M 1,2 , x ∈ M 2n,2 .
This space is geometrically equivalent to the original one. The action of G on V 2 is a regular parabolic P V corresponding to the subdiagram (see [START_REF] Sato -T | KIMURA -A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF], [START_REF]RUBENTHALER -Espaces préhomogènes de type parabolique[END_REF], [START_REF]RUBENTHALER -Algèbres de Lie et espaces préhomogènes[END_REF]). As we have already seen in section 4.1.7. its fundamental relative invariant is the function x -→ P f ( t xJx) where J = 0 Id n -Id n 0

. We know from [START_REF] Sato -T | KIMURA -A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF] (p. 100-101) that the partial isotropy subalgebra of (g, V 2 ) corresponding to a certain generic element x 0 in V 2 is given by

g x 0 = (λ, - A 1 C 1 B 1 -A 1 ,     A 1 0 0 A 4 B 1 0 0 B 4 C 1 0 0 C 4 -A 1 0 0 -t A 4     ).
where

λ, A 1 , B 1 , C 1 ∈ C, A 4 ∈ gl(n -1), B 4 , C 4 ∈ Sym(n -1)
. This shows that g x 0 ≃ C × sl(2) × sp(n -1). The action of g x 0 on M 2,1 is then essentially the natural action of gl(2) on C 2 , which is known to have no non trivial relative invariant. Therefore, using again Proposition 2.4.3, we obtain that this space is QD1. Its fundamental relative invariant is given by f (v, x) = P f ( t xJx). As this function depends only on x, the corresponding P V is not regular. It is case [START_REF] Kac | Some remarks on nilpotent orbits[END_REF] Up to geometric equivalence we can take here

G = GL(n) × SL(2) × GL(m) acting on V = V 1 ⊕ V 2 where V 1 = M n,2 and V 2 = M 2,m by (g 1 , g 2 , g 3 )(u, v) = (g 1 ug -1 2 , g 2 vg -1 3 ), g 1 ∈ GL(n), g 2 ∈ SL(2), g 3 ∈ GL(m).
a) Let us consider first the case where n = 2 and m > 2 (or equivalently m = 2 and n > 2). In this case the action of G on V 1 = M 2,2 has a non trivial relative invariant (the determinant), the (partial) generic isotropy of the matrix Id 2 is given by G Id 2 = {(g, g, g 3 ), g ∈ SL(2), g 3 ∈ GL(m)}, and the action of G Id 2 on V 2 = M 2,m is well known to have no non-trivial relative invariant. We deduce from Proposition 2.4.3 that this M F space is QD1. As the fundamental relative invariant which is given by f (u, v) = det u depends only on the V 1 variable, it is not regular. It is case [START_REF] Kimura | Introduction to Prehomogeneous Vector Spaces[END_REF] in Table 3.

b) Consider now the case where n = m = 2. In this case there are obviously two fundamental relative invariants given by det u and det v , u ∈ V 1 , v ∈ V 2 . Hence this M F space is not QD1.

c) Consider finally the case where n ≥ m > 2 (or equivalently the case where m ≥ n > 2).

Define x 0 = Id 2 0 ∈ M n,2 and y 0 = Id 2 0 ∈ M 2,m . The pair (x 0 , y 0 ) is a generic element and the corresponding isotropy subgroup is given by G

(x 0 ,y 0 ) = {( g 2 β 0 δ , g 2 , g 2 0 c d ) ∈ G | g 2 ∈ SL(2), δ ∈ GL(n -2), β ∈ M 2,n-2 , d ∈ GL(m -2, )}.
It is then clear that the subgroup generated by the derived group SL Up to geometric equivalence we can take here

(n) × SL(2) × SL(m) and G (x 0 ,y 0 ) is equal to G = GL(m) × SL(2) × GL(m). Remark 2.
G = GL(n) × GL(2) × Sp(m) acting on V = V 1 ⊕ V 2 where V 1 = M n,2 and V 2 = M 2m,2 by (g 1 , g 2 , g 3 )(u, v) = (g 1 u t g 2 , g 3 v t g 2 ), g 1 ∈ GL(n), g 2 ∈ SL(2), g 3 ∈ Sp(m).
a) Let us first consider the case where n > 2. The action of G on V 2 reduces to the action GL(2) × Sp(m) on V 2 which is of parabolic type corresponding to the subdiagram This case has already been considered in 4.2.7. above. And we know from the calculation we did there that the generic isotropy subgroup of (GL(2) × Sp(m), V 2 ) consists of certain pairs of the form (g 2 , g 3 ) where g 2 takes all values in SL(2). Therefore the generic isotropy subgroup of (G, V 2 ) acting on V 1 is the representation (GL(n) × SL(2), V 1 ) with n > 2. As this representation has no relative invariant we can apply Proposition 2.4.3, and obtain that this M F space is QD1. The fundamental relative invariant is given by f

(u, v) = P f ( t vJv),
where v ∈ M 2m,2 , and where J = 0 Id m -Id m 0 . As this invariant does only depend on v, the corresponding P V is not regular. It is case [START_REF] Kobayashi | Multiplicity-free representations and visible actions on complex manifolds[END_REF] in Table 3.

b) Consider now the case where n = 2. Here each of the two subspaces (G, V 1 ) and (G, V 2 ) has his own relative invariant (the determinant on V 1 and the preceding invariant f (u, v) = P f ( t vJv) on V 2 ). Therefore this space is not

QD1 if n = 2. 4.2.10. (Sp(n) ⊗ SL(2)) ⊕ SL(2) (SL(2) ⊗ Sp(m)) × C * 2 , (n, m ≥ 2).
Up to geometric equivalence we can take

G = Sp(n) × GL(2) × Sp(m) × C * acting on V = V 1 ⊕ V 2 where V 1 = M 2n,2 and V 2 = M 2m,2 by (g 1 , g 2 , g 3 , λ).(X, Y ) = (g 1 X t g 2 , λg 3 Y t g 2 ),
where

g 1 ∈ Sp(n), g 2 ∈ GL(2), g 3 ∈ Sp(m), λ ∈ C * , X ∈ M 2n,2 , Y ∈ M 2m,2 .
According to the diagramatical rules in Remark 2.2.2 d) this space is not of parabolic type.. As each of the representations (G, V 1 ) and (G, V 2 ) is of the type seen in 4.1.7. above, they have each their own fundamental relative invariant. Therefore this M F space is not QD1.

4.2.11. Sp(n) ⊕ Sp(n) Sp(n) × C * 2 , (n ≥ 2).
Here

G = Sp(n) × C * 2 acts on V = M 2n,1 ⊕ M 2n,1 by (g, λ, µ).(u, v) = (λgu, µgv), g ∈ Sp(n), λ, µ ∈ C, u, v ∈ M 2n,1 .
At the infinitesimal level the Lie algebra g

= sp(n) × C 2 acts on V by (x, λ, µ)(u, v) = (λu + xu, µv + xv), x ∈ sp(n), λ, µ ∈ C, u, v ∈ M 2n,1 .
First of all let us remark that there is at least one fundamental relative invariant, namely

f (u, v) = t uJv where J = 0 Id n -Id n 0 .
Consider the element X 0 = (e 1 , e n+1 ) ∈ M 2n,1 ⊕ M 2n,1 where e j is the j-th vector of the canonical base of M 2n,1 ≃ C 2n . An easy calculation shows that the isotropy subalgebra g X 0 of X 0 is given by:

g X 0 = {(     -λ 0 0 A 0 0 0 B 0 0 0 C λ 0 0 -t A     , λ, -λ), A ∈ gl(n -1), B, C ∈ Sym(n -1), λ ∈ C * }.
As dim gdim g X 0 = dim V , the point X 0 is generic. As g X 0 is the Lie algebra of a reductive subgroup, this P V is regular. Let g the Lie algebra generated by [g, g] = sp(n)×{0}×{0} and g X 0 . We have dim(g/ g) = 1. Then according to Remark 2.1.1, the polynomial f (u, v) = t uJv is the only fundamental relative invariant. Therefore this space is QD1. According to Remark 2.2.2 d), it is not of parabolic type. It is case [START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF] in Table 3. 4.2.12. Spin(8) ⊕ Spin(8) SO(8) × C * 2 . Let ρ be one of the Spin representations of Spin [START_REF] Kobayashi | Multiplicity-free representations and visible actions on complex manifolds[END_REF]. Here G = Spin(8) × C * 2 acts on V = C 8 ⊕ C 8 by (g, λ, µ)(u, v) = (λgu, µρ(g)v), g ∈ Spin(8), λ, µ ∈ C * , u, v ∈ C 8 . This is a parabolic P V in E 6 corresponding to the diagram:

t h

t t t t t h

As each of the two summands of this representation has his own fundamental relative invariant (a quadratic form), this space is not QD1.

Tables of indecomposable, saturated, multiplicity free representations with one dimensional quotient 

Table 1

 1 Regular PV's of commutative parabolic type

			g			l θ	d 1 (θ)
	A 2n+1	t α 1	tp p p p p p p p p t t α n+1 h tp p p p p p p p p t t α 2n+1	sl(n + 1) × gl(n + 1)	M n
	B n	t h t t tp p p p p p p t > t B n (n ≥ 2)	so(2n -1) × C	C 2n-1
	C n	t	t tp p p p p p p p p t t < t h C n	gl(n)	Sym(n)
	D 1 n	t h t t tp p p p p t t d t t	D n (n ≥ 4)	so(2n -2) × C	C 2n-2
	D 2 2n	t t t tp p p p p t t d t t h D 2n (n ≥ 2)	gl(2n)	AS(2n)
	E 7		t t t	t t t h E 7	E 6 × C	C 27
			t		

  4.1. Irreducible MF spaces.As said above we examine case by case the M F spaces occuring in Table1of the paper by). Of course the similar tables of Leahy ([START_REF]LEAHY -A Classification of Multiplicity Free Representations[END_REF]) or ofKnop ([9]) could have been used instead. Except that we explicitly mention the center C * , we adopt the notations of Benson and Ratcliff. The notations SL(n), SO(n), Sp(n) will not only stand for the groups but also for the natural representation of the corresponding group on C n , C n , C 2n respectively.

The notation S 2 (SL(n)) denotes the "natural" representation of SL(n) of the space Sym(n) of symmetric matrices of size n, whereas Λ 2 (SL(n)) stands for the "natural" representation of SL(n) on the space AS(n) of skew-symmetric matrices of size n. Also G 2 stands for the 7-dimensional representation of G 2 , and E 6 denotes the 27-dimensional representation of E 6 . The notation H * denotes the contragredient representation of the representation H and the notation H 1 ⊗ H 2 denotes the tensor product of the corresponding representations of H 1 and H 2 . Recall also that we say that a M F space is QD1 if it has a one dimensional quotient. 4.1.1. SL(n) × C * (n ≥ 1). It is well known that, for n > 1, this representation has no non-trivial relative invariant. For n = 1, the corresponding representation is C * acting on C, which has obviously one fundamental relative invariant, and hence is QD1. It is of commutative parabolic type, corresponding to the diagram . t h . This is the case m = n = 1 of 4.1.6. below. It is case A 1 in Table

  This is a commutative parabolic P V corresponding to the diagram

	t α 1	tp p p p p p p p p t t α n h tp p p p p p p p p t t α n+m-1 A n+m-1 .

If n = m, then there is no fundamental relative invariant. If n = m, then the unique fundamental relative invariant is the determinant. Hence it is QD1 if and only if n = m. It corresponds to case (4) in Table

2

.

4.1.7. SL(2) ⊗ Sp(n) × C * (n ≥ 2).

Up to geometric equivalence we can consider that this is the representation of

  in Table2.4.1.11. Spin(9) × C * . According to[START_REF] Sato -T | KIMURA -A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF], p. 146, number[START_REF]RUBENTHALER -Non-parabolic prehomogeneous vector spaces and exceptional Lie algebras[END_REF] of Table, this is an irreducible regular P V whose fundamental relative invariant is a quadratic form, hence it is QD1. According to the diagramatical rules in Remark 2.2.2 d) it is not of parabolic type. But it has nevertheless an interesting connection with P V 's of parabolic type, see[START_REF]RUBENTHALER -Non-parabolic prehomogeneous vector spaces and exceptional Lie algebras[END_REF], Theorem 5.1. p. 377. It is case[START_REF] Knop | Some remarks on multiplicity free spaces, Representation theories and algebraic geometry[END_REF] in Table2.4.1.12. Spin(10) × C * . This is a P V of parabolic type inside E 6 (corresponding to the diagram t t t

	t t g ).
	t

  Suppose first that n = 2p is even. It is well known that the restriction of the representation to AS(n) is a regular P V of parabolic type, and that its unique fundamental relative invariant is the pfaffian. Moreover the generic isotropy subgroup of this component at the point J = 0 Id p -Id p 0 is the subgroup Sp(p) × C * . The restriction of the "natural" representation of SL(2p) × C * on C 2p to Sp(p) × C * is well known to have no non-trivial relative invariant. Hence, by Proposition 2.4.3 this space is QD1. As the fundamental relative invariant does not depend on all variables, it is not regular. It is case (2)(a) in Table

	t g t t	t t E 6 ; t g t t	t t t E 7 ; t g t t	t t	t t E 8 .
	t g	t g	t g		

•

  The element (e 1 , x 0 ) where e 1 = (1, 0, . . . , 0) and where x 0 = Id n if n = m, x 0 = Id n 0 space is QD1 if and only if n = m. Moreover by the same argument it is not a regular P V . It is case[START_REF] Howe | UMEDA -The Capelli identity, the double commutant theorem, and multiplicity-free actions[END_REF] in Table3.4.2.7. (SL(2) ⊕ SL(2) (SL(2) ⊗ Sp(n)) × C * 2 (n ≥ 2).This P V is of parabolic type and corresponds to the diagram:

	t g α 1 show that this M F t g t t g t p p p p p p p p p t t < t tp p p p p p p p p t t α n+1 h tp p p p p p p p p t t α n+m if n < m, and x 0 = Id m 0 if n > m, is generic and almost the same calculations as in 4.2.5 A n+m C n+3

  in Table3.

	4.2.8. (SL(n) ⊗ SL(2)) ⊕ SL(2) (SL(2) ⊗ SL(m)) × C * 2 , (n, m ≥ 2).
	This space again is a P V of parabolic type corresponding to the diagram
	t α 1	tp p p p p t t g α n	t t g α n+2	tp p p p p t t α n+m+1	A n+m+1

  1.1 implies that this space has no non-trivial relative invariant, and hence it is not QD1.

	t α 1	tp p p p p t t g α n	t t g α n+2	tp p p p p t < t α n+m+2	C n+m+2

4.2.9. (SL

(n) ⊗ SL(2)) ⊕ SL(2) (SL(2) ⊗ Sp(m)) × C * 2 , (n, m ≥ 2).

This space also is a P V of parabolic type corresponding to the diagram

Table 2 :

 2 Irreducible representations (Notations for representations as in[START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF], see section 4.1.)

	Representation, rank	Weighted Dynkin diagram (if parabolic type)	Regular Fundamental invariant
		n = 2p + 1	t g t t tp p p p p p p t > t B p+1
	(1)					t	
	SO(n) × C * (n ≥ 3) (n ≥ 3), rank=2	n = 2p	t g t t tp p p p p t	t d t	D p+1	Yes	Non degenerate quadratic form
		Commutative Parabolic (both)	
	(2) S 2 (SL(n)) × C * (n ≥ 2), rank= n	t t tp p p p p p p p p t t < t g Cn Commutative Parabolic	Yes	Determinant on symmetric matrices
	(3)					t g	
	Λ 2 (SL(n)) × C * (n ≥ 4) and n = 2p rank=p	t t t tp p p p p t t d t Commutative Parabolic	D 2p	Yes	pfaffian on skew symmetric matrices
	(4) (SL(n) α 2n-1 Commutative Parabolic	A 2p-1	Yes	Determinant on full matrix space
	(5)		t t t	t t t g	E 7
	E 6 × C * (dim=27) rank=3			t				Yes	Freudenthal cubic
			Commutative Parabolic		
	(6)					C n+2	Yes	P f ( t XJX) X ∈ M (2n, 2) P f =pfaffian of 2 × 2 matrices
	(7) rank=6 SL(4) × Sp(2) × C *	t	t t	t g t < t	C 6	Yes	Det(X), X ∈ M (4)
	(8) Spin(7) × C * rank=2		t t > t	t g		F 4	Yes	Non degenerate quadratic form (Spin(7) ֒→ SO(8))
	(9)						
	Spin(9) × C * rank=3		Non parabolic			Yes	Non degenerate quadratic form
	(10) G 2 × C * (dim = 7) rank=2		Non parabolic			Yes	Non degenerate quadratic form G 2 ֒→ SO(7)

* ⊗ SL(n)) × C * (n ≥ 2),

rank=n t α 1 tp p p p p p p p p t t αn h tp p p p p p p p p t t (SL(2) ⊗ Sp(n)) × C * (n ≥ 2), rank=3 t g t tp p p p p p p p p t t < t

Table 3 :

 3 Non Irreducible representations (Notations for representations as in[START_REF] Benson | RATCLIFF -A Classification of Multiplicity Free Actions[END_REF], see section 4.2.)⊕ SL(n) Λ 2 (SL(n)) × (C * ) 2 (n ≥ 4, n = 2p + 1 odd) rank=n=2p+1non parabolic except for the cases:⊕ SL(n) (SL(n) ⊗ SL(n -1)) × (C * ) 2 , n ≥ 3non parabolic except for the cases:

	Representation	Weighted Dynkin diagram (if parabolic type)	Regular Fundamental invariant
	(1)						
	(SL(n) * ⊕ SL(n) SLn) × (C * ) 2 n ≥ 2 rank=3	t g tp p p p p t t tp p p p p t t g A n+1	Yes	f (u, v) = uv on M (1, n) ⊕ M (n, 1)
	(2)(a)	non parabolic except for the case:	
	(SL(n) ⊕ SL(n) Λ 2 (SL(n)) × (C * ) 2 (n ≥ 4, n = 2p even) rank=n=2p	t g t t t g	t t	t	E 7 , n = 6		No	pfaffian on skew symmetric matrices (on 2nd component)
								f (v, x) =
	(2)(b) (SL(n) t g t t t g	t t E 6 , n = 5,		Yes	P f ( v ∈ C n -t v 0 x v x ∈ AS(2p + 1)	)
		t g t t	t t t t E 8 , n = 7.
			t g				
	(3) (SL(n) D 2p		No	P f (x) (pfaffian) (on 2nd component)
	(4)(a)	t t t g t t t t t g t t t E 8 , n = 4. t g d t D 6 , n = 3	No	Determinant (on 2nd component)
			t g				
	(4)(b) (SL(n) t t g t t t t d t t g t g t t E 7 , n = 4. D 5 , n = 3		Yes	det(v; x) v ∈ M n,1 , x ∈ M n,n-1
			t g				
	(5) SL(n) * ⊕ SL(n) (SL(n) ⊗ SL(n)) × (C * ) 2 , n ≥ 3 rank=2n	t g α 1	tp p p p p p p p p t t α n+1 h tp p p p p p p p p t t α 2n	A 2n	No	Determinant (on 2nd component)
						Continued next page.

* ⊕ SL(n) Λ 2 (SL(n)) × (C * ) 2 (n ≥ 4, n = 2p even) rank=n t g t t tp p p p p t t t g d t SL(n) ⊕ SL(n) (SL(n) ⊗ SL(n)) × (C * ) 2 , n ≥ 2

non parabolic except for the cases:

g tp p p p p p p p p t t 

Non parabolic Yes