
HAL Id: hal-00693315
https://hal.science/hal-00693315

Submitted on 8 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

fANFARE: Autonomic Framework for Service-based
Pervasive Environment

Yoann Maurel, Stéphanie Chollet, Vincent Lestideau, Jonathan Bardin,
Philippe Lalanda, André Bottaro

To cite this version:
Yoann Maurel, Stéphanie Chollet, Vincent Lestideau, Jonathan Bardin, Philippe Lalanda, et al..
fANFARE: Autonomic Framework for Service-based Pervasive Environment. SCC 2012 - Inter-
national Conference on Service Computing, Jun 2012, Honolulu, HI, United States. pp.65-72,
�10.1109/SCC.2012.7�. �hal-00693315�

https://hal.science/hal-00693315
https://hal.archives-ouvertes.fr

fANFARE: Autonomic Framework for Service-based Pervasive Environment

Yoann Maurel∗, Stéphanie Chollet†, Vincent Lestideau‡, Jonathan Bardin‡, Philippe Lalanda‡ and André Bottaro∗

∗Orange Labs Grenoble

28 Chemin du Vieux Chêne

F-38243 Meylan, France

{firstname.lastname}@orange.com
†Laboratoire de Conception et d’Intégration des Systèmes

F-26902, Valence cedex 9, France

stephanie.chollet@lcis.grenoble-inp.fr
‡Laboratoire d’Informatique de Grenoble

F-38041 Grenoble cedex 9, France

{firstname.lastname}@imag.fr

Abstract—The ability to react quickly to unpredictable
changes in the environment is a key requirement in pervasive
computing. This paper presents fANFARE, a framework for
the autonomic management of service-oriented applications in
pervasive environments. Specifically, it focuses on the config-
uration and optimization of pervasive applications deployed
on OSGi platforms. We propose to handle runtime adminis-
tration through a hierarchy of autonomic managers, that is a
platform manager and a number of application managers and
dependency managers. Our approach has been implemented
and validated on pervasive use cases within the MEDICAL
project funded by the French Ministry of Industry.

Keywords-Autonomic Computing, Integration middleware,
Formal Concept Analysis

I. INTRODUCTION

As Mark Weiser’s [1] vision is becoming more and more

concrete, a new world of applications emerges with the

proliferation of devices available in the home, building or

cities. This comes along with an increasing number of

interconnected computing platforms, characterized by their

heterogeneity and volatility. These platforms include set-

top-boxes, Internet boxes, smartphones, tablets, etc. They

are more and more used to run applications orchestrating

and sometimes managing a number of sensors/effectors. In a

near future, applications will be more and more available for

deployment on those platforms in order to manage energy,

security, entertainment devices, etc.

The dynamic aspect of pervasive environments justi-

fies the use of service-oriented approaches [2] as a base

paradigm for the development and execution of pervasive

applications. The use of services offers the possibility to

create, deploy and manage multiple configurations of the

same application. This certainly increases the complexity

of the systems but, in return, it provides the flexibility

demanded by context-aware pervasive applications.Pervasive

applications raise however major challenges in terms of

administration. This problem is made particularly severe in

distributed environments made of a number of computing

platforms and volatile devices. In addition, many applica-

tions are critic in the sense that they directly intervene in the

physical environment. Humans have to be protected against

inappropriate actions caused by incorrect administration

(after badly controlled updates for instance). We believe that

administration actions should be done automatically as much

as possible. In particular, adaptations and optimisation due

to context evolution should be dealt with programmatically.

However, such optimizations can be expressed in the form

of high-level objectives fixed by the users and/or administra-

tors. It seems clear to us that before being distributed to the

general public, pervasive platforms and applications should

be managed in an autonomic way.

This paper presents fANFARE, a framework for the

autonomic management of service-oriented applications in

pervasive environments. Its purpose is to provide a solu-

tion to three major issues in pervasive computing: 1) the

discovery and use of services seamlessly by hiding their

technology heterogeneity, 2) the classification and the auto-

nomic selection of services at runtime and 3) the supervision

of resources and platform components to allow evaluation

of the behaviour of services and applications. We believe

that these three challenges are very much related. Indeed,

being able to integrate all sorts of services, regardless of their

technology, dramatically increases the number of usable ser-

vices when dynamically building an application. This makes

the basic ”all-or-nothing” selection techniques ineffective

and obsolete. In this context, service selection becomes a

central issue for the configuration, optimization and repair

of pervasive applications. Complementarily, services elected

for execution must be carefully supervised. They come from

multiple providers, multiple servers, possibly in the cloud,

and cannot be completely and definitively trusted. Also,

unforeseeable interactions between applications can result

in undesirable actions. First thing to allow the dynamic

composition of applications and their efficient monitoring

is, obviously, to detect the available services in the environ-

ment. To do so, we rely on an extensible integration middle-

ware called RoSe [3]. RoSe is available in open source and

used in many industrial projects. The extensibility feature

is absolutely necessary. Indeed, pervasive environments are

characterised by the number of available services but also

by the heterogeneity of these services. New protocols, new

formats are regularly needed and must be integrated rapidly

in communication middleware like RoSe. As we will see, in

the MEDICAL project, we extended RoSe to support such

protocols as Modbus for instance.

Second thing is the ability to evaluate and select the

services dynamically discovered by RoSe. Here, our ap-

proach is based on FCA (Formal Concept Analysis) in order

to classify and identify equivalent services sets regarding

some high level goals expressed by a user/administrator.

Specifically, we endow every service with a local, very

efficient, manager in charge of the dynamic management of

service dependencies. Such a manager uses FCA structures

and can decide to replace a service at anytime to better meet

the current objectives, which can be also changed anytime.

It is noteworthy that this notion of high level goals can

be rather complicated in the sense that goals can be in

opposition. It is then needed to define context-based cost

functions to make a decision.

Finally, our approach is complemented with supervision

mechanisms. We have defined and implemented on top of

OSGi a set of monitoring mechanisms that can activated on

the fly. This allows a dynamic focus of the monitoring activi-

ties depending on the context (current bugs or misbehaviours

to be handled for instance). It also permits to adjust the cost

of monitoring to the situation. The paper is structured as it

follows. First Section II outlines our approach. In the three

following sections, we detail the approach. Specifically, we

discuss the discovery service in Section III, the dependency

manager in Section IV and the monitoring tool in Section V.

Before concluding, Section VII discusses related works.

II. GLOBAL APPROACH

Our work is based on OSGi platforms. This framework,

supporting the dynamic execution of service-oriented com-

ponents, is today recognized as a solution of choice for per-

vasive computing. OSGi platforms generally host business

components and are able to integrate devices using diverse

technologies. In a typical application, the business logic is

implemented as OSGi bundles while most of the sensors use

UPnP or DPWS technologies.

OSGi and service component models such as OSGi

Declarative Services [4] or iPOJO [5] establish a clear

distinction between bundles, components, service references,

service factories and service instances. Typically a bundle

contains several components that provide or use services. A

service is associated with one or many service references.

References refer to the Java interfaces provided by the

service and service properties. The service is provided by a

service object (Java object instance) that can be retrieved via

the registry. For simplicity sake, we make no distinction here

between a bundle providing a service and a service instance,

between a bundle requiring a service and a service client,

and between a service instance and a service reference.

This paper focuses on the administration of applications

deployed on the OSGi framework. We propose to manage

such applications through a hierarchy of managers (see

Figure 1) including a platform manager and a number of

application and service managers. This hierarchy is derived

from the generic architecture described by [6].

Figure 1. Service-based pervasive applications are managed by a hierarchy
of managers.

Let us see the role and duties of these managers. The

platform manager, first, has two main responsibilities. First,

it manages the global behaviour of the platform through

the join optimisation of the different applications. With

respect of the scope of this paper, it influences the service

selection policies of the dependency managers. To do so,

it is able to dynamically modify the administration goals of

the application managers, which, in turn, implies internal re-

configurations at the application level. For a given platform,

an administrator can define mandatory and optional features,

including non-functional aspects like cost per use, location,

reliability, performances or security. The platform manager

also holds a prioritized list of applications. Applications are

ranked by the administrator depending on their criticality.

Depending on these priorities and application specific goals,

the platform manager configures each application managers’

goals.

The platform manager is also in charge of the man-

agement of the available resources, like CPU or memory.

Values characterizing the resources are collected by several

monitoring mechanisms that have been implemented within

the OSGi framework. CPU-monitoring is progressive and

localized: each mechanism can be enabled or disabled on-

the-fly. When CPU-intensive applications are discovered, the

platform manager sends an alert to the concerned application

manager. This alert includes a list of suspected bundles that

should be stopped or replaced. If the application manager is

not able to solve the problem in a limited time, the platform

manager can send an alert to the administrator or stop the

suspected bundles depending on the application criticality.

Application managers are in charge of the management

of groups of bundles. The mapping between bundles and

application managers is done manually by the administrator

at deployment time or automatically on the basis on meta-

information provided by bundles (providers and dependen-

cies). The bundles may change groups during the execution

if required by the administrator. In particular, since applica-

tions are typically distributed among multiple platforms and

that bundles and services are shared across multiple appli-

cations, an application may in fact be managed by several

application managers. For instance, when a bundle is shared

by multiple applications, the administrator can assign it to a

new application manager. This allows avoiding conflicts in

the management. The main advantage of grouping bundles

into consistent sets is to enable the application of specific

policies to a particular group of bundles or applications.

Application managers also deal with a large part of

service selection. They play the role of smart registries

for their associated bundles and dependencies managers.

Depending on the required services, they subscribe and

discover services in the OSGi registry using LDAP filters.

This allows the selection of relevant services only. The

application manager first ensures the consistency between

properties. Each property of the small subset of interesting

services are then discretized if necessary depending on

the application context. Discretization is performed using

a set of thresholds defined by the administrator. Properties

interpretation is thus application-dependant. For instance

the interpretation of ”high-cost per use” may vary between

critical and comfort applications. The application manager

then organizes services using the FCA algorithm. This

structure is divided into substructure and subgoals that are

sent to dependency managers. One substructure (or decision

lattice) is computed per services bindings. These structures

help dependency managers to find the most suited services

depending on the goals.

Components are endowed with a dependency manager in

charge with the proper selection of services using the FCA

structure and goals provided by the application manager. De-

cision structures allow to easily partition discovered services

into equivalence classes. Goals include a set of mandatory

properties (i.e., the desired functionality) and an ordered set

of optional properties (i.e., cost, reliability, UPnP). The de-

pendency manager then uses the equivalent classes provided

by FCA to choose the most suitable services. Benefits of

this approach are that the decision structures are small and

their inspection to choose services is fast. This allows the fast

substitution of services when a service becomes unavailable.

Additionally this approach avoids the selection of no service

by providing equivalence classes. Finally as the structures

are updated by application managers only when needed, that

is on a context change or when the list of available services

has undergone too many changes. For instance, changing

the order of priorities of optional properties does not require

changing the structure.

Next sections are organized as follows. Section III de-

scribes the RoSe middleware for managing service het-

erogeneity and discovery. Section IV explains why FCA

is a method of choice for service selection and how this

technique is used by application and dependencies managers.

Finally, Section V focuses on the resource management and

how the platform manager carries the progressive monitoring

of the system.

III. ROSE: HETEROGENEITY MANAGEMENT

Service discovery is based on the integration middleware

named RoSe [3]. RoSe handles in a transparent way services

distribution and heterogeneity. It reacts to the arrival and

departures of services (Figure 2). It is an OSGi-based open

source middleware1.

It allows service discovery, the automatic instantiation of

a specific proxy with different strategies, the management

of the proxies life-cycle and the ability to automatically

generate a proxy for well-identified services. Proxies rep-

resenting remote services are directly inserted in the OSGi

registry. Consequently, remote services are accessible as

regular OSGi services, that is to say programmers are able

to access remote services just like local ones.

Figure 2. RoSe in action.

Concretely, when RoSe discover an available service

(published by a device for instance), a proxy is dynamically

created providing a local delegate of this service. Different

protocols are supported here, including Web Service, UPnP,

DPWS, etc. Finally when a remote service is no longer

available, its corresponding proxy is destroyed. To describe

the expected features and find corresponding services, RoSe

1http://wiki.chameleon.ow2.org/xwiki/bin/view/Main/Rose

provides a query language to define configurations as pairs of

properties/values. By applying the different configurations,

we obtain the matching service(s). It is possible to define

LDAP filters among the set of available configurations to

refine the search. In addition, RoSe allows the dynamic

modification of filters and configurations at runtime.

IV. SELECTION THROUGH THE USE OF FCA

We propose to use the Formal Concept Analysis method

to classify the dependencies between components. This

classification is stored in each dependency manager as a

decision structure. First, we present the computation of this

decision structure. Then, we detail the use of this structure

in an autonomic context.

A. Formal Concept Analysis Foundations

Formal Concept Analysis (FCA) [7] is a theoretical and

mathematical framework used to classify items. We very

shortly define the main concepts of FCA. The purpose of

FCA is to build a partially ordered structure, called concept

lattice, from a formal context.

Definition 1: A formal context K is a set of relations

between objects and attributes. It is denoted by K =
(O,A,R) where O and A are respectively sets of Objects

and Attributes, and R is a Relation between O and A

(Figure 3).

Definition 2: A formal concept C is a pair (E, I) where

E is a set of objects called Extent, I is a set of attributes

called Intent, and all the objects in E are in relation R with

all the attributes in I .

Thus, the Extent of a concept is the set of all objects

sharing a set of common attributes, and the Intent is the set of

all attributes shared by the objects of the Extent. Formally:

• E = {o ∈ O, ∀i ∈ I, (o, i) ∈ R},

• I = {a ∈ A, ∀e ∈ E, (e, a) ∈ R}.

Consequently, a formal concept C = (E, I) is made of

the objects in E which are exactly the set of objects sharing

the attributes in I . For example, ({1, 2, 3}; {c}) is a formal

concept in the context of Figure 3.

Let X a set of attributes. We define the function

ClosureK(X) which associates to X the concept made of

the set of objects sharing X and the other attributes shared

by this set of objects. Note that the computation of a formal

concept from a set of attributes X of size n has a complexity

of O(n×m) where m is the number of objects.

Definition 3: A concept lattice is defined as the pair

(C(K), ≤C). Let two concepts (E1, I1) and (E2, I2) we

say that (E2, I2) is a successor of (E1, I1) if (E1, I1) <C

(E2, I2). Given I1 a subset of A, we note by successors(I1)

the set of successors of the concept (E1, I1). The concept

lattice can be represented by a particular graph called Hasse

Diagram (Figure 3).

Note that the computation of a concept lattice from a

formal context has a complexity of O((n+m)×m×|C(K)|)

where n is the number of attributes and m is the number

of objects [8]. Most of the time we have n << m and the

complexity becomes O(m2 × |C(K)|).

Figure 3. Formal Context and Hasse Diagram.

The set C(K) of all concepts induced by a context

can be ordered using the following partial order relation:

(E1, I1) <C (E2, I2) if E2 ⊂ E1 and I1 ⊂ I2.

B. Computation of Decision Structure

In [9], [10], we propose to apply FCA to service selection

in pervasive environment. The usability of the FCA is based

on the computation of the interesting concepts of the concept

lattice. First, we transform the data extracted from the OSGi

registry in a formal context where: service functionalities

and properties are attributes, available services are objects.

All the computed concepts of the lattice are not interest-

ing. Two exclusive groups are proposed:

• concepts with no real meaning. These concepts con-

tain in their intent a set of properties which is not

usable.

• concepts with sense. Contrary to the previous group,

the intent of the concepts makes sense, i.e. the intent

contains coherent information according to the applica-

tion context.

In addition, the computation of the lattice is evaluated

with a significant complexity. Consequently, we propose to

compute only interesting concepts according to the selection

request (Figure 4). The ordered interesting concepts, named

decision structure, are a sub-set of the concept lattice. Ob-

viously, a concept lattice contains many decision structures

and these structures can share common formal concept(s).

The interest to compute formal concept(s) is that

the extent contains all the services providing the prop-

erties of the intent. For example, in the concept

({S1, S4, S7}; {Temperature,DPWS}), all the services

provides the functionality Temperature implemented in

DPWS. This allows to define equivalent classes of services,

i.e. a service can be replaced by another in case of failure

(departure, breakdown...). The decision structure expresses

the difference between the services, i.e. services are classi-

fied by refinement.

Figure 4. Decision Structures in Concept Lattice.

The computation of decision structures naturally con-

tributes to reduce the computation time and also the number

of computed concepts in spite of theoretical complexities.

Figure 5 shows the using such structure is feasible. We have

evaluated the number of computed concepts according to the

available services and the size of the request. The request

contains:

• No constraint, i.e. equivalent to compute the entire

lattice,

• One functional constraint, i.e. the minimal use case

because the functionnality is always known to select

a service.

For this experimentation, we count the number of com-

puted concepts from a context composed by 24 attributes

(11 functionalities and 13 properties).

Figure 5. Size of decision structure.

We note that the computation of only interesting concepts

(decision structure) largely decreases the number of com-

puted concepts. For a request based on one functionality,

the decrease is 92% in average.

C. Autonomic Dependency Management

At a given time, an application is executed in order to

address a given goal. This goal can change and, as a result,

it may be necessary to change one or several components

or dependencies. It is the role of application manager and

dependency managers to handle these evolutions. Figure 6

illustrates the relations between application manager and

dependency manager.

Figure 6. Component Details.

Application Manager. In our approach each application

comes with its own application manager. It provides all

services that can be used in the application, somehow

playing the role of a local registry. The application manager

use the RoSe ”Service Discovery” feature in order to get

the list of available services. The expected functionalities

to be searched are described using the RoSe descriptors.

Thus, this local registry is a view of the available services

filtered according to the current goals of the application.

We propose to use the formal context approach to store

the services characteristics. These characteristics are aligned

with ontologies [11] and discretized to get numerical prop-

erties [12], [13]. The advantage of this definition is that the

characteristics are defined by application. Consequently, one

application can express that the cost is high even if it is

more than 100$ while for another application a cost of 100$

is low. Each application is composed by a set of related

services (components). For each dependency (represented

in the form of a binding in OSGi), application managers

generate a decision structure. The chosen level of granularity

(dependency service) ensures that the decision structure is

relevant (meaning and size). For each dependency, the global

goal is transformed into a more specific goal sent to the

dependency manager concerned.
Dependency Manager. Each service consumers (i.e. com-

ponent or bundle) is endowed with a local dependency

manager. The dependency manager is used to dynamically

change the dependencies between components. To help make

”good” decisions, it has a goal and a structure of decision

provided by the application manager. A goal is an ordered

list of mandatory and optional properties. For instance, we

can express that we want a service providing temperature

with a reduced cost and possibly with reliability character-

istics and in DPWS technology. As previously explained, the

decision structure allows to classify services and to group

them into equivalent classes. To resolve a dependency, a

dependency manager searches the decision structure and it

can thus select the ”best” service related to this goal.

Note that the evolution of the goal and the decision struc-

ture is independent. A goal change does not imply a new

computation of decision structure. Consequently, this allows

fast reactivity to the context modifications and to priority

changes regarding the global goals of the application.

Dependency managers have been implemented by extend-

ing actual iPOJO dependency manager [5] as suggested by

[6]. For legacy bundles (i.e. not using iPOJO) we relied on

the new services hook provided by OSGi [4] – this way it

is possible to control the service discovery.

V. RESOURCES MANAGEMENT

The share of the same software execution environment

by competing applications requires that the execution of

software modules from an actor does not harm the execution

of other modules. Hardware resources management has thus

to be provided at software module level above the JVM.

Given the wide range of deployable modules and their

interactions, it is hardly possible to test exhaustively all the

possible combinations and even a rigorous testing of every

bundle before deployment is not sufficient. This problem

is exacerbated by the use of remote services in the cloud

whose evolution can have unpredictable consequences on

the behavior of applications hosted on the platform. For

instance, we had trouble on a fleet of platform when per-

formances of a cloud services have improved significantly:

some applications have been so overwhelmed that they

caused CPU consumption problems.

Our approach is to build a self-optimizing monitoring

system that can dynamically activate specify monitoring

mechanisms when issues are detected. The platform manager

tunes monitoring mechanisms accuracy and frequency and

decides when to enable/disable monitoring mechanisms on

the fly. By sparingly using resource-intensive monitoring

mechanisms, it is possible to get the necessary accuracy

while limiting the average resource consumption. This helps

to detect performance issues with a minimal overhead in

the long run. These information can then be used by an

autonomic manager to take decisions, i.e., stopping a bundle,

changing implementation, or restarting a device.

In this paper, we focus on CPU usage monitoring. To

achieve this goal, we have developed several mechanisms

that are activated in the following order:

1) global load average and system CPU (M1): this mech-

anism is always activated and uses system calls to

make the system compute load average. The collect

frequency is increased depending on previous values.

2) CPU usage per bundle (M2): this mechanism provides

an estimate of CPU usage per bundle. It is activated

only when load average is high. This mechanism has

been implemented following ideas described in [14].

The framework has been modified so that each new

created threads are attached to the proper bundle.

3) building dependency graph (M3): when a suspect

has been found, a dedicated task determines bundle

dependencies. This information is used to determine

the impact of uninstalling a bundle on other bundles.

4) monitoring service dependencies (M4): this mecha-

nism uses service proxy injection to refine the analysis

and try to determine the actual source of CPU load.

Dynamically injecting proxies in OSGi raises some

issues. It requires to force the consumer to release

the providers it uses so that it uses proxies instead.

However, according to the specification [15], once a

consumer holds a reference on a service object, the

only ways to force it to discard the services are (a) to

stop the providers or (b) to stop the consumer. Stop-

ping the providers has an impact on all their consumers

and potentially on applications or the whole system.

Stopping the consumer may also have an impact on

other bundles and may lead to bundle state loss. We

propose some modifications in the OSGi framework so

as to create a proxy-aware registry. We take advantage

of the loose coupling offered by the SOA by modifying

some mechanisms and in particular the way bundles

are notified of the arrival and departure of services.

Basically, service binding monitoring implies three

steps: (a) unbinding existing services by pretending

they are no longer available, (b) pretending they are

available again, (c) substituting original providers by

proxies when consumers ask for them.

5) monitoring package dependencies (M5): the CPU con-

sumption may be the result of the usage of a poorly

coded library. Sampling is performed by an external

mechanism observing system threads activity on a

regular basis. The subset of threads to be monitored

is determined using the M3 mechanism: the task

monitors threads attached to the monitored bundle. At

a fixed pace (10ms in our case), we request the JVM

to generate the stack trace for monitored threads. This

stack trace contains information on the stack frame.

It is thus possible to infer the time spent calling a

class by comparing stack traces. This gives an estimate

of the time taken calling an outside package. This is

then matched up with package dependencies. Usage

statistics are then calculated.

The Figure 7 shows the average monitoring impact on

CPU usage for different monitoring configuration on a sys-

tem running typical bundles (50 bundles). Mechanisms (M1

to M5) are activated progressively from C1 to C5 respec-

tively. In C4 and C5, services and packages are monitored on

a single bundle. In C6 all bundles are monitored. Overall,

these results confirm that using progressive monitoring is

generally more CPU-efficient than using always-enabled

traditional monitoring systems. When idle, the impact of

monitoring is way below the one with traditional systems.

Most of the time, the platform is not charged by useless

computations. When active, the impact is significant but

localized on a single bundle. Additionnaly the overhead on

non-monitored bundle is limited. The benefits of localization

is visible when comparing C5 (local monitoring on a single

bundle) and C6 (monitoring all bundles). Moreover, the

difference is even more pronounced on a platform with

more bundles. Therefore, always-enabled monitoring, done

by many OSGi monitoring systems, is not reasonable on

end-user systems.

C1 C2 C3 C4 C5 C6

20

40

60

C
P

U
(%

)

System M1 M2 M3 M4 M5

Figure 7. Guided progressive activation of monitoring reduces overhead.

With all the reported values, it is easy to build simple

heuristic for the detection of CPU-intensive bundles. Auto-

matically, the platform manager controls the activation of

monitoring mechanisms and fires alerts to the concerned

application managers. The latter are then responsible for the

interruption and replacement of suspect bundles. We tested

these policies on simple applications on sample pervasive

applications. The manager has been implemented using the

Ceylon [16] framework. This proves to be effective to avoid

platform crashes caused by CPU-intensive applications. A

future work is to use the information provided by the system

to automatically rank bundles and services and therefore

influences the selection process depending on this ranking.

VI. RELATED WORK

The problem of service selection, depending on service

classification and FCA, has been studied by a few authors.

Bruno et al. [17] propose an approach based on machine-

learning techniques to support service classification and an-

notation. Peng et al. [18] classify Web Services in a concept

lattice. Services are classified according to their functional

operations regardless of non-functional aspects. Azmeh et

al. [19] classify Web Services by their calculated QoS levels

and composability modes. In these approaches the concept

lattice is computed only once whereas in the pervasive do-

main, services regularly appear and disappear, which means

recalculating the lattice. Moreover, these approaches can

not manage simultaneously different technologies (UPnP,

DPWS...). Ait Ameur [11] proposes to adapt the registry

to a semantic registry in which semantic Web Services are

stored. The introduction of ontologies allows to define a

subsumption relationship between services that expresses a

substituability relationship between these services. In our

approach, ontologies can be added in the filter of the service

registry in order to minimize the number of attributes in the

context model.

Monitoring an OSGi-based platform is challenging [20]:

the specification [15] does not define any means to isolate

or monitor bundles. Existing Java tools (e.g., JVM-Ti2 or

TPTP3)cannot be used as is since gathered information is

too fine-grained and thus not relevant. Existing OSGi tools

are not suitable for embedded in-production environment

because (i) they target development environments [14] or

rich platforms [4], or (ii) they require heavy modifications

of the JVM or underlying operating system [21], and (iii)

they generally induces a persistent strong overhead of at

least 20%. Our main contributions are to propose flexible

monitoring mechanisms. In particular, we refine (i) existing

techniques to attach threads to bundles, (ii) propose a novel

approach to inject proxies on-the-fly without stopping bun-

dles by building a proxy-aware registry, and (iii) proposes a

method to monitor package dependencies by using localized

sampling. The proposed system competes well with tradi-

tional monitoring systems: the overhead when idle is under

2% and is comparable when fully active (20% on a typical

system). Moreover, the overhead is localized: it mostly

impacts the targeted bundles and has limited consequences

on the others.

VII. CONCLUSION AND FUTURE WORK

This article presents a framework dedicated to the ex-

ecution of pervasive service-based applications and their

automated management. This framework addresses three

major overlapping challenges related to service-based per-

vasive environments: (i) the management of heterogeneous

distributed services is performed by RoSe, an integration tool

that generates the necessary bridges for the publication or

integration of services, (ii) the autonomic service selection

through the use of FCA to classify available services and

through the addition of an autonomic dependency manager

to each service consumers, (iii) finally the evaluation of ap-

plications and the autonomic resource management has been

made possible via the use of several monitoring mechanisms

that are activated on-purpose and on-the-fly by a platform

manager. This platform is controlled by a hierarchy of man-

agers that allows the division of administrative objectives

into sub-goals and managing the preoccupations of applica-

tions and the platform. This platform has been implemented

2http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/
3http://www.eclipse.org/tptp/

using OSGi technologies and in particular via the extension

of the associated service-oriented component model. Each

contribution has been evaluated separately and the platform

is currently being used in the MEDICAL project. Future

works include the management of a fleet of platforms and the

inter-platform communication between application managers

and platform managers so as to coordinate the management

of the multiple platforms.

REFERENCES

[1] M. Weiser, “Human-computer interaction,” R. M. Baecker,
J. Grudin, W. A. S. Buxton, and S. Greenberg, Eds. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1995, ch. The computer for the 21st century, pp. 933–940.

[2] M. P. Papazoglou, “Service-Oriented Computing: Concepts,
Characteristics and Directions,” in Proceedings of the fourth
International Conference on Web Information Systems Engi-
neering, Los Alamitos, CA, USA, December 2003, pp. 3–12.

[3] J. Bardin, P. Lalanda, and C. Escoffier, “Towards an Auto-
matic Integration of Heterogeneous Services and Devices,”
in Proceedings of IEEE Asia-Pacific Services Computing
Conference. Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 171–178.

[4] J. Ferreira, J. Leitão, and L. Rodrigues, “A-OSGi: a frame-
work to support the construction of autonomic OSGi-based
applications,” Int. J. Autonomous and Adaptive Communica-
tions Systems, vol. 5, no. 3, pp. 292–310, 2012.

[5] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: An ex-
tensible service-oriented component framework,” in IEEE
International Conference on Services Computing, 2007. SCC
2007. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 474–481.

[6] J. Bourcier, A. Diaconescu, P. Lalanda, and J. A. McCann,
“Autohome: An autonomic management framework for
pervasive home applications,” ACM Trans. Auton. Adapt.
Syst., vol. 6, no. 1, pp. 8:1–8:10, Feb. 2011. [Online].
Available: http://doi.acm.org/1921641.1921649

[7] B. Ganter and R. Wille, Formal Concept Analysis - Mathe-
matical Foundations. Berlin, Heidelberg: Springer, 1999.

[8] L. Nourine and O. Raynaud, “A fast incremental algorithm
for building lattices,” Journal of Experimental & Theoretical
Artificial Intelligence, vol. 14, no. 2-3, pp. 217–227, 2002.

[9] S. Chollet, V. Lestideau, P. Lalanda, Y. Maurel, P. Colomb,
and O. Raynaud, “Building FCA-Based Decision Trees for the
Selection of Heterogeneous Services,” in Proceedings of the
2011 IEEE International Conference on Services Computing.
Los Alamitos, CA, USA: IEEE Computer Society, 2011, pp.
616–623.

[10] S. Chollet, V. Lestideau, Y. Maurel, E. Gandrille, P. Lalanda,
and O. Raynaud, “Practical Use of Formal Concept Analysis
in Service-Oriented Computing,” in Proceedings of the Inter-
national Conference on Formal Concept Analysis. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 61–76.

[11] Y. Ait-Ameur, “A semantic repository for adaptive services,”
in IEEE Congress on Services. Los Alamitos, CA, USA:
IEEE Computer Society, 2009, pp. 211–218.

[12] G. Polaillon, “Interpretation and reduction of Galois lattices
of complex data,” in Advances in Data Science and Classi-
fication, Springer-Verlag, Ed. A. Rizzi and M. Vichi and
H.-H Bock, 1998, pp. 433–440.

[13] Z. Assaghir, M. Kaytoue, W. Meira, and J. Villerd, “Extract-
ing decision trees from interval pattern concept lattices,” in
Concept Lattices and their Applications, 2011.

[14] T. Miettinen, D. Pakkala, and M. Hongisto, “A method for
the resource monitoring of osgi-based software components,”
in Software Engineering and Advanced Applications, 2008.
SEAA ’08. 34th Euromicro Conference, 3-5 2008, pp. 100
–107.

[15] “OSGi service platform core specification release 4 version
4.3,” OSGi Alliance, Tech. Rep., April 2011.

[16] Y. Maurel, A. Diaconescu, and P. Lalanda, “CEYLON: A
Service-Oriented Framework for Building Autonomic Man-
agers,” Engineering of Autonomic and Autonomous Systems,
IEEE International Workshop on, vol. 0, pp. 3–11, 2010.

[17] M. Bruno, G. Canfora, M. D. Penta, and R. Scognamiglio,
“An Approach to support Web Service Classification and
Annotation,” in Proceedings of the 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service
(EEE’05) on e-Technology, e-Commerce and e-Service, ser.
EEE ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 138–143.

[18] D. Peng, S. Huang, X. Wang, and A. Zhou, “Management
and Retrieval of Web Services Based on Formal Concept
Analysis,” in Proceedings of the The Fifth International
Conference on Computer and Information Technology, ser.
CIT ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 269–275.

[19] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha,
and C. Tibermacine, “Selection of Composable Web Services
Driven by User Requirements,” in Proceedings of the 2011
IEEE International Conference on Web Services, ser. ICWS
’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 395–402.

[20] C. Larsson and C. Gray, “Challenges of resource management
in an OSGi environment,” in OSGi Community Event 2011,
Darmstadt, Germany, September 2011.

[21] N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot,
and B. Folliot, “I-JVM: a java virtual machine for component
isolation in osgi,” in Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Net-
works, DSN, 2009, pp. 544–553.

