N

N
N

HAL

open science

BCI Signal Classification using a Riemannian-based
kernel

Alexandre Barachant, Stéphane Bonnet, Marco Congedo, Christian Jutten

» To cite this version:

Alexandre Barachant, Stéphane Bonnet, Marco Congedo, Christian Jutten. BCI Signal Classification
using a Riemannian-based kernel. ESANN 2012 - 20th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, Apr 2012, Bruges, Belgium. pp.97-102.

hal-00693321

HAL Id: hal-00693321
https://hal.science/hal-00693321

Submitted on 2 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00693321
https://hal.archives-ouvertes.fr

BCI Signal Classification using a
Riemannian-based kernel

Alexandre Barachant!, Stéphane Bonnet!, Marco Congedo? and Christian Jutten?®

1- CEA, LETI, DTBS/STD/LE2S,
17 rue des Martyrs, F-38054 Grenoble, France.
2- Team ViBS (Vision and Brain Signal Processing),
GIPSA-lab, CNRS, Grenoble Universities.
Domaine Universitaire, F-38402 Saint Martin d’Heres, France.

Abstract. The use of spatial covariance matrix as feature is investigated
for motor imagery EEG-based classification. A new kernel is derived by
establishing a connection with the Riemannian geometry of symmetric
positive definite matrices. Different kernels are tested, in combination
with support vector machines, on a past BCI competition dataset. We
demonstrate that this new approach outperforms significantly state of the
art results without the need for spatial filtering.

1 Introduction

Brain-Computer Interfaces (BCIs) based on motor imagery have been well stud-
ied in the literature. For this type of BCI, the electrophysiological source of
BCI control is based on spontaneous signals induced by voluntary changes in
the dynamics of brain oscillations such as event related (de)synchronization
(ERD/ERS) [1]. Motor Imagery (MI) is often used where movements are imag-
ined by the subjects, which results in the activation of dedicated cortical areas
(sensorimotor cortex) in given frequency bands. Thus this type of BCI is well
suited for asynchronous BCI applications since the user can potentially perform
actions without any stimulus from the exterior world.

The standard approach in MI-based EEG signal classification is to perform
band-pass filtering, spatial filtering and linear classification, generally using
Fisher’s Linear Discriminant Analysis (LDA). The spatial filtering can be seen
as a data-driven dimension reduction method that aims at promoting variance
differences between two conditions. Sample covariance matrices are generally
handled in the Euclidean space without considerations about the curvature of
the space of Symmetric Positive Definite (SPD) matrices.

This paper provides a simple way to take into account the Riemannian geom-
etry for EEG signal classification. This approach has been successfully applied
on radar signal processing and image processing [2]. A new kernel is derived
by establishing a connection with the Riemannian geometry of SPD matrices.
This kernel is tested in combination with support vector machines, although we
could have applied the kernel trick to other classifiers like logistic regression.
Encouraging results are presented that demonstrate the potential benefit of the
approach. Another advantage of the presented method is that it can directly
be applied without the need for spatial filtering [3]. In section 2, the kernel is



introduced based on the Riemannian geometry. In section 3, results on BCI
competition dataset are provided.

2 A new kernel for symmetric positive definite matrices

2.1 Introduction

EEG signals are often analysed on short-time segments where the signal is as-
sumed to be wide-sense stationary. Let X € RF*T be a trial of imaginary
movement; £ being the number of electrodes and T" the epoch duration in num-
ber of samples. We further assume that the different EEG signals have been
band-pass filtered by the acquisition system, usually in the p and g8 frequency
bands in our application.

For each trial X, of known class y, € {—1,1}, one can estimate the covari-
ance matrix of the EEG random signal by the E' x E sample covariance matrix
(SCM) : C, = 1/(T'—1) X, X]". However note that SCM is sensitive to out-
liers and either robust covariance estimation techniques or regularization can be
applied to improve the estimation.

It is common practice in MI-based BCI to use spatial filtering for dimension
reduction and variance enhancement between EEG trials coming from different
classes [4]. The Common Spatial Patterns method (CSP) is for instance success-
fully applied as a mean to extract relevant features for the classification of EEG
trials recorded during two motor imagery tasks. This technique aims at simulta-
neously diagonalizing the two intra-class covariance matrices obtained in the two
conditions. This observation motivated us to investigate the direct use of spatial
covariance matrix as input feature for EEG-based BCI signal classification.

2.2 SVM formulation

Support Vector Machine (SVM) is a popular linear classifier in BCI applica-
tions [5]. Given a set of labelled feature vectors {(x,, y,)}/-,, this classification
technique seeks to linearly separate data by finding an hyperplane (with normal
vector w) that maximizes the margin, i.e. the distance between the hyperplane
and the nearest points from each class, called support vectors. We refer to [6]
and references herein for a detailed discussion on SVM.

The decision function will be based on the sign of :

h(x) :b+zapyp (%, X) = b+ (W, %) (1)

p=1

where (.,.) denotes the Euclidean scalar product between vectors. The term b
is a bias and the {ap}zlf:l are the Lagrangian multipliers associated to the dual
optimization problem [6]. Both quantities are estimated by quadratic program-
ming. Most of the a;’s are null except for the support vectors. If data are not
linearly separable in their native space, a mapping can be applied on the feature



vector x to another (high-dimensional) transformed space. The transformation
¢ is generally non-linear and the decision function can be rewritten as :

P
h(x) =b+ Z pYp (D(Xp), H(X)) 5, (2)

where H is a reproducing kernel Hilbert space where the dot product is defined.
The associated kernel k(.,.) is defined by : k(x;,x;) = (p(x:), 9(x;))4,-

In most SVM applications, the ¢-function is not explicitly expressed and solely
the kernel is used. A common kernel is the Gaussian radial basis function :
k(x;,x;) = exp [—v|x; — x;]|?]. SVM is known to possess good generalization
properties and to perform well in high-dimensional feature space. Finally the
margin maximization cost function is often penalized with the introduction of
slack variables whose effects are controlled by the hyper-parameter A. This
allows to enable soft margins where some feature vectors can be reasonably
misclassified.

2.3 SVM applied on covariance matrix

In order to use sample covariance matrix C as input feature to SVM, a simple
choice consists in vectorizing it : x = vec(C) and apply linear SVM classification
on the resulting set [7]. A more powerful approach consists in taking account
the Riemannian geometry of the space of covariance matrices, i.e. the space of
symmetric positive definite (SPD) matrices. Due to space constraints, we focus
on the main points needed for the proposed algorithm.

The space of SPD E x E square matrices P(E) forms a differentiable manifold
M of dimension E* = E (E+1)/2. At each point C (i.e. each covariance matrix),
a scalar product can be defined in the associated tangent space Tc M. The
manifold is locally homomorphic to the Euclidean tangent space and distance
computations in the manifold can be well approximated by distance computa-
tions in the tangent space.
Let Sy and S, be two tangent vectors (i.e. two symmetric matrices in our case),
the scalar product in the tangent space at C can be defined by the relation :

<Sl,SQ>C :tI‘(SlCilSQCil). (3)
Furthermore, we can define the logarithmic map to project locally all covariance
matrices {C,})_ |, onto the tangent plane by :

S, = Logg(Cp) = CY?logm (C_I/QCpC_l/Q) c'/? 4)

where logm denotes the logarithm of a matrix. From this connection with Rie-
mannian geometry, we define the mapping function as : ¢(C) = Log¢, . (C) .
This choice yields after some manipulations to the kernel :

k(vec(Ci),vec(Cy)) = (6(Ci), ¢(Cy)) .., (5)
= tr [1ogm (Cr—e}/2cic—1/2) logm (Cr—e}/2cjc—1/2)} '

ref ref



Here C,¢f is a free parameter that defines the point in SPD space where the
tangent plane is computed. A common choice is to use the geometric mean of
the P labelled covariance matrices {C,}1_; [8].

Alternatively, the choice C,¢f = Ig yields to the simplified log-Euclidean kernel :

k(vec(C;),vec(C;)) = tr[logm (C;)logm (C;)]
= (logm (C;),logm (C;))r (6)

where subscript F' stands for Frobenius. This kernel is investigated in [9].

3 Experiments

In order to evaluate the performance of the proposed method, we have compared
it to the classical signal processing chain in asynchronous MI-based BCI. The
standard approach consists in band-pass filtering, spatial filtering (using CSP
approach), log-variance feature extraction and Fisher’s LDA classification [4].
This method is compared to linear SVM applied on vectorized covariance ma-
trices and to kernel-based SVMs according to equation 5. Two tangent planes
have been considered : one at identity Ir and the other one at the geometric
mean of all covariance matrices {Cp,}/_;.

3.1 Dataset

Dataset IIa of BCI competition IV are used for analysis. 22 electrodes are
used (Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1,
CPz, CP2, CP4, P1, Pz, P2, POz). The reference electrode is located on the
left mastoid. A 8 — 35 Hz band-pass filter has been applied on the original
signals for all subjects. This dataset is composed of 9 subjects who performed
576 trials of right-hand (RH), left-hand (LH), tongue (TO) and both feet (BF)
motor imagery (i.e. 144 trials per class). Since CSP is designed for binary
classification, we have evaluated the average performance per subject, for all 6
possible pairs of mental tasks : {LH/RH, LH/BF, LH/TO, RH/BF, RH/TO,

SVM kernel SVM kernel | SVM plain | CSP
Geometric Mean Identity

LH/RH 83.4 82.8 76.9 81.4
LH/BF 89.9 89.5 82.2 86.9
LH/TO 89.3 88.8 84 87.3
RH/BF 88.8 88.2 81.1 86.3
RH/TO 88.7 88 83.4 85.7
BF/TO 82.1 81.4 74.9 80.8
mean 87 86.4 80.4 84.7

Table 1: Average classification accuracy across the 9 subjects for 6 pairs of
mental tasks.
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Fig. 1: Kernel SVM versus CSP classification accuracy comparison for each
individual pair of mental tasks.

BF/TO}. We have used 30-fold cross-validation to evaluate the generalization
performance of the algorithms and the significance of the classification accuracy.

3.2 Results

The hyperparameter A is chosen equal to 10 in our experiments. As it can be ob-
served from Table 1, kernel-based SVM approaches outperform both vectorized-
SCM SVM method and CSP. A mean classification accuracy of 87% can be
obtained whereas the CSP method is limited to 85%. Locating the tangent
plane at the mean of all covariance matrices yields better results on average
compared to the log-Euclidean choice of equation 6.

Comparing CSP and proposed kernel-based SVM on the individual sessions
yields to Figure 1. It can be appreciated that except for few localized pairs
of mental task, kernel-based SVM consistently outperforms CSP results. This
remark is especially true for difficult binary classification cases (CSP performance
below 80%) where the improvement brought by kernel-based SVM is significant.

We have also tested the significance of methods with respect to each other.
Results are presented in Figure 2. This figure illustrates the p-values obtained
for the 6 pairs of mental tasks. These values are obtained with a one-tailed
dependent t-test (8 degrees of freedom) for paired samples, for test hypothesis
{Ho : p1 > p2}. Both kernel-SVM proposed methods perform significantly
better than the CSP (p < 0.05) for 4 out of 6 pairs of mental tasks. The
performance of the two kernel-based SVMs differs significantly only for pair
LH/BF. Nonetheless, the kernel using the tangent space at the geometric mean
is always superior to the kernel using the tangent space at the identity. The slight
increase of p-value in the RH/LH case could be futher reduced by optimizing
the hyperparameter A.
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Fig. 2: P-values for the 6 pairs of mental tasks in a subject-independent manner.
Hypothesis Ho : 1 > po, one-tailed dependent t-test (8 df) for paired samples.

4 Conclusion

This paper has proposed a new kernel for directly handling covariance matrices
in classification methods. The approach is tested on a BCI competition dataset
and outperforms significantly the conventional CSP method. This kernel could
be employed in different applications where covariance matrices are the main
ingredients of the feature extraction process. We have demonstrated in this
work that the spatial filtering of electrodes, could be avoided without loss of
performance. A future work will investigate the online use of this algorithm and
the location update of the tangent space between BCI sessions and the minimum
number of trials required to properly estimate the covariance matrices.
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