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As a first application of a very old theorem, known as Herschel's theorem, we provide direct elementary proofs of several explicit expressions for some numbers and polynomials that are known in combinatorics. The second application deals with the analytical continuation of the polylogarithmic function of complex argument beyond the circle of convergence.

HERSCHEL'S THEOREM

Herschel's theorem gives the expression of the expansion of a function of the form φ (e -t ) into a Taylor series in ascending powers of t. The proof of Herschel's theorem is straightforward: By Taylor's theorem, we have φ (e -t ) = φ (1 -(1 -e -t )) = φ (1) + φ ′ (1) (-1)

1! (1 -e -t ) + φ ′′ (1) (-1) 2 2! (1 -e -t ) 2 + • • • + φ (n) (1) (-1) n n! (1 -e -t ) n + • • • = ∞ ∑ n=0 φ (n) (1) (-1) n n! (1 -e -t ) n . (1) 
If we let

φ (e -t ) = a 0 + a 1 t + a 2 t 2 + • • • + a n t n + • • • = ∞ ∑ n=0 a n t n , (2) 
then the coefficient a n will be equal to the sum of the coefficients of t n in the expansion of all the terms in the right hand side of equation [START_REF] Boole | A treatise on the calculus of finite differences[END_REF]. Now, we know that

(-1) k (1 -e -t ) k = (-1) k k 0 e -0.t + (-1) k-1 k 1 e -t + • • • - k k -1 e -(k-1)t + k k e -kt , (3) 
and so the coefficient of t n in the right hand side of equation ( 3) is equal to

(-1) n n! (-1) k k 0 0 n + (-1) k-1 k 1 1 n + • • • - k k -1 (k -1) n + k k k n . (4) 
But using the notation of the calculus of finite differences, the last equation can be written as

(-1) n n! ∆ k 0 n . (5) 
Combination of the above equations leads to a formula for the coefficient a n , better known in the old literature as Herschel's theorem [1, chap. 2], [START_REF] Hamilton | On Differences And Differentials of Functions of Zero[END_REF]:

Theorem 1 (Herschel's Theorem)

a n = (-1) n n! φ (1).0 n + φ ′ (1) 1! ∆0 n + φ ′′ (1) 2! ∆ 2 0 n + • • • + φ (n) (1) n! ∆ n 0 n = (-1) n n! n ∑ j=0 φ ( j) (1) j! ∆ j 0 n . (6) 

FINDING EXPLICIT FORMULAS USING HERSCHEL'S THEOREM

Several explicit formulas can be deduced from Herschel's Theorem. Let's suppose that we have a series of numbers defined by a generating function for which we want to find an explicit formula. The first step consists in expressing the function as a function of e -t . The second step is to use Theorem 1 to provide the explicit formula using finite differences of 0. We finish the sections with some examples.

Bernoulli Numbers

The generation function of Bernoulli numbers is given by [4, p. 48]:

φ (e -t ) = t e t -1 = -ln(e -t )e -t 1 -e -t = ∞ ∑ n=0 B n t n n! ; |t| < 2π (7) 
By setting X = 1 -e -t , we have

φ (1 -X) = ln(1 -X) X (1 -X) = 1 X X + X 2 2 + X 3 3 + • • • (1 -X), = 1 - X 1.2 - X 2 2.3 -• • • - X n n.(n + 1) -• • • (8) 
where in this case φ ( j) (1) j!

= -1 j( j+1) for j ≥ 1. Herschel's theorem gives the following well-known explicit formula for Bernoulli numbers:

B n = (-1) n n!a n = 1.0 n + (-1) n+1 ∆0 n 1.2 + (-1) n+1 ∆ 2 0 n 2.3 + • • • + (-1) n+1 ∆ n 0 n n(n + 1) . (9) 

Euler Polynomials

Euler polynomials of degree n in x are denoted by E n (x) and are defined by the generating function

φ (e -t ) = 2e tx e t + 1 = 2e -t(1-x) 1 + e -t = ∞ ∑ n=0 E n (x) t n n! ; |t| < π (10) 
Again by setting X = 1 -e -t , we rewrite the generating function as

φ (1 -X) = (1 -X) 1-x 1 -X 2 . (11) 
Since |X| < 1, the generalized binomial theorem gives

(1 -X) 1-x = ∞ ∑ k=0 (-1) k 1 -x k X k = 1 + (x -1)X + (x -1)x 2! X 2 + (x -1)x(x + 1) 3! + • • • (12) 1 1 -X 2 = 1 + X + X 2 2 2 + X 3 3 2 + • • •, ( 13 
)
The product of the two series provides

φ (1 -X) = ∞ ∑ n=0 1 2 n n ∑ k=0 (-1) k 2 k 1 -x k X n . ( 14 
)
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In this case, φ ( j) (1)

j! = (-1) j 2 j ∑ j k=0 (-1) k 2 k 1-x
k , and therefore, Herschel's theorem gives the desired explicit formula for Euler polynomials:

E n (x) = (-1) n n!a n = (-1) n n ∑ j=0 (-1) j 2 j j ∑ k=0 (-1) k 2 k 1 -x k ∆ j 0 n . (15) 
The reader can compare with the formula obtained in [START_REF] Luo | An explicit formula for the Euler polynomials[END_REF]. Clearly, one can also obtain an explicit formula for Euler polynomials of higher order.

Eulerian Numbers and Polynomials

It is known that the classical Eulerian polynomials A n (λ ), 0 < λ < 1 have the exponential generating function [4, p.51], [START_REF] Butzer | Eulerian numbers with fractional order parameters[END_REF] 1

+ ∞ ∑ n=1 A n (λ ) λ t n n! = 1 -λ e t(λ -1) -λ , (16) 
By replacing t by t λ -1 in (16), we obtain the following function, [4, chap. 6, p.244]:

1

+ ∞ ∑ n=1 A n (λ ) λ (λ -1) n t n n! = 1 -λ e t -λ , (17) 
Carlitz [START_REF] Carlitz | Eulerian numbers and polynomials[END_REF] denoted the numbers

A n (λ )
λ (λ -1) n by H n (λ ). A theorem of Frobenius [START_REF] Frobenius | Uber die Bernoullishen Zahlen und die Eulerschen Polynome[END_REF] states that the Eulerian polynomials are given by

A n (λ ) = λ n ∑ j=1 j!S(n, j)(λ -1) n-j (18) = λ n ∑ j=1 (λ -1) n-j ∆ j 0 n , (19) 
where S(n, j) are the Stirling numbers of the second kind. Note that Stirling numbers of the second kind are defined by

S(n, j) = 1 j! j ∑ k=0 (-1) j-k j k k n , (20) 
which can be easily written as a function of k'th forward difference of 0 n :

S(n, j) = 1 j! ∆ j 0 n . (21) 
We now give a new formula for the Eulerian polynomials using Herschel's theorem. The formula complements Frobenius formula. We start by setting X = 1 -e -t and rewriting the generating function (17) as

φ (e -t ) = 1 -λ e t -λ = (1 -λ )e -t 1 -λ e -t = ∞ ∑ n=0 H n (λ ) t n n! ; |t| < log λ + 2π. ( 22 
)
In terms of the variable X, the generating function becomes

φ (1 -X) = 1 -X 1 -λ λ -1 X = 1 + ∞ ∑ n=1 λ n-1 (λ -1) n X n . ( 23 
)
By Herschel's theorem, we obtain H 0 (λ ) = 1 and for n ≥ 1
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H n (λ ) = (-1) n n ∑ j=1 (-1) j λ j-1 (λ -1) j ∆ j 0 n . (24)

Thus, A 0 (λ ) = 1 and for n ≥ 1

Note that equation (25) reminds of Bernstein polynomials with coefficients as functions of differences of zero.

Genocchi Numbers

Genocchi numbers are defined by the generating function [4, p. 49].

Using the change of variable X = 1 -e -t , the generating function becomes

Multiplying the two power series, the coefficient of X 0 is zero, the coefficient of X is equal to 1 and the coefficient of X n is given by

Finally, an application of Herschel's theorem yields the formula for the Genocchi numbers:

AN ANALYTIC CONTINUATION OF THE POLYLOGARITHM

The polylogarithm Li s (x) is defined by the power series

The above definition is valid for all complex values s and all complex values of x such that |x| < 1.

The conformal mapping

On Two Applications of Herschel's Theorem May 4, 2012 4 maps the part of the x-plane between two half-lines starting from the point (1, 0) to a strip parallel to the x-axis in the t plane. Moreover, the function 1 -e -t is conformal at each point t ∈ C, since its derivative does not vanish at t. Its restriction to the horizontal strip {|Im(t)| < π} is a conformal mapping of the strip onto the cut plane C \ [1, ∞).

The principal branch Log(1 -x) of log(1 -x) is also a conformal mapping of the cut plane C \ [1, ∞) onto the horizontal strip {|Im(t)| < π}.

It is easy to verify that Li s (x) has one finite singularity, namely the point x = 1. The point x = 1 is mapped to ∞ by the conformal mapping (34). Making the substitution (33) into (32), the series becomes

Expanding the right hand side of (35) into a series in powers of t, we get

where the a n may be calculated using Herschel's theorem. Indeed, we have here

By Herschel's theorem, we thus have

Now if the function Li s (x) is regular in the plane C minus the semiaxis Re(x) > 1, the series (36) is necessarily convergent in the circle |t| < 1. Conversely, if the series (36) is convergent in the circle |t| < 1, then the function Li s (x) is regular in the cut plane C \ [1, ∞). Therefore, we can assert that Li s (x) can be represented at any point of the cut plane C by the following expansion Li

There exists other integral and series relations which provide the analytic continuation of the polylogarithm beyond the circle of convergence |x| = 1 of the defining power series. But these relations are valid for all but some exceptional values of s, [8, p. 139-140], [START_REF] Jonquière | Note sur la série ∑ ∞ n=1 x n n s[END_REF][START_REF] Wirtinger | Über eine besondere Dirchletsche Reihe[END_REF][START_REF] Truesdell | On a Function which Occurs in the Theory of the Structure of Polymers[END_REF]. To the author's knowledge, the series (39) is the only series that defines the polylogarithm for all values of s ∈ C and all values of x ∈ C.