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Abstract We experimentally investigate the mechan-
ical behaviour in cyclic shear of a granular material
near a solid wall in a pressure controlled annular shear
cell. The use of a model system (glass beads and saw-
tooth shaped solid surface) enables the study of the
influence of the wall roughness. After an initial shake-
down procedure ensuring reproducible results in sub-
sequent tests, wall shear stress S, volumetric variation
∆V , and the displacement field of the sample bottom
surface, are recorded as functions of wall displacement.
A dimensionless roughness parameter Rn is shown to
control the interface response. The local grain-level or
mesoscale behaviour is directly correlated to the global
one on the scale of the whole sample.

1 Introduction

The interaction between granular and continuum ma-
terials is often encountered in engineering problems.
In geotechnical engineering the transfer of stresses be-
tween granular soil and structures is determined by
the interface behaviour in systems like reinforced earth,
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foundations, retaining wall, etc. In such applications the
mobilization of the friction and the capacity of stress
transmission are important design parameters.

Considering its practical significance, the interface
behaviour has been addressed in many experimental
studies [1–6]. From a macroscopic viewpoint one is in-
terested in describing the mobilization of shear stress,
depending on the density or other state variables char-
acterizing the confined granular material. Cyclic shear
tests [2,7] also revealed the influence of the amplitude
of tangential displacement and of the number of loading
cycles on the stress response. Further studies [3–6] evi-
denced and quantified a discontinuity between the solid
surface and the granular material displacements sug-
gesting local singular behaviour at the interface. Shear
bands were visualized by measurements of particle mo-
tion near the interface [8]. More recently, a correlation
image velocimetry (CIV) algorithm [9–11] was applied
to identify the deformation of a granular sample out-
side the shear band in an annular shear apparatus in
ref. [12]. In Couette cells [12–16], this band is localized
near the inner cylinder wall because of the shear stress
decay in the radial direction [14].

In the present study we use the same 3D cylinder
apparatus as in Ref. [12], i.e., a Couette cell surrounded
by a flexible membrane through which a controlled ra-
dial pressure is imposed. We focus on the interfacial
zone, in the immediate vicinity of the solid shearing sur-
face. Our main objective is to identify the relations be-
tween the characteristics of the shear band, the macro-
scopic and the mesoscopic shear behaviours and the in-
fluence of the surface roughness.

A general description of the cylinder cell, of the
sample material and of the experiments are presented
in Sec. 2. The experimental procedure is presented in
Sec. 3. Sec. 4 then deals with the macroscopic behaviour
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observed, while the mesoscopic (local scale) results are
presented in Sec. 5. Finally, we discuss the main results
in Sec. 6 and state our conclusions in Sec. 7.

2 Material characteristics and description of
the geometry

2.1 Device principle

The cylindrical simple shear device (ACSA, in French)
was designed and constructed (in the CERMES labo-
ratory) in 1993. Detailed information, including related
theoretical considerations, material description, experi-
mental results and numerical simulations can be found
in two doctoral dissertations [17,18] and a series of re-
lated publications [19–22].

The device operating principle is based on shearing
a confined annular sample by the rotation of a rigid
internal cylinder, as shown in Fig. 1. The sample has
internal radius Ri = 100 mm (defined naturally by the
internal cylinder radius), outer radius Ro = 200 mm
and height H equal to Ro −Ri = 100 mm.

A controlled angular velocity of the cylinder imposes
tangential velocity Vθ = 2 mm/min to the sample in-
ternal surface. On the outer surface, a radial confining
pressure, Pr, is applied (at Ro), and a vertical pressure,
Pz, is applied onto the top.

H

Fig. 1 Scheme of the annular cell.

Complementary information concerning the
annular shear device is provided in Appendix A.

2.2 Granular material

Dry glass beads assemblies are chosen as model, well
controlled granular materials. Different diameters d are
used, with nearly monodisperse population of beads:
0.25, 0.5, 1.8 and 8 mm (see table 1).

As confining pressures are maintained below 150 kPa
our experiments do not show any sign of particle attri-
tion or damage.

2.3 Internal cylinder

The roughness of the internal cylinder surface is com-
posed of a set of vertical triangular striations, with
wavelength L1 and groove depth L2, as defined in Fig. 2.
Two different cylinders are used: cylinder 1, with L1 =

1.7 mm and L2 = 1 mm, and cylinder 2, with L1 =
0.44 mm and L2 = 0.1 mm.

Rmax

L1

L2

d

Fig. 2 Triangular striation parameters and maximum particle
penetration Rmax.

2.4 Normalized roughness

We use the same normalized roughness parameter as
introduced in Ref. [23]. We denote as Rmax the ele-
vation difference between the deepest and the highest
possible contact points on the rough surface, as shown
in Fig. 2. The normalized roughness is then defined as
Rn = Rmax/d.

In Fig. 3, we distinguish two different types of con-
tact, depending on the values of d, L1 and L2. Denoting

a threshold particle diameter as dlim = L1

L2

√(
L1

2

)2
+ (L2)2,

the particles mostly enter in contact with facets of the
rough wall if d ≤ dlim, while for d ≥ dlim they only touch
the teeth tips. The normalized roughness Rn depends
on d, L1, L2 as
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1

2
+

L2

d
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Fig. 3 Particle-wall contact for (a) d ≤ dlim and (b) d > dlim

2.5 List of samples

The list of samples with geometric data (including rough-
ness parameter Rn) is drawn up in Table 1.

Experiment d (mm) cylinder Rn Ri/d

1 8.0 2 7.72.10−4 12.5
2 8.0 1 1.14.10−2 12.5
3 1.8 2 1.55.10−2 55.5

4 1.8 1 2.82.10−1 55.5
5 0.25 2 3.52.10−1 400.0
6 1.0 1 7.27.10−1 100.0
7 0.5 1 1.73 200.0

Table 1 List of experiments with corresponding roughness level
Rn and geometric parameter Ri/d.

In Fig. 4, roughness parameters Rn are shown for all
experiments, depending on the bead diameter for both
cylinders.

3 Experimental procedure and measurements

3.1 Cyclic shear procedure

The slowly rotation of the central cylinder transmits the
shear stress to the material sample, which is maintained
under prescribed radial and vertical pressures. The dif-
ferent sensors composing our experimental setup pro-
vide macroscopic (sample scale) measurements of the
shear stress at the inner wall S and of the sample vol-
umetric variation ∆V . These data are recorded along
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    cylinder 2

dlim 

Fig. 4 Normalized roughness Rn as a function of particle di-
ameter d for both cylinders (Eq. 1). The vertical lines indicate
the limit diameter dlim for each cylinder. The filled symbols rep-
resent the samples with d ≤ dlim, while the hollow ones, the
samples with d > dlim.

with wall tangential displacement D, providing detailed
information on friction mobilization in an entire cycle.

As discussed in Appendix B, a cyclic procedure is
suitable to prepare samples that are independent of the
deposition and preconsolidation processes. After a suffi-
cient number of shear reversals, the stress and the volu-
metric behaviour of the material become identical from
one cycle to the next. The cycles then superimpose and
exhibit the shape schematized in Fig. 5. Displacement
amplitude a (see discussion in Sec. B.2) is set to 5 cm.

3.2 Normalized volumetric variation ∆Vn

Considering previous results [12,24,25], and anticipat-
ing on Section 5, we assume that, at least once the cyclic
behaviour gets stabilized at the end of the preparation
procedure, shear strain and volume changes are local-
ized near the interface. Consequently, volume changes
∆V should not be compared to the total sample vol-
ume, but rather to the volume of the interface region,
i.e.,

Vb = Ap Lb, (2)

where Lb is the shear band thickness and Ap = 2πRiH
is the wall surface area. Thus the sample volumetric
variation ∆V reads:

∆V = ∆Vb = Ap ∆Lb, (3)

and the variation of shear band thickness, relative to
the particle size, is given by the normalized volumetric
variation ∆Vn, defined as:

∆Vn =
∆V

Ap d
=

∆Lb

d
. (4)
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Fig. 5 Schematic behaviour (a) of shear stress at the wall S

and (b) of volumetric variation ∆V in stabilized cycle.

3.3 Confining pressures

Each sample is subjected to 3 different configurations
of the confining pressure. The average vertical pres-
sure is maintained constant Pz = 100 kPa in all cases,
while the radial component Pr takes the values: 67 (C1),
100 (C2) and 150 kPa (C3), as summarized in Table 2.

Load Pr (kPa) Pz (kPa)
C1 67 100
C2 100 100
C3 150 100

Table 2 Vertical and radial pressures for the three applied loads.

The effect of different load configurations, as dis-
cussed in Appendix C, is approximately accounted for
on defining an effective pressure as

P = (Pr + Pz)/2. (5)

The ratio of the shear stress to the effective pressure
then defines the apparent coefficient of friction

µ∗
app = S/P. (6)

Those definitions are discussed in Sec. 4.1.

3.4 Velocimetry

During each shear experiment, series of photographs are
taken through the window at the base plate (Fig. 6), in
order to study the local effects of shearing. Images are
recorded over 2.5 cycles. We thus have 5 sequences of
pictures, covering a tangential displacement of 10 cm
(−5 cm ≤ D ≤ 5 cm) in each half cycle. This proce-
dure is repeated for each load (C1, C2 and C3). Corre-
lation image velocimetry (CIV) [9–12] is implemented
to identify the velocity field at the bottom surface of
the sample. Considering a polar coordinate system (r,
θ) with its origin at the center of the internal cylinder,
we analyzed the tangential component of the velocity
vθ in experiments 1, 2, 4, 6 and 7.

Fig. 6 Base plate opening for sample visualization. The region
within which velocity (with its polar coordinates as sketched) is
measured is framed in white.

On analyzing successive pairs of images, we deter-
mine the mean displacement vector in regions of 64×64
pixels (≈ 2.8× 2.8 mm), spaced horizontally and verti-
cally by 32 pixels (≈ 1.4 mm).

The resolution of the photographs (3072×2048 pix-
els) allows us to study the displacements at the particle
scale. The CIV method requires small displacements be-
tween the images, not exceeding 1/4 of the region size
[26]. With a time interval of 6 s between two successive
images and wall tangential velocity Vθ = 2 mm/min,
the maximum displacement is well below this upper
limit.

Tangential displacements are extracted and aver-
aged within an angular sector of 35o at constant radial
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coordinate r, whence a radial profile of the tangential
displacement, or, equivalently, a radial profile of tan-
gential velocity, vθ(r), averaged over a small time in-
terval. Those profiles characterize a mesoscopic scale,
over which local values of macroscopic field variables
can tentatively be identified.

Magnetic resonance imaging in an annular shear de-
vice [27] showed that profiles vθ(r) were but negligibly
affected by the vicinity of the top and bottom smooth
plates. The same conclusion was reached from confocal
images of a similar apparatus [7]. Rougher plates,
however, may disturb the velocity profiles [27].
The possible effects of the glass plates are dis-
cussed in Sec. 6.2.2.

4 Macroscopic results

Our results on the macroscopic response of the
interface under cyclic shear, as expressed by shear
stress S and volume variation ∆Vn, are presented
below. We first investigate the effects of inter-
face roughness and confining load in Sec. 4.1. In
Sec. 4.2, we give a qualitative description of the
observed cyclic behaviour, where two classes of
response are distinguished. A discussion about
the interface coefficient of friction is presented in
Sec. 4.3, while some aspects of the friction mobi-
lization are analyzed in Sec. 4.4. Finally the in-
fluence of the normalized roughness Rn over the
volumetric behaviour is presented in Sec. 4.5.

4.1 Shear stress at the wall S

As in recent experiments, with ACSA [28] or other de-
vices [1,29–31], we observe wall shear stress S to in-
crease with the roughness level. In Fig. 7a, the max-
imum value wall shear stress in the cycle, denoted as
S4, corresponding to the plateau ending in the inver-
sion point in graph 5a, is shown as a growing func-
tion of normalized roughness Rn. Figs. 7a and 7b
reveal the influence of the confining pressure:
effective pressure P (Eq. 5) appears to success-
fully combine the influence of Pr and Pz on nor-
mal stresses at the wall, so that, as shown by the
superposition of curves in plot 7b, an apparent
coefficient of friction µ∗

app (Eq. 6) can in fact be
identified (see further discussion in Sec. 4.3).

4.2 Rough and smooth behaviour in shear cycle

On comparing the observed variations of wall shear
stress and volume changes ∆Vn versus displacement D
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0.5
0.6
0.7
0.8
0.9
1.0
1.1

(a)
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0.7
0.8
0.9
1.0
1.1

(b)

 

 

S 4/P

Rn

Fig. 7 Influence of the normalized roughness Rn over the shear
stress normalized (a) by the vertical confining pressure value
S/Pz, and (b) by the effective confining pressure S/P for dif-
ferent loads: (�,�) C1, (•,◦) C2 and (N,△) C3. The filled sym-
bols correspond to the cylinder 1, while the hollow ones, to the
cylinder 2.

in stabilized cycles, as previously schematized in Fig. 5,
a qualitative classification of the macroscopic interface
layer response into rough and smooth categories emerges,
as illustrated by Fig. 8.

We define reference points, labeled 1 to 4 (see Fig. 8),
in each half-cycle (corresponding to monotonic wall dis-
placement). The material first exhibits a contracting
behaviour after point 1, while S varies rapidly with
D. At point 2, the volume ceases to decrease, reaching
a minimum plateau, while |S| keeps increasing. Then,
starting at point 3, dilation is observed, while S ap-
proaches an asymptotic value. For the larger values of
roughness parameter Rn, this evolution occurs in two
stages, whence the definition of points 3a and 3b in
Fig. 8B, and we use this qualitative feature to dis-
tinguish rough interfaces from smooth ones. Between
points 2 and 3a, both S and ∆Vn vary rapidly, con-
siderably faster than in the typical smooth cases (com-
pare plots labeled a and c on parts A and B of Fig. 8).
The observed dilatancy beyond point 3b suddenly be-
comes much smaller (similar to the smooth case value).
A similar change of slope is apparent at point 3b on
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Fig. 8 Interface behaviour in shear cycle (A, top four plots) in smooth and (B, bottom plots) rough cases. (a) S/Pz (with initial fast
variation in (b)) and (c) normalized volume variation ∆Vn vs. wall displacement D. (d) ∆Vn vs. S/Pz. Symbols + and − following
reference point numbers on graphs indicate sign of wall velocity.
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the S versus D plot. After point 3 (smooth case), or
point 3b (rough case), both S and ∆Vn approach a
plateau. Point 4 (whence notation S4 used in Sec. 4.1)
is the shear strain reversal point, where the inner cylin-
der starts rotating in the opposite direction. In the final
part of the cycle, from point 4 back to point 1, S dis-
plays a very fast (unloading) variation with D.

Table 3 classifies all seven interface tests into smooth
and rough interface categories.

Experiment Rn Behaviour

1 0.000772 smooth
2 0.0114 smooth
3 0.0155 smooth
4 0.282 smooth
5 0.352 smooth
6 0.727 rough
7 1.73 rough

Table 3 Sample interface classification according to macro-
scopic behaviour during cycle shear.

4.3 Apparent coefficient of friction µ∗
app

The values of the apparent coefficient of fric-
tion µ∗

app for characteristic points 2, 3 or 3a and
4 are given in Fig. 9 for different values of nor-
malized roughness Rn. Coefficient µ∗

app increases
with roughness level Rn, the fastest in the range
of Rn ∼ 0.1, approaching an upper limit as Rn ≥
0.7. A similar result was observed in [32], also
with glass beads, indicating a limited influence
of the normalized roughness over the stresses
for Rn ≥ 0.5. It was shown in that study that
the maximum interface coefficient of friction is
limited by the internal coefficient of friction of
the material (µ∗

0 ≤ 0.58 for glass beads [32]). Nor-
mal and shear stresses were both measured, pro-
viding in fact a real (in contrast to apparent)
effective coefficient of friction at the interface.
In our case, the volume variation during the
cyclic shear, especially for rough interfaces (see
Sec. 4.2 just above), might also cause an increase
of the normal stress at the interface, whence the
observation of µ∗

app > µ∗
0 for rough interfaces in

our experiments. In the opposite limit of very
smooth interfaces, as Rn . 0.01 (in agreement,
again, with the experiments of [32]), µ∗

app ap-
proaches an Rn-independent lower asymptotic
value (clearly visible in Fig. 7b for µ∗

app ≃ S4/P

associated to characteristic point 4).

0.0 0.5 1.0 1.5 2.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 

 

* ap

Rn

Fig. 9 Apparent effective coefficient of friction µ∗
app for differ-

ent reference points: (⋆) 2, (H) 3 or 3a and (�) 4.

4.4 Friction mobilization distance

We call friction mobilization distance the necessary dis-
placement (from the beginning of the cycle, point 1,
where S = 0) to reach a certain shear stress level at the
wall. Thus, to the shear stresses S2 and S3 we respec-
tively associate mobilization distances l12 and l13.

Fig. 10 shows mobilization distances normalized by
the particle diameter, l12/d and l13/d, as functions of
Rn for the 3 different loads, evidencing a growing trend
already reported in [28]. Both distances keep in-
creasing (with no apparent upper limit, unlike
shear stress S) for the largest investigated rough-
ness levels. Inferior limits observed for Rn → 0
indicate the effect of the friction of a totally
smooth cylinder. The mobilization of the fric-
tion would induce some particle rearrangement:
maximum compaction in a shear distance of l12/d ≈
1.50; beginning of the dilation in l13/d ≈ 4.00. At
the end of a cycle, the shear stress transmitted
to the particles would correspond to S4/P ≈ 0.35

(see Fig. 7b).

4.5 Influence of Rn on ∆Vn

As a global characteristic of volumetric behaviour, we
take the maximum amplitude of the variation of ∆Vn

in a cycle, equal to ∆V 2−4
n , its variation between points

2 and 4 (see Figs. 8Ac or 8Ad and 8Bc or 8Bd). Fig. 11
shows an approximately linear dependence of this vari-
able on normalized roughness Rn. The low values of
∆V 2−4

n , observed for smooth interfaces (Fig. 11), are
correlated to the corresponding low values of the shear
stress (Fig. 7c) and of the friction mobilization length
(Fig. 10).



8

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

 

 

l 12
/d

, l
13

/d

Rn

l12

 l13

Fig. 10 Normalized friction mobilization distances l12/d and
l13/d for different loads: (�,�) C1, (•,◦) C2 and (N,△) C3, as
functions of normalized roughness Rn, in tests with cylinders 1
(filled symbols) and cylinder 2 (hollow symbols). Fit functions:
l12/d = 2.67Rn+1.50 and l13/d = 9.33Rn+4.00 are plotted with
solid lines.
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Fig. 11 Normalized volumetric variation ∆V 2−4
n as a func-

tion of the normalized roughness Rn for different loads: (�,�)
C1, (•,◦) C2 and (N,△) C3. The filled symbols correspond to
the experiments with the cylinder 1, while the hollow ones, to
the experiments with the cylinder 2. The solid line indicates the
function ∆V 2−4

n = 0.14Rn + 0.015.

5 Mesoscopic results - Velocity field

We now present our mesoscopic results (i.e. quantities
measured at the scale of a few particles), based on the
radial profiles of the particle tangential velocity (see
3.4). We derive from them the sliding of particles at
the interface and the shear band thickness.

5.1 Thickness of the shear band λ+

The thickness of the shear band is derived from the
characteristics of the velocity profile. We observe a dis-
continuity between the velocities of the wall Vθ and of
the particles surrounding the wall V +

θ = vθ(Ri) (where

Ri is the radial coordinate of the wall). Then we define
the thickness of the shear band λ+ as the length where
we get a decrease of 90% of the particle velocity V +

θ

(Fig. 12):

vθ(λ
+ +Ri)/V

+
θ = 0.1, (7)

0.1

0 (r-Ri)/d

v /V+

0

1

Fig. 12 Definition of shear band thickness λ+.

5.2 Evolution of velocity profile vθ(r) in cyclic shear

During the cycles, we observed the evolution of the
shear stress at the wall S and of the normalized vol-
umetric variation ∆Vn as a function of the wall dis-
placement D as previously discussed in Sec. 4.

In order to evaluate the evolution of the radial pro-
file of the tangential velocity vθ(r), we divide a half
cycle (−5 cm ≤ D ≤ 5 cm) into 11 intervals. Within
each interval, we determine the time-averaged velocity
profile vθ. The 10 first intervals correspond to segment
−5 cm ≤ D ≤ −3 cm (10 × 0.2 cm) of the half cycle.
The last one (−3 cm ≤ D ≤ 5 cm) provides a stationary
profile of reference.

Fig. 13b shows profiles vθ(r)/Vθ within those inter-
vals, visualized with the dotted lines on Figs. 13a and
13c. Similar to the evolution of S, a stationary velocity
profile is approached at large D.

As shown in Fig. 13b, the particle slip at the inter-
face is constant within the stabilized cycle, although an
evolution of this parameter before the stabilization was
reported in other studies [3,4].

Fig. 13d, the level of shear localization is charac-
terized by λ+, the shear band thickness as defined in
Sec. 5.1. λ+ decreases from the beginning of the cycle,
approximately as:

λ+ = λ+
s (1 +m exp [−n(D −D0)/d]) , (8)
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where λ+
s is the stationary value of λ+ and D0 is the ini-

tial position of the (half) cycle (D0 = ±a, see Sec. 3.1).
The parameter n is the characteristic displacement of
the wall regarding the evolution of the strain localiza-
tion. The value of m indicates the difference between
transient and steady profiles. Shear band thickness λ+

tends to its steady state value λ+
s side by side with the

behaviour change of the shear stress S and of the vol-
umetric variation ∆Vn to a slow evolution (point 3b).
A similar, but only qualitative observation have been
made by [7]. The influence of the material density on
the localization phenomenon was evidenced by [33].

Chambon et al. [12] measured correlated displace-
ments far from the wall before localization, in the begin-
ning of the shear test, showing that a thicker region is
then mobilized. They evidenced a transition in the bulk
outside the shear band for (D−D0)/d ≃ 25. This value
corresponds to the displacement for which λ+ closely
approaches its steady-state plateau.

5.3 Stationary velocity profiles vθ(r)

5.3.1 General behaviour

We now compare the different profiles of tangential ve-
locity vθ measured in experiments 1, 2, 4, 6 and 7 (for
all 3 loads C1, C2 and C3). The profiles are averaged
between points 3 (or 3b) and 4, and we regard them as
characteristic of a steady state.

Profile vθ(r), decays approximately as an exponen-
tial away from the inner cylinder [12,13,15,34]. Some
profiles (experiments 1 and 2) exhibit considerable os-
cillations with a wavelength equal to the particle diam-
eter. This is mainly due to particle rotation and exists
in all systems. The resolution of the CIV method is of
the order of several diameters for smaller grains, ex-
plaining the apparent absence of oscillations in these
cases. Oscillations on the grain scale were also reported
in other studies [35,36]. As shown in Fig. 14, the pro-
files are almost identical for all three types of load (C1,
C2 and C3).

The effects of the normalized roughness Rn and of
system size Ri/d are dealt with in the following para-
graphs.

5.3.2 Sliding

Profiles vθ/Vθ(r) are plotted in Fig. 14. Sliding at the
wall is characterized by a tangential velocity discon-
tinuity, and it increases when the interface roughness
decreases as shown in Fig. 15. Ratio V +

θ /Vθ is approx-
imately equal to 0.75 for Rn ≥ 0.7, and varies roughly

0 40 80 120 160 200
0.0

0.2

0.4

0.6

0.8

1.0
(a)

S/
P

(D-D0)/d

1+

2+

4+3b+

 3a+

0 5 10 15 20 25 30 35 4010-2

10-1

100

stationary profile 
of reference

[-3cm ; 5cm]

(b)

 

 

v
/V

(r-Ri)/d

2+

3a+

3b+

D

0 40 80 120 160 200

0.00

0.05

0.10

0.15

0.20

0.25

0.30
(c)

 V n

(D-D0)/d

4+
1+

2+ 3a+

3b+

0 5 10 15 20 25 30 35 40
4
5
6
7
8
9
10
11
12

(d)
 

 

+

(D-D0)/d

2+

3b+

 3a
+

Fig. 13 For experiment 7, (a) shear stress at the wall S and
(c) normalized volumetric variation ∆Vn as functions of dis-
placement D. The arrows indicate the sense of increasing D.
The vertical dotted lines mark intervals within the half cycle
(10× 0.2 cm+ 1× 8 cm) over which velocities are averaged, re-
sulting in the profiles plotted in (b). (d) Shear band thickness λ+

versus displacement. The dotted line gives the stationary value.
The solid line is a fit (Eq. (8)) with λ+

s = 5.6, m = 1.5 and
n = 0.17.
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Fig. 14 (a) Velocity vθ/Vθ(r) versus dimensionless distance
from the wall (r−Ri)/d ((b) detail of the zone close to the wall).
Different experiments: (♢, �, −�−) experiment 1, (▽, H, −H−)
experiment 2, (�, �, −�−) experiment 4, (◦, •, − • −) experi-
ment 6, (△, N, −N−) experiment 7. The hollow symbols corre-
spond to load C1, the filled ones to load C2 and the connected
ones to C3.

linearly with Rn for lower roughness levels. The nu-
merical simulations of [37] indicated more complex re-
lations between V +

θ /Vθ and Rn (depending on the sys-
tem characteristics, V +

θ /Vθ tends to a constant value
when Rn → 0).

6 Discussion of the results

6.1 Smooth and rough behaviour

We have presented different aspects of shear behaviour.
We now discuss the transition from smooth to rough
behaviour as Rn increases. The analysis of various pa-
rameters shows two distinct responses considering the
interface roughness: smooth, for lower values of Rn, and
rough, for higher ones. The transition seems to be lo-
cated between 0.35 (experiment 5) and 0.73 (experi-
ment 6).

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

V+
/V

Rn

Fig. 15 Ratio V +
θ /Vθ (sliding parameter) as a function of nor-

malized roughness Rn for different loads: (�) C1, (•) C2, (N)
C3. The solid line is the linear function V +

θ /Vθ = 1.05Rn.

Cyclic response. The shear stress and the volumetric
responses of the sample present a similar cyclic shape,
however for Rn ≥ 0.73 we identified an additional dila-
tion phase (segment 3a− 3b in Fig. 8Bc). The stronger
dilation observed in the rougher cases is followed by a
stronger compaction (segment 4− 1 in Fig. 8Bc).

Shear stress values. Values of the shear stress (S3 and
S4) clearly approach an upper limit for Rn ≥ 0.73. For
very low values of roughness (Rn ≤ 0.01), the observa-
tion of a lower limit value suggests that one may dis-
tinguish smooth, "intermediate" and rough behaviour.

Friction mobilization distance and volumetric variation.
Both parameters seem to gradually increase with Rn.

Sliding. As already seen for the macroscopic results, the
velocity profile is also affected by the interface rough-
ness. The main effect can be analyzed through the dis-
continuity of the velocity at the wall, characterized by
ratio V +

θ /Vθ. This ratio decreases as Rn increases, with
a rough and a smooth limit that appear to be correlated
to the shear stress behaviour.

6.2 Geometric effects

Beyond the effect of the roughness of the wall, its curva-
ture may affect the behaviour of the material near the
interface [14]. As shown by [37], parameter Ri/d (ratio
of inner radius to particle size) influences the local ma-
terial deformation close to the wall and the shear band
thickness.
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6.2.1 Velocity profile vθ/Vθ(r)

The analysis of the velocity profiles normalized by the
maximum tangential velocity of the particles, V +

θ , in-
stead of the wall velocity Vθ, allows us to compare the
shape of the velocity profiles in different experiments,
while minimizing the effects of normalized roughness
Rn (such as, in particular, sliding). This comparison is
presented in Fig. 16, in which, for clarity, results per-
taining to C1, C2 and C3 are averaged over (given the
negligible effect of the loading over the velocity profiles).
The profiles of in Fig. 16a were fitted to an exponen-
tial form, vθ/V

+
θ = exp[−t(r − Ri)/d] to the profiles

shown in Fig. 16a (except for the results of experiment
1, which still exhibit fluctuations).

The observed shear band gets thicker (in particle di-
ameters) for increasing Ri/d (see Fig. 16a). However, in
absolute scale, the shear band is in fact thinner for in-
creasing Ri/d (as we can see in Fig. 14b, with the cylin-
der radius as characteristic length unit for all experi-
ments). A similar effect of Ri/d over the strain local-
ization length was also reported in the numerical study
of [36].

6.2.2 Shear band thickness

The shear stress is larger for smaller values of Ri/d,
which explains the stronger strain localization near the
shearing wall [36]. Therefore shear band thickness λ+

s

tends to increase for larger Ri/d as indicated by our re-
sults in Fig. 17. In a plane shear experiment (i.e., in the
limit of Ri/d → ∞), the shear band invades the whole
geometry, while in the opposite limit of small Ri/d, λ+

s

tends to zero. The values of λ+
s shown in Fig. 17 are

based on the exponential approximations (Fig. 16a) to
avoid the effect of the remaining oscillations, in spite
of the averaging. We observe in this case a dependence
of λ+

s as a power-law function of Ri/d, consistent with
the results of [36] in the quasi-static regime.

The proximity of the base plate can disturb
the velocity profiles, causing an apparent diminu-
tion of shear band thickness due to the sur-
face friction. The results of [27] suggest that
the effect of the bottom plate may depend on
the relation between the cylinder and the sur-
face roughness. The shear band obtained with
a rough cylinder and a smooth plate were only
affected by a reduction of about 5% close to the
plate. However, a rough plate caused a reduc-
tion of about 53% in similar conditions. Consid-
ering crudely these both values as minimum and
maximum relative reductions of the shear band
thickness, we plot an estimation (dashed line) of
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100
(a)

 

v
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(r-Ri)/d
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0.00 0.05 0.10 0.1510-2
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v
/V

+

(r-Ri)/Ri

Ri/d  

Fig. 16 vθ/V
+
θ (r), versus the distance from the wall, normal-

ized (a) by the particle diameter, (r − Ri)/d, and (b) by the
radius of the cylinder, (r − Ri)/Ri. Different experiments: (H)
experiment 2 (Ri/d = 12.5), (�) experiment 4 (Ri/d = 55.5),
(•) experiment 6 (Ri/d = 100), (N) experiment 7 (Ri/d = 200).
Results average over C1, C2 and C3 data. Solid lines are expo-
nential fits.

λ+
s far from the bottom plate in Fig. 17. Those

values represent an overestimation of the plate
disturb of our measures, since the glass plate is
considerably smoother than the striated metal-
lic cylinder 2 used in our experiments.

6.3 Relation between volumetric variation and particle
sliding

Our definition of normalized volumetric variation ∆Vn

(Sec. 3.2) assumes changes in density to be concentrated
close to the shearing wall, so that ∆Vn is directly re-
lated to shear band thickness variation: ∆Vn = ∆λ+.
In a half cycle of length 2a (Sec. 3.1), the shear band
distortion (or shear strain), γ should be proportional to
the ratio of tangential displacement aV +

θ /Vθ to steady-
state shear band (absolute) thickness λ+

s d:

γ ∝ (V +
θ /Vθ)[a/(λ

+
s d)].
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Fig. 17 Effect of ratio Ri/d on the thickness of the shear band,
λ+
s . The continuous line indicates an approximation of the ex-

perimental results (λ+
s = 0.84(Ri/d)

0.35). The dashed line rep-
resents an overestimation of the glass plate effect on the results
(λ+

s = 3.41(Ri/d)
0.10).

Assuming proportionality of γ to the shear band dila-
tion, γ ∝ (∆λ+/λ+

s ), the maximum amplitude of ∆Vn

might be expressed by: ∆V 2−4
n ∝ (V +

θ /Vθ)(a/d).

The results in Fig. 18 are averaged over the three
different loads (C1, C2 and C3). The apparent linear
relation between ∆V 2−4

n and (V +
θ /Vθ)(a/d) is in good

agreement with our hypothesis. Macroscopic volumet-
ric variations (∆V 2−4

n ) are thus related to the relative
sliding velocity at the interface, as expressed by ratio
V +
θ /Vθ, a particle scale effect.
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Fig. 18 Normalized volumetric variation ∆V 2−4

n as a function
of (V +

θ /Vθ)(a/d). The dotted line is a plot of linear function
∆V 2−4

n = 0.0036(V +
θ /Vθ)(a/d).

7 Conclusions

The behaviour of the interface between granular mate-
rials and a solid body is studied by means of a large 3D
simple shear annular cell. As boundary conditions, the
shear wall velocity Vθ and the radial and vertical confin-
ing pressures at the exterior walls are imposed. Rough-
ness and geometrical effects at the resulting shear mo-
bilization are analyzed in macroscopic and mesoscopic
scales.

Simple reproducible initial conditions, associated to
stable and reproducible interface behaviours are ob-
tained through a cyclic shear procedure with samples
composed of model materials (glass beads).

Geometrically, each system is simply described by
two nondimensional quantities : Ri/d (where Ri is the
internal radius and d the particle diameter), related to
the stress distribution and the normalized roughness,
Rn.

At the macroscopic scale, the shear stress at the in-
ner cylinder wall, S, and the volumetric variation of the
sample, ∆V , are monitored in oscillatory shear exper-
iments, with an amplitude large enough to approach a
plateau value in both directions. Since ∆V is concen-
trated near the interface in strain localized systems, we
define a normalized volumetric variation, ∆Vn, to take
into account the shearing wall surface and the particle
size. Once plotted versus wall displacement, these mea-
surements define cycles, the shape of which stabilizes
after a number of oscillations. Steady-state (plateau)
values of S and ∆V are growing functions of roughness
parameter Rn, approaching finite limits at small Rn (for
S and ∆V ) and large Rn (for S). In addition, a qual-
itative cyclic pattern difference is observed, enabling a
clearcut distinction between smooth and rough inter-
faces. At the mesoscopic scale, the radial profiles of the
tangential particle velocity vθ(r) are obtained by image
correlation at the bottom surface of the sample. From
these profiles the sliding velocity is measured, which
strongly depends on interface roughness. Putting aside
this sliding effect, we define a length λ+ to characterize
the shear band thickness.

The analysis of the shear mobilization shows a tran-
sient evolution of the shear band thickness. It reaches
its maximum at the beginning of the cycle, as does
the sample density. The shear stress increase is then
followed by material dilation (especially for rough in-
terfaces). Shear band thickness and shear stress both
reach a plateau, almost simultaneously, while the rela-
tive amount of sliding (V +

θ /Vθ) keeps a constant value
during the entire cycle. Analogously to maximum shear
stress, V +

θ /Vθ increases with roughness level, and ap-
proaches finite limits for small and large Rn.
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Consistent with the numerical results of [36], our
experimental results indicate thicker shear bands for
higher values of Ri/d, which is not surprising, as smaller
Ri/d entail faster shear stress decay away from the wall.
Although the volumetric variation (∆Vn) keeps increas-
ing for large Rn, this effect is also strongly dependent on
geometric effects. Smaller particles induce higher val-
ues of Rn, but also higher Ri/d, whence thicker shear
bands, the dilation of which resulting in larger values
of ∆Vn.

Finally, a more precise description of the volumet-
ric (macroscopic) behaviour is achieved by the asso-
ciation of mesoscopic observations. Assuming all vol-
umetric variation confined within the shear band, we
assume its dilation to be proportional to its shear dis-
tortion. These assumptions lead to relation ∆V 2−4

n ∝
(V +

θ /Vθ)(a/d), between interface dilation (∆V 2−4
n ) and

relative particle sliding (V +
θ /Vθ). The correlation of ob-

servations at different scales is essential to the charac-
terization and understanding of the behaviour of the
interface.

A Device description

Fig. 19 shows a cut-away design view of ACSA. The equipment
can be divided in two main elements: the structure and the cell.
The structure is set on the floor and contains the motor and the
reducer which apply the torque on the central cylinder. The gauge
torque sensor is placed between the reducer and the central cylin-
der. The imposed shear velocity Vθ range at the surface of the
cylinder varies from 0.1 to 6 mm/min, while a maximal torque
of 7000 Nm (≈ 1100 kPa of shear stress at the cylinder wall
S) can be achieved. The torque measure can be affected by
friction of different elements of the cell. Calibration tests
without samples have shown an increase of 5 ± 1 kPa in
shear stress S measure. In our experiences, it represents
a maximum error of ±3%. The rotation of the cylinder
is controlled by an optical encoder with a precision of
(VOIR ALAIN).

In Fig. 20, we show a scheme of the cell. The glass plate is set
on the steel base plate of 80 mm thickness by a fixation crown.
The base plate has two diametrically opposed windows which
allow the visualisation of the sample during the experiments. The
steel central cylinder is placed over the glass plate on the central
axis of the apparatus.

The sample surrounds the cylinder and is laterally limited by
a neoprener membrane (2 mm of thickness). The glass plate and
the cap limit inferiorly and superiorly the sample, respectively,
resulting in an annular shape sample.

The cap is composed by a duraluminium and a steel plates
with a total mass of 50 kg. Its vertical motion is controlled by
three hydraulic jacks set in the top plate (each one with a capacity
of 12 t).

The top plate (80 kg of mass) prevents the rotation of the
cap, during the shear of the sample, with two vertical guiding
axes.

The space between the confining cell and the membrane is
filled with water, used to impose the radial confining pressure Pr.
The confining cell thickness of 40 mm ensures negligible strain
under confining pressures ≤ 1000 kPa.

motor
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glass 
plate

hydraulic 
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cylinder 
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cap
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Fig. 19 Cut-away design view of ACSA.
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Fig. 20 Scheme of the shear cell of ACSA.

The radial and vertical confining pressures (Pr and
Pz, respectively) are applied by two pressure-volume con-
trollers GDSr (the first, up to 2 MPa with water, and
the second, up to 60 MPa with oil). The first controller
provides a direct precision of ±1 kPa in radial pressure
control Pr, associated to a volume precision of ±1 mm3.
The second controller is associated to three hydraulic
jacks in contact with the cap. Calibration tests of the
vertical confining pressure Pz [28] have shown a preci-
sion of ±0.6 kPa.

The vertical motion of the cap is measured by 3 dis-
placement transducers (LVDT) of a range and precision
of 30± 0.075 mm. If we neglect the precise radial compo-
nent (±1 mm3), the volume variation presents at least a
precision of ±0.075% of the sample volume.
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B Sample preparation

B.1 Cyclic shear procedure and material stabilization

The shear stress in the transient regime strongly depends on the
initial state of the sample, especially near the wall. On shearing
a dense granular material, significant dilatancy may be observed
within the shear zone [38] while outside the shear zone the mate-
rial may exhibit contraction [39]. In general, transient evolutions
depend on the sample preparation method, and initial states get
considerably modified as soon as the material deforms. However,
beyond a certain level of shear strain in monotonic tests, as the
critical state is approached, the material response becomes in-
dependent of initial conditions [40–42]. Similarly, experiments of
cyclic shear in sand-steel interfaces with a simple shear appara-
tus [6] showed that after a certain number of cycles, the same
shear stress values are observed for samples with different initial
density.

Inspired by those observations, we apply repeated shear cy-
cles, so that reproducible and reliable sample initial states are
obtained, with no need to control the initial assembling stage
in an annular geometry. The inner cylinder is first rotated, with
a constant tangential velocity at the wall (Vθ = 2 mm/min),
thereby shearing the granular material. When a certain tangen-
tial displacement of the cylinder surface is reached, |D| = ai, the
imposed motion is stopped and then resumed in the opposite di-
rection (i.e. Vθ = −2 mm/min). A complete cycle corresponds
to 4ai of total cylinder tangential displacement (i.e., evaluated,

over time T , as
∫ T

0

|Vθ(t)|dt– see Fig. 5). The displacements are

measured by an optical sensor with an accuracy of 2×10−2 mm.
We apply a sequence of cycles with increasing amplitude (in

cm): a1 = 0.5, a2 = 1.5, a3 = 2.5, a4 = 5, a5 = 7.5 and a6 = 10.
5 cycles are completed for each value ai before applying larger
cycles with value ai+1. All samples behave as shown on Fig. 21:
maximum shear stress levels (Fig. 21a) are higher in the first
cycles and then tend to stabilize, while the compaction effect
(Fig. 21b) gets slower and slower.

Rotation reversals first entail faster volumetric variations. As
the sample material compacts and the length of the cycles in-
creases, a dilation phase during the cycle tends to compensate
the compaction observed right after the inversion.

This preparation procedure is applied to each new load (first
C2, then C1 or C3). In the second and third ones (C1 and C3),
volumetric stabilization is faster (already achieved in the first cy-
cles) since the initial structure of the sample was already modified
under load C2.

B.2 Influence of cycle size ai

Fig. 22 shows the typical behaviour of shear stress S and of vol-
umetric variation ∆V for increasing cycle amplitudes ai. These
results are obtained on repeating the sample preparation proce-
dure, i.e., cycle series with 6 growing values of the amplitude,
are applied. For each series i (1 ≤ i ≤ 6), the results of Fig. 22
correspond to the fifth (and last) cycle of amplitude ai, for which
the recorded behaviour is deemed stabilized. Originally centered
on D = 0, the curves are shifted by ai, so that the fast varia-
tions of S and ∆V right after shear reversal points are superim-
posed. The shear stress first varies rapidly upon shear reversal,
then approaches a plateau, and the behaviour is not sensitive to
cycle amplitude ai. As for volumetric variation ∆V (for which
the origin on Fig. 22(b) is chosen to coincide with the maximum
compaction within each cycle), its fast initial variation after each
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Fig. 21 Shear stress at the wall S (a) and volumetric varia-
tion ∆V (b) versus wall displacement in the first shear cycles.
Experiment 2.

wall velocity reversal is not sensitive to amplitude a either. Al-
though the slow dilation stage corresponding to the approach of
the stress plateau depends on a, the net volumetric change is neg-
ligible in all stabilized cycles: on increasing a the slower dilation
is compensated by the larger displacement.

All samples in experiments 1 to 7 behave similarly regarding
the effect of cycle amplitude. This result allows us to choose one
single value of a for further analysis, without loss of generality.

C Influence of the radial and of the vertical
confining pressures

In the chosen experimental configuration, we were not allowed to
measure the value of the normal stress acting on the interface.
Even considering that the confining pressure is well transmitted
to the interface through the material (once it is very well sheared
and the material is very close to the critical state), the proportion
of the effects of each component of the confining stress is not
trivial.

For sake of simplicity, we neglect the gravity contri-
bution of ≈ 7% in Pz mean value. Considering the relation
between the shear stress at the wall S and the effective pressure P
(initially unknown, except for Pr = Pz), we defined an apparent
effective coefficient of friction at the interface µ∗

app = S/P (ap-
parent because we only suppose the normal stress related to the
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Fig. 22 Evolution of shear stress at the wall S (a) and volu-
metric variation ∆V (b) as functions of shifted wall displacement
D+ ai for different cycle amplitudes ai. Experiment 7, load C2.

confining pressure). We consider that P is a linear combination
of Pr and Pz as follows:

P = fPr + (1− f)Pz , (9)

where f is a distribution coefficient. Therefore, we can write the
shear stress at the wall S as

S = µ∗
app(fPr + (1− f)Pz). (10)

For a single sample, each of the 3 loads (C1, C2 and C3)
induces a correspondent value of S. By linear regression, we can
determine an approximate value of f and of µ∗

app for each sample.
In Fig. 23, we show the values of f obtained from the results of

S4 (shear stress S at the reference point 4) as function of Rn. The
observed mean value f = 0.48 ≈ 1/2 suggests that the normal
stress at the wall might be simply proportional to (Pr + Pz)/2.
In other experiments with ACSA developed by [28,43], with the
initial state of sand samples controlled by pluviation, a value of f
depending on Rn is proposed. With an improved, more complex
expression for P , S/P would tend to a single value (µ∗

app) even
better than shown in Fig. 7b.

With the reduced number of anisotropic loads (Pr ̸=
Pz - C1 and C3) we might expect a certain sensitivity
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Fig. 23 Influence of the normalized roughness Rn over the co-
efficient of pressure distribution f .

of the values of f with eventual experimental impreci-
sions (see Appendix A). Considering the precision of Pr

(±1 kPa), Pz (±7 kPa, considering the gravity), and S

(±1 kPa) maximum absolute errors of almost ±0.2 are
obtained (see Fig. 23).
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