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SIEVING IN GRAPHS AND EXPLICIT BOUNDS FOR NON-TYPICAL ELEMENTS

FLORENT JOUVE* JEAN-SÉBASTIEN SERENI†

May 2, 2012

ABSTRACT. — We study properties of random graphs within families of graphs equipped with a group law. The group
structure enables one to perform a random walk on the family of graphs. If the generating system is a big enough random
subset of graphs, a result of Alon–Roichman provides us with useful expansion properties well suited to give quantitative
estimates for the rarefaction of non-typical elements attained by the random walk. Applying the general setting we show,
e.g., that, with high probability (in a strong explicit sense), random graphs contain cycles of small length, or that a random
coloring of the edges of a graph contains a monochromatic triangle.

INTRODUCTION

The relevance of using families of expander graphs for studying objects or solving problems coming from a broad
variety of mathematical areas has been emphasized in numerous ways in the recent years. Notably the combina-
tion of sieving arguments together with expansion properties has proved particularly efficient. Let us mention the
groundbreaking work [4] where the mix of such techniques enabled the authors to detect almost primes in a variety of
non-Abelian situations (a striking example being the study of almost prime curvatures of Apollonian circle packings).
A different kind of sieve together with the same expansion properties have also been exploited in the context of group
theory [11], or to obtain quantitative results in the probabilistic Galois theory of arithmetic groups [7]. In the sieving
processes used in the aforementioned works, one is naturally led to a crucial step where some spectral gap property
is needed. A tautological reinterpretation of expansion of a certain family of graphs provides one with the needed
spectral gap.

The present paper follows the same kind of strategy, the goal being this time to study properties of graphs them-
selves. The starting point is a result of Alon–Roichman [3] according to which a family of random Cayley graphs forms
a “good” family of expanders. There are several natural approaches to produce “random” elements. The one we use
consists in performing a random walk on the family of graphs studied, (cf. also [7]). Another approach could be to
quantify the proportion of elements satisfying an expected property among a finite subset of the family of graphs con-
sidered. For the applications we have in mind this question would in fact be much easier. As a matter of fact we do
need to quantify proportions of “good” elements as part of our sieving process.

The paper is organized in the following way: Section 1 explains the general setup and makes precise the way in
which we want to use Alon–Roichman’s result. In that section we also state and prove the main theoretical result
needed for the applications. It can be seen as a combinatorial variation on one of the key proposition in Kowalski’s
book [8]. The rest of the paper is devoted to applications of the main result of Section 1. While the first one is an
explicit incarnation of what can be seen as probabilistic Ramsey theory, the second one gives an explicit bound on the
probability that a random subgraph of the grid Z2 contains a cycle of length 4. We conclude with remarks on further
questions that may be of interest and that can be successfully investigated via our method. We notably state another
Ramsey type result (together with a sketch of proof) obtained by suitably adapting the arguments used in the second
application.
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Notation. If X is a finite set, then #X and |X | synonymously denote the cardinality of X .
If X is a finite graph, then Adj(X ) is the adjacency operator sending a C-valued function on the vertices of X to the

function (x 7→
∑

y f (y)), where the sum is over the neighbors y of the vertex x. If X is moreover d-regular (that is, every

vertex of X has degree d), then the normalized adjacency operator is 1
d
·Adj(X ).

If G is a group and S ⊂ G, then X (G,S) is the Cayley graph on G with edge set S ∪S−1 :=
{

s ∈G : s ∈ S or s−1 ∈ S
}

. If
G is a finite Abelian group, then Ĝ is the character group of G. If x Ê 0 is a real number, then ⌈x⌉ and ⌊x⌋ are the least
integer greater than or equal to x and the greatest integer smaller than or equal to x, respectively. If R is a positive
integer, then [R] is the set {1, . . . ,R}. Given a probability space (Ω,Σ,P) and two events A and B such that P(B) 6= 0, we
let P(A |B) be the conditional probability P(A∩B)/P(B).

1. THE GENERAL SETTING

1.1. CAYLEY GRAPHS ON QUOTIENTS

Let G be a group (in this section, the group law is noted multiplicatively) and Λ ⊂ N be a bounded set of indices. We
suppose we are given a family (Hℓ)ℓ∈Λ of normal subgroups of G such that for each ℓ the index nℓ := [G : Hℓ] is finite.
We let ρℓ : G →G/Hℓ be the canonical projection.

We fix once and for all a probability space (Ω,Σ,P) and an arbitrarily small real number δ ∈ (0 ,1). For each ℓ ∈Λ,
we define the quantity

κ(bℓ,ℓ;δ) :=
⌈

2((2−δ) ln(2−δ)+δ lnδ)−1 ·
(

ln(
∑

ρ∈Irr(G/Hℓ)
dimρ)+bℓ+ ln2

)

⌉

,

where b := (bℓ) is a parameter (a sequence of positive real numbers) and Irr(G/Hℓ) is a set of representatives for the
isomorphism classes of irreducible representations of G/Hℓ.

Now let s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ) be independent identically distributed random variables taking values in G/Hℓ. We as-

sume that the common distribution of these random variables is the uniform distribution on G/Hℓ. We are interested
in the properties of the Cayley graphs on the groups G/Hℓ with edges corresponding to the values taken by the ran-
dom variables s(ℓ)

i
for i ∈ {1, . . . ,κ(bℓ,ℓ;δ)}. These graphs are κ(bℓ,ℓ;δ)-regular graphs. Throughout the paper, if X is a

k-regular graph, then the eigenvalues of X are the eigenvalues of the normalized adjacency operator k−1 Adj(X ). The
spectral gap ε(X ) of X is defined to be max

{

1−|λ| : λ is an eigenvalue of X not in {−1,1}
}

(recall that the eigenvalue
−1 occurs if and only if X is bipartite). Let γ be a real number satisfying 0< γÉ 1/2, then X is a γ-expander graph if its
spectral gap is at least γ. In particular, note that a k-regular graph with spectral gap greater than 1/2 is a γ-expander
graph for any γ ∈ (0,1/2].

The reason for introducing the above setup is a theorem of Alon & Roichman [3, Th. 1], which has been subse-
quently improved by Landau & Russell [9, Th. 2] and Loh & Schulman [10, Th. 1]. The last improvement obtained so
far, which is the version we state and use, is due to Christofides & Markström [5, Th. 5].

THEOREM 1.1 (Christofides–Markström). — With notation as above, fix an index ℓ in Λ. For every δ ∈ (0,1/2], the

probability that X (G/Hℓ, {s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)}) is not a δ-expander graph is less than e−bℓ .

The statement can be rephrased by saying it is highly probable that the Cayley graph X (G/Hℓ, {s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)})

be a δ-expander graph, the counterpart being that the edge set has very large cardinality. We pause here to note
that the definition of an expander graph we use is not completely equivalent to the usual definition. However, it is a
standard fact that the (usual) expansion property and the spectral gap property are closely related notions. Indeed,
let X = (V ,E ) be an undirected finite graph. For every A ⊂ V , let ∂A be the set of edges joining an element of A to an
element of the complement of A in V . The expansion ratio (or edge expansion ratio) of X is

h(X ) := min
A⊂V

1É#AÉ#V /2

#∂A

#A
.

The spectral gap and the expansion ratio h(X ) of an undirected connected k-regular graph X are related by Cheeger’s
inequalities (see, e.g., [6, Theorem 1.2.3]).
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In general, it is natural to ask for how to combine two expander Cayley graphs into a new one. The natural idea
consisting in taking the cartesian product of the two groups involved and hoping that there is a suitable choice of
edges ensuring expansion of the graph obtained, fails in general (see [1] for a much more sophisticated method that
does produce expander “product Cayley graphs”).

However, for the particular case we have in mind in the present paper, the simple construction described in the
following technical lemma is enough.

LEMMA 1.2. — With notation as above assume that X (G,S) and X (H ,T ) areδ-expander Cayley graphs on finite Abelian

groups G and H (with edge set defined by S ⊂G and T ⊂ H, respectively). Then for every (x0, y0) ∈G×H with x2
0 = 1 = y2

0 ,

the Cayley graph X (G ×H , (S × {y0})∪ ({x0}×T )) is a ((1+γ)−1δ)-expander graph, where

γ := max

{ ∣

∣S ∪S−1
∣

∣

∣

∣T ∪T −1
∣

∣

,

∣

∣T ∪T −1
∣

∣

∣

∣S ∪S−1
∣

∣

}

.

Proof. For convenience, we set Y := (S × {y0})∪ ({x0}×T ), S∗ := S ∪S−1, T ∗ := T ∪T −1 and Y ∗ := Y ∪Y −1. The eigen-
functions of the normalized adjacency operator on X (G ×H ,Y ) are of the form

(χ,τ) : (g ,h) 7→χ(g )τ(h),

for characters χ ∈ Ĝ and τ ∈ Ĥ . The corresponding eigenvalues are of the form

λχ,τ :=
1

|S∗|+ |T ∗|
∑

(g ,h)∈Y ∗
χ(g )τ(h).

Since both x0 and y0 have order 2, the sum splits as follows:
(∣

∣S∗∣

∣+
∣

∣T ∗∣

∣

)

λχ,τ = τ(y0)
∑

g∈S∗
χ(g )+χ(x0)

∑

h∈T ∗
τ(h).

We deduce:
∣

∣λχ,τ
∣

∣É
|S∗|

|S∗|+ |T ∗|

∣

∣

∣

∣

∣

1

|S∗|
∑

g∈S∗
χ(g )

∣

∣

∣

∣

∣

+
|T ∗|

|S∗|+ |T ∗|

∣

∣

∣

∣

∣

1

|T ∗|
∑

h∈T ∗
τ(h)

∣

∣

∣

∣

∣

.

If both χ and τ are non-trivial, then
∣

∣λχ,τ
∣

∣É 1−δ. If χ is trivial and τ is non trivial, we obtain instead

∣

∣λχ,τ
∣

∣É 1−δ
(

1+
∣

∣S∗∣

∣/
∣

∣T ∗∣

∣

)−1 ,

hence the result by symmetry of the roles played by G and H .

The family (ρℓ)ℓ∈Λ of surjections is linearly disjoint if for any choice of two distinct indices ℓ and ℓ′ in Λ, the
product map

ρℓ,ℓ′ := ρℓ×ρℓ′ : G →G/Hℓ×G/H ′
ℓ

is surjective.

The random walks on G we want to consider are obtained by lifting the sets
{

s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)

}

(and their “inverses”

so that all the graphs considered are then undirected) to G. To that purpose define the random variable

Sℓ(bℓ,δ) :=
{

s(ℓ)
1 , · · · , s(ℓ)

κ(bℓ ,ℓ;δ)

}

∪
{

(s(ℓ)
1 )−1, · · · , (s(ℓ)

κ(bℓ ,ℓ;δ))−1
}

,

which takes values in the set of subsets of G/Hℓ. For each ℓ and each 1 É m Éκ(bℓ,ℓ;δ), we choose further a represen-
tative s̃(ℓ)

m ∈G of s(ℓ)
m . We set

S̃ℓ(b,δ) :=
{

s̃(ℓ)
1 , · · · , s̃(ℓ)

κ(bℓ ,ℓ;δ)

}

∪
{

(s̃(ℓ)
1 )−1, · · · , (s̃(ℓ)

κ(bℓ ,ℓ;δ))−1
}

.

The subset of G we use to perform a random walk on G is

S(b,δ) := {1}∪
⋃

ℓ∈Λ
S̃ℓ(bℓ,δ).
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In this last definition S(b,δ) is not seen as a random variable but as the union of {1} with the union over Λ of the value
taken at some ω ∈Ω by S̃(b,δ). In other words we fix once and for all an element ω of Ω; picking an element of S(b,δ)
amounts to picking 1 or an element of some S̃ℓ(bℓ,δ)(ω).

Note that S(b,δ) is assumed to contain 1: this is to avoid issues with bipartite graphs. Since Λ is assumed to be
bounded, S(b,δ) is a finite set. It also satisfies the obvious property

∀ℓ ∈Λ, ρℓ(S(b,δ))⊃ Sℓ(bℓ,δ).

However, to ensure δ-expansion of the Cayley graphs X (G/Hℓ,ρℓ(S(b,δ))) we need more. This is the reason why
we suppose the following condition (we call the nice lifting condition) holds:

(nice lifting) ∀ℓ ∈Λ, ρℓ(S(b,δ)) = Sℓ(bℓ,δ)∪ {1}.

Before making precise how we define the random walk we are interested in we define one more condition our
setting will have to fulfill: if f and g are two surjective functions defined on a set X and S is a distinguished subset of
X , the product function f × g : x 7→ ( f (x), g (x)) is said to have nice S-image if

(nice S-image) ∃(x0, y0) ∈ f (X )× g (X ), x2
0 = 1= y2

0 and f × g (S)⊇ ( f (S)× {y0})∪ ({x0}× g (S)).

Note that the inclusion f × g (S)⊂ f (S)× g (S) always holds.
The three aforementioned properties, that is, linear disjointess, nice lifting and nice S(b,δ)-image, can be all

viewed as surjectivity statements.

1.2. THE RANDOM WALK

With notation as above, we perform the following (left-invariant) random walk on G. It is defined the same way as
in [8, Chap. 7].

{

X0 = g0

Xk+1 = Xkξk+1 for k Ê 0,

where g0 is a fixed element in G and the steps ξk are independent, identically distributed random variables with
distribution

P(ξk = s) = P(ξk = s−1) = ps = ps−1

for every k and every s ∈ S(b,δ), and where (ps )s is a finite sequence of positive real numbers indexed by S(b,δ) such
that

∑

s∈S(b,δ)
ps = 1.

Of course the random walk depends on the parameters b = (bℓ)ℓ and δ. What might be the most natural such random
walk is the one defined by uniformly distributing the steps, that is, ps := #S(b,δ)−1 for every s ∈ S(b,δ).

By studying the properties of the random walk (Xk )k our aim is to describe the behavior of a “generic element” g ∈
G. To do so, we make use of Kowalski’s abstract large sieve procedure extensively described, together with applications,
in his book [8]. As in every sieve method, one can only handle cases where the typical properties at issue can be
detected locally. To be more precise we fix for each ℓ ∈Λ, a conjugacy invariant subset Θℓ ⊂G/Hℓ. The probability we
want to upper bound is

P(∀ℓ ∈Λ, ρℓ(Xk ) 6∈Θℓ).

In applications we will produce effective upper bounds for the probability with which Xk satisfies a fixed property
that can be detected by the condition ρℓ(Xk ) 6∈ Θℓ for some Θℓ ⊂ G/Hℓ. The abstract sieve statement we will rely on
is the following. We refer the reader to the book by Kowalski for a (self-contained) sieve statement written in greater
generality [8, Prop. 3.5], as well as for more information on the random walk sieve used here [8, Chap. 7].

PROPOSITION 1.3. — With notation as above let us assume G is Abelian and:

• the family of surjections (ρℓ) is linearly disjoint;
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• the nice lifting condition holds; and

• the nice S(b,δ)-image condition (with respect to any pair (ρℓ,ρℓ′ ) with ℓ 6= ℓ′ in Λ) holds.

Define the constant

C0 := max
ℓ6=ℓ′∈Λ

γℓ,ℓ′ := max
ℓ6=ℓ′∈Λ

#Sℓ(bℓ,δ)

#Sℓ′ (bℓ′ ,δ)
,

which is a finite number since Λ is a finite set. Then there exists η> 0 such that

P(ρℓ(Xk ) 6∈Θℓ, ∀ℓ ∈ΛL1,L2 ) É
⌊L2⌋
∑

ℓ=⌈L1⌉
e−bℓ + (1+ (L2 −L1)

∣

∣GL2

∣

∣

3/2 exp(−ηk))

(

⌊L2⌋
∑

ℓ=⌈L1⌉

#Θℓ

nℓ

)−1

,

where the constant η depends only on δ, C0, the set S(b,δ) and the distribution of the steps ξ j , and where (L1,L2) is any

fixed couple of real numbers such that Λ∩ [L1 ,L2]= {⌈L1⌉, . . . ,⌊L2⌋}.

Before starting the proof we define one last piece of useful notation: for indices ℓ and ℓ′ in Λ, we set Gℓ,ℓ′ :=
G/Hℓ×G/H ′

ℓ
if ℓ 6= ℓ′ and Gℓ(=Gℓ,ℓ′ ) :=G/Hℓ. If ℓ= ℓ′, the surjection ρℓ,ℓ′ : G →Gℓ,ℓ′ is nothing but the quotient map

ρℓ. The proof of the proposition follows closely that of [8, Prop. 7.2]. However, as our framework is quite different
from that of loc. cit. and for the sake of completeness, we give the full detail of the proof.

Proof of Proposition 1.3. We set ΛL1,L2 :=Λ∩ [L1 ,L2]. Fix a real number δ in (0,1/2] and let us split the probability we
are interested in:

P
(

∀ℓ ∈ΛL1 ,L2 , ρℓ(Xk ) 6∈Θℓ

)

ÉP
(

∃ℓ ∈ΛL1,L2 , X (G/Hℓ,ρℓ(S(b,δ))) is not a δ-expander
)

(1)

+P(∀ℓ ∈ΛL1,L2 , X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander and ρℓ(Xk ) 6∈Θℓ).

As we shall see, the second summand on the right side admits a theoretical upper bound that is amenable to
sieve. Moreover, the first summand can be efficiently bounded by invoking Theorem 1.1. Indeed, since ρℓ(S(b,δ)) =
Sℓ(bℓ,δ)∪ {1} by the nice lifting condition, we can easily show that the following statement holds (note that the state-
ment would be trivial for if we were only interested in edge-expansion):

P(∃ℓ ∈ΛL1,L2 , X (G/Hℓ,ρℓ(S(b,δ))) is not a δ-expander) É P(∃ℓ ∈ΛL1,L2 , X (G/Hℓ,Sℓ(bℓ,δ)) is not a δ-expander).

This inequality is a consequence of the following result.

LEMMA 1.4. — Let G0 be an Abelian group and let S be a subset of G. If X (G0,S) is a δ-expander graph, then so is

X (G0,S ∪ {1}).

Proof of Lemma 1.4. This is trivially true if 1 ∈ S, so from now on we assume that 1 6∈ S. Set S∗ := S ∪S−1.
Let λ be an eigenvalue of X (G0,S) corresponding to a non trivial character χ of G, i.e. λ= (#S∗)−1 ∑

s∈S∗ χ(s). Using
the usual convention according to which a loop contributes 2 to the degree of a vertex, we deduce that the correspond-
ing eigenvalue λ′ of X (G0,S ∪ {1}) is

1

2+#S∗

(

∑

s∈S∗
χ(s)+χ(1)

)

=
#S∗

2+#S∗λ+
1

2+#S∗ =λ+
1−2λ

2+#S∗ .

Of course λ′ É λ provided λ Ê 1/2. Moreover, if λ < 1/2 then λ′ < 1/2. Thus in both cases λ′ É 1−δ. This finishes the
proof of Lemma 1.4.

Although we assume G to be Abelian, the major part of the rest of the proof of Proposition 1.3 would work in a
non-Abelian setting. To emphasize this feature of the proof we prefer using the general terminology of representation
theory of finite groups rather than the character theory of finite Abelian groups.

Applying Theorem 1.1 yields that

P(∃ℓ ∈ΛL1 ,L2 , X (G/Hℓ,Sℓ(bℓ,δ)) is not a δ-expander) É
∑

ℓ∈ΛL1 ,L2

e−bℓ .

5
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Let us now turn to the second summand of the right side of (1). First, notice that

P(∀ℓ ∈ΛL1,L2 , X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander and ρℓ(Xk ) 6∈Θℓ)

ÉP(∀ℓ ∈ΛL1,L2 , ρℓ(Xk ) 6∈Θℓ | ∀ℓ ∈ΛL1,L2 , X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander).

This last probability is amenable to sieve.

We fix (non-necessarily distinct) indices ℓ and ℓ′ in ΛL1 ,L2 and a complex representation (with representation
space V ):

π : G
ρℓ,ℓ′→ Gℓ,ℓ′ →GL(V ),

factoring through Gℓ,ℓ′ that has no nonzero Gℓ,ℓ′ -invariant vector (seen as Gℓ,ℓ′ -representations, π and 1 are orthogo-
nal). Since Gℓ,ℓ′ is a finite group we may assume without loss of generality that π gives rise to a unitary representation
of Gℓ,ℓ′ (i.e. the representation space V may be equipped with a Gℓ,ℓ′-invariant scalar product written 〈 ; 〉).

First step: we assert that there exists a constant η > 0 depending only on C0, δ, the set S(b,δ) and the distribution of
the steps ξ j , such that for any two vectors e, f ∈V

∣

∣

〈

E(π(Xk ))e; f
〉∣

∣É ‖e‖ ·
∥

∥ f
∥

∥ ·exp(−ηk) ,

where ‖x‖2 := 〈x; x〉 for any vector x ∈V .
Consider

M := E(π(ξk)) =
∑

s∈S(b,δ)
p(s)π(s),

which is a well-defined element of End(V ) since the series defining M converges absolutely (because π is a unitary
representation and

∑

s p(s)= 1). From M , we can then define two other elements of End(V ):

M+ := Id−M and M− := Id+M .

Note that these formulæ define two operators which are both independent of k and self-adjoint. Indeed, the set
S(b,δ) as well as the distribution of the ξk are symmetric; moreover the mapping sending an operator to its adjoint is
linear and continuous. We also need to define

N0 := E(π(X0)) =
∑

t∈T

P(X0 = t)π(t)∈ End(V ),

where T is a fixed (finite) subset of G containing the starting point g0 of the random walk (Xk ). (For simplicity one can
assume that T = {g0}.)

The random variables X0 and ξk being independent, it follows that for k Ê 1,

E(π(Xk ))= N0Mk .

Thus, by linearity,

E(
〈

π(Xk )e; f
〉

) =
〈

Mk e; N∗
0 f

〉

,

where N∗
0 is the adjoint of N0.

As
∑

s∈S(b,δ) p(s)= 1 and since for every s ∈ S(b,δ), π(s) is a unitary operator, the eigenvalues of M are in the interval
[−1 ,1]. Now, let ρ be the spectral radius of M , that is

ρ := max
{∣

∣γ
∣

∣ : γ is an eigenvalue of M
}

.

Then
∣

∣

∣

〈

Mk e; N∗
0 f

〉∣

∣

∣É ‖e‖ ·
∥

∥ f
∥

∥ ·ρk ,

since the norm of N0 is smaller than 1.
We need to exhibit a positive real number ν independent of i and π such that 0 É ρ É 1− ν. We will then be

able to set η := − log(1−ν) > 0. We use the fact that ρ = max{ρ+,ρ−}, where ρ+ and ρ− are real numbers equal to

6
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the greatest positive eigenvalue of M and the opposite of the smallest negative eigenvalue of M , respectively. It is
enough to prove that ρ± < 1−ν± for some constants ν± which are independent of i and π. To that purpose, we use the
variational interpretation for the eigenvalues of a self-adjoint operator on a finite dimensional Hilbert space. Indeed
1−ρ± , which is the smallest eigenvalue of M±, is equal to

min
v 6=0

〈Ψv ; v〉
‖v‖2

,

where Ψ := M±. Thus, we compute

〈

M+v ; v
〉

‖v‖2
=

1

2

∑

s∈S(b,δ)
ps

‖π(s)v − v‖2

‖v‖2

Ê
p0

+

2
inf
̟

inf
v 6=0

max
s∈ρℓ,ℓ′ (S(b,δ))

‖̟(s)v − v‖2

‖v‖2
,

where p+
0 := mins∈S(b,δ) p(s) > 0 and ̟ runs over the representations of Gℓ,ℓ′ without any nonzero invariant vector.

Now combining the nice S(b,δ)-image condition and the nice lifting condition one has

max
s∈ρℓ,ℓ′ (S(b,δ))

‖̟(s)v − v‖2

‖v‖2
Ê max

s∈Sℓ(bℓ ,δ)×{b}∪{a}×Sℓ′ (bℓ′ ,δ)

‖̟(s)v − v‖2

‖v‖2
.

The Cayley graphs (X (G/Hℓ,Sℓ(bℓ,δ)))ℓ∈Λ are assumed to be δ-expander graphs. Hence using Lemma 1.2 we
deduce that X (Gℓ,ℓ′ ,Sℓ(bℓ,δ)× {b}∪ {a}×Sℓ′ (bℓ′ ,δ)) is a

(

(1+C0)−1 ·δ
)

-expander Cayley graph. Thus

inf
̟

inf
v 6=0

max
s∈ρℓ,ℓ′ (S(b,δ))

‖̟(s)v − v‖2

‖v‖2
> (1+C0)−1 ·δ .

The constant ν+ := 2δ(1+C0)−1/p+
0 satisfies the required conditions.

To determine ν−, we use the fact that there exists a relation of odd length c among the elements of S(b,δ) (we may
even set c := 1 since 1∈ S(b,δ)). Therefore for any v ∈V ,

v =
1

2

(

(v +π(s1)v)− (π(s1)v +π(s1s2)v)+·· ·+ (π(s1 · · · sc−1)v +π(1)v)
)

.

Then, invoking Cauchy–Schwarz’s inequality and using the Gℓ,ℓ′ -invariance of the inner product,

‖v‖2 É
c

4

c−1
∑

i=0
‖π(ri )v +π(ri si+1)v‖2 É

c

4

c−1
∑

i=0
‖v +π(si+1)v‖2,

where r0 := 1 and ri := s1 · · · si for i Ê 1. In particular, we deduce that

‖v‖2 É
c

4

(

min
1ÉiÉc

1

p(si )

) c−1
∑

i=0
p(si+1)‖v +π(si+1)v‖2.

Then, taking into account the possible repetitions of generators in the sequence (s1, · · · , sc ),

‖v‖2 É
c2

4

1

min
{

p(si ) : 1 É i É c
}

∑

s∈S

p(s)‖π(s)v + v‖2 É
c2

2

(

min
{

p(si ) : 1É i É c
}

)−1
〈M−v ; v〉 .

Therefore we can choose ν− = 2
c2 min {p(si ) | 1 É i É c} > 0.

Second step: we apply the inequality obtained in the first step to the special case where e = f is a vector of an orthonor-
mal basis of V . Summing up over the elements of such a basis we obtain, with notation as above,

|E(Trπ(Xk ))| É exp(−ηk)(dimπ).

7
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Now from Kowalski’s large sieve inequality [8, Prop. 3.7] we obtain

P(∀ℓ ∈ΛL1,L2 , ρℓ(Xk ) 6∈Θℓ | ∀ℓ ∈ΛL1 ,L2 X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander)

É∆(Xk ;L1,L2)

(

∑

L1ÉℓÉL2

#Θℓ

nℓ

)−1

,

where one has the theoretical upper bound:

∆(Xk ;L1,L2) É max
ℓ∈ΛL1 ,L2

max
π∈B

∗
ℓ

∑

ℓ′∈ΛL1 ,L2

∑

τ∈B
∗
ℓ′

|W (π,τ)| ,

with
W (π,τ) := E(Tr[π, τ̄]ρℓ,ℓ′ (Xk )).

Here for any ℓ ∈ Λ we let Bℓ be a set of representatives containing 1 for the isomorphism classes of irreducible rep-
resentations of G/Hℓ. We set further B

∗
ℓ

:= Bℓ \ {1}. Finally if π (resp. τ) is a representation of a group G1 (resp. G2)
we let [π,τ] be the “external” tensor product representation π⊗τ of G × H if G 6= H or the “internal” tensor product
representation π⊗τ of G otherwise.

In our setting we have, using [8, Lemma 3.4],

[π, τ̄]ρℓ,ℓ′ = δ((ℓ,π), (ℓ′,τ))1+ [π, τ̄]0ρℓ,ℓ′ ,

where δ(·, ·) is the Kronecker symbol and [π, τ̄]0 is the component of [π, τ̄] orthogonal to 1. Thus applying the first step
to each of the representations [π, τ̄]0ρℓ,ℓ′ , we obtain

∣

∣E(Tr[π, τ̄]0ρℓ,ℓ′ (Xk ))
∣

∣É (dimπ)(dimτ)exp(−ηk).

Using the trivial bounds

∑

ρ∈Irr(G)
É |G| and max

ρ∈Irr(G)
dimρ É

√

|G|,

and putting everything together we obtain as wished:

P(∀ℓ ∈ΛL1,L2 , ρℓ(Xk ) 6∈Θℓ | ∀ℓ ∈ΛL1 ,L2 X (G/Hℓ,ρℓ(S(b,δ))) is a δ-expander)

É(1+ (L2 −L1) ·
∣

∣GL2

∣

∣

3/2 exp(−kη))

(

∑

L1ÉℓÉL2

#Θℓ

nℓ

)−1

.

2. ORDER & DISORDER: MONOCHROMATIC STRUCTURES

We now turn to an application of Proposition 1.3.

2.1. SIEVING FOR MONOCHROMATIC SUBSTRUCTURES

We let G be the (countable) infinite complete graph, that is, the graph with vertex set N in which every two distinct
positive integers are neighbors. We fix an integer c Ê 3 and we define C to be the collection of all functions from the
edges of G to Z/cZ. For every function f , the support of f is the set of all elements e in the domain of f such that
f (e) 6= 0. For each integer R Ê 3, let t(R) be an integer greater than 3R. Define C R to be the family of all functions
f ∈C whose support is contained in [t(R)]2.

The set C can be naturally endowed with a group structure inherited from that of Z/cZ. The addition of two
elements f and g of C is formally defined by

f + g : E (G ) −→ Z/cZ

e 7−→ f (e)+ g (e).

8
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The neutral element is the function that is identically 0. Note that the addition trivially restricts to each set C R , natu-
rally yielding a 1–parameter family of subgroups of C .

We are interested in monochromatic substructures of a given fixed size k that may arise. Specifically, to avoid
unnecessary notation and abstraction, we shall focus on finding monochromatic triangles (though our strategy could
be adapted effortlessly to the question of detecting monochromatic r -cycles for r Ê 3).

From now on, we fix an integer R at least 3. Next we define a family of subgroups (Hℓ)ℓ∈Λ of C , where Λ := [R].
Consider a partition (Iℓ)ℓ∈Λ of [t(R)]. We set i (ℓ) := |Iℓ| for ℓ ∈Λ. Let Eℓ :=

{

(a,b) ∈ I 2
ℓ

: a 6= b
}

, that is, Eℓ is the set of

all edges of G with both endvertices contained in Iℓ. We define Cℓ to be the collection of all functions f ∈ C R with
support contained in Eℓ. Then Hℓ is the collection of all functions f ∈C R such that f |Eℓ ≡ 0.

The following properties of the quotients Cℓ :=C R /Hℓ are immediate but crucial from our point of view.

LEMMA 2.1. — The following holds.

1. For each ℓ ∈Λ,

(a) Cℓ is a set of representatives of the quotient Cℓ, and

(b) the index of Hℓ in C R is nℓ := [C R : Hℓ]= |Cℓ| = ci(ℓ)(i(ℓ)−1)/2 .

2. The family (ρℓ)ℓ∈Λ is linearly disjoint.

Proof. 1.(a) No two distinct functions in Cℓ are congruent modulo an element of Hℓ. Moreover, for any f ∈ C R , let
fC be the function equal to f on Eℓ and equal to 0 everywhere else, that is, fC |Eℓ := f |Eℓ and fC |(E (G ) \ Eℓ) := 0. By
construction fC ∈Cℓ and f − fC ∈ Hℓ, or equivalently f ≡ fC ( mod Hℓ).

1.(b) By the definition, |Eℓ| = i (ℓ)(i (ℓ)−1)/2. The conclusion follows.
2. Fix two distinct integers ℓ and ℓ′ in Λ, and a couple ( fℓ, fℓ′ ) ∈Cℓ×Cℓ′ . By 1.(a) we can choose representatives f̃ℓ

and f̃ℓ′ of fℓ and fℓ′ in Cℓ and Cℓ′ , respectively. Since Eℓ and Eℓ′ are disjoint (because ℓ 6= ℓ′), the function f : E (G ) →
Z/cZ with support contained in Eℓ∪Eℓ′ such that f |Eℓ = f̃ℓ and f |Eℓ′ = f̃ℓ′ is well defined and satisfies ρℓ( f ) = fℓ and
ρℓ′ ( f ) = fℓ′ .

A practical way to rephrase part of the proof of Lemma 2.1 is to say that for each fixed integer ℓ in Λ and each
element f of C

R , the unique element in Cℓ congruent to f modulo Hℓ is the function equal to 0 on Eℓ and to f

outside of Eℓ.

2.2. LOOKING FOR MONOCHROMATIC TRIANGLES

From now on, we assume that i (ℓ)Ê 3 for ℓ ∈Λ. (This is possible since t(R) Ê 3R.) For each integer ℓ ∈Λ, let Θℓ be the
set of classes f̄ ∈Cℓ such that the unique representative f of f̄ in Cℓ (the existence of which is asserted by Lemma 2.1)
contains a monochromatic triangle in Eℓ. In other words f ∈ Θℓ if and only if Iℓ contains three integers i1, i2 and
i3 such that f ((i1, i2)) = f ((i1, i3)) = f ((i2, i3)). Observe that |Θℓ|/ |Cℓ| = c−2. Indeed any function that restricts to a
constant map (with values in Z/cZ) on a fixed triangle contained in Eℓ surjects to an element of Θℓ via ρℓ.

Assume that δ is a fixed real number in (0,1/2]. We set bℓ := ℓ. In particular, note that

κ(bℓ,ℓ;δ) =
⌈

2((2−δ) ln(2−δ)+δ lnδ)−1 ·
(

i (ℓ)(i (ℓ)−1) lnc

2
+ℓ+ ln 2

)⌉

.

Given f (ℓ) ∈ Sℓ(bℓ,δ), we define f̃ (ℓ) to be its canonical representative in C
R , that is, f̃ (ℓ) ∈Cℓ.

THEOREM 2.2. — Let (Xk ) be a random walk on C R defined as in Subsection 1.2 using S(b,δ). Set ν− := 2p(1) and

ν+ := 2δ/min
{

p(s) : s ∈ S(b,δ)
}

. Let η> 0 be such that 1−exp(−η) = min{ν−,ν+}. Then, for each positive integer k and

each integer L1 ∈ [⌊R/2⌋],

P(Xk does not contain a monochromatic triangle) É
c2 +1

L1
+c(3/4)·i(2L1 )(i(2L1)−1)+2 exp(−ηk).

9
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Proof. Fix a positive integer k. Lemma 2.1 ensures that the system (ρℓ)ℓ∈Λ is linearly disjoint. Moreover, the choices
of the canonical representative s̃(ℓ) imply that for every ℓ ∈Λ, the surjection ρℓ satisfies the nice-lifting condition and
(ρℓ,ρ′

ℓ
) has nice S(b,δ)-image (with respect to (x0, y0) = (0,0)) for each ℓ′ ∈ Λ \ {ℓ}. These are direct consequences of

the fact that Eℓ∩Eℓ′ =∅ if ℓ 6= ℓ′.
Let η be the positive constant given by Proposition 1.3. Letting L1 ∈ [⌊R/2⌋] and setting L2 := 2 ·L1, we are guaran-

teed that Λ∩ [L1 ,L2]= {L1, . . . ,L2}. Therefore we obtain, applying Proposition 1.3,

P(ρℓ(Xk ) 6∈Θℓ, ∀ℓ ∈ΛL1 ,L2 ) É
L2
∑

ℓ=L1

e−bℓ + (1+ (L2 −L1)
∣

∣CL2

∣

∣

3/2 exp(−ηk))

(

L2
∑

ℓ=L1

#Θℓ

nℓ

)−1

= e1−L1 −e−2L1 + (1+L1 ·c(3/2)·i(2L1 )(i(2L1)−1)/2 exp(−ηk)) ·
c2

L1

É e1−L1 −e−2L1 +
c2

L1
+c(3/4)·i(2L1 )(i(2L1)−1)+2 exp(−ηk)

É
1

L1
+

c2

L1
+c(3/4)·i(2L1 )(i(2L1 )−1)+2 exp(−ηk),

where we used that e1−x −e−2x É 1/x for x Ê 1.

Different choices of sets Iℓ may correspond to different speed of rarefaction of non-typical structures. More pre-
cisely, one can put additional constraints on the structure of the monochromatic triangles, e.g. the three vertices must
be consecutive integers as in Corollary 2.3. In addition, we give in Corollary 2.4 another specification of the sets Iℓ,
which allows for a larger domain of validity. The price to pay is a slower speed of convergence and less constraints put
on the monochromatic triangles.

COROLLARY 2.3. — With notation as in Theorem 2.2,

∀k Ê 1, η ·k É ln(R/2)−1 ⇒ P(Xk does not contain a monochromatic triangle) É (c13/2 +c2 +1)exp(−ηk).

Proof. Set Iℓ := {3ℓ−2,3ℓ−1,3ℓ} for each ℓ ∈ Λ. In particular i (ℓ)(i (ℓ)−1) = 6. Let k be a positive integer such that
ηk É ln(R/2)−1. If we set L1 := ⌈exp(ηk)⌉ and L2 := 2L1, then L1 É ⌊R/2⌋. Therefore, Theorem 2.2 implies that

P(Xk does not contain a monochromatic triangle) É
c2 +1

L1
+c13/2 ·exp(−ηk)

=(c13/2 +c2 +1)exp(−ηk).

COROLLARY 2.4. — With notation as in Theorem 2.2,

∀k Ê 1, η ·k É (4R −4)2 lnc ⇒ P(Xk does not contain a monochromatic triangle) É
8(c8 +c2 +1)

p
lnc

√

ηk
.

Proof. Set Iℓ :=
{

ℓ(ℓ+1)
2 , . . . , ℓ(ℓ+1)

2 +ℓ
}

. In particular i (ℓ) = ℓ+1 for each ℓ ∈ Λ. Let k be a positive integer such that

ηk É (4R −4)2 lnc. If we set L1 :=
⌈√

ηk/(64ln c)
⌉

and L2 := 2L1, then L1 É R/2. Consequently, Theorem 2.2 implies
that

P(Xk does not contain a monochromatic triangle) É
c2 +1

L1
+c3L1(2L1+1)/2+2 ·exp(−ηk)

É
c2 +1

L1
+

c8

L1

É
(c8 +c2 +1)8

p
ln c

√

ηk
,

10
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where we used that exp(−ηk) É c−64(L1−1)2
and L1 · c3·L2

1+3·L1/2+2−64(L1−1)2
is upper bounded by c8 for every c Ê 3 and

L1 Ê 1.

Note that in the two corollaries the upper bound is non trivial only if R is big compared to the number of colors c.
This condition is not restrictive since c and R vary independently and since no restriction on the size of R is needed.

It is natural to compare these last two statements with what we know from Ramsey theory. We postpone this
discussion to Section 4.

3. RANDOM SUBGRAPHS OF THE 2-DIMENSIONAL GRID

We now turn to another application of Proposition 1.3.

3.1. SIEVING IN THE 2-DIMENSIONAL GRID

We let G be the infinite 2-dimensional grid, that is, the graph with vertex set Z2 in which (a,b) and (c,d) are neighbors
if and only if |a −c| + |b −d | = 1. For each positive integer R, we consider the family G

R of all spanning subgraphs of
G whose edges are contained in {−2R −2, . . . ,2R +2}2. In other words, a graph in G

R has vertex set Z2 and two vertices
u = (a,b) and v = (c,d) are neighbors only if (a,b,c,d) ∈ {−2R −2, . . . ,2R +2}4 and u and v are neighbors in G .

The family G of all spanning subgraphs of the grid G may be endowed with an Abelian group structure: indeed the
symmetric difference △ is a binary associative composition law on G and the identity element is the graph with vertex
set Z2 and no edge. Note that △ trivially restricts to each set G

R , naturally yielding a 1–parameter family of subgroups
of G. Note further that every non trivial element of G (and in particular of G

R ) has order 2.
From now on, we fix a positive integer R. Next we define a family of subgroups (Hℓ)ℓ∈Λ of G, where Λ := [R]. For

each ℓ ∈ Λ, we define Cℓ to be the collection of all spanning subgraphs of G with edges contained in the annulus
D(0,2ℓ+2)\D(0,2ℓ). (Here D(a,r ) is the open disc in R2 with center a and radius r and with respect to the ‖·‖1 norm—
in other words, an edge {(a,b), (c,d)} of Z2 belongs to D(0,ℓ) if and only if {a,b,c,d} ⊆ {−ℓ, . . . ,ℓ}.) Then for ℓ ∈ Λ we
define Hℓ to be the “complement” of Cℓ in the following sense: the elements of Hℓ are the graphs with vertex set Z2

and with no edge included in D(0,2ℓ+2) \ D(0,2ℓ).
In this setting one has the following analogue of Lemma 2.1, where Gℓ is still the quotient G/Hℓ.

LEMMA 3.1. — The following holds.

1. For each ℓ ∈Λ,

(a) Cℓ is a set of representatives for the quotient Gℓ, and

(b) the index of Hℓ in G is nℓ := [G : Hℓ] = |Cℓ| = 264ℓ+40.

2. The family (ρℓ)ℓ∈Λ is linearly disjoint.

Proof. 1.(a) No two distinct graphs in Cℓ are congruent modulo an element of Hℓ. Moreover, for any g ∈ G, let gC be
the graph with vertex set Z2 and edge set obtained by deleting all the edges of g that are not contained in the annulus
D(0,2ℓ+2) \ D(0,2ℓ). By construction gC ∈Cℓ and its complement gH in G is an element of Hℓ satisfying g = gC△gH .
In other words, g ≡ gC ( mod Hℓ).

1.(b) By the definition, the subgraph of G R contained in D(0,ℓ) contains precisely 4ℓ(2ℓ+1) edges. Therefore, the
subgraph of G R contained in D(0,2ℓ+2) \ D(0,2ℓ) contains precisely 64ℓ+40 edges. The conclusion follows.

2. Fix two distinct integers ℓ and ℓ′ in Λ, and a couple (gℓ, gℓ′ ) ∈ Gℓ×Gℓ′ . By 1.(a) we can choose representatives
g̃ℓ and g̃ℓ′ of gℓ and gℓ′ in Cℓ and Cℓ′ , respectively. Since Cℓ and Cℓ′ are disjoint (because ℓ 6= ℓ′), the graph g obtained
by taking the union of the edges of g̃ℓ and g̃ℓ′ (and still having vertex set Z2) satisfies ρℓ(g )= gℓ and ρℓ′ (g )= gℓ′ .

One also has an interpretation of Lemma 3.1 analogous to the one given for Lemma 2.1. For each fixed integer
ℓ ∈Λ and each element g ∈ G, the unique element in Cℓ congruent to g modulo Hℓ is g ∩Cℓ (the intersection being
taken edgewise).

11
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3.2. LOOKING FOR 4-CYCLES

For each integer ℓ ∈ Λ, let Θℓ be the set of every class ḡ ∈ Gℓ such that the unique representative of ḡ in Cℓ (the
existence of which is asserted by Lemma 3.1) contains a 4-cycle. Observe that |Θℓ|/ |Gℓ| Ê 2−4, since every graph of Cℓ

that contains a fixed 4-cycle reduces to an element of Θℓ modulo Hℓ.
Suppose that δ is a fixed real number in (0 ,1). We set bℓ := ℓ. In particular, note that

κ(bℓ,ℓ;δ) =
⌈

2((2−δ) ln(2−δ)+δ lnδ)−1 · ((64ℓ+41) ln 2+ℓ)
⌉

.

Given s(ℓ) ∈ Sℓ(bℓ,δ), we define s̃(ℓ) to be its representative in Cℓ (see 1(b) of Lemma 3.1), that is, s̃(ℓ) has no edge
outside D(0,2ℓ+2) \ D(0,2ℓ).

THEOREM 3.2. — Let (Xk ) be a random walk on G
R defined as in Subsection 1.2 using S(b,δ). Set ν− := 2p(1) and

ν+ := 2δ/min
{

p(s) : s ∈ S(b,δ)
}

. Let η> 0 be such that 1−exp(−η)= min{ν−,ν+}. Then,

∀k Ê 1, η ·k É 75R −149 ⇒ P(Xk does not contain a 4-cycle) É
2551

ηk
.

Proof. Fix a positive integer k. Lemma 3.1 ensures that the system (ρℓ)ℓ∈Λ is linearly disjoint. Since we have chosen
the s̃(ℓ)

i
in Cℓ, the canonical surjection ρℓ satisfies the nice-lifting condition for each ℓ ∈ Λ. Moreover (ρℓ,ρℓ′ ) has a

nice S(b,δ)-image (with respect to (x0, y0)= (1,1)) for every couple of distinct elements ℓ and ℓ′ in Λ.
Let η be the positive constant given by Proposition 1.3. We may assume that ηk Ê 2551, since otherwise the

statement of the theorem trivially holds. Setting L1 := ⌈ηk/150⌉ and L2 := 2L1, we are guaranteed that Λ∩ [L1 ,L2] =
{L1, . . . ,L2} since ηk É 75R −149. Therefore we obtain, applying Proposition 1.3,

P(ρℓ(Xk ) 6∈Θℓ, ∀ℓ ∈ΛL1 ,L2 ) É
L2
∑

ℓ=L1

e−bℓ + (1+ (L2 −L1)
∣

∣GL2

∣

∣

3/2 exp(−ηk))

(

L2
∑

ℓ=L1

#Θℓ

nℓ

)−1

É e1−L1 −e−2L1 + (1+L1 ·2192L1+60 exp(−ηk)) ·
24

L1

É
150

ηk
+

24 ·150

ηk
+

1

ηk

É
2551

ηk
,

where we used that e1−x −e−2x É 1/x if x > 0 and 2192·(x/150+1)+64 exp(−x) É 1/x if x Ê 2551.

In a similar way as in Section 2 one could look, more generally, for cycles of length r Ê 4 in the graph obtained
after k steps of the random walk are performed. Our setting could be easily adapted to this more general case. For
simplicity we have chosen to give the detail of the argument only in the case where r is 4.

4. REMARKS AND FURTHER APPLICATIONS

Let us underline some peculiarities of the applications proposed in Sections 2 and 3. First, concerning the subgraphs
of the infinite grid, we note that while it is elementary to estimate the expected number of 4-cycles in a subgraph
chosen uniformly at random in a given finite 2-dimensional grid, our notion of randomness relies instead on the
consideration of arbitrary words in the alphabet corresponding to a particular generating system (with respect to the
group structure considered). Our point in Sections 2 and 3 is to give, for this more intricate notion of randomness,
explicit upper bounds for probabilities that we expect to be small.

Second, for monochromatic substructures, it follows from Ramsey’s theorem [12] that for every fixed positive in-
teger c, there exists an integer N such that if n Ê N , then every c-coloring of the edges of the complete graph Kn on
n vertices contains a monochromatic triangle. Alon and Rödl [2] established that the smallest such N is Θ(3c ) as n

tends to infinity (that is, there exist two constants ρ and ρ′ such that for sufficiently large n, this value belongs to
[

ρ ·3c ,ρ′ ·3c
]

). In our setting, although the infinite complete graph is involved, only finite subgraphs of it are checked

12
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for the existence of monochromatic triangles. These subgraphs are not necessarily large enough for Ramsey’s theorem
to apply. In addition, we only consider monochromatic triangles with vertices contained in some prescribed set Iℓ.

Another feature of the application developed in Section 2 is uniformity with respect to the number c of colors
involved. No such uniformity holds in the context of Ramsey theory. Indeed, as already mentioned, Alon and Rödl’s
theorem [2] asserts that the number of required vertices for Ramsey’s theorem to hold grows exponentially fast with c.

We also note that a strategy similar to that used in Section 2 allows one to check for monochromatic arithmetic
progressions for which the length, the common difference and the “shape”, are prescribed. Fix positive integers s (the
desired length of the arithmetic progression), q (the desired common difference), and c Ê 3 (the number of colors).
Further, let R be an integer greater than s. Set Λ := [R] and t(R) := R+q(2s−1). Similarly as before, let C R be the group
of all c-colorings of [t(R)]. We consider the partition (Iℓ)ℓ∈Λ of [t(R)], where Iℓ :=

{

ℓ+q · j : 0É j É 2s −1
}

for each
ℓ ∈Λ. (It is the choice of a particular partition that provides a control on the “shape” of the arithmetic progressions to
be found.) In this setting our method yields the following result.

THEOREM 4.1. — Let (Xk ) be a random walk on C R defined as in Subsection 1.2 using S(b,δ). Set ν− := 2p(1) and ν+ :=
2δ/min

{

p(s) : s ∈ S(b,δ)
}

. Let η> 0 be such that 1−exp(−η)= min{ν−,ν+}. For all k Ê 1 such that η ·k É ln(R/2)−1,

P(In Xk , no monochromatic arithmetic progression of length s is contained in Iℓ, ∀ℓ ∈Λ) É (c4s +cs +1)exp(−ηk).

Let us sketch the proof. For each ℓ ∈ Λ, let Hℓ be the set of all functions f : [t(R)] → [c] such that f |Iℓ ≡ 0. The
index in C R of each of these subgroups is c2s . Moreover, there is a collection of natural representatives for the classes
modulo Hℓ, namely the functions the support of which is contained in Iℓ. Letting Θℓ be the set of classes modulo
Hℓ whose unique representative — in the aforementioned system of natural representatives — contains a monochro-
matic arithmetic progression of length s that is contained in Iℓ, it holds that |Θℓ|/nℓ Ê c−s .

Now, similarly as before, Proposition 1.3 can be applied and yields a positive constant η. Setting L1 := ⌈exp(ηk)⌉
and L2 := 2L1, one deduces Theorem 4.1.

We conclude by pointing out the following: van der Waerden’s theorem [13] ensures that, for each fixed positive
integers s and c Ê 3, there exists an integer N such that if n Ê N then any c-coloring of [n] yields a monochromatic
arithmetic progression of length s. In the above setting, we impose two additional conditions: the common difference
of the arithmetic progression and a constraint on its form: it must be contained in one of the sets Iℓ. Thus, van
der Waerden’s theorem does not guarantee the existence of such an arithmetic progression (even for large values
of t(R)) and the aforementioned inequality is essentially an explicit lower bound on the speed of rarefaction of the
colorings that do not yield a monochromatic arithmetic progression with the required properties. Furthermore, and
as mentioned in the remarks about Section 2, the uniformity of our estimate with respect to the number of colors c is
a quite interesting by-product of our approach.
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