
HAL Id: hal-00693154
https://hal.science/hal-00693154

Submitted on 2 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Stiffness Modeling of Robotic-Manipulators Under
Auxiliary Loadings

Alexandr Klimchik, Anatol Pashkevich, Stéphane Caro, Damien Chablat

To cite this version:
Alexandr Klimchik, Anatol Pashkevich, Stéphane Caro, Damien Chablat. Stiffness Modeling of
Robotic-Manipulators Under Auxiliary Loadings. ASME International Design Engineering Techni-
cal Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), Aug
2012, Chicago, United States. �10.1115/DETC2012-70457�. �hal-00693154�

https://hal.science/hal-00693154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 1  

 

  

 

 

 

STIFFNESS MODELING OF ROBOTIC-MANIPULATORS  

UNDER AUXILIARY LOADINGS 
 

 

Alexandr Klimchik
a,b

,  Anatol Pashkevich
a,b

,  Stéphane Caro
b
,  Damien Chablat

b
 

a
Ecole des Mines de Nantes, 4 rue Alfred-Kastler, 44307 Nantes, France 

b
Institut de Recherches en Communications et Cybernétique de Nantes, UMR CNRS 6597, France 

 

 

KEYWORDS  

Stiffness analysis, passive joints, auxiliary loading, static 

equilibrium, non-linear stiffness model. 

ABSTRACT 

The paper focuses on the extension of the virtual-joint-

based stiffness modeling technique for the case of different 

types of loadings applied both to the robot end-effector and to 

manipulator intermediate points (auxiliary loading). It is 

assumed that the manipulator can be presented as a set of 

compliant links separated by passive or active joints. It 

proposes a computationally efficient procedure that is able to 

obtain a non-linear force-deflection relation taking into account 

the internal and external loadings. It also produces the Cartesian 

stiffness matrix. This allows to extend the classical stiffness 

mapping equation for the case of manipulators with auxiliary 

loading. The results are illustrated by numerical examples. 

 

1. INTRODUCTION 

Manipulator stiffness modeling under internal and external 

loading is a relatively new research area that is important both 

for serial and parallel robots. In general case, these loadings 

may be of different nature and applied to different 

points/surfaces. For the stiffness modeling of robotic 

manipulator, it is reasonable to distinguish three main types of 

loading such as external loading applied to end-point, 

preloading in the joints and auxiliary loading applied to the 

intermediate points.  

The external loading is caused mainly by an interaction 

between the robot end-effector and the workpiece, which is 

processed or transported in the considered technological 

process [1]. In most of robotic research works this loading is 

considered as a unique one [2] [3], however existence and effect 

of other types have not been discussed yet.  

The internal loading in some joints may be introduced by 

the designer. For instance, to eliminate backlash, the joints may 

include preloaded springs, which generate the force or torque 

even in standard "mechanical zero" configuration [4]. Though 

the internal forces/torques do not influence on the global 

equilibrium equations, they may change the equilibrium 

configuration and also influence on the manipulator stiffness 

properties. For this reason, internal preloading is used 

sometimes for the purpose of improving the manipulator elasto-

static properties, especially in the vicinity of kinematic 

singularities. Another case where the internal loading exists by 

default, is related over-constrained manipulators that are subject 

of the so-called antagonistic actuating [5]. Here, redundant 

actuators generate internal forces and torques that are 

equilibrated in the frame of closed loops.  

The term auxiliary loading, in this paper, is used to denote 

external loading applied to any intermediate point (surface, etc.) 

of the manipulator different from the end-effector. Typical 

example of such type of loading is the gravity that is non-

negligible for heavy manipulators employed in machining 

applications [6]. Besides, to compensate in certain degree the 

gravity influence, some manipulators include special 

mechanisms generating external forces/torques in the opposite 

direction (gravity compensators). In addition, some additional 

forces/torques may be generated by other sources (geometrical 

constrains, for instance). It should be noted that the external 

loading caused by gravity has obvious distributed nature, but 

usually it can be approximated by lumped forces that applied to 

one or several intermediate points.  
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From point of view of stiffness analysis, the external and 

internal forces/torques directly influence on the manipulator 

equilibrium configuration and, accordingly, may modify the 

stiffness properties. So, they must be undoubtedly be taken into 

account while developing the stiffness model. However, in most 

of the related works the Cartesian stiffness matrix has been 

computed for the nominal configuration, which does not take 

into account influence of external/internal loading. Such 

approach is suitable for the case of small deflections only. For 

the opposite case, the most important results have been obtained 

in [7-10], which deal with the stiffness analysis of serial and 

parallel manipulators under the end-point loading. Besides, 

some types of the internal preloading have been in the focus of 

[11], [12]. However, influence of the auxiliary loading has not 

been studied in details yet. 

To our knowledge, the most advanced stiffness model for 

robotic manipulator has been proposed in [6], where numerous 

factors have been taken into account (conventional external 

loading, gravity forces, antagonistic redundant actuation, etc.). 

However, proposed approach is hard from computational point 

of view. Besides, in this work the Jacobians and all their 

derivatives were computed not in a "true" equilibrium 

configuration. For this reason, since the equilibrium obviously 

depends on the loading magnitude, some essential issues have 

been omitted.  

The goal of this work is to generalize the non-linear 

stiffness modeling technique for the case of three types of 

loadings: (i) the external loading applied to the end-effector, (ii) 

preloading in the joints and (iii) auxiliary loading applied to the 

intermediate node-points. The developed model is based on the 

VJM-technique proposed in [13], which is able to obtain the 

force-deflection relation and the manipulator Cartesian stiffness 

matrix assuming that the external loading is applied to the end-

effector only. 

2 PROBLEM STATEMENT 

For stiffness modeling of serial kinematic chain with the 

loading applied to end-point, preloading in the joints and 

auxiliary loading applied to intermediate points let us use the 

VJM model that is presented in Fig.1. The serial chain under 

study consists of flexible links separated by passive and/or 

actuated joints. Its geometry (end-point location) is described 

by the vector function 

 ( , )t g q θ  (1) 

where the vector t  defines the end-point location (position and 

orientation (Euler angles)); the vectors 
q

T

1 2 n
( , , ..., )q q qq  

and 
θ

T

1 2 n
( , , ..., )  θ  collect all passive and virtual joints 

coordinates respectively; 
q

n , 
θ

n  are the sizes of q  and θ , 

respectively. 

 

Figure 1 General structure of kinematic chain with auxiliary 

loading and its VJM model 

Stiffness modeling for the manipulators with end-point 

loading and preloading in the joints have been already 

published in [13], However other types of loadings (here they 

are aggregated in the auxiliary loading) applied to intermediate 

points did not receive adequate attention in robotics. In 

practice, these loadings can be caused by gravity forces 

(generally they are distributed, but in practice they can be 

approximated by localized ones) and/or gravity compensators. 

These forces will be denoted as 
j

G , where 1, ...,j n  is the 

node number in the serial chain starting from the fix base (here, 

j n  corresponds to the end-point). It should be noted that for 

computational convenience, it is assumed that  the end point 

loading consists of two components 
n

G  and F  of different 

nature.  

It is evident that in general the auxiliary forces 
i

G  depend 

on the manipulator configuration. So, let us assume that they are 

described by the functions  

 ( , )
j j
G G q θ ,  (2) 

In contrast, for the external force F , it is assumed that there is 

no direct relation with manipulator configuration.  

For the serial chains with auxiliary loadings it is also 

required to extend the geometrical model. In particular, in 

addition to equation (1) defining the end-point location, it is 

necessary to introduce additional functions  

 ( , ), 1, ...,
j j

j n t g q θ  (3) 

defining locations of the nodes. It worth mentioning that for the 

serial chain, the position 
j

t  depends on a sub-set of the joint 

coordinates (corresponding to the passive and virtual joints 

located between the base and the j-th node), but for the purpose 

of analytical simplicity let us use the whole set of the joint 

coordinates ( , )q θ  as the arguments of the functions (...)
i

g .  
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Using these assumptions and using results from our 

previous works [13][14], the problem of the manipulator 

stiffness modeling with auxiliary loadings can be split into 

several steps that are sequentially considered in the following 

sections.  

 

3 STATIC EQUILIBRIUM EQUATIONS  

To obtain a desired stiffness model, it is required to derive 

the static equilibrium equations that differ from the one used for 

the end-point loaded manipulator only due to influence of 

auxiliary loadings 
j

G . Let us apply the principle of the virtual 

work and assume that the kinematic chain under external 

loadings F  and  1
...

n
G G G  has the configuration  ,q θ  

and the locations of the end-point and the nodes are ( , )t g q θ  

and ( , ), 1,
j j

j n t g q θ  respectively.  

Following the principle of virtual work, the work of 

external forces ,G F  is equal to the work of internal forces 


τ  

caused by displacement of the virtual springs δθ  

  T T T

θ

1

δ δ δ

n

j j

j 

     G t F t τ θ  (4) 

where the virtual displacements δ
j

t  can be computed from the 

linearized geometrical model derived from (3) 

 ( ) ( )

θ q
δ δ δ , 1..

j j

j
j n    t J θ J q , (5) 

which includes the Jacobian matrices  

    
( ) ( )

θ q
, ; ,

j j

j j

 
 
 

J g q θ J g q θ
θ q

 (6) 

with respect to the virtual and passive joint coordinates 

respectively. 

Substituting (5) to (4) we can get the equation 

 
 

 

T ( ) T ( )

θ q

1

T ( ) T ( ) T

θ q θ

δ δ

δ δ δ

n

j j

j j

j

n n



     

       

 G J θ G J q

F J θ F J q τ θ

 (7) 

which has to be satisfied for any variation of δ , δθ q . It means 

that the terms regrouping the variables δ , δθ q  have the 

coefficients equal to zero, hence the force-balance equations 

can be written as  

 
( ) T ( ) T ( ) T ( ) T

θ θ θ q q

1 1

;

n n

j n j n

j j

j j 

        τ J G J F 0 J G J F  (8) 

These equations can be re-written in block-matrix form as 

 (G) T (F) T (G) T (F) T

θ θ θ q q
;       τ J G J F 0 J G J F  (9) 

where 

 

(F) ( ) ( ) ( ) (G) (1) ( )

θ θ q q θ θ θ

(G) (1)

T
T T

T T
T T T) T(

q q q 1

; ; ... ;

... ; ...

n F n n

n

n

   
 

    
   

J J J J J J J

J J J G G G

 (10) 

Finally, taking into account the virtual spring reaction 

 0

θ θ
  τ K θ θ , where  

1 nθ θ θ
, ...,diagK K K , the desired 

static equilibrium equations can be presented as 

 
 (G ) T (F) T 0

θ θ θ

(G ) T (F) T

q q

     

   

J G J F K θ θ

J G J F 0

 (11) 

Further, these equations will be used for computing the 

static equilibrium configuration and corresponding Cartesian 

stiffness matrix. 

 

4 STATIC EQUILIBRIUM CONFIGURATION  

To obtain a relation between the external loading F  and 

internal coordinates of the kinematic chain ( , )q θ  

corresponding to the static equilibrium, equations (11) should 

be solved either for different given values of F  or for different 

given values of t . In [13] these problems were referred to as 

the original and the dual ones respectively, but the dual problem 

was discovered to be the most convenient from computational 

point of view. Hence, let us solve static equilibrium equations 

with respect to manipulator configuration  ,q θ  and external 

loading F  for given end-effector position  ,t g q θ  and 

function of auxiliary-loadings  ,G q θ  

 

 

 

 

0 (G ) T (F) T

θ θ θ

(G ) T (F) T

q q

;

, ;

,

     

   





K θ θ J G J F

J G J F 0

t g q θ

G G q θ

 (12) 

where the unknown variables are  , ,q θ F .  

Since usually this system has no analytical solution, 

iterative numerical technique can be applied. So, the kinematic 

equations may be linearized in the neighborhood of the current 

configuration ( , )
i i

q θ  

 
     

   

(F)

θ

(F

1q

1 1

)

, ,

, ;

i i i i i i i

i i i i

 



    

  

t g q θ J q θ θ θ

J q θ q q
 (13) 

where the subscript 'i' indicates the iteration number and the 

changes in Jacobians 
(G) (F) (G) (F)

θ θ q q
, , ,J J J J  and the auxiliary 
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loadings  ,G q θ  are assumed to be negligible from one 

iteration to another. Correspondingly, the static equilibrium 

equations in the neighborhood of ( , )
i i

q θ  may be rewritten as 

 
 (G ) T (F) T 0

θ θ θ

(G ) T (F) T

q

1

q

1

1

i i

i

 



     

   

J G J F K θ θ

J G J F 0

. (14) 

Thus, combining (13) and (14), the iterative algorithm for 

computing of static equilibrium configuration for given end-

effector location can be presented as 

 

 

1
(F) (F)

q θ

(F) T (G) T

q q

(F) T (G) T 0

θ θ θ θ

(F) (F

1

1

1

)

q1 θ
,

·

i

i i

i
i

i i i i i











    
           
           

     

0 J J εF

q J 0 0 J G

θ J 0 K J G K θ

ε t g q θ J θ J q

 (15) 

where 
1 1 1

( , )
i i i  

G G q θ . 

To reduce the size of a matrix to be inverted, the above 

system can be slightly simplified. In particular, based on 

analytical expression for 1 (G) T (F) T 0

θ θ θ
( )


    θ K J G J F θ , the 

unknown variables can be separated in two groups ( , )F q  and 

θ . This yields the iterative scheme  

  

 

1
(F) 1 (F) T (F)

θ θ q

(G) T(F) T

qq

1 (G) T (F) T 0

θ θ θ

(F) (F) (F) 1 (G) T

θ q θ θ

1

1

1 1

1
,

·i

ii

i i i

i i i i i i
















 



     
             

    

    

J K J J εF

J Gq J 0

θ K J G J F θ

ε t g q θ J θ J q J K J G

 (16) 

that requires matrix inversion of essentially lower order (for 

example, for 3-link manipulator with two passive joints and two 

actuated joints, the size of matrix inversion reduces from 34 to 

14). It should be mentioned that 1

θ


K  is computed only once, 

outside of the iterative loop. The proposed algorithm allows us 

to compute static equilibrium configuration for the serial chains 

with passive joints and all types of loadings (internal 

preloading, external loadings applied to any point of the 

manipulator and loading from the technological process).  

5 STIFFNESS MATRIX  

Previous Section allows us to obtain the non-linear relation 

between elastic deflections Δ t  and external loading F . In 

order to obtain the Cartesian stiffness matrix, let us linearize the 

force-deflection relation in the neighborhood of the equilibrium. 

Following this approach, two equilibriums that correspond to 

the manipulator state variables ( , , , )F q θ t  and 

( δ , δ , δ , δ )   F F q q θ θ t t  should be considered 

simultaneously. Here δF , δt  define small increments in the 

external loading and relevant displacement of the-end-point. 

Using this notation, the static equilibrium equations may be 

written as  

 

 

 0 (G ) T (F) T

θ θ θ

(G ) T (F) T

q q

,

     

   

t g q θ

K θ θ J G J F

J G J F 0

 (17) 

and 

 

 

     

   

       

T
0 (G ) (G )

θ θ θ

T
(F) (F)

θ θ

T T
(G ) (G ) (F) (F)

q q q q

δ δ , δ

δ δ δ

δ δ

δ δ δ δ

   

      

   

       

t t g q q θ θ

K θ θ θ J J G G

J J F F

J J G G J J F F 0

 (18) 

where 0

θ
, , , , , ,t F K q θG θ  are assumed to be known.  

After linearization of the function ( , )g q θ  in the 

neighborhood of loaded equilibrium, the system (17), (18) is 

reduced to three equations 

 

(F) (F)

θ q

(G) (G) (F) (F)

θ θ θ θ θ

(G) (G) (F) (F)

q q q q

δ δ δ

δ δ δ δ δ

δ δ δ δ

   

        

       

t J θ J q

K θ J G J G J F J F

J G J G J F J F 0

 (19) 

which define the desired linear relations between δt  and δF , 

δq , δθ  that are expressed via the stiffness matrices 
C

K , 
C q

K , 

Cθ
K . In this system, small variations of Jacobians may be 

expressed via the second order derivatives 

(F) (F) (F) (F) (F) (F)

q qθ qq θ θθ θq

(G ) (G ) (G ) (G ) (G ) (G )

q qθ qq θ θθ θq

δ δ δ ; δ δ δ ;

δ δ δ ; δ δ δ ;

       

       

J H θ H q J H θ H q

J H θ H q J H θ H q
 (20) 

where  

   

   

   

   

2 2

(G ) (F)

θθ θθ

1

2 2

(G ) (F)

qq qq

1

2 2

(G ) (F)

θq θq

1

2 2

(G ) (F)

q

2 2

2

θ qθ

1

2

( , ) ; ( , )

( , ) ; ( , )

( , ) ; ( , )

( , ) ; ( , )

n

j

j

n

j

j

n

j

j

n

j

T T

j

T T

j

T T

j

T T

j

j









 
 

 

 
 

 

 
 

   

 
 

   









H g q G H g q F
θ θ

H g q G H g q F
q q

H g q G H g q F
θ q θ q

H g q G H g q F
q θ q θ

θ θ

θ θ

θ θ

θ θ

 (21) 

Also, the auxiliary loading G  may be computed via the 

first order derivatives as 

 δ δ δ       G G θ θ G q q  (22) 
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Further, let us introduce additional notations  

 

(F) (G ) (G ) T

θθ θθ θθ θ

(G ) (F) (G ) T

θq θq θq θ

(G ) (F) (G ) T

qθ qθ qθ q

(G ) (F) (G ) T

qq qq qq q

;

;

;


   




   




   




   



H H H J G
θ

H H H J G
q

H H H J G
θ

H H H J G
q

, (23) 

which allows us to present system (19) in  the form 

 

(F) (F)

q θ

(F) T

q qq qθ

(F) T

θ θq θ θθ

δ δ

δ

δ

 
   

 
     
   

     
 

0 J Jt F

0 J H H q

0 θJ H K H

 (24) 

that has the same structure as for end-point loaded manipulator 

[13]. Hence, similarly the desired Cartesian stiffness matrices 

C
K  and stiffness matrices 

Cθ
K  and 

C q
K  defining linear 

mappings of end-point displacement δ t  to internal coordinates 

deflections δθ  and δq : 

 
Cθ Cq

;δ δ δ δ   θ K t q K t  (25) 

can be computed via either high order matrix inversion  

 

1
(F) (F)

q θC

(F) T

C q q qq qθ

(F) T

Cθ θ θq θ θθ

* *


  
  

     
        

0 J JK

K J H H

K J H K H

 (26) 

or lower order inversion  

 

1
(F) F (F) T (F) (F) F

C θ θ θ q θ θ θq

(F) T F (F) T F
Cq q qθ θ θ qq qθ θ θq



   
         

K J k J J J k H

K J H k J H H k H
 (27) 

where F 1

θ θ θθ
( )


 k K H  denotes the modified joint compliance 

matrix. It is obvious that, using these notations, the matrices 

C
K , 

C q
K , 

Cθ
K  can be also computed analytically using the 

block matrix inversion [15]  

  0 ( ) 0 ( ) F F

C q θ θ θq Cq
·

F F

C C
     K K K J J k H K  (28) 

where 0(F) F T 1

C θ θ θ
( )


  K J k J  defines stiffness of the kinematic 

chain without passive joints [2], [3] and  

 
 

    

F T F T

Cq qq qθ θ θq q qθ θ θ

0(F) F T F T 0(F)

C q θ θ θq q qθ θ θ C

1

·


        

       





K H H k H J H k J

K J J k H J H k J K

 (29) 

Similarly, the matrix  
Cθ

K  can be expressed analytically as  

 F T F

Cθ θ θ C θ θq Cq
     K k J K k H K  (30) 

Hence, the technique presented in this Section allows us to 

compute Cartesian stiffness matrix 
C

K  and stiffness matrices 

Cθ
K  and 

C q
K  defining linear mappings of end-point 

displacement δ t  to internal coordinates deflections δθ  and 

δq  for manipulators with external and internal loading applied 

to the intermediate nod-points (auxiliary loading). Presented 

approach deals with serial chains, however obtained results can 

be easily transferred to a parallel manipulators using 

aggregation technique from [13]. 

6 ILLUSTRATIVE EXAMPLES  

Let us now focus on the non-linear stiffness analysis of a 

serial chains under auxiliary loadings applied to an intermediate 

node. It is assumed that the considered chain consists of two 

links (either rigid or flexible) separated by a flexible joint. 

Relevant analysis includes evaluating stiffness variation due to 

the loading, detecting of buckling and computing corresponding 

critical forces, as well as analysis of the auxiliary spring 

influence on the chain stiffness. 

6.1 Serial chain with torsional springs 

Let us consider first a 2-link manipulator with a compliant 

actuator between the links and two passive joints at both ends. 

It is assumed that the left passive joint is fixed, while the right 

one can be moved along x direction (Fig.2a). Besides, here both 

rigid links have the same length L  and the actuator stiffness is 

θ
K . 

 

Figure 2 Kinematic chains with compliant actuator between 

two rigid links (a) and  compliant actuator between two 

compliant links (b) 

Let us assume that the initial configuration (i.e. for 

0M

 ) of the manipulator corresponds to 

0
/ 6   , where 

2·    is the coordinate of the actuated joint. It is also 

assumed that the external loading G  is applied to the 

intermediate node (Fig.2a) and it is required to apply the 

external loading ( , )
x y

F F  at the end-point to compensate the 

auxiliary loading G . Since this example is quite simple, it is 

possible to obtain the force-deflection relation and the stiffness 

coefficient both analytically and numerically.  

For this manipulator the force-displacement relation can be 

expressed in a parametric form as 

 θ 0
cos

· 2· · ; ;
2 sin sin 2

x y

KG G
F F

L

 

 


      (31) 
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and stiffness of the manipulator can be presented as   

 
 

θ

3 3

0

2

·cos sin1
· ·

4 sin sin
x

KG
K

L L

   

 
 

 
  (32) 

where ( / 2; / 2)     is treated as a parameter and 0
y

K  . 

As follows from expression (32), the stiffness coefficient 

x
K  essentially depends on the auxiliary loading G . In 

particular, for the initial configuration, the coefficient 
x

K  can 

be both positive and negative or even equal to zero when the 

auxiliary loading is equal to its critical value 

θ

*

0
4 / sin·G K L  . It is evident that the case *

G G  is very 

dangerous from practical point of view, since the chain 

configuration is unstable. 

 

Figure 3 Force-deflections relations for different values of  

auxiliary loading  G :  chain with torsional spring 

( *

θ 0
4 / sin·G K L  , 2

θ
· /

x
K K K L ) 

Summarized results for this case study are presented in 

Fig.3 that contain the force-deflection relations and values of 

translational stiffness 
x

K  respectively. They show that the 

auxiliary loading G  significantly reduces the stiffness of the 

serial chain. For example, in initial configuration ( 0x  ), for 

0G   the stiffness is 2

θ
14.9 · /K L , while for *

0.5·G G  it 

reduces down to 2

θ
8.67 · /K L . Further increasing of the 

auxiliary loading up to *
1.5·G G  leads to the unstable 

configuration with negative stiffness 2

θ
7.46 · /K L . Moreover, 

in the neighborhood of the critical value of *
G G , the force-

deflection curves have extremum points which may provoke 

buckling. 

For this case study, similar analysis has been also 

performed using the developed numerical technique presented 

in section IV and V. It worth mentioning that the numerical 

technique yielded the same results as the analytical one, which 

confirms validity of the developed approach. Some details 

concerning functions and matrices used in relevant expressions 

are presented in Table 1, where
1

L  and 
2

L  denote the 

manipulator link lengths, 
1

q  and 
2

q  are  the passive joint 

coordinates,   is the virtual spring coordinate and 
0

  is the 

actuator coordinate. It is worth mentioning that the numerical 

technique yielded the same results as the analytical one, which 

confirms validity of the developed approach. 

Table 1 Functions and matrices used in numerical stiffness 

analysis of two-link manipulator with auxiliary loading (case of 

rigid links and compliant intermediate joint)  

Intermediate point 
a

p  End-effector 
e

p  

1 1

1 1

1

cos

sin
a

L q

L q

q

 

 
 
 

g  

 

 
1 1 2 1

1 1 2 1

1 2

cos cos

sin sin

e

e

e

L q L q

y L q L

q

x

q

q







    
   

  
   

      

 

( )

0

0

1

G



 
 
 
 

J  

 

 
2 1

( )

2 1

sin

cos

1

F

L q

L q






  
 

  
 
 
 

J  

1 1
( )

1 1

sin 0

cos 0

1 1

G

q

L q

L q

 
 
 
 

J  

 

 
1 1 2 1

( )

1 1 2 1

sin sin 0

cos cos 0

1 1

F

q

L q L q

L q L q





   
 

  
 
 
 

J  

 
( )

0
G


H   

( )

2

F
h


H  

 
( )

0 0
G

q
H   

( )

2
0

F

q
h


H  

 
( )

0 0
G

q

T


H   

( )

2
0

F

q

T

h


H  

( ) 1
0

0 0

G

qq

h 

 
 

H  
( ) 3

0

0 0

F

qq

h 

 
 

H  

1 1 1
sin

y
h L q G  ,     2 2 1 2 1

cos sin
x y

h FL q L q F      , 

  

  

3 1 1 2 1

1 1 2 1

cos cos

sin sin

x

y

L q L q

L q L q

h F

F





    

  
 

 

Hence, the presented case study demonstrates rather 

interesting features of stiffness behavior for kinematic chains 

under auxiliary loading that where not studied before (negative 

stiffness, non-monotonic force-deflection curves, etc.). This 

motivates considering more sophisticated examples, with more 

complicated compliant elements.  

6.2 Serial chains with torsional and translational 

springs 

In the second example, it is assumed that there are three 

compliant elements: an actuated joint with torsional stiffness 

parameter 
θ

K  and two non-rigid links with translational 

stiffness 
L

K  (Fig.2b). Intuitively, it is expected that such system 

should demonstrate more complicated stiffness behavior under 

the loadings compared to the previous one.  

The force-deflection relations corresponding to serial chain 

with compliant links are presented in Fig.4. These curves have 

been obtained using functions and matrices presented in Table 

2. Compared to the previous case, here for *
0...G G  there is 
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only quantitative difference (i.e. the shape of the examined 

curves remains almost the same). However, for *
G G  the 

chain may be not only unstable with respect to end-effector 

loading 
x

F , but also the chain configuration may become 

unstable. Geometrically, the latter qualitative difference is 

observed  similar to buckling in vertically loaded arch. 

Summary of different chain configurations and their stiffness 

behavior is presented in Figure 5. 

 

Figure 4 Force-deflections relations for different values of 

auxiliary loading G : chain with torsional and translational 

springs ( *

θ 0
4 / sin·G K L  , 2

θ
· /

L
K K K L ) 

Summarizing Section 6, it should be concluded that 

auxiliary loading essentially influences on the stiffness behavior 

of robotic manipulators, may reduce the stiffness coefficient and 

also provoke undesirable phenomena (such as buckling) that 

must be taken into account by designers. This justifies results of 

this paper and gives perspectives for practical applications.  

7 CONCLUSION 

The paper presents generalization of the non-linear stiffness 

modeling technique for manipulators under internal and 

external loadings. The developed technique includes computing 

of the static equilibrium configuration corresponding to the 

loadings. It is able to obtain the non-linear force-deflection 

relation, the Cartesian stiffness matrix for the loaded mode as 

well as the matrices defining linear mappings from the end-

point displacement into the deflections in passive and virtual 

joints. The obtained results allow us to extend the classical 

notion of "conservative congruence transformation" for the case 

of manipulators with auxiliary loading.  

The advantages and use of the developed technique are 

illustrated by numerical examples that deal with a stiffness 

analysis of serial chains with different assumptions on the link 

flexibility. For the considered cases, functions and matrices that 

are used in numerical stiffness analyses are given. The 

presented results also illustrate the ability of this technique to 

detect some nonlinear effects in the manipulator stiffness 

behavior (such as buckling).  

Table 2 Functions and matrices used in numerical stiffness 

analysis of two-link manipulator with auxiliary loading (case of 

rigid links and compliant intermediate joint)  

Intermediate point 
a

p  End-effector 
e

p  

 

 
1 1

1 1 1

1

cos

sin
a

L q

L q

q





 

 
 
 

  

g  

     

     
1 1 1 2 3 1 2

1 1 1 2 3 1 2

1 2 2

cos cos

sin sin

L q L q

L q L q

q q

  

  



    

 
   

 
   

 

1
( )

2

0 0

0 0

0 0 0

G

j

j


 
 
 
 

J  
1 5 7

( )

2 6 8

0 1 0

F

j j j

j j j


 
 
 
 

J  

3
( )

4

0

0

1 1

G

q

j

j

 
 
 
 

J  
3 5

( )

4 6

0

0

1 1

F

q

j j

j j





 
 
 
 

J  

( )
0

0 0 0

0 0

0 0 0

G



 

 
 
 

H  
( )

3 4

4

0 0 0

0

0 0

F
h

h

h


 

 
 
 

H  

1
( )

0

0

0

0

0

G

q

h



 

 
 
 

H  
5

( )

3

4

0

0

0

F

q
h

h

h



 

 
 
 

H  

( ) 1
0 0

0 0 0

G

q

h


 

 
 

H  ( ) 5 3 4

0 0 0

F

q

h hh


 

 
 

H  

( ) 2
0

0 0

G

qq

h 

 
 

H  
( ) 6

0

0 0

F

qq

h 

 
 

H  

1 1
cosj q , 

2 1
sinj q ,  3 1 1 1

sinj L q   , 

 4 1 1 1
cosj L q  ,    5 2 3 1 2

sinj L q     , 

   6 2 3 1 2
cosj L q    ,  7 1 2

cosj q   , 

 8 1 2
sinj q    

1 1 1
sin cos

x y
G q G qh    , 

   2 1 1 1 1 1 1
cos sin

x y
h G L q G L q   , 

       3 2 3 1 2 2 3 1
cos sin

x y
h F L q F L q         , 

   4 1 2 1
sin cos

x y
h F q F q    , 

5 1 1
sin cos

x y
F q F qh    , 

   6 3 1 1 1 1 1 1
cos sin

x y
h h F L q F L q     

 

In future, it is reasonable to develop an extension of the 

proposed technique that can be applied to the parallel 

manipulators with internal loops. Besides, it is useful to 

consider the manipulators with several end-points (or end-

effectors). The main difficulty for both cases is related to the 

introducing of additional geometrical constraints that are 

defined by another compliant mechanism. 
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unstable

buckling

*0.5·G G

*G G

*1.5·G G

0F 

*1.7·F G

*0.15·F G

*0.9·F G

*1.9·F G

*3.3·F G

*1.3·F G

*1.9·F G

*2.5·F G

*0.5·G G
*0.5·G G

*G G *G G

*1.5·G G
*1.5·G G

θ

2
2.32·

K
K

L


θ

2
0.10·

K
K

L


θ

2
2.54·

K
K

L
  θ

2
28.8·

K
K

L
 

θ

2
0.26·

K
K

L


θ

2
8.56·

K
K

L
 θ

2
35.5·

K
K

L


θ

2
55.6·

K
K

L


unstable

0G 

0.1x L   

*0.7·F G

θ

2
4.22·

K
K

L


0x 

0F 

0G 
θ

2
13.1·

K
K

L


0.05·x L 

*1.1·F G

0G  θ

2
34.9·

K
K

L


 

Figure 1 Figure 5   Configuration of kinematic chain with auxiliary loading: case of torsional and translational springs 

( *

θ 0
4 / sin·G K L  , 2 2

θ
2·10 /·

L
K K L ) 
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