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Abstract

This paper focuses on studying the multilevel Monte Carlo method recently introduced
by Giles [8] and significantly more efficient than the classical Monte Carlo one. Our aim
is to prove a central limit theorem of Lindeberg Feller type for the multilevel Monte Carlo
method associated to the Euler discretization scheme. To do so, we prove first a stable
law convergence theorem, in the spirit of Jacod and Protter [15], for the Euler scheme
error on two consecutive levels of the algorithm. This leads to an accurate description
of the optimal choice of parameters and to an explicit characterization of the limiting
variance in the central limit theorem of the algorithm. We investigate the application of
the Multilevel Monte Carlo method to the pricing of Asian options, by discretizing the
integral of the payoff process using Riemann and trapezoidal schemes. In particular, we
prove stable law convergence for the error of these second order schemes. This allows
us to prove two additional central limit theorems providing us the optimal choice of the
parameters with an explicit representation of the limiting variance. For this setting of
second order schemes, we give new optimal parameters leading to the convergence of the
central limit theorem. Complexity analysis of the Multilevel Monte Carlo algorithm were
processed.
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1 Introduction

In many applications, in particular for the pricing of financial securities, we are interested in the
effective computation by Monte Carlo methods of the quantity Ef(XT ), where X := (Xt)0≤t≤T

is a diffusion process and f a given function. The Monte Carlo Euler method consists of
two steps. First, approximate the diffusion process (Xt)0≤t≤T by the Euler scheme (Xn

t )0≤t≤T

with time step T/n. Then, approximate E f (Xn
T ) by 1

N

∑N
i=1 f(X

n
T,i), where f(Xn

T,i)1≤i≤N is
a sample of N independent copies of f(Xn

T ). This approximation is affected respectively by a
discretization error and a statistical error

εn := E (f(Xn
T )− f(XT )) and

1

N

N
∑

i=1

f(Xn
T,i)− Ef(Xn

T ).

The optimal choice of the sample size N in the classical Monte Carlo method mainly depends
on the order of the discretization error. In the context of possibly degenerate diffusions X
and C 1-functions f , Kebaier [16] proves that the rate of convergence of the discretization error
εn can be 1/nα for all values of α ∈ [1/2, 1]. It turns out that for such order of convergence
the optimal choice of N is given by n2α. This leads to a total complexity in the Monte Carlo
method of order CMC = n2α+1. A further discussion of this is given in subsection 2.4 (see Duffie
and Glynn [5] for related results).

In order to improve the performance of this method, Kebaier [16] introduced a two-level
Monte Carlo method [16] (called the statistical Romberg method) reducing the complexity CMC

while maintaining the convergence of the algorithm. This method uses two Euler schemes with
time steps T/n and T/nβ, β ∈ (0, 1) and approximates E f(XT ) by

1

N1

N1
∑

i=1

f(X̂nβ

T,i) +
1

N2

N2
∑

i=1

f(Xn
T,i)− f(Xnβ

T,i),

where X̂nβ

T is a second Euler scheme with time step T/nβ and such that the Brownian paths used
for Xn

T and Xnβ

T has to be independent of the Brownian paths used to simulate X̂nβ

T . In order
to get a rational choice of N1, N2 and β versus n, Kebaier [16] proves a Central Limit Theorem
for this new algorithm. This theorem uses the weak convergence of the normalized error of the
Euler scheme for diffusions proved by Kurtz and Protter [19] (and strengthened by Jacod and
Protter [15]). It turns out that for a given discretization error εn = 1/nα (α ∈ [1/2, 1]), the
optimal choice is obtained for β = 1/2, N1 = n2α and N2 = n2α−(1/2). With this choice, the
complexity of the statistical Romberg method is of order CSR = n2α+(1/2) which is lower than
the classical complexity in the Monte Carlo method.

More recently, Giles [8] generalized the statistical Romberg method of Kebaier [16] and
proposed the multilevel Monte Carlo algorithm, in a similar approach to Heinrich’s multilevel
method for parametric integration [12] (see also Creutzig, Dereich, Müller-Gronbach and Ritter
[3], Dereich [4], Giles [7], Giles, Higham and Mao [9], Heinrich [11] and Heinrich and Sindambiwe
[13] for related results). The multilevel Monte Carlo method uses information from a sequence
of computations with decreasing step sizes and approximates the quantity Ef(XT ) by

Qn =
1

N0

N0
∑

k=1

f(X1
T,k) +

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xmℓ

T,k)− f(Xmℓ−1

T,k )
)

, m ∈ N \ {0, 1} and L =
log n

logm
.
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The process (Xmℓ

t )0≤t≤T denotes the Euler scheme with time step m−ℓT for ℓ ∈ {0, · · · , L}.
Here, it is important to point out that all these L+1 Monte Carlo estimators have to be based
on different, independent samples. However, for fixed k and ℓ, the simulations f(Xmℓ

T,k) and

f(Xmℓ−1

T,k ) have to be based in the same Brownian path but with different times steps m−ℓT

and m−(ℓ−1)T . Due to the above independence assumption for the paths, the variance of the
multilevel estimator is given by

σ2 := V ar(Qn) = N−1
0 V ar(f(X1

T )) +
L
∑

ℓ=1

N−1
ℓ σ2

ℓ ,

where σ2
ℓ = V ar

(

f(Xmℓ

T )− f(Xmℓ−1

T )
)

. For a Lipschitz continuous function f , it is easy to

check, using properties of the Euler scheme, that

σ2 ≤ c2

L
∑

ℓ=0

N−1
ℓ m−ℓ

for some positive constant c2 (see Proposition 1 for more details). Giles [8] uses this computation
in order to find the optimal choice of the multilevel Monte Carlo parameters. More precisely,
to obtain a desired root mean squared error (RMSE), say of order 1/nα, for his multilevel
estimator, Giles [8] uses the above computation on σ2 to minimize the total complexity of the
algorithm. It turns out that the optimal choice is obtained for (see Theorem 3.1 of [8])

Nℓ = 2c2n
2α

(

log n

logm
+ 1

)

T

mℓ
, for ℓ ∈ {0, · · · , L} and L =

log n

logm
. (1)

This optimal choice leads to a complexity for the multilevel Monte Carlo Euler method pro-
portional to n2α(log n)2. Interesting numerical tests, comparing three methods (crude Monte
Carlo, Statistical Romberg and the Multilevel Monte Carlo), were proceed in Korn, Korn and
Kroisandt [18]. Furthermore, Giles [8] obtain also the optimal parameters for the multilevel
Monte Carlo method when a second order scheme is used instead of the Euler scheme which
is, of course, of order one. Recall that a discretization scheme is said to be of second order
when the quantity σ2

ℓ , introduced above, is of order m−2ℓ. For example, this is the case for the
Milstein scheme ( see e.g. Kloeden and Platen [17] for more details on second order schemes).
By the same reasoning as above, to achieve a given RMSE error for his multilevel estimator of
order 1/nα, Giles obtains an optimal choice of the parameters given by (see Theorem 3.1 of [8])

Nℓ = 2c2n
2α
√
T

(√
m− 1√
m

)(

T

mℓ

)3/2

for ℓ ∈ {0, · · · , L} and L =
log n

logm
. (2)

This choice leads to an optimal complexity for the multilevel Monte Carlo proportional to n2α.
In the present paper, we are interested in using Kebaier’s approach [16] to get the optimal

choice for the Multilevel Monte Carlo method. More precisely, our main result is a Lindeberg
Feller central limit theorem for the Multilevel Monte Carlo Euler algorithm (see Theorem 5).
In order to show this result, we first prove a stable law convergence theorem, for the Euler
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scheme error on two consecutive levels mℓ−1 and mℓ, of the type obtained in Jacod and Protter
[15]. Indeed, we prove the following functional result (see Theorem 4)

√

mℓ

(m− 1)T
(Xmℓ −Xmℓ−1

)⇒stably U, as ℓ → ∞,

where U is the same limit process given in Theorem 3.2 of Jacod and Protter [15]. In fact, their
result, namely

√

mℓ

T
(Xmℓ −X)⇒stably U, as ℓ → ∞,

is not sufficient to prove our Theorem 5, since the multilevel Monte Carlo Euler method involves
the error process Xmℓ −Xmℓ−1

rather than Xmℓ −X. Thanks to Theorem 5 we obtain a precise
description for the choice of the parameters to run the multilevel Monte Carlo Euler method.
Afterward, by a complexity analysis we obtain the optimal choice for the multilevel Monte
Carlo Euler method. It turns out that for a total error of order 1/nα the optimal parameters
are given by

N0 = n2α, Nℓ =
(m− 1)Tn2α log n

mℓ logm
, for ℓ ∈ {1, · · · , L} and L =

log n

logm
. (3)

This leads us to a complexity proportional to n2α(log n)2 which is the same order obtained by
Giles [8]. By comparing relations (1) and (3), we note that our optimal sequence of sample
sizes (Nℓ)0≤ℓ≤L does not depend on any given constant, since our approach is based on proving
a central limit theorem and not on obtaining an upper bound for the variance of the algorithm.
All these results are stated and proved in section 3.

In section 4, we investigate the application of this method to the pricing of Asian options.
We proceed by approximating the integral in the payoff process using first the classical Riemann
discretization scheme then the trapezoidal one. It was shown in Lapeyre and Temam [21] that
these discretization schemes are both of second order and the associated weak error εn is of
order n−1 (see section 4). At first, we prove two stable law convergence theorems, for the errors
of both Riemann and trapezoidal schemes, on two consecutive levels mℓ−1 and mℓ (see Theorem
6 and Theorem 7). We obtain a rate of convergence equal to mℓ and the limit processes in
both theorems are related to the one obtained by Kebaier [16] for the same setting. Then, we
take advantage of this study to establish two new Lindeberg Feller central limit theorems (see
Theorem 8 and Theorem 9 ). These results provide us a precise description for the choice of
the parameters in the multilevel Monte Carlo method when used to price Asian options. In
this context of second order schemes, the optimal sequence of sample sizes (Nℓ)0≤ℓ≤L proposed
by Giles [8] (see relation (2) with α = 1) does not satisfy the so called Lyapunov assumption of
the Lindeberg Feller central limit theorem (see subsection 4.3). Indeed, Giles’s analysis is only
based on a control of the variance. However, our approach is based on proving a central limit
theorem for the multilevel Monte Carlo method and we need in addition to satisfy a Lyapunov
type condition that controls a moment of order greater than 2. Finally, we provide three possible
choices of (Nℓ)0≤ℓ≤L satisfying assumptions of the Lindeberg Feller central limit theorem and for
which the optimal complexities can be closer to the order CMMC = n2α but without reaching it
(see subsection 4.4). Section 2 below is devoted to recall some useful stochastic limit theorems
and to introduce our notations.
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2 General framework

2.1 Preliminaries

We first recall basic facts about stable convergence. In the following we adopt the notation
of Jacod and Protter [15]. Let Xn be a sequence of random variables with values in a Polish
space E, all defined on the same probability space (Ω,F ,P). Let (Ω̃, F̃ , P̃) be an extension
of (Ω,F ,P), and let X be an E-valued random variable on the extension. We say that (Xn)
converges in law to X stably and write Xn ⇒stably X, if

E(Uh(Xn)) → Ẽ(Uh(X))

for all h : E → R bounded continuous and all bounded random variable U on (Ω,F) . This
convergence, introduced by Rényi [23] and studied by Aldous and Eagelson [1], is obviously
stronger than convergence in law that we will denote here by “⇒”. According to section 2 of
Jacod [14] and Lemma 2.1 of Jacod and Protter [15], we have the following results.

Lemma 1 let Vn and V be defined on (Ω,F) with values in another metric space E ′.

if Vn
P→ V, Xn ⇒stably X then (Vn, Xn) ⇒stably (V,X)

This result remains valid when Vn = V and conversely, if (V,Xn) ⇒ (V,X), we can realize this
limit as (V,X) with X defined on an extension of (Ω,F ,P) and Xn ⇒stably X as soon as V
generates the σ-field F .

Note that all this applies when Xn, X are Rd-valued right-continuous and left-hand limited
processes, where E = D([0, T ],Rd) is equipped with the Skorokhod topology.

Now, we recall a result on the convergence of stochastic integrals formulated from Jacod and
Protter [15]. This is a simplified version but it is sufficient for our study. Let Xn = (Xn,i)1≤i≤d

be a sequence of Rd-valued continuous semimartingales with the decomposition

Xn,i
t = Xn,i

0 + An,i
t +Mn,i

t , 0 ≤ t ≤ T

where, for each n ∈ N and 1 ≤ i ≤ d, An,i is a predictable process with finite variation, null at
0 and Mn,i is a martingale null at 0.

Theorem 1 Assume that the sequence (Xn) is such that

〈Mn,i〉T +

∫ T

0

∣

∣dAn,i
s

∣

∣

is tight. Let Hn and H be a sequence of adapted, right-continuous and left-hand limited pro-
cesses all defined on the same filtered probability space. If (Hn, Xn) ⇒ (H,X) then X is a
semimartingale with respect to the filtration generated by the limit process (H,X), and we have
(Hn, Xn,

∫

HndXn) ⇒ (H,X,
∫

HdX).
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2.2 The Euler scheme

Let X := (Xt)0≤t≤T
be the process with values in R

d, solution to

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ R
d (4)

where W = (W 1, . . . ,W q) is a q-dimensional Brownian motion on some given filtered proba-
bility space B = (Ω,F , (Ft)t≥0, P ). (Ft)t≥0 is the standard Brownian filtration.
The functions b : Rd −→ R

d and σ : Rd −→ R
d×q are continuously differentiable and satisfy

∃ CT > 0 ; ∀x, y ∈ R
d we have

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ CT (‖y − x‖).

We consider the Euler continuous approximation Xn with step δ = T/n given by:

dXn
t = b(Xηn(t))dt+ σ(Xηn(t))dWt, ηn(t) = [t/δ]δ.

It is well known that the Euler scheme satisfies the following properties (see for instance Faure
[6] for more details)

P1) ∀p > 1, E

[

sup
0≤t≤T

|Xt −Xn
t |p
]

≤ Kp(T )

np/2
, Kp(T ) > 0.

P2) ∀p > 1, E

[

sup
0≤t≤T

|Xt|p
]

+ E

[

sup
0≤t≤T

|Xn
t |p
]

≤ K ′
p(T ), K

′
p(T ) > 0.

2.3 Stable convergence for the Euler scheme error

Now assume that

ϕ(Xt) =











b1(Xt) σ11(Xt) . . . σ1q(Xt)
b2(Xt) σ21(Xt) . . . σ2q(Xt)

...
...

...
bd(Xt) σd1(Xt) . . . σdq(Xt)











and dYt :=











dt
dW 1

t
...

dW q
t











then the S.D.E (4) becomes

dXt = ϕ(Xt)dYt =

q
∑

j=0

ϕj(Xt)dY
j
t

where ϕj is jth column of the matrix σ, for 1 ≤ j ≤ q, and ϕ0 = b. The Euler continuous
approximation Xn with step δ = T/n is given by

dXn
t = ϕ(Xn

ηn(t))dYt =

q
∑

j=0

ϕj(X
n
ηn(t))dY

j
t , ηn(t) = [t/δ]δ. (5)

The following result proven by Jacod and Protter [15] is an improvement of the result given by
Kurtz and Protter [19].
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Theorem 2 With the above notations we have
√

n

T
(Xn −X) ⇒stably U

with (Ut)0≤t≤T the d-dimensional process satisfying

Ut =
1√
2

q
∑

i,j=1

Zt

∫ t

0

Z−1
s ϕ̇j (Xs)ϕi (Xs) dB

ij
s , t ∈ [0, T ], (6)

where (Zt)0≤t≤T is the R
d×d valued process solution of the linear equation

Zt = Id +

q
∑

j=0

∫ t

0

ϕ̇j (Xs) dY
j
s Zs, t ∈ [0, T ],

ϕ̇j is a d×d matrix with (ϕ̇j)ik is the partial derivative of ϕij with respect to the k-th coordinate,
and (Bij)1≤i,j≤q is a standard q2-dimensional Brownian motion independent of W . This process
is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the space (Ω,F , (Ft)t≥0,P).

2.4 Central limit theorem for Monte Carlo Euler method

In many applications (in particular for the pricing of financial securities), the effective compu-
tation of Ef(XT ) is crucial. The Monte Carlo method consists of the following steps:
• Approximate the process (Xt)0≤t≤T

by the Euler scheme (Xn
t )0≤t≤T

, with step T/n, which can
be simulated.
• Evaluate the expectation on the approximating process f (Xn

T ) by the Monte Carlo method.
In order to evaluate Ef (Xn

T ) by the Monte Carlo method, N independent copies f(Xn
T,i)1≤i≤N

of f(Xn
T ) are sampled and the expectation is approximated by the following quantity

f̂n,N :=
1

N

N
∑

i=1

f(Xn
T,i).

The approximation is affected by two types of errors. An analytical error given by

εn := Ef(Xn
T )− Ef(XT )

and a statistical error f̂n,N − Ef(Xn
T ), controlled by the central limit Theorem and which is of

order 1/
√
N . An interesting problem (studied by Duffie and Glynn [5] and Kurtz and Protter

[20]) is to find N as a function of n so that both errors are of the same order. Talay and
Tubaro [24] prove that if f is sufficiently smooth, then εn ∼ c/n with c a given constant. A
similar result was proven by Kurtz and Protter [20] for a function f ∈ C 3. The same result
was extended by Bally and Talay [2] for a measurable function f but with a nondegeneracy
condition of Hörmander type on the diffusion. In the context of possibly degenerate diffusions
X and C 1-functions f , Kebaier [16] prove that the rate of convergence of the discretization
error εn can be 1/nα for all values of α ∈ [1/2, 1] (see Proposition 2.2 of [16]). The following
result highlights the behavior of the global error in the classical Monte Carlo method. It can
be proved in the same way as the limit theorem given in Duffie and Glynn [5].
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Theorem 3 Let f be an R
d-valued function satisfying

(Hf ) |f(x)− f(y)| ≤ C(1 + |x|p + |y|p)|x− y|, for some C, p > 0.

Assume that P(XT /∈ Df ) = 0, where Df := {x ∈ R
d; f is differentiable at x}, and that for

some α ∈ [1/2, 1] we have

(Hεn) lim
n→∞

nαεn = Cf (T, α).

Then

nα
( 1

n2α

n2α
∑

i=1

f(Xn
T,i)− Ef(XT )

)

⇒ σḠ+ Cf (T, α)

with σ2 = V ar(f(XT )) and Ḡ a standard normal.

A functional version of this theorem, with α = 1 was proven by Kurtz and Protter [20] for a
function f of class C 3. One can interpret the theorem as follows. For a total error of order
1/nα the minimal computation effort necessary to run the Monte Carlo algorithm is obtained
for N = n2α. This leads to an optimal time complexity of the algorithm given by

CMC = C × (nN) = C × n2α+1, with C some positive constant.

3 The Multilevel Monte Carlo Euler method

It is well known that the rate of convergence in the Monte Carlo method depends on the variance
of f(Xn

T ) where Xn
T is the Euler scheme of step T/n. This is a crucial point in the practical

implementation. A large number of reduction of variance methods are used in practice. The
multilevel algorithm proposes an iterative control variate reduction of variance that extends
the the statistical Romberg method of Kebaier [16] (see also section 1 above). Its specificity is
that the control variate is constructed in an iterative way by the Monte Carlo method using
different time steps m−ℓT, ℓ ∈ {0, 1, · · · , L} and m ∈ N \ {0, 1} and such that mL = n. Let
us be more precise, it is clearly that

Ef(Xn
T ) = Ef(X1

T ) +
L
∑

ℓ=1

E

(

f(Xmℓ

T )− f(Xmℓ−1

T )
)

. (7)

The multilevel method is to estimate independently by the Monte Carlo method each of the
expectations on the right-hand side. Hence, we approximate Ef(Xn

T ) by

Qn =
1

N0

N0
∑

k=1

f(X1
T,k) +

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xmℓ

T,k)− f(Xmℓ−1

T,k )
)

. (8)

The process (Xmℓ

t )0≤t≤T denotes the Euler scheme with time step m−ℓT for ℓ ∈ {0, · · · , L},
where L = log n/ logm. Here, it is important to point out that all these L + 1 Monte Carlo
estimators have to be based on different, independent samples. However, for each k and ℓ the
simulations f(Xmℓ

T,k) and f(Xmℓ−1

T,k ) come from the same Brownian path but with different time
steps. The following result gives us a first description of the asymptotic behavior of the variance
in the Multilevel Monte Carlo Euler method.
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Proposition 1 For a function f : Rd −→ R
d which is Lipschitz continuous of constant [f ]lip

that is [f ]lip = supu 6=v
|f(u)−f(v)|

‖u−v‖ , we have

V ar(Qn) = O
(

L
∑

ℓ=0

N−1
ℓ m−ℓ

)

. (9)

Proof : We have

V ar(Qn) = N−1
0 V ar

(

f(X1
T )
)

+
L
∑

ℓ=1

N−1
ℓ V ar

(

f(Xmℓ

T )− f(Xmℓ−1

T )
)

≤ N−1
0 V ar

(

f(X1
T )
)

+ 2
L
∑

ℓ=1

N−1
ℓ

(

V ar(f(Xmℓ

T )− f(XT )) + V ar(f(Xmℓ−1

T )− f(XT ))
)

≤ N−1
0 V ar

(

f(X1
T )
)

+ 2[f ]lip

L
∑

ℓ=1

N−1
ℓ E

[

sup
0≤t≤T

∣

∣

∣Xmℓ

t −Xt

∣

∣

∣

2

+ sup
0≤t≤T

∣

∣

∣
Xmℓ−1

t −Xt

∣

∣

∣

2
]

.

We complete the proof by using P1) on the strong convergence of the Euler scheme.
�

The inequality (9) shows that the variance of Qn depends on the choice of sample size Nℓ,
ℓ ∈ {0, 1, · · · , L}. This variance can be smaller than the variance of f(Xn

T ), so that Qn appears
as a good candidate for the reduction of variance method.

The main result of this section is a Lindeberg Feller central limit theorem for the Multilevel
Monte Carlo Euler algorithm (See Theorem 5 below). In order to prove this result, we need to
prove first a stable law convergence theorem for the Euler scheme error. This is the aim of the
following subsection.

3.1 Stable convergence

In what follows, we prove a stable law convergence theorem, for the Euler scheme error on two
consecutive levels mℓ−1 and mℓ, of the type obtained in Jacod and Protter [15] (see Theorem 2
above). Indeed, their result namely,

√

mℓ

T
(Xmℓ −X)⇒stably U, as ℓ → ∞,

is not sufficient to prove our Theorem 5 below, since the multilevel Monte Carlo Euler method
involves the error process Xmℓ −Xmℓ−1

rather than Xmℓ −X. Note that the study of the error
Xmℓ −Xmℓ−1

as ℓ → ∞ can be reduced to the study of the error Xmn −Xn as n → ∞.

Theorem 4 Under notations of Theorem 2, we have the following result
√

mn

(m− 1)T
(Xmn −Xn) ⇒stably U,

where U is solution to equation (6) and m ∈ N \ {0, 1}.
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Proof : Consider the error process Umn,n = (Umn,n
t )0≤t≤T , defined by

Umn,n
t := Xmn

t −Xn
t , t ∈ [0, T ].

Combining relation (5), for both processes Xmn and Xn, together with a Taylor expansion yield
us

dUmn,n
t =

q
∑

j=0

ϕ̇n
t,j(X

mn
ηmn(t) −Xn

ηn(t)) dY
j
t ,

where

ϕ̇n
t,j =

∫ 1

0

∇ϕj

(

Xn
ηn(t) + λ(Xmn

ηmn(t) −Xn
ηn(t))

)

dλ.

Therefore, the equation satisfied by Un can be written as

Umn,n
t =

∫ t

0

q
∑

j=0

ϕ̇n
s,j U

mn,n
s dY j

s +Gmn,n
t ,

with

Gmn,n
t =

∫ t

0

q
∑

j=0

ϕ̇n
s,j(X

n
s −Xn

ηn(s)) dY
j
s −

∫ t

0

q
∑

j=0

ϕ̇n
s,j(X

mn
s −Xmn

ηmn(s)) dY
j
s .

In the following, let (Zmn,n
t )0≤t≤T be the R

d×d valued solution of

Zmn,n
t = Id +

∫ t

0

(

q
∑

j=0

ϕ̇n
s,j dY

j
s

)

Zmn,n
s .

Theorem 48 p.326 in [22], ensures the existence of the process ((Zmn,n
t )−1)0≤t≤T solution to

(Zmn,n
t )−1 = Id +

∫ t

0

(Zmn,n
s )−1

q
∑

j=1

(ϕ̇n
s,j)

2ds−
∫ t

0

(Zmn,n
s )−1

q
∑

j=0

ϕ̇n
s,jdY

j
s .

Thanks to theorem 56 p. 33 in the same reference [22], we get

Umn,n
t = Zmn,n

t

{

∫ t

0

(Zmn,n
s )−1dGmn,n

s −
∫ t

0

(Zmn,n
s )−1

q
∑

j=1

(ϕ̇n
s,j)

2(Xn
s −Xn

ηn(s)) ds

+

∫ t

0

(Zmn,n
s )−1

q
∑

j=1

(ϕ̇n
s,j)

2(Xmn
s −Xmn

ηmn(s)) ds
}

.

Since the increments of the Euler scheme satisfy

Xn
s −Xn

ηn(s) =

q
∑

i=0

ϕ̄n
s,i(Y

i
s − Y i

ηn(s)) and Xmn
s −Xmn

ηmn(s) =

q
∑

i=0

ϕ̄mn
s,i (Y

i
s − Y i

ηmn(s)),

10



with ϕ̄n
s,i = ϕi(X

n
ηn(s)

) and ϕ̄mn
s,i = ϕi(X

mn
ηmn(s)

), it is easy to check that

Umn,n
t =

q
∑

i,j=1

Zmn,n
t

∫ t

0

H i,j,mn,n
s (Y i

s − Y i
ηn(s)) dY

j
s +Rmn,n

t,1 +Rmn,n
t,2

−
q
∑

i,j=1

Zmn,n
t

∫ t

0

H̃ i,j,mn,n
s (Y i

s − Y i
ηmn(s)) dY

j
s − R̃mn,n

t,1 − R̃mn,n
t,2 (10)

with

Rmn,n
t,1 =

q
∑

i=0

Zmn,n
t

∫ t

0

Ki,mn,n
s (Y i

s − Y i
ηn(s)) ds, Rmn,n

t,2 =

q
∑

j=1

Zmn,n
t

∫ t

0

H0,j,mn,n
s (s− ηn(s)) dY

j
s ,

and

R̃mn,n
t,1 =

q
∑

i=0

Zmn,n
t

∫ t

0

K̃i,mn,n
s (Y i

s−Y i
ηmn(s)) ds, R̃mn,n

t,2 =

q
∑

j=1

Zmn,n
t

∫ t

0

H̃0,j,mn,n
s (s−ηmn(s)) dY

j
s .

where, for (i, j) ∈ {0, · · · , q} × {1, · · · , q},

Ki,mn,n
s = (Zmn,n

s )−1

(

ϕ̇n
s,0ϕ̄

n
s,i −

q
∑

j=1

(ϕ̇n
s,j)

2ϕ̄n
s,i

)

, H i,j,mn,n
s = (Zmn,n

s )−1ϕ̇n
s,jϕ̄

n
s,i,

and

K̃i,mn,n
s = (Zmn,n

s )−1

(

ϕ̇n
s,0ϕ̄

mn
s,i −

q
∑

j=1

(ϕ̇n
s,j)

2ϕ̄mn
s,i

)

, H̃ i,j,mn,n
s = (Zmn,n

s )−1ϕ̇n
s,jϕ̄

mn
s,i .

Now, let us introduce Zt = DxXt solution to

Zt = Id +

∫ t

0

q
∑

j=0

(

ϕ̇s,j dY
j
s

)

Zs, with ϕ̇t,j = ∇ϕj(Xt).

Moreover, ((Zt)
−1)0≤t≤T exists and satisfies the following explicit linear stochastic differential

equation

(Zt)
−1 = Id +

∫ t

0

(Zs)
−1

q
∑

j=1

(ϕ̇s,j)
2ds−

∫ t

0

(Zs)
−1

q
∑

j=0

ϕ̇s,jdY
j
s .

Note that using the same techniques as in the proof of existence and uniqueness for stochastic
differential equations with Lipschitz coefficients (i.e. Gronwall inequality), we obtain that for
any p ≥ 1 and for any t ∈ [0, T ], Zmn,n

t , Zt, (Zmn,n
t )−1, (Zt)

−1 ∈ Lp and

lim
n→∞

E

[

sup
0≤t≤T

|Zmn,n
t − Zt|p

]

= 0, and lim
n→∞

E

[

sup
0≤t≤T

∣

∣(Zmn,n
t )−1 − (Zt)

−1
∣

∣

p
]

= 0. (11)

11



Furthermore, in relation (10), one can replace respectively H i,j,mn,n
s and H̃ i,j,mn,n

s by their com-
mon limit

H i,j
s = (Zs)

−1ϕ̇s,jϕ̄s,i, with ϕ̇s,j = ∇ϕj(Xs) and ϕ̄s,i = ϕi(Xs).

So that, relation (10) becomes

Umn,n
t =

q
∑

i,j=1

Zmn,n
t

∫ t

0

H i,j
s (Y i

ηmn(s) − Y i
ηn(s)) dY

j
s +Rmn,n

t , (12)

with
Rmn,n

t = Rmn,n
t,1 +Rmn,n

t,2 +Rmn,n
t,3 − R̃mn,n

t,1 − R̃mn,n
t,2 − R̃mn,n

t,3

where Rmn,n
t,i and R̃mn,n

t,i , i ∈ {1, 2}, are introduced by relation (10) and

Rmn,n
t,3 =

q
∑

i,j=1

Zmn,n
t

∫ t

0

(H i,j,mn,n
s −H i,j

s )(̇Y i
s − Y i

ηn(s)) dY
j
s

R̃mn,n
t,3 =

q
∑

i,j=1

Zmn,n
t

∫ t

0

(H̃ i,j,mn,n
s −H i,j

s )(Y i
s − Y i

ηmn(s)) dY
j
s ,

The remainder term process Rmn,n vanishes with rate
√
n in probability. More precisely, we

have the following convergence result.

Lemma 2 The rest term introduced in relation (12) satisfies sup0≤t≤T

∣

∣

√
nRmn,n

t

∣

∣ converges to
zero in probability as n tends to infinity.

For the reader convenience, the proof of this lemma is postponed to the end of the current
subsection.

The task is now to study the asymptotic behavior of the process given by relation (12)

q
∑

i,j=1

√
nZmn,n

t

∫ t

0

H i,j
s (Y i

ηmn(s) − Y i
ηn(s)) dY

j
s .

In order to study this process, we introduce the martingale process,

Mn,i,j
t =

∫ t

0

(Y i
ηmn(s) − Y i

ηn(s)) dY
j
s , (i, j) ∈ {1, · · · , q}2,

and we proceed to a preliminary calculus of the expectation of its bracket. Let (i, j) and (i′, j′) ∈
{1, · · · , q}2, we have

• for j 6= j′, the bracket 〈Mn,i,j,Mn,i′,j′〉 = 0

• for j = j′ and i 6= i′, E〈Mn,i,j,Mn,i′,j〉 = 0

12



• for j = j′ and i = i′, E〈Mn,i,j〉t =
∫ t

0
(ηmn(s)− ηn(s)) ds, t ∈ [0, T ] and we have

E(〈Mn,i,j〉t) =

∫ ηn(t)

0

(ηmn(s)− ηn(s))ds+O(
1

n2
)

=
m−1
∑

ℓ=0

[t/δ]−1
∑

k=0

∫ (mk+ℓ+1)δ/m

(mk+ℓ)δ/m

(ηmn(s)− ηn(s)) ds+O(
1

n2
)

=
m−1
∑

ℓ=0

[t/δ]−1
∑

k=0

δ2

m

(

mk + ℓ

m
− k

)

+O(
1

n2
) =

(m− 1)δ2

2m
[t/δ] +O(

1

n2
)

=
(m− 1)T

2mn
t+O(

1

n2
). (13)

Having disposed of this preliminary evaluations, we can now study the stable convergence

of
(√

2mn
(m−1)T

Mn,i,j
)

1≤i,j≤q
. By virtue of Theorem 2-1 of [14], we need to study the asymptotic

behavior of both brackets n〈Mn,i,j,Mn,i′,j′〉t and
√
n〈Mn,i,j, Y j′〉t, for all t ∈ [0, T ] and all

(i, j, i′, j′) ∈ {1, · · · , q}4. The case j 6= j′ is obvious and we only proceed to prove that

• for j = j′,
√
n〈Mn,i,j, Y j〉t P−→

n→∞
0, for all t ∈ [0, T ].

• for j = j′ and i 6= i′, n〈Mn,i,j,Mn,i′,j〉t P−→
n→∞

0, for all t ∈ [0, T ].

• for j = j′ and i = i′, n〈Mn,i,j〉t P−→
n→∞

(m−1)T
2m

t, for all t ∈ [0, T ].

For the first point, we consider the L2 convergence

E〈Mn,i,j, Y j〉2t = E

(∫ t

0

(Y i
ηmn(s) − Y i

ηn(s))ds

)2

=

∫ t

0

∫ t

0

E
(

(Y i
ηmn(s) − Y i

ηn(s))(Y
i
ηmn(u) − Y i

ηn(u))
)

dsdu

= 2

∫

0<s<u<t

g(s, u)dsdu

with

g(s, u) = ηmn(s) ∧ ηmn(u)− ηmn(s) ∧ ηn(u)− ηn(s) ∧ ηmn(u) + ηn(s) ∧ ηn(u). (14)

It is worthy to note that

ηn(s) ≤ ηmn(s) ≤ s ≤ ηn(u) ≤ ηmn(u) ≤ u, ∀ s ≤ ηn(u). (15)

Hence g(s, u) = 0, for s ≤ ηn(u), g(s, u) = ηmn(s)− ηn(s), for ηn(u) < s < u, and

E 〈Mn,i,j, Y j〉2t = 2

∫

0<ηn(u)<s<u<t

(ηmn(s)− ηn(s)) dsdu ≤ 2
T

n

∫ t

0

(u− ηn(u))du ≤ 2
T 2

n2
t.

13



This yields the desired result. Concerning the second point, the L2 norm is given by

E〈Mn,i,j,Mn,i′,j〉2t = E

(∫ t

0

(Y i
ηmn(s) − Y i

ηn(s))(Y
i′

ηmn(s) − Y i′

ηn(s))ds

)2

=

∫ t

0

∫ t

0

(

E
(

(Y i
ηmn(s) − Y i

ηn(s))(Y
i
ηmn(u) − Y i

ηn(u))
))2

dsdu

= 2

∫

0<s<u<t

g(s, u)2dsdu,

with the same function g given in relation (14). By properties of g developed above, we have
in the same manner

E〈Mn,i,j,Mn,i′,j〉2t = 2

∫

0<ηn(u)<s<u<t

(ηmn(s)− ηn(s))
2dsdu ≤ 2

T 3

n3
t,

which proves our claim. For the last point, that is the essential one, taking into account the
development of E〈Mn,i,j〉t given by relation (13) we obtain

E

(

n〈Mn,i,j〉t −
(m− 1)T

2m
t

)2

= n2
E〈Mn,i,j〉2t −

(m− 1)2T 2

4m2
t2 +O(

1

n
). (16)

Otherwise, we have

E〈Mn,i,j〉2t = E

(∫ t

0

(Y i
ηmn(s) − Y i

ηn(s))
2ds

)2

=

∫ t

0

∫ t

0

E
(

(Y i
ηmn(s) − Y i

ηn(s))
2(Y i

ηmn(u) − Y i
ηn(u))

2
)

dsdu

= 2

∫

0<s<u<t

h(s, u)dsdu (17)

with
h(s, u) = E

(

(Y i
ηmn(s) − Y i

ηn(s))
2(Y i

ηmn(u) − Y i
ηn(u))

2
)

. (18)

On the one hand, for s ≤ ηn(u), by property (15) and since the increments Y i
ηmn(s)

− Y i
ηn(s)

and

Y i
ηmn(u)

− Y i
ηn(u)

are independent, it follows immediately that

h(s, u) = (ηmn(s)− ηn(s))(ηmn(u)− ηn(u)).

On the other hand, in relation (18) we use the Cauchy-Schwartz inequality to get h(s, u) =
O( 1

n2 ) and this yields
∫

0<ηn(u)<s<u<t

h(s, u)dsdu = O(
1

n3
).

Now, noting that (ηmn(s)− ηn(s))(ηmn(u)− ηn(u)) = O( 1
n2 ), relation (17) becomes

E
(

〈Mn,i,j〉2t
)

= 2

∫

0<s<u<t

(ηmn(s)− ηn(s))(ηmn(u)− ηn(u))dsdu+O(
1

n3
)

=

(∫ t

0

(ηmn(s)− ηn(s))ds

)2

+O(
1

n3
).

14



Once again thanks to the development of E(〈Mn,i,j〉t) given by relation (13), we deduce that

E〈Mn,i,j〉2t =
(m− 1)2T 2

4m2n2
t2 +O(

1

n3
). (19)

Combining relations (16) and (19), we deduce the convergence in L2 of n〈Mn,i,j〉t towards
(m−1)T

2m
t. Hence

(√

2mn
(m−1)T

Mn,i,j
)

1≤i,j≤q
converges in law stably to a standard q2-dimensional

Brownian motion (Bij)1≤i,j≤q independent of W . Consequently, by Lemma 1 and Theorem 1,
we obtain
(
√

mn

(m− 1)T

∫ t

0

H i,j
s (Y i

ηmn(s) − Y i
ηn(s)) dY

j
s , t ≥ 0

)

1≤i,j≤q

⇒stably

(∫ t

0

H i,j
s

dBij
s√
2
, t ≥ 0

)

1≤i,j≤q

Finally, we complete the proof using relations (11), (12), Lemma 2 and once again Lemma 1 to
obtain

√

mn

(m− 1)T
Umn,n ⇒stably U, where Ut =

1√
2

q
∑

i,j=1

Zt

∫ t

0

H i,j
s dBij

s .

�

Proof of lemma 2 : At first, we prove the uniform probability convergence toward zero of
the normalized rest terms

√
nRmn,n

t,i for i ∈ {1, 2}. The convergence of
√
nR̃mn,n

t,i i ∈ {1, 2} is
a straightforward consequence of the previous one. The main part of these rest terms can be
represented as integrals with respect to three types of supermartingales that can be classified
through the following three cases

Dn,0,0
t =

√
n

∫ t

0

(s−ηn(s)) ds, Dn,i,0
t =

√
n

∫ t

0

(Y i
s −Y i

ηn(s)) ds, Mn,0,j
t =

√
n

∫ t

0

(s−ηn(s)) dY
j
s ,

where (i, j) ∈ {1, · · · , q}2 and t ∈ [0, T ]. In the first case the supermartingale is deterministic
of finite variation and its total variation on the interval [0, T ] has the following expression

∫ T

0

∣

∣dDn,0,0
t

∣

∣ =
√
n

∫ T

0

(s− ηn(s)) ds ≤
T 2

√
n
.

So, the process Dn,0,0 converges to 0 and is tight. In the second case, for i ∈ {1, · · · , q}, the
supermartingale is also of finite variation and its total variation on the interval [0, T ] has the
following expression

∫ T

0

∣

∣dDn,i,0
t

∣

∣ =
√
n

∫ T

0

|Y i
s − Y i

ηn(s)| ds.

It is clear that supn E

(

∫ T

0
|dDn,i,0

s |
)

< ∞ which ensures the tightness of the process Dn,i,0.

Therefore, we only need to establish the convergence of Dn,i,0
t towards 0 in L2(Ω), for t ∈ [0, T ].

In fact, we have

E
(

(Dn,i,0
t )2

)

= 2n

∫

0<s<u<t

E
(

(Y i
s − Y i

ηn(s))(Y
i
u − Y i

ηn(u))
)

ds du.
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When s ≤ ηn(u), we have ηn(s) ≤ s ≤ ηn(u) ≤ u and by independence of the Brownian motion
increments, we deduce that the integrand term is equal to 0. Otherwise, when s ≥ ηn(u), we
apply the Cauchy Schwartz inequality to get

E
(

(Dn,i,0
t )2

)

≤ 2T

∫ t

0

(u− ηn(u))du ≤ 2
T 2

n
t.

It follows from all these that Dn,i,0 ⇒ 0. In the last case, for j ∈ {1, · · · , q}, the process Mn,0,j
t

is a square integrable martingale and its bracket has the following expression

〈Mn,0,j〉T = n

∫ T

0

(s− ηn(s))
2 ds ≤ T 3

n
.

It is clear that supn E〈Mn,0,j〉T < ∞, so we deduce the tightness of the process 〈Mn,0,j〉 and
the convergence Mn,0,j ⇒ 0.

Now thanks to property P1) and relation (11), it is easy to check that the integrand processes
Ki,mn,n

s and H0,j,mn,n
s , introduced in relation (10), converge uniformly in probability to their

respective limits Ki
s = (Zs)

−1
(

ϕ̇s,0ϕ̄s,i −
∑q

j=1(ϕ̇s,j)
2ϕ̄s,i

)

and H0,j
s = (Zs)

−1ϕ̇s,jϕ̄s,i, where

ϕ̇s,j = ∇ϕj(Xs) and ϕ̄s,i = ϕi(Xs). Therefore, by Theorem 1 we deduce that the integral
processes given by

√
n

∫ t

0

Ki,mn,n
s (Y i

s − Y i
ηn(s)) ds and

√
n

∫ t

0

H0,j,mn,n
s (s− ηn(s)) dY

j
s

vanish. Consequently, we conclude using relation (11) that
√
nRmn,n

i ⇒ 0 for i ∈ {1, 2}.
We now proceed to prove that Rmn,n

3 ⇒ 0. The convergence of the process R̃mn,n
3 toward 0 is

obviously obtained from the previous one. The main part of this rest term can be represented
as a stochastic integral with respect to the martingale process given by

Nn,i,j
t =

√
n

∫ t

0

(Y i
s − Y i

ηn(s)) dY
j
s ,

with (i, j) ∈ {1, · · · , q} × {1, · · · , q}. It was proven in Jacod and Protter [15] that

√

n

T
Nn,i,j ⇒stably Bij

√
2
,

where (Bij)1≤i,j≤q is a standard q2-dimensional Brownian motion defined on an extension
(Ω̃, F̃ , (F̃t)t≥0, P̃) of the space (Ω,F , (Ft)t≥0,P), which is independent ofW . Thanks to property
P1) and relation(11), the integrand process H i,j,mn,n −H i,j ⇒ 0 and once again by Theorem 1
we deduce that the integral processes given by

√
n

∫ t

0

(H i,j,mn,n
s −H i,j

s )(Y i
s − Y i

ηn(s)) dY
j
s

vanish. All this allows us to conclude using relation (11). �
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3.2 Central limit theorem

Let us recall that the multilevel Monte Carlo method uses information from a sequence of
computations with decreasing step sizes and approximates the quantity Ef(XT ) by

Qn =
1

N0

N0
∑

k=1

f(X1
T,k) +

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xmℓ

T,k)− f(Xmℓ−1

T,k )
)

, m ∈ N \ {0, 1} and L =
log n

logm
.

In the same way as in the case of a crude Monte Carlo estimation, let us assume that the
discretization error

εn = Ef(Xn
T )− Ef(XT )

is of order 1/nα for any α ∈ [1/2, 1]. Taking advantage from the limit theorem proven in the
above section, we are now able to establish a central limit theorem of Lindeberg Feller type on
the multilevel Monte Carlo Euler method. To do so, we introduce a real sequence (aℓ)ℓ≥1 of
positive terms such that

(W) lim
L→∞

L
∑

ℓ=1

aℓ = ∞ and lim
L→∞

1
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ = 0, for p > 2.

and we assume that the sample size Nℓ depends on the rest of parameters by the relation

N0 = n2α, Nℓ =
n2α(m− 1)T

mℓaℓ

L
∑

ℓ=1

aℓ, ℓ ∈ {1, · · · , L} and L =
log n

logm
. (20)

We choose this form for Nℓ because:
• it is a generic form covering our different studies for both first and second order discretization
schemes (see subsection 4.3 below),
• it allows us a straightforward use of Toeplitz lemma that is a crucial tool used in the proof
of our central limit theorem.

We can now state the analogue of Theorem 3 in our setting.

Theorem 5 Let f be an R
d-valued function satisfying

(Hf ) |f(x)− f(y)| ≤ C(1 + |x|p + |y|p)|x− y|, for some C, p > 0.

Assume that P(XT /∈ Df ) = 0, where Df := {x ∈ R
d; f is differentiable at x}, and that for

some α ∈ [1/2, 1] we have

(Hεn) lim
n→∞

nαεn = Cf (T, α).

Then, for the choice of Nℓ, ℓ ∈ {0, 1, · · · , L} given by equation (20), we have

nα
(

Qn − E (f(XT ))
)

⇒ N
(

Cf (T, α), σ
2
)

with σ2 = V ar(f(X1
T ))+ Ṽ ar

(

∇f(XT )UT

)

and N (Cf (T, α), σ
2) denotes a normal distribution.
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Proof : To simplify our notations we give the proof for α = 1, the case α ∈ [1/2, 1) is a
straightforward deduction. Combining relations (7) and (8) together we get

Qn − E (f(XT )) = Q̂1
n + Q̂2

n + εn,

where

Q̂1
n =

1

N0

N0
∑

k=1

(

f(X1
T,k)− E

(

f(X1
T )
))

Q̂2
n =

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xmℓ

T,k)− f(Xmℓ−1

T,k )− E

(

f(Xmℓ

T )− f(Xmℓ−1

T )
))

.

Using the assumption (Hεn) we obviously obtain the term Cf (T, α) in the limit. TakingN0 = n2,

we can apply the classical central limit theorem to nQ̂1
n. Then we have

nQ̂1
n ⇒ N

(

0, V ar
(

f(X1
T )
))

.

Finally, we have only to study the convergence of nQ̂2
n and we will conclude by establishing

nQ̂2
n ⇒ N

(

0, Ṽ ar
(

∇f(XT ).UT

)

)

.

To do so, we plan to use the Lindeberg Feller theorem [10] with Lyapunov condition. We set

Xn,ℓ :=
n

Nℓ

Nℓ
∑

k=1

Zmℓ,mℓ−1

T,k and Zmℓ,mℓ−1

T,k := f(Xmℓ

T,k)− f(Xmℓ−1

T,k )− E

(

f(Xmℓ

T,K)− f(Xmℓ−1

T,k )
)

.

In other words, we will check the following conditions :
• limn→∞

∑L
ℓ=1 E(Xn,ℓ)

2 = Ṽ ar
(

∇f(XT ).UT

)

• (Lyapunov condition) there exists p > 2 such that limn→∞
∑L

ℓ=1 E |Xn,ℓ|p = 0.
For the first one, we have

L
∑

ℓ=1

E(Xn,ℓ)
2 =

L
∑

ℓ=1

V ar(Xn,ℓ) =
L
∑

ℓ=1

n2

Nℓ

V ar
(

Zmℓ,mℓ−1

T,1

)

=
1

∑L
ℓ=1 aℓ

L
∑

ℓ=1

aℓ
mℓ

(m− 1)T
V ar

(

Zmℓ,mℓ−1

T,1

)

. (21)

Otherwise, since P(XT /∈ Df ) = 0, applying the Taylor expansion theorem twice we get

f(Xmℓ

T )− f(Xmℓ−1

T ) = ∇f(XT ).U
mℓ,mℓ−1

T +

(Xmℓ

T −XT )ε(XT , X
mℓ

T −XT )− (Xmℓ−1

T −XT )ε(XT , X
mℓ−1

T −XT ).
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with ε(XT , X
mℓ

T −XT ))
P−→

ℓ→∞
0 and ε(XT , X

mℓ−1

T −XT ))
P−→

ℓ→∞
0 . By Theorem 2 we get the tightness

of
√

mℓ

(m−1)T
(Xmℓ

T −XT ) and
√

mℓ

(m−1)T
(Xmℓ−1

T −XT ) and we deduce

√

mℓ

(m− 1)T

(

(Xmℓ

T −XT )ε(XT , X
mℓ

T −XT )− (Xmℓ−1

T −XT )ε(XT , X
mℓ−1

T −XT )
)

P−→
ℓ→∞

0.

So, according to lemma 1 and Theorem 4 and since ∇f(Xmℓ−1

T )
P−→

ℓ→∞
∇f(XT ) we conclude that

√

mℓ

(m− 1)T

(

f(Xmℓ

T )− f(Xmℓ−1

T )
)

⇒stably ∇f(XT ).UT , as ℓ → ∞. (22)

Using (Hf ) it follows from property P1) that

∀ε > 0, sup
ℓ

E

∣

∣

∣

∣

∣

√

mℓ

(m− 1)T

(

f(Xmℓ

T )− f(Xmℓ−1

T )
)

∣

∣

∣

∣

∣

2+ε

< ∞.

We deduce using relation (22) that

E

(
√

mℓ

(m− 1)T

(

f(Xmℓ

T )− f(Xmℓ−1

T )
)

)k

→ Ẽ

(

∇f(XT ).UT

)k

< ∞ for k ∈ {1, 2}.

Consequently,
mℓ

(m− 1)T
V ar(Zmℓ,mℓ−1

T,1 ) −→ Ṽ ar (∇f(XT ).UT ) < ∞.

Hence combining this result with relation (21), we obtain the first condition using Toeplitz
lemma. Concerning the second one, by Burkholder’s inequality and elementary computations,
we get for p > 2

E|Xn,ℓ|p =
np

Np
ℓ

E

∣

∣

∣

∣

∣

Nℓ
∑

ℓ=1

Zmℓ,mℓ−1

T,1

∣

∣

∣

∣

∣

p

≤ Cp
np

N
p/2
ℓ

E

∣

∣

∣
Zmℓ,mℓ−1

T,1

∣

∣

∣

p

,

where Cp is a numerical constant depending on p only. Otherwise, property P1) ensures the
existence of a constant Kp > 0 such that

∣

∣EZmℓ,mℓ−1

T,1

∣

∣

p ≤ Kp

mpℓ/2
.

Therefore

L
∑

ℓ=1

E |Xn,ℓ|p ≤ C̃p

L
∑

ℓ=1

np

N
p/2
ℓ mpℓ/2

≤ C̃p
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ −→

n→∞
0.

This completes the proof. �
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3.3 Complexity analysis

As in the Monte Carlo case we can interpret Theorem 5 as follows. For a total error of order 1/nα

the computational effort necessary to run the multilevel Monte Carlo Euler method is given by
the sequence of sample sizes specified by relation (20). The associated time complexity is given
by:

CMMC = C ×
(

n2α +
L
∑

ℓ=1

Nℓ(m
ℓ +mℓ−1)

)

with C > 0

= C ×
(

n2α + n2α (m
2 − 1)T

m

L
∑

ℓ=1

1

aℓ

L
∑

ℓ=1

aℓ

)

.

The minimum of this complexity is reached for the choice of weights a∗ℓ = 1, ℓ ∈ {1, · · · , L},
since the Cauchy-Schwartz inequality ensures that L2 ≤ ∑L

ℓ=1
1
aℓ

∑L
ℓ=1 aℓ, and the optimal

complexity for the multilevel Monte Carlo Euler method is given by

CMMC = C ×
(

n2α + n2α(log n)2
m2 − 1

m(logm)2

)

= O
(

n2α(log n)2
)

.

Note that this optimal choice a∗ℓ = 1 corresponds to the sample sizes given by

Nℓ =
(m− 1)Tn2α log n

mℓ logm
, ℓ ∈ {1, · · · , L}.

Hence, our optimal choice is consistent with that proposed by Giles [8]. Nevertheless, unlike the
parameters obtained by Giles [8] for the same setting (see relation (1)), our optimal choice of
the sample sizes Nℓ, ℓ ∈ {1, · · · , L} does not depend on any given constant, since our approach
is based on proving a central limit theorem and not on getting upper bounds for the variance.
Note also that the optimal choice of the parameter m is obtained for m∗ = 7. Otherwise, for
the same error of order 1/nα we have shown that the optimal complexity of a Monte Carlo
method was given by

CMC = C × n2α+1

which is clearly larger than CMMC . So we deduce that the multilevel method is more efficient.

4 Multilevel Monte Carlo and Asian options

The payoff of an Asian option is related to the integral of the asset price process. Computing
the price of an Asian option requires the discretization of the integral. The purpose of this
section is to apply Multilevel Monte Carlo to the approximation of the integral and to carry
on a complexity analysis in this context. This will lead us to prove a stable law convergence
theorem for the discretization error, which can be viewed as the analogue of our Theorem 4
above. Let S be the process on the stochastic basis B = (Ω,F , (Ft)t≥0,P) satisfying

dSt

St

= rdt+ σdWt, with t ∈ [0, T ], T > 0,
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where σ and r are real constants, with σ > 0 and (Wt)t∈[0,T ] is a standard Brownian motion on
B. The solution of the last equation is given by

St = S0 exp
(

(r − σ2

2
)t+ σWt

)

, where S0 > 0.

We set

IT =
1

T

∫

T

0

Su du.

Let f be a given real valued function. Our aim will be to evaluate

e−rT
E f(IT ).

In a financial setting, if f(x) = (x−K)+, this last quantity is the price of an Asian call option
with fixed strike K. In this case there is no explicit formula that gives the real price. So, the
computation of this price, by a probabilistic method, requires a discretization of the integral IT .
There are several approximation schemes used in practice and one can consider either Riemann
scheme or the trapezoidal scheme. We have

InT =
1

n

n−1
∑

k=0

Skδ, and Jn
T =

1

n

n−1
∑

k=0

Skδ + S(k+1)δ

2
, where δ =

T

n
.

We call the first approximation Riemann scheme because it is closely related to the Riemann
approximation of the integral and the second the trapezoidal scheme because it is closely related
to the trapezoidal approximation of the integral. We recall some results proved by Lapeyre
and Temam [21] on the expansions for the strong and weak errors associated to both Riemann
and trapezoidal schemes. Indeed, concerning the strong errors they prove that for p ≥ 1, there
exist Kp(T ) > 0 and K̃p(T ) > 0 such that

PR1)

(

E

(

sup
t∈[0,T ]

|Int − It|2p
))1/2p

≤ Kp(T )

n
,

PT 1)

(

E

(

sup
t∈[0,T ]

|Jn
t − It|2p

))1/2p

≤ K̃p(T )

n
.

Hence, it is obvious that both schemes are of second order. Concerning the weak errors they
prove that for any R-valued function f satisfying condition (Hf ), if P(IT /∈ Df ) = 0, where
Df := {x ∈ R

d; f is differentiable at x}, then there exist real constants CI
f and CJ

f such that

PR2) lim
n→∞

n
(

Ef(InT )− Ef(IT )
)

= CI
f ,

PT 2) lim
n→∞

n
(

Ef(Jn
T )− Ef(IT )

)

= CJ
f .

In order to obtain central limit theorems for the multilevel Monte Carlo method associ-
ated with both Riemann and Trapezoidal schemes, we study the asymptotic behavior of the
distribution errors as in the previous Euler scheme case. We establish two stable convergence
theorems for each scheme.
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4.1 Stable convergence of the Riemann scheme error

The Riemann approximation of the process is given by

Int =
1

T

∫ t

0

Sηn(u)du =
1

n

[t/δ]−1
∑

k=0

Skδ +
t− ηn(t)

T
Sηn(t)

with ηn(t) = [t/δ]δ. One have to study the distribution of the error process Imn − In.

Theorem 6 We have the following result

mn√
m2 − 1

(Imn − In) ⇒stably ξ

where ξ is the process defined by

ξt :=

√

m− 1

m+ 1

St − S0

2
+

1

2
√
3

∫ t

0

σSudBu,

where B is a standard Brownian motion on an extension B̂ of B, which is independent of W .

Proof The error, Emn,n
t , is given by

Emn,n
t := Imn

t − Int =
1

T

∫ t

0

(

Sηmn(s) − Sηn(s)

)

ds.

Noting that the integrand vanishes on the interval [ηn(s), ηn(s)+
1

mn
[, this error can be written

as follows

Emn,n
t =

1

T

∫ t

0

(

Sηmn(s) − Sηn(s)

)

1{ηn(s)+ 1

mn
≤s<ηn(s)+

1

n
}ds+Rmn,n

t

=
1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

(

S(mk+ℓ)δ/m − Skδ

)

+Rmn,n
t ,

where Rmn,n
t =

1

T

∫ t

ηn(t)

(

Sηmn(s) − Sηn(s)

)

ds. Now, using the dynamic of St we get

Emn,n
t =

1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (mk+ℓ)δ/m

kδ

rSudu+
1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (mk+ℓ)δ/m

kδ

σSudWu +Rmn,n
t

=
1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (k+1)δ

kδ

Su1{kδ≤u<(mk+ℓ)δ/m}(rdu+ σdWu) +Rmn,n
t

=
1

mn

∫ ηn(t)

0

rSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)du+

1

mn

∫ ηn(t)

0

σSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu +Rmn,n

t
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with the digital function defined, for ℓ ∈ {1, · · · ,m− 1}, by

dmn,n
ℓ (u) := 1{ηn(u)≤u<ηn(u)+ℓδ/m}.

Hence we get

mnEmn,n
t =

∫ t

0

rSudD
mn,n
u +

∫ t

0

σSudM
mn,n
u +mnRmn,n

t

with the martingale integrand

Mmn,n
t :=

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu,

and a drift term with bounded variation

Dmn,n
t :=

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du.

To study the convergence of the martingale, we compute its quadratic variation

〈Mmn,n〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

(dmn,n
ℓ (u))2 du+ 2

∫ ηn(t)

0

∑

1≤ℓ<ℓ′≤m−1

dmn,n
ℓ (u)dmn,n

ℓ′ (u)du (23)

For the first term, we note

m−1
∑

ℓ=1

(dmn,n
ℓ (u))2 =

m−1
∑

ℓ=1

1{ηn(u)≤u<ηn(u)+ℓδ/m}.

Concerning the second integral, since for 1 ≤ ℓ < ℓ′ ≤ m− 1 we have

ηn(u) ≤ ηn(u) + ℓδ/m ≤ ηn(u) + ℓ′δ/m ≤ ηn(u) + δ,

the expansion of dmn,n
ℓ (u)dmn,n

ℓ′ (u) = dmn,n
ℓ (u). Therefore, coming back to the bracket (23), we

get after computation

〈Mmn,n〉t =
[t/δ]δ

m

m−1
∑

ℓ=1

ℓ+
2[t/δ]δ

m

∑

1≤ℓ<ℓ′≤m−1

ℓ −→
n→∞

(m− 1)(2m− 1)

6
t.

Furthermore, by simple computation we get

〈Mmn,n,W 〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du =

[t/δ]δ

m

m−1
∑

ℓ=1

ℓ =
m− 1

2
[t/δ]δ −→

n→∞

m− 1

2
t.

Besides, using this last computation it is easy to check that

sup
0≤t≤T

∣

∣

∣D
mn,n
t − m− 1

2
t
∣

∣

∣ =
m− 1

2
sup

0≤t≤T

∣

∣

∣[t/δ]δ − t
∣

∣

∣ −→
n→∞

0.

23



By virtue of Theorem 2-1 of Jacod [14] we obtain the stable convergence of

rDmn,n
t + σMmn,n

t ⇒stably m− 1

2
rt+

m− 1

2
σWt +

√

m2 − 1

12
σBt

where (Bt)t≥0 is a Brownian motion independent of (Wt)t≥0. Moreover, according to the above

computations, it is easy to check the tightness of 〈Mmn,n〉T +
∫ T

0
d|Dmn,n

t | and thanks to Lemma
1 and Theorem 1 we get

∫ t

0

rSudD
mn,n
u +

∫ t

0

σSudM
mn,n
u ⇒stably (m− 1)

St − S0

2
+

√

m2 − 1

12

∫ t

0

σSudBu.

Now, it remains to prove the convergence of sup
0≤t≤T

|mnRmn,n
t | in probability to zero. This rest

term is bounded up to a constant factor by sup0≤t≤T |Sηmn(t) − Sηn(t)|. Finally, the proof is
completed using the hölder regularity of the process S.

�

The above subsection is devoted to the study of the trapezoidal scheme error.

4.2 Stable convergence of the trapezoidal scheme error

The trapezoidal approximation of the process is given by

Jn
t =

1

T

∫ t

0

Sηn(u) + S(ηn(u)+δ)∧t
2

du =
1

n

[t/δ]−1
∑

k=0

Skδ + S(k+1)δ

2
+ (t− ηn(t))

Sηn(t) + St

2T

with ηn(t) = [t/δ]δ. One have to study the error process given by Jmn − Jn.

Theorem 7 We have the following result

mn√
m2 − 1

(Jmn − Jn) ⇒stably χ

where χ is the process defined by

χt :=
1

2
√
3

∫ t

0

σSudBu,

where B is a standard Brownian motion on an extension B̂ of B, which is independent of W .

Remark The process χ above is the same limit process given in Theorem 4.1 of Kebaier [16].
In fact, he proves that

mℓ(Jmℓ − J)⇒stably χ, as ℓ → ∞,

which is not sufficient to prove our Theorem 9 below, since the multilevel Monte Carlo method
involves the error process Jmℓ − Jmℓ−1

rather than Jmℓ − J .
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Proof Considering the trapezoidal scheme, for the fine time discretization step δ/m, we can
write it as follows

Jmn
t =

1

2T

∫ ηn(t)

0

(Sηmn(u) + S(ηmn(u)+δ/m))du+
1

2T

∫ t

ηn(t)

(Sηmn(u) + S(ηmn(u)+δ/m)∧t)du

=
1

2mn

m−1
∑

ℓ=0

[t/δ]−1
∑

k=0

(

S(mk+ℓ)δ/m + S(mk+ℓ+1)δ/m

)

+
1

2T

∫ t

ηn(t)

(Sηmn(u) + S(ηmn(u)+δ/m)∧t)du.

The first term in the right hand side, can be arranged as follows

1

2mn

[t/δ]−1
∑

k=0

(

Skδ + S(k+1)δ

)

+
1

mn

m−1
∑

ℓ=1

[t/δ]−1
∑

k=0

S(mk+ℓ)δ/m.

So that, the error, Emn,n
t , can be arranged as follows

Emn,n
t := Jmn

t − Jn
t =

1−m

2mn

[t/δ]−1
∑

k=0

(Skδ + S(k+1)δ) +
1

mn

m−1
∑

ℓ=1

[t/δ]−1
∑

k=0

S(mk+ℓ)δ/m +Rmn,n
t ,

with

Rmn,n
t =

1

2T

∫ t

ηn(t)

(Sηmn(u) + S(ηmn(u)+δ/m)∧t − Sηn(u) − S(ηn(u)+δ)∧t)du.

Furthermore, we rewrite the error as

Emn,n
t = − 1

2mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

((

S(k+1)δ − S(mk+ℓ)δ/m

)

−
(

S(mk+ℓ)δ/m − Skδ

))

+Rmn,n
t .

Now, using the dynamic of St we get

Emn,n
t = − 1

2mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (k+1)δ

kδ

rSu

(

1{(mk+ℓ)δ/m≤u<(k+1)δ} − 1{kδ≤u<(mk+ℓ)δ/m}
)

du

− 1

2mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (k+1)δ

kδ

σSu

(

1{(mk+ℓ)δ/m≤u<(k+1)δ} − 1{kδ≤u<(mk+ℓ)δ/m}
)

dWu +Rmn,n
t

= − 1

2mn

∫ ηn(t)

0

rSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)du− 1

2mn

∫ ηn(t)

0

σSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu +Rmn,n

t

where the digital function defined, for ℓ ∈ {1, · · · ,m− 1}, by

dmn,n
ℓ (u) := 1{ηn(u)+ℓδ/m≤u<ηn(u)+δ} − 1{ηn(u)≤u<ηn(u)+ℓδ/m}.

Hence, we get

mnEmn,n
t =

∫ t

0

rSudD
mn,n
u +

∫ t

0

σSudM
mn,n
u +mnRmn,n

t
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with the martingale integrand

Mmn,n
t := −1

2

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu,

and a drift term

Dmn,n
t := −1

2

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du.

To study the convergence of the martingale, we compute its quadratic variation

4〈Mmn,n〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

(dmn,n
ℓ (u))2 du+ 2

∫ ηn(t)

0

∑

1≤ℓ<ℓ′≤m−1

dmn,n
ℓ (u)dmn,n

ℓ′ (u)du (24)

For the first term, we note that

m−1
∑

ℓ=1

(dmn,n
ℓ (u))2 =

m−1
∑

ℓ=1

1{ηn(u)+ℓδ/m≤u<ηn(u)+δ} + 1{ηn(u)≤u<ηn(u)+ℓδ/m}

=
m−1
∑

ℓ=1

1{ηn(u)≤u<ηn(u)+δ} = (m− 1).

Concerning the second integral, since for 1 ≤ ℓ < ℓ′ ≤ m− 1 we have

ηn(u) ≤ ηn(u) + ℓδ/m ≤ ηn(u) + ℓ′δ/m ≤ ηn(u) + δ,

the expansion of dmn,n
ℓ (u)dmn,n

ℓ′ (u) is equal to

1{ηn(u)+ℓ′δ/m≤u<ηn(u)+δ} − 1{ηn(u)+ℓδ/m≤u<ηn(u)+ℓ′δ/m} + 1{ηn(u)≤u<ηn(u)+ℓδ/m}

that we rewrite as 1− 2× 1{ηn(u)+ℓδ/m≤u<ηn(u)+ℓ′δ/m}. Coming back to the bracket (24), we get
after computation

4〈Mmn,n〉t = (m− 1)2t− 4[t/δ]δ

m

∑

1≤ℓ<ℓ′≤m−1

(ℓ′ − ℓ) −→
n→∞

m2 − 1

3
t.

Furthermore, by simple computation we get

−2〈Mmn,n,W 〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du =

[t/δ]δ

m

m−1
∑

ℓ=1

(m− ℓ)− [t/δ]δ

m

m−1
∑

ℓ=1

ℓ = 0.

Finally, We can proceed analogously to the Riemann case to achieve the proof. �

We can now formulate our main results for both Riemann and trapezoidal schemes.
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4.3 Central Limit Theorems

In the same way as in Euler scheme frame, we consider a real sequence (aℓ)ℓ≥1 of positive terms
satisfying

(W) lim
n→∞

L
∑

ℓ=1

aℓ = ∞ and lim
n→∞

1
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ = 0, for p > 2. (25)

Let us assume that the sample sizes Nℓ, for ℓ ∈ {1, · · · , L}, for the multilevel Monte Carlo
method, have the following form

Nℓ =
n2(m2 − 1)

m2ℓaℓ

L
∑

ℓ=1

aℓ, ℓ ∈ {1, · · · , L} and L =
log n

logm
. (26)

4.3.1 Riemannian Scheme

Now, we consider the Riemann scheme

E(f(InT )) = E
(

f(I1T )
)

+
L
∑

ℓ=1

E

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

. (27)

It is worth to note that f(I1T ) is deterministic equal to f(s0). Hence, the multilevel method in
this case can be written as

Qn = f(s0) +
L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Im
ℓ

T,k)− f(Im
ℓ−1

T,k )
)

. (28)

We can now state the Central limit theorem in this setting.

Theorem 8 Let f be a R-valued function satisfying condition (Hf ) and such that P(IT /∈ Df ) =
0, where Df := {x ∈ R

d; f is differentiable at x}. We have

n
(

Qn − E (f(IT ))
)

⇒ N
(

CI
f , σ

2
)

where σ2 = Ṽ ar
(

f ′(IT )ξT
)

and CI
f is given by property PR2). Here ξ is the limit process in

Theorem 6.

Proof : Combining relations (27) and (28) we obtain

Qn − E (f(IT )) = Q̂n + E (f(InT ))− E (f(IT )) ,

where

Q̂n =
L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Im
ℓ

T,k)− f(Im
ℓ−1

T,k )− E

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
))

Using assumption PR2), we obviously obtain the term CI
f in the limit. So, we have only to

establish
nQ̂n ⇒ N

(

0, Ṽ ar
(

f ′(IT )ξT
)

)

.
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To do so, we plan to use the Lindeberg Feller theorem [10] with Lyapunov condition. More
precisely, We set

Xn,ℓ :=
n

Nℓ

Nℓ
∑

k=1

Zmℓ,mℓ−1

T,k and Zmℓ,mℓ−1

T,k := f(Im
ℓ

T,k)− f(Im
ℓ−1

T,k )− E

(

f(Im
ℓ

T,K)− f(Im
ℓ−1

T,k )
)

,

and we have only to check the following conditions :
• limn→∞

∑L
ℓ=1 E(Xn,ℓ)

2 = Ṽ ar
(

f ′(IT )ξT
)

• (Lyapunov condition) there exists p > 2 such that limn→∞
∑L

ℓ=1 E |Xn,ℓ|p = 0.
For the first one, we have

L
∑

ℓ=1

E(Xn,ℓ)
2 =

L
∑

ℓ=1

V ar(Xn,ℓ) =
L
∑

ℓ=1

n2

Nℓ

V ar
(

Zmℓ,mℓ−1

T,1

)

=
1

∑L
ℓ=1 aℓ

L
∑

ℓ=1

aℓ
m2ℓ

m2 − 1
V ar

(

Zmℓ,mℓ−1

T,1

)

. (29)

Otherwise, since P(IT /∈ Df ) = 0, applying the Taylor expansion theorem twice we get

f(Im
ℓ

T )− f(Im
ℓ−1

T ) = f ′(IT )(I
mℓ

T − Im
ℓ−1

T )+

(Im
ℓ

T − IT )ε(IT , I
mℓ

T − IT )− (Im
ℓ−1

T − IT )ε(IT , I
mℓ−1

T − IT ).

with ε(IT , I
mℓ

T − IT ))
P−→

ℓ→∞
0 and ε(IT , I

mℓ−1

T − IT ))
P−→

ℓ→∞
0. By property PR1), we get the tightness

of

mℓ√
m2−1

(Im
ℓ

T − IT ) and
mℓ√
m2−1

(Im
ℓ−1

T − IT ) and we deduce

mℓ

√
m2 − 1

(

(Im
ℓ

T − IT )ε(IT , I
mℓ

T − IT )− (Im
ℓ−1

T − IT )ε(IT , I
mℓ−1

T − IT )
)

P−→
ℓ→∞

0.

So, according to lemma 1 and Theorem 6 and since f ′(Im
ℓ−1

T )
P−→

ℓ→∞
f ′(IT ) we conclude that

mℓ

√
m2 − 1

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

⇒stably f ′(IT )ξT , as ℓ → ∞. (30)

Now, using (Hf ) it follows from property PR1) that

∀ε > 0, sup
ℓ

E

∣

∣

∣

∣

mℓ

√
m2 − 1

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

∣

∣

∣

∣

2+ε

< ∞.

We deduce using (30) that

E

(

mℓ

√
m2 − 1

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

)k

→ Ẽ

(

f ′(IT )ξT

)k

< ∞ with k ∈ {1, 2}.
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Consequently,
m2ℓ

m2 − 1
V ar(Zmℓ,mℓ−1

T,1 ) −→ Ṽ ar (f ′(IT )ξT ) < ∞.

Combining this last convergence with relation (29), we obtain the first condition a using Toeplitz
lemma. Concerning the second one, by Burkholder’s inequality and elementary computations,
we get for p > 2

E|Xn,ℓ|p =
np

Np
ℓ

E

∣

∣

∣

∣

∣

Nℓ
∑

ℓ=1

Zmℓ,mℓ−1

T,1

∣

∣

∣

∣

∣

p

≤ Cp
np

N
p/2
ℓ

E

∣

∣

∣
Zmℓ,mℓ−1

T,1

∣

∣

∣

p

,

where Cp is a numerical constant that depends on p only. Otherwise, property PR1) ensures
the existence of a constant Kp > 0 such that

E
∣

∣Zmℓ,mℓ−1

T,1

∣

∣

p ≤ Kp

mpℓ
.

Therefore,

L
∑

ℓ=1

E |Xn,ℓ|p ≤ C̃p

L
∑

ℓ=1

np

N
p/2
ℓ mpℓ

≤ C̃p
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ −→

n→∞
0.

This completes the proof. �

4.3.2 Trapezoidal Scheme

Now, we consider the trapezoidal scheme.

E(f(Jn
T )) = E

(

f(J1
T )
)

+
L
∑

ℓ=1

E

(

f(Jmℓ

T )− f(Jmℓ−1

T )
)

.

Hence, the multilevel method in this case can be written as

Qn =
1

N0

N0
∑

k=1

f

(

S0 + ST,k

2

)

+
L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Im
ℓ

T,k)− f(Im
ℓ−1

T,k )
)

.

In the following we consider the same real sequence (aℓ)ℓ≥1 of positive terms given by relation
(25) and the sequence of sample sizes (Nℓ)0≤ℓ≤L given by relation (26). We can now state the
Central limit theorem for the trapezoidal scheme.

Theorem 9 Let f be a R-valued function satisfying condition (Hf ) and such that P(IT /∈ Df ) =
0, where Df := {x ∈ R

d; f is differentiable at x}. We have

n
(

Qn − E (f(IT ))
)

⇒ N
(

CJ
f , σ

2
)

where

σ2 = V ar

(

f

(

S0 + ST

2

))

+ Ṽ ar
(

f ′(IT )χT

)

and CJ
f is given by property PT 2). Here, χ is the limit process in Theorem 7.
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Proof: We can write

Qn − E (f(IT )) = Q̂1
n + Q̂2

n + E (f(Jn
T ))− E (f(IT )) ,

where

Q̂1
n =

1

N0

N0
∑

k=1

(

f(Jm0

T,k)− E

(

f(Jm0

T )
))

Q̂2
n =

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Jmℓ

T,k)− f(Jmℓ−1

T,k )− E

(

f(Jmℓ

T )− f(Jmℓ−1

T )
))

.

Using assumption PT 2) we obviously obtain the term CJ
f in the limit. Afterward, one can

apply the classical central limit theorem for the quantity Q̂1
n with N0 = n2 to get

nQ̂1
n ⇒ N

(

0, V ar
(

f(Jm0

T )
)

)

.

On the other hand, the convergence of nQ̂2
n is obtained by following the proof steps of the

Central Limit Theorem for the Riemann scheme, Theorem 8. Using this approach, we have only
to use respectively property PT 1) and Theorem 7 instead of PR1) and Theorem 6. Hence, we
obtain the following convergence

nQ̂2
n ⇒ N

(

0, Ṽ ar
(

f ′(IT )χT

)

)

.

This completes the proof.
�

4.4 The complexity

The following complexity analysis stands valid for any second order discretization scheme.
In particular, it remains valid for both Riemann and trapezoidal schemes. As in the Monte
Carlo case we can interpret Theorems 8 and 9 as follows. For a total error of order 1/n
the computational effort necessary to run the multilevel algorithm applied to the Riemann or
trapezoidal scheme, with step numbers mℓ, (m, ℓ) ∈ N \ {0, 1}×{1, · · · , L}, corresponds to the
sequence of sample sizes (Nℓ)0≤ℓ≤L given by relation (26). Consequently, the time complexity
in the multilevel Monte Carlo method for these second order schemes is given by

CMMC = C ×
L
∑

ℓ=1

Nℓ(m
ℓ +mℓ−1) with C > 0

= C × (m+ 1)2(m− 1)

m
n2

L
∑

ℓ=1

1

mℓaℓ

L
∑

ℓ=1

aℓ.

The minimum of this complexity is reached for the choice of weights a∗ℓ = m−ℓ/2, ℓ ∈ {1, · · · , L},
since the Cauchy-Schwartz inequality ensures that

(

∑L
ℓ=1 m

−ℓ/2
)2

≤ ∑L
ℓ=1

1
mℓaℓ

∑L
ℓ=1 aℓ, and
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the optimal complexity for the multilevel Monte Carlo method for this choice is given by

C
a∗
ℓ

MMC = C × (m+ 1)2(m− 1)

m
n2

(

L
∑

ℓ=1

m−ℓ/2

)2

= O
(

n2
)

.

Note that this optimal choice a∗ℓ = m−ℓ/2 corresponds to the sample size

Nℓ =
m2 − 1

m3ℓ/2(1−√
m)

n2

(

1− 1√
n

)

(31)

of the ℓth level in the multilevel algorithm, which is consistent with the complexity analysis
given in Giles [8]. More precisely, by taking β = 2 in Theorem 3.1 of [8] we recover the same
complexity as well as the same order of sample sizes (Nℓ)0≤ℓ≤L (see also relation (2) ). However,
this optimal choice a∗ℓ , leading to the complexity n2, does not satisfy condition (W) and even the
Lyapunov condition. Hence, there is no reason that the Central limit theorem holds. Actually,
Giles’s analysis is based on the control of the variance, whereas, for the same framework, to
obtain the central limit theorem, we need in addition a Lyapunov type condition that controls
a moment of order greater than 2. As a consequence for applications, we recommend not to use
the multilevel Monte Carlo method associated to second order schemes with the sample size
Nℓ given by relation (31), since the central limit theorem, essential when we use Monte Carlo
methods, does not hold.

So, how to choose this sequence (Nℓ)0≤ℓ≤L in an optimal way and such that the central
limit theorem still holds? We shall exhibit three sequences (al)1≤ℓ≤L satisfying our condition
(W) and reducing significantly the complexity and for which the complexity is explicit. In the
following, we fix N0 = n2 and for all ℓ ∈ {1, · · · , L} we have

a) the choice aℓ,1 = 1, corresponds to the sample size Nℓ,1 =
m2 − 1

m2ℓ
n2L . This leads to

a complexity C
aℓ,1
MMC = C ×

(

n2 +
(m+ 1)2

m logm
n2 log n

)

= O (n2 log n) . In this case, the

optimal choice of the parameter m is equal to 4.

b) For aℓ,2 = 1/ℓ, we get Nℓ,2 =
(m2 − 1)ℓ

m2ℓ
n2
∑L

ℓ=1
1
ℓ
. This leads to a complexity

C
aℓ,2
MMC = C ×

(

n2 +
(m+ 1)2(m− 1)

m
n2

L
∑

ℓ=1

ℓ

mℓ

L
∑

ℓ=1

1

ℓ

)

∼ C × (m+ 1)2

m− 1
n2 log log n = O

(

n2 log log n
)

and the optimal choice of the parameter m is equal to 3.
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c) For aℓ,3 = 1/(ℓ log ℓ), we get Nℓ,3 =
(m2 − 1)ℓ log ℓ

m2ℓ
n2
∑L

ℓ=1
1

ℓ log ℓ
and a complexity

C
aℓ,3
MMC = C ×

(

n2 +
(m+ 1)2(m− 1)

m
n2

L
∑

ℓ=1

ℓ log ℓ

mℓ

L
∑

ℓ=1

1

ℓ log ℓ

)

∼ C × (m+ 1)2(m− 1)

m
n2

∞
∑

ℓ=1

ℓ log ℓ

mℓ
n2 log log log n = O

(

n2 log log log n
)

.

In this last case, the factor depending on m, in the above complexity, can be interpreted

as (m+1)2

m
E (Gm log(Gm)), where Gm

law
= Geometric(1 − 1/m). So, a simple Monte Carlo

approximation yields the optimal choice of the parameter m which is equal to 5.

Through these examples, we note that the central limit theorem is conserved and the complexity
can be very close to the order n2 without reaching it. In the other hand, for the same error of
order 1/n we have shown that the optimal complexity of a Monte Carlo method was given by:

CMC = C × n3

which is clearly larger than CMMC . So we deduce that the multilevel method is more efficient.

5 Conclusion

The multilevel Monte Carlo algorithm is a method that can be used in a general frame-
work: as soon as we use a discretization scheme in order to compute quantities such as
Ef (Xt, 0 ≤ t ≤ T ), we can implement the statistical multilevel algorithm. And this is worth
because it is more efficient than a classic Monte Carlo method.
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