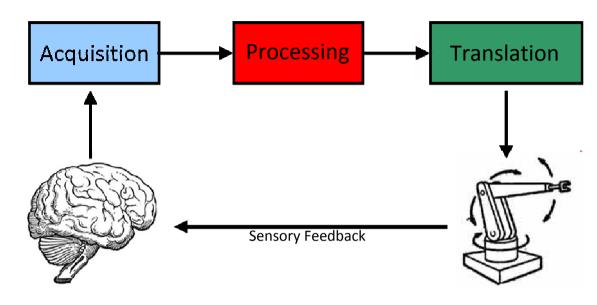


BCI signal classification using a Riemannian-based kernel

A. Barachant^{1,2}, S. Bonnet¹, M. Congedo², C. Jutten²
¹ CEA-LETI/DTBS, Grenoble, France
² GIPSA-lab, Grenoble, France
25-April-2012

Brain-Computer Interface (BCI)



• Acquisition :

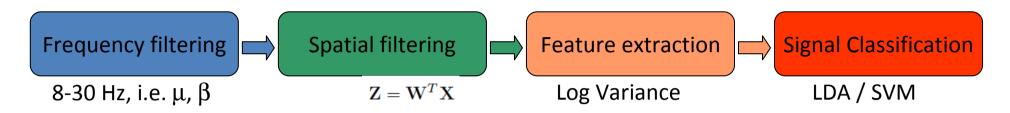
Effector

- EEG system with scalp electrodes (system 10-20)
- BCI paradigm using motor imagery (asynchronous BCI)

Signal Processing :

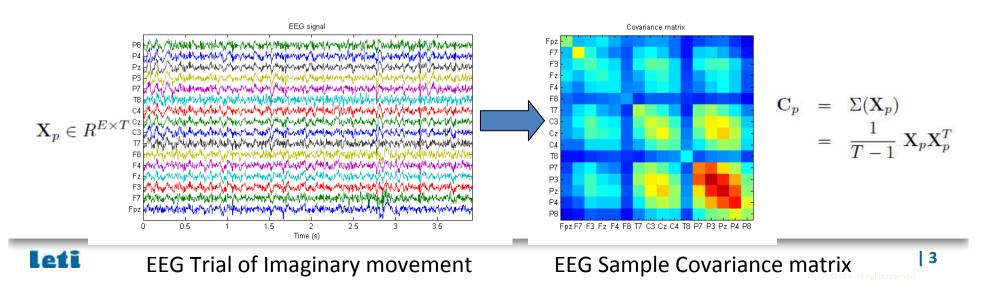
- Pre-processing : artefact removal, EEG signal band-pass filtering
- Two-class classification : Discriminate between two MI tasks

BCI Motor imagery (standard approach)



Spatial Filtering step (usually data-driven)

- CSP Criterion : promote variance difference between two classes
- Joint diagonalization of class-conditional mean spatial covariance matrices
- Select N_f spatial filters : Loss of information



Can we avoid the spatial filtering?

- Re-interpret CSP-based linear classification
 - CSP decision function :

$$h(\mathbf{X}) = v_0 + \sum_{n=1}^{N_f} v_n \log \left[\mathbf{W}^T \Sigma(\mathbf{X}) \mathbf{W} \right]_{n,n}$$

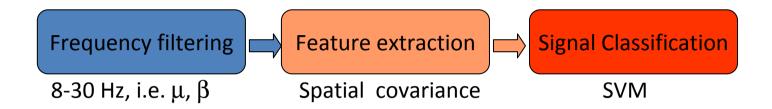
Omitting log() operator, this yields a feature dimension space E*=E (E+1)

$$h(\mathbf{X}) = u_0 + \mathbf{u}^T \operatorname{vec} [\Sigma(\mathbf{X})]$$

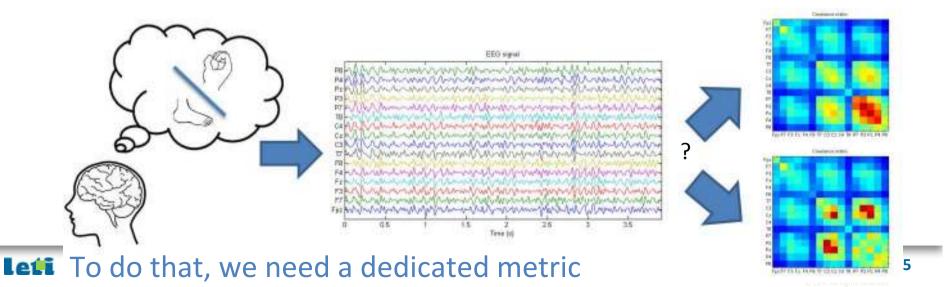
- Spatial filter matrix W can be estimated from \mathbf{u} , since $\mathbf{u} = \operatorname{vec} [\operatorname{Wdiag}(\mathbf{v})\mathbf{W}]$
- [Reuderink, 2011] Direct covariance classification on whitened trials $\tilde{\mathbf{X}} = \mathbf{P}^T \mathbf{X}$

$$h(\mathbf{X}) = u_0 + \mathbf{u}^T \operatorname{vec} \left[\mathbf{P}^T \Sigma(\mathbf{X}) \mathbf{P} \right]$$

Can we go further ?



- How to classify covariance matrices in MI-based BCI ?
 - Bayesian Framework (Wishart distribution)
 - Algebraic Framework (geometric approach)
 - Information Geometry Framework



Riemannian manifold of SPD matrices

- Space of Symmetric Positive-Definite (SPD) matrices
- Differentiable manifold (dimension E*)
 - Covariance matrices are points in this manifold and Riemannian distance can be computed between two points [Barachant, 2012].
 - At each point C (i.e. each covariance matrix), a scalar product can be defined in the associated tangent space

$$\langle \mathbf{S}_1, \mathbf{S}_2 \rangle_{\mathbf{C}} = \operatorname{tr}(\mathbf{S}_1 \mathbf{C}^{-1} \mathbf{S}_2 \mathbf{C}^{-1}).$$

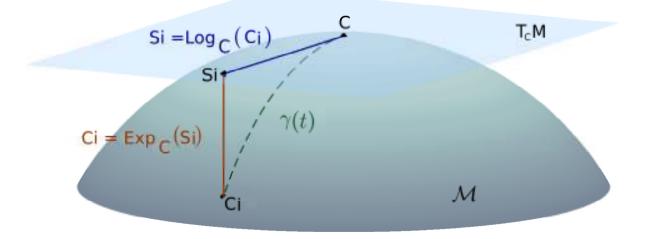
Distance between two SPD matrices (along the geodesic)

$$d_R(\mathbf{C}_i, \mathbf{C}_j) = \|\log \left(\mathbf{C}_i^{-1}\mathbf{C}_j\right)\|_F$$

Logarithmic/Exponential map of SPD matrices

Project locally a covariance matrix C_p onto the tangent plane

$$\mathbf{S}_p = \mathrm{Log}_{\mathbf{C}}(\mathbf{C}_p) = \mathbf{C}^{1/2} \mathrm{logm}\left(\mathbf{C}^{-1/2} \mathbf{C}_p \mathbf{C}^{-1/2}\right) \mathbf{C}^{1/2}$$



Proposed kernel

- An usual approach consists in mapping data in another feature space (usually with higher dimensionality)
 - Empirical kernel choice
 - Most employed : RBF kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left[-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2\right]$
- Riemannian geometry provides a natural kernel to deal with covariance matrices

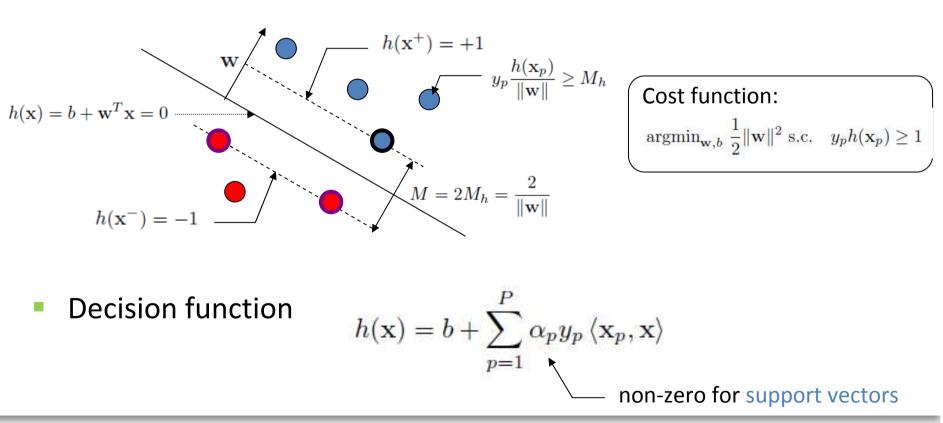
• Mapping function
$$\phi(\mathbf{C}) = \mathrm{Log}_{\mathbf{C}_{\mathrm{ref}}}(\mathbf{C})$$

$$k(\operatorname{vec}(\mathbf{C}_{i}), \operatorname{vec}(\mathbf{C}_{j})) = \langle \phi(\mathbf{C}_{i}), \phi(\mathbf{C}_{j}) \rangle_{\mathbf{C}_{\operatorname{ref}}} \\ = \operatorname{tr} \left[\operatorname{logm} \left(\mathbf{C}_{\operatorname{ref}}^{-1/2} \mathbf{C}_{i} \mathbf{C}_{\operatorname{ref}}^{-1/2} \right) \operatorname{logm} \left(\mathbf{C}_{\operatorname{ref}}^{-1/2} \mathbf{C}_{j} \mathbf{C}_{\operatorname{ref}}^{-1/2} \right) \right].$$

Application to SVM classification

SVM classification

- Linear (separable) two-class SVM
 - Supervised classification with a set of labelled feature vectors $\{(\mathbf{x}_p, y_p)\}_{p=1}^P$
 - Seeks to linearly separate data by finding an hyperplane <u>maximising</u> the margin M

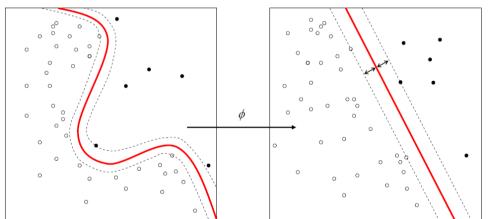


SVM (kernel trick)

Kernel trick :

leti

- Map data in a new feature space (where hopefully separable)
- The mapping function is rarely expressed, the kernel function is key in the computation $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$



- Decision function : $h(\mathbf{x}) = b + \sum_{p=1}^{P} \alpha_p y_p \langle \phi(\mathbf{x}_p), \phi(\mathbf{x}) \rangle_{\mathcal{H}}$
- Use new kernel based on Riemannian geometry

 $k(\operatorname{vec}(\mathbf{C}_i), \operatorname{vec}(\mathbf{C}_j)) = \langle \phi(\mathbf{C}_i), \phi(\mathbf{C}_j) \rangle_{\mathbf{C}_{\operatorname{ref}}}$

Choice of free parameter C_{ref}

- C_{ref} := Point in SPD space where the tangent plane is computed
- @ Identity (log-Euclidean kernel)

 $\mathbf{C}_{\mathrm{ref}} = \mathbf{I}_E$

$$k(\operatorname{vec}(\mathbf{C}_i), \operatorname{vec}(\mathbf{C}_j)) = \operatorname{tr} \left[\operatorname{logm}(\mathbf{C}_i) \operatorname{logm}(\mathbf{C}_j) \right]$$
$$= \langle \operatorname{logm}(\mathbf{C}_i), \operatorname{logm}(\mathbf{C}_j) \rangle_F$$

@ geometric mean of the P labeled covariance matrices

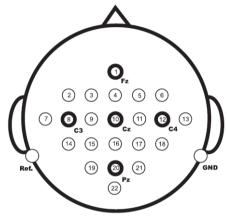
$$\mathbf{C}_{\mathrm{ref}} = \operatorname{argmin}_{\mathbf{C}} \sum_{p=1}^{P} d_{R}^{2}\left(\mathbf{C}, \mathbf{C}_{p}\right)$$

Experiments

- Asynchronous MI-based BCI (BCI competition IV, dataset 2a)
 - 9 subjects
 - 22 electrodes
 - Reference electrode on the left mastoid
 - 8-35 Hz (general) band-pass filter
 - 4-class dataset : RH, LH, TO, BF (144 trials per class)

• Objectives :

- Average performance across subjects and across all pairs of binary classification
- Performance comparison
 - Standard CSP method
 - SVM applied on vectorized covariance matrices
 - Covariance kernel-SVM @ identity
 - Covariance kernel-SVM @ geometric mean
- 30-fold cross-validation



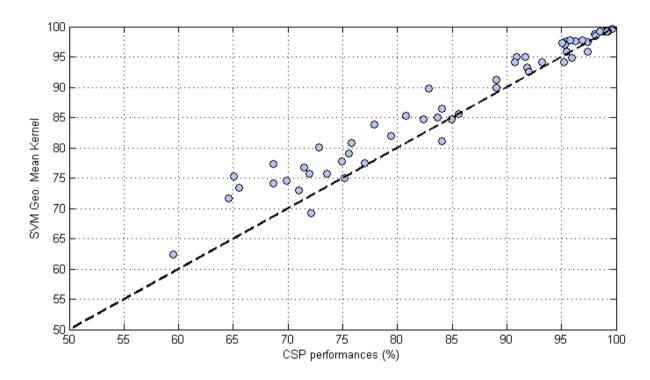
Results (1/3)

	SVM kernel Geometric Mean	SVM kernel Identity	SVM plain	CSP
LH/RH	83.4	82.8	76.9	81.4
LH/BF	89.9	89.5	82.2	86.9
LH/TO	89.3	88.8	84	87.3
RH/BF	88.8	88.2	81.1	86.3
RH/TO	88.7	88	83.4	85.7
BF/TO	82.1	81.4	74.9	80.8
mean	87	86.4	80.4	84.7

Table 1: Average classification accuracy across the 9 subjects for 6 pairs of mental tasks.

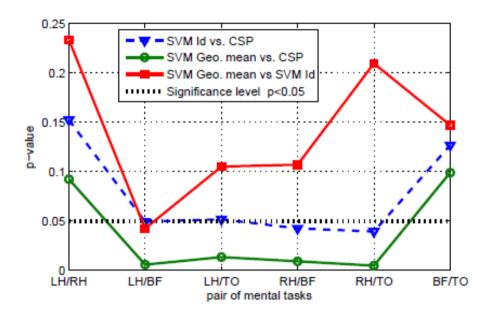
- R-based kernel SVM outperforms CSP+LDA in all cases,
- Direct covariance classification gives poor results,
- Geometric mean of the P SPD matrices is a good location to compute the tangent plane.

Results (2/3)



- Individual sessions are shown
- RkSVM is superior especially in almost all sessions, especially in difficult situations

Results (3/3)



- Statistical analysis (9 subjects)
 - P-values for the 6 pairs of mental tasks in a subject-independent manner.
 - Hypothesis H0 : μ1 > μ2, one-tailed dependent t-test (8 df) for paired samples
- RkSVM classification is significantly better in almost all pairs of mental task.

Conclusion

- New covariance kernel for directly handling covariance matrices in classification methods
 - No need for explicit spatial filtering
 - Simple to implement (just add a new kernel in SVM toolobox!)
- New framework of R. geometry in BCI
- Successful application on a BCI competition dataset
 - outperforms significantly the conventional CSP method (two-class)
- Future work
 - Multi-class classification
 - Online application w/ location update of the tangent space between BCI sessions
 - Investigate the minimum # of trials required to properly estimate the classifier
 - Use regularized version of SVM to deal with high-dimensional (E*) features

leti

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Merci de votre attention

energie attendue - energies aftertative