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Abstract. As a first application of a very old theorem, known as Herschel’s theorem, we provide direct elementary proofs
of several explicit expressions for some numbers and polynomials that are known in combinatorics. The second application
deals with the analytical continuation of the polylogarithmic function of complex argument beyond the circle of convergence.
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HERSCHEL’S THEOREM

Herschel’s theorem gives the expression of the expansion of a function of the form φ(e−t) into a Taylor series in
ascending powers of t. The proof of Herschel’s theorem is straightforward: By Taylor’s theorem, we have

φ(e−t) = φ(1− (1− e−t)) = φ(1)+φ ′(1)
(−1)
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If we let

φ(e−t) = a0 + a1t + a2t2 + · · ·+ antn + · · ·=
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then the coefficient an will be equal to the sum of the coefficients of tn in the expansion of all the terms in the right
hand side of equation (1). Now, we know that
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and so the coefficient of tn in the right hand side of equation (3) is equal to
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But using the notation of the calculus of finite differences, the last equation can be written as

(−1)n

n!
∆k0n

. (5)

Combination of the above equations leads to a formula for the coefficient an, better known in the old literature as
Herschel’s theorem [1, chap. 2], [6]:

Theorem 1 (Herschel’s Theorem)
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FINDING EXPLICIT FORMULAS USING HERSCHEL’S THEOREM

Several explicit formulas can be deduced from Herschel’s Theorem. Let’s suppose that we have a series of numbers
defined by a generating function for which we want to find an explicit formula. The first step consists in expressing
the function as a function of e−t . The second step is to use Theorem 1 to provide the explicit formula using finite
differences of 0. We finish the sections with some examples.

Bernoulli Numbers

The generation function of Bernoulli numbers is given by [4, p. 48]:

φ(e−t) =
t

et − 1
=

− ln(e−t)e−t
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∞

∑
n=0

Bn
tn

n!
; |t|< 2π (7)

By setting X = 1− e−t, we have
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where in this case φ ( j)(1)
j! =− 1

j( j+1) for j ≥ 1. Herschel’s theorem gives the following well-known explicit formula

for Bernoulli numbers:
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Euler Polynomials

Euler polynomials of degree n in x are denoted by En(x) and are defined by the generating function

φ(e−t) =
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et + 1
=
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tn
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Again by setting X = 1− e−t , we rewrite the generating function as

φ(1−X) =
(1−X)1−x
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2

. (11)

Since |X |< 1, the generalized binomial theorem gives
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The product of the two series provides
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In this case, φ ( j)(1)
j! = (−1) j

2 j ∑
j
k=0

(−1)k
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k

)

, and therefore, Herschel’s theorem gives the desired explicit formula for
Euler polynomials:
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The reader can compare with the formula obtained in [9]. Clearly, one can also obtain an explicit formula for Euler
polynomials of higher order.

Eulerian Numbers and Polynomials

It is known that the classical Eulerian polynomials An(λ ), 0 < λ < 1 have the exponential generating function [4,
p.51], [2]

1+
∞

∑
n=1

An(λ )

λ

tn

n!
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, (16)

By replacing t by t
λ−1 in (16), we obtain the following function, [4, chap. 6, p.244]:
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, (17)

Carlitz [3] denoted the numbers An(λ )
λ (λ−1)n by Hn(λ ).

A theorem of Frobenius [5] states that the Eulerian polynomials are given by

An(λ ) = λ
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∑
j=1
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= λ
n
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where S(n, j) are the Stirling numbers of the second kind. Note that Stirling numbers of the second kind are defined
by
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which can be easily written as a function of k’th forward difference of 0n:

S(n, j) =
1

j!
∆ j0n

. (21)

We now give a new formula for the Eulerian polynomials using Herschel’s theorem. The formula complements
Frobenius formula. We start by setting X = 1− e−t and rewriting the generating function (17) as

φ(e−t) =
1−λ

et −λ
=

(1−λ )e−t

1−λ e−t =
∞

∑
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In terms of the variable X , the generating function becomes

φ(1−X) =
1−X
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λ−1X

= 1+
∞

∑
n=1

λ n−1

(λ − 1)n Xn
. (23)

By Herschel’s theorem, we obtain H0(λ ) = 1 and for n ≥ 1
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Hn(λ ) = (−1)n
n

∑
j=1

(−1) j λ j−1

(λ − 1) j ∆ j0n
. (24)

Thus, A0(λ ) = 1 and for n ≥ 1

An(λ ) =
n

∑
j=1

λ j(1−λ )n− j∆ j0n
. (25)

Note that equation (25) reminds of Bernstein polynomials with coefficients as functions of differences of zero.

Genocchi Numbers

Genocchi numbers are defined by the generating function [4, p. 49].

2t
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∑
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tn

n!
. (26)

Using the change of variable X = 1− e−t , the generating function becomes

φ(e−t) = φ(1−X) =−
(1−X) log(1−X)

1− X
2

(27)
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Multiplying the two power series, the coefficient of X0 is zero, the coefficient of X is equal to 1 and the coefficient
of Xn is given by

(−1)n φ (n)(1)
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Finally, an application of Herschel’s theorem yields the formula for the Genocchi numbers:
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AN ANALYTIC CONTINUATION OF THE POLYLOGARITHM

The polylogarithm Lis(x) is defined by the power series

Lis(x) =
∞

∑
n=1

xn

ns . (32)

The above definition is valid for all complex values s and all complex values of x such that |x|< 1.
The conformal mapping

x = 1− e−t
, (33)

t = −Log(1− x) (34)
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maps the part of the x-plane between two half-lines starting from the point (1,0) to a strip parallel to the x-axis in
the t plane. Moreover, the function 1− e−t is conformal at each point t ∈ C, since its derivative does not vanish at t.
Its restriction to the horizontal strip {|Im(t)|< π} is a conformal mapping of the strip onto the cut plane C\ [1,∞).

The principal branch Log(1− x) of log(1− x) is also a conformal mapping of the cut plane C \ [1,∞) onto the
horizontal strip {|Im(t)|< π}.

It is easy to verify that Lis(x) has one finite singularity, namely the point x = 1. The point x = 1 is mapped to ∞ by
the conformal mapping (34). Making the substitution (33) into (32), the series becomes

Lis(1− e−t) =
∞

∑
n=1

(1− e−t)n

ns . (35)

Expanding the right hand side of (35) into a series in powers of t, we get

Lis(1− e−t) =
∞

∑
n=0

antn
. (36)

where the an may be calculated using Herschel’s theorem. Indeed, we have here

(−1)n φ (n)(1)

n!
=

1

ns ,n ≥ 1;φ(1) = 0. (37)

By Herschel’s theorem, we thus have

a0 = 0, an =
(−1)n

n!

n

∑
j=1

(−1) j

js ∆ j0n
, n ≥ 1. (38)

Now if the function Lis(x) is regular in the plane C minus the semiaxis Re(x) > 1, the series (36) is necessarily
convergent in the circle |t|< 1. Conversely, if the series (36) is convergent in the circle |t|< 1, then the function Lis(x)
is regular in the cut plane C \ [1,∞). Therefore, we can assert that Lis(x) can be represented at any point of the cut
plane C by the following expansion

Lis(x) =
∞

∑
n=1

(

(−1)n

n!

n

∑
j=1

(−1) j

js ∆ j0n
)

(Log(1− x))n
. (39)

There exists other integral and series relations which provide the analytic continuation of the polylogarithm beyond
the circle of convergence |x|= 1 of the defining power series. But these relations are valid for all but some exceptional
values of s, [8, p. 139-140], [7, 11, 10]. To the author’s knowledge, the series (39) is the only series that defines the
polylogarithm for all values of s ∈C and all values of x ∈C.
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