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A finite-volume scheme for dynamic reliability models

C. COCOZZA-THIVENT†, R. EYMARD‡ AND S. MERCIER§

Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS UMR 8050),
Université de Marne-la-Vallée, 5, boulevard Descartes, Champs-sur-Marne,

77454 Marne-la-Vallée Cedex 2, France

In a model arising in the dynamic reliability study of a system, the probability of the state of the system is
completely described by the Chapman–Kolmogorov equations, which are scalar linear hyperbolic partial
differential equations coupled by their right-hand side, the solution of which are probability measures.
We propose in this paper a finite-volume scheme to approximate these measures. We show, thanks to the
proof of the tightness of the approximate solution, that the conservation of the probability mass leads
to a compactness property. The convergence of the scheme is then obtained in the space of continuous
functions with respect to the time variable, valued in the set of probability measures on Rd . We finally
show on a numerical example the accuracy and efficiency of the approximation method.

Keywords: dynamic reliability; Markov processes; finite-volume method; weak convergence.

1. Introduction

We consider a system which is described, at each time t ∈ R+, by its physical state It ∈ E , where E
is a finite set, and by environmental variables Xt ∈ R

d (e.g. the pressure of some part of the system
or the temperature). We assume that if the system remains in the same state for some time, then the
environmental variables satisfy the ordinary differential equation

dXt

dt
= v(i, Xt ) ∀ t ∈ R+ s.t., It = i ∀ i ∈ E, (1.1)

where v is a mapping from E × Rd to Rd . Stochastic transitions from state (i, x) ∈ E × Rd to ( j, y) ∈
E × R

d are defined, thanks to a rate a(i, j, x) and a probability measure µ(i, j, x)(dy). We denote
by ρ(t)(i, dx) the probability distribution of (It , Xt ), for all t ∈ R+. For such processes (It , Xt )t∈R+
(called ‘piecewise deterministic Markov processes’ by Davis (1984, 1993)), the family of marginal
distributions (ρ(t)(i, dx))t∈R+ is solution of the Chapman–Kolmogorov equations∫ t

0

∑
i∈E

∫
Rd

∑
j∈E

a(i, j, x)

(∫
Rd

ϕ( j, y)µ(i, j, x)(dy) − ϕ(i, x)

)
ρ(s)(i, dx)ds

+
∫ t

0

∑
i∈E

∫
Rd

v(i, x) · ∇ϕ(i, x)ρ(s)(i, dx)ds −
∑
i∈E

∫
Rd

ϕ(i, x)ρ(t)(i, dx)

+
∑
i∈E

∫
Rd

ϕ(i, x)ρ0(i, dx) = 0 ∀ i ∈ E, ∀ t ∈ R+, ∀ ϕ ∈ C1
c (Rd)E , (1.2)
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where we denote by C1
c (Rd) the set of continuously differentiable functions from R

d to R with a com-
pact support, and, for a space of functions on some set Ω , say F , we denote by F E the set of functions
f on E × Ω , such that for all i ∈ E , f (i, ·) ∈ F . We assume the following hypothesis on the data,
denoted by (H) in this paper.

1. The set E is finite, d ∈ N�.

2. The transition rate a is such that, for all i, j ∈ E , a(i, j, ·) ∈ Cb(R
d ,R+), the set of continuous

and bounded functions from R
d to R+. We denote by A > 0 an upper bound on these functions

a(i, j, ·). We denote by b(i, ·) = ∑
j∈E a(i, j, ·), for all i ∈ E , and by B = A CardE .

3. The velocity v is assumed to be such that, for all i ∈ E ,

• the function v(i, ·) ∈ C(Rd ,Rd), the set of continuous functions from R
d to Rd , and v(i, ·) is

locally Lipschitz continuous,

• the function div v(i, ·) is almost everywhere bounded in absolute value by some real value
D > 0 (independent of i),

• the function v(i, ·) is sub-linear, i.e. there are some V1 > 0 and V2 > 0 such that

∀ i ∈ E, ∀ x ∈ Rd , |v(i, x)| � V1|x | + V2.

4. The function µ is such that

• for all i, j ∈ E and x ∈ Rd , µ(i, j, x) ∈ P(Rd), the set of probability measures on Rd ,

• for all i, j ∈ E and all ψ ∈ Cb(R
d ,R), the function x → ∫

ψ(y)µ(i, j, x)(dy) is continuous
from R

d to R.

5. We assume that ρ0 ∈ P(E × R
d), where P(E × R

d) is the set of probability measures on
E × Rd .

In Cocozza-Thivent et al., we have proved that under (H), there exists one and only one solution
ρ(·) to equation (1.2) , namely, a single function ρ(·): R+ �→ P(E × R

d) such that the function
t �→ ∑

i∈E

∫
Rd ψ(i, x)ρ(t)(i, dx) is Lebesgue-integrable and bounded on [0, T ], for all T ∈ R+ and

for all ψ ∈ Cb(R
d)E and such that (1.2) is fulfilled. Moreover, the unique solution ρ(t) is actually

such that the function t �→ ∑
i∈E

∫
Rd ψ(i, x) ρ(t)(i, dx) is continuous from R+ to R for all ψ ∈

Cb(R
d)E .

REMARK 1.1 Hypothesis (H-4) includes the important practical cases µ(i, j, x)(dy) = δ0(dy) (the
Dirac mass in 0), which corresponds e.g. to the case of a semi-Markov process (also called Markov
renewal process) where the elapsed time in the current state stands for the environmental condition (and
is set equal to 0 at transition time) and µ(i, j, x)(dy) = δx (dy), which corresponds to the continuity
of the environmental variables or any combination of these two cases with respect to the coordinates
of x .

Let us give two interesting cases where a functional interpretation of (1.2) can be given. In the case
where there exist some regular functions u0 ∈ L1(Rd)E and u ∈ C(R+, L1(Rd))E such that ρ0(i, dx) =
u0(i, x)dx and ρ(t)(i, dx) = u(i, x, t)dx , and assuming that µ(i, j, x)(dy) = M(i, j, x, y)dy for all
i, j ∈ E and x, y ∈ Rd , these functions satisfy in a weak sense the following system of linear scalar
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hyperbolic equations, which are only coupled by their right-hand side

∂t u(i, x, t) + div(u(i, x, t)v(i, x)) =
∑
j∈E

∫
Rd

a( j, i, y)u( j, y, t)M( j, i, y, x)dy − u(i, x, t)b(i, x),

for a.e. x ∈ Rd , ∀ t ∈ R+, ∀ i ∈ E, (1.3)

u(i, x, 0) = u0(i, x), for a.e. x ∈ Rd , ∀ i ∈ E .

Let us now take the more particular case, where d = 1; there exist regular functions u0 ∈ L1(R+)E and
u ∈ C(R+, L1(R+))E such that ρ0(i, dx) = u0(i, x)dx and ρ(t)(i, dx) = u(i, x, t)dx , assuming that
µ(i, j, x)(dy) = δ0(dy) for all i, j ∈ E and x ∈ R+ (see Remark 1.1) and v(i, ·) � 0 (in order to ensure
the existence of a solution, the support of which remains a subset of R+). Then the term involving µ
in (1.2) can be seen as resulting from the weak formulation of a boundary condition on {0} × R+ (see
Cocozza-Thivent & Eymard, 2004). Hence, the functions u and u0 satisfy in a weak sense the following
system of linear scalar hyperbolic equations, only coupled by the boundary condition on {0} × R+:

∂t u(i, x, t) + div(u(i, x, t)v(i, x)) = −u(i, x, t)b(i, x), for a.e. x ∈ R+, ∀ t ∈ R+, ∀ i ∈ E,

v(i, 0) u(i, 0, t) =
∑
j∈E

∫
Rd

a( j, i, y)u( j, y, t)dy, ∀ t ∈ R+, ∀ i ∈ E, (1.4)

u(i, x, 0) = u0(i, x), for a.e. x ∈ Rd , ∀ i ∈ E .

Hence, in the particular case E = {1}, System (1.4) is completely identical, dropping the condition
b(1, ·) = a(1, 1, ·), to a population dynamics model called the McKendrick-Von Foerster model, im-
proved by Sinko & Streifer (1967) and Bell & Anderson (1967). In this model, u(1, x, t) represents the
density of population of age x at the time t , v(1, x) is the specific growth rate, b(1, x) is the specific
mortality at the age x , a(1, 1, x) is the specific fertility at the age x and u0(1, x) is the initial density
of the population. This model allows for the computation of all the informations concerning the time
evolution of the population and has been the object of numerous studies and adaptations to more com-
plex situations (see Mischler et al., 2002, for non-linear improvements, and references therein, and see
Feller, 1966, for the probabilistic notions).

For such models, whether dynamic reliability or population dynamics model, a challenging problem
is to calculate the marginal distribution ρ(t)(·, dx) of the process (It , Xt ). Actually, as can be seen in the
literature (see, e.g. Labeau, 1996), such a distribution is analytically calculable in only very simple cases
and only numerical approximations are usually possible. One of the most up-to-date methods for such
numerical computations appeals to Monte Carlo simulation (see, e.g. Labeau, 1996, and other papers by
P. E. Labeau).

We construct here an approximation of ρ(t)(i, dx) using a finite-volume method and we prove
that such an approximation weakly converges towards the unique solution of (1.2). Such a method has
already been studied and implemented in some restrictive cases of dynamic reliability (see Cocozza-
Thivent & Eymard and Cocozza-Thivent & Eymard (2004) for the ‘semi-Markov’ case). Note that
similar numerical approximations for (1.4) have been studied in the 1D case (see Ackleh et al. (2002),
Ackleh & Ito (1997) and Abia et al. (2004), and references therein for the population dynamics prob-
lem). The study of the scheme on unstructured meshes in 2D (or more) is much more difficult, and
the proofs of convergence for the approximation of a linear or non-linear scalar hyperbolic problem,
using a finite-volume method, are more recent (they rely on the notion of weak bounded variation in-
equality, see, e.g. Eymard et al., 2000). Nevertheless, it appears that the suitable functional framework
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for the study of (1.2) is the set of continuous functions of the time variable valued in P(E × R
d), and

not in (L1(Rd) ∩ L∞(Rd))E . This difference makes it necessary to use some tools which are new in
the framework of the study of convergence of numerical schemes for partial differential equations. In-
deed, the relative compactness of a family of bounded functions of L∞(Rd) must be replaced by that
of a family of probability measures in P(Rd), which implies the study of the tightness of this family
(see Lemma 3.4). This study appears to be quite complex, due to the redistribution of probability in-
duced by the measure µ(i, j, x) (the transport part, due to v, does not lead to an actual difficulty). Note
also that the general convergence result is obtained in this paper under the assumptions δt → 0 and
|M|/δt → 0, where |M| is the space step and δt is the time step. Such a condition instead of a simple
bound on |M|/δt seems to be necessary in the general setup, due to the apparent impossibility to prove
in the general case a certain weak bounded variation inequality (see Remark 3.2). This creates a thor-
ough difference with the L∞ framework, where the C F L condition for the convergence of the explicit
scheme is expressed as a bound on δt/|M|.

Hence, the outline of this paper is the following. In Section 2, we give the numerical scheme which
is deduced from a finite-volume approximation of (1.3). We then derive the convergence analysis from
the conservation of the measure on the whole space and from a tightness estimate (see Section 3), which
allow for some convergence properties, continuity properties and compactness properties, leading to the
convergence of the scheme to the unique weak solution of (1.2). We then conclude this paper with a
numerical example showing the efficiency and the accuracy of the method (Section 4).

2. The numerical scheme

We first denote by g: E × Rd × R → R
d the solution of

∂g

∂t
(i, x, t) = v(i, g(i, x, t)) ∀ (i, x, t) ∈ E × Rd × R, (2.1)

with

g(i, x, 0) = x ∀ (i, x) ∈ E × Rd . (2.2)

Thanks to the fact that the Cauchy–Lipschitz theorem holds within Hypothesis (H-3), the single solution
g of (2.1)–(2.2) fulfills the following properties:

1. the function g is such that g ∈ C1(R; C(Rd))E , where C1(R; C(Rd)) is the set of continuously
differentiable functions with respect to time, valued in C(Rd),

2. the function x �→ g(i, x, t) is locally Lipschitz continuous with respect to x on Rd , for all t > 0,
all i ∈ E ,

3. the following property holds:

g(i, g(i, x, s), t) = g(i, x, s + t) ∀ (i, x, s, t) ∈ E × Rd × R× R. (2.3)

4. denoting by J (i, y, s) the Jacobian in the change of space variable t = s and x = g(i, y, s), one
has

J (i, y, 0) = 1 ∀ (i, y) ∈ E × Rd
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and
∂

∂s
J (i, y, s) = div v(i, g(i, y, s)) J (i, y, s) ∀ (i, y, s) ∈ E × Rd × R,

which leads to

J (i, y, s) = exp

(∫ s

0
div v(i, g(i, y, τ ))dτ

)
∀ (i, y, s) ∈ E × Rd × R.

We then introduce the notion of admissible meshM of Rd , i.e. a family of measurable subsets of
R

d such that

1.
⋃

K∈M K = R
d ,

2. ∀ (K , L) ∈M2, K 	= L ⇒ K ∩ L = ∅ (M is a partition of Rd ),

3. mK := ∫
K dx > 0 for all K ∈M.

4. supK∈M diam(K ) < +∞ where diam(K ) = sup{(x,y)∈K 2} |x − y|. We then set |M| :=
supK∈M diam(K ).

Let a real number δt > 0 and an admissible mesh M be given. In order to define the numerical
scheme, we first apply the principles of the finite-volume method to the initial condition, defining p(i,K )

0
by

mK p(i,K )
0 =

∫
K

ρ0(i, dx) ∀ K ∈M ∀ i ∈ E, (2.4)

and in order to determine the discrete rates of state transition, we set

mLa(i j)
K L =

∫
L

a( j, i, y)

∫
K

µ( j, i, y)(dx)dy ∀ (K , L) ∈M2, ∀ (i, j) ∈ E2, (2.5)

mK b(i)
K =

∫
K

b(i, x)dx ∀ K ∈M, ∀ i ∈ E .

We define the following coefficients for the convection part of the scheme, using the notations given at
the beginning of this section:

m(i)
K L =

∫
{x∈K/g(i,x,−δt)∈L}

J (i, x, −δt)dx =
∫

{y∈L/g(i,y,δt)∈K }
dy, (2.6)

which thus satisfy ∑
K∈M

m(i)
K L = mL ∀ L ∈M. (2.7)

For n ∈ N fixed, assuming p(i,K )
n to be constructed (all i , K ), let us construct p(i,K )

n+1 . We first apply a
finite-volume scheme to the left-hand side of the partial differential equations (1.3), which corresponds
to the transport part of the equations. Hence, defining the function Pn by

Pn(i, x) = p(i,K )
n ∀ x ∈ K , ∀ K ∈M, ∀ i ∈ E, (2.8)
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we consider the weak solution ũ of the partial differential equation

∂t ũ(x, t) + div(̃u(x, t)v(i, x)) = 0, for a.e. (x, t) ∈ Rd × (0, δt),

ũ(x, 0) = Pn(i, x), for a.e. x ∈ Rd .

This function ũ is then such that ũ(x, t) = J (i, x, −t)Pn(i, g(i, x, −t)), for a.e. x ∈ R
d and all t ∈

(0, δt). We then define mK p̃(i,K )
n := ∫

K ũ(x, δt)dx , which thus satisfies, thanks to the above definitions,

mK p̃(i,K )
n =

∑
L∈M

m(i)
K L p(i,L)

n ∀ K ∈M, ∀ i ∈ E . (2.9)

We now take into account the right-hand side of the partial differential equations (1.3), by setting

mK p(i,K )
n+1 = 1

δtb(i)
K + 1

mK p̃(i,K )
n + δt

∑
j∈E

∑
L∈M

a(i j)
K L

δtb( j)
L + 1

mL p̃( j,L)
n ∀ K ∈M, ∀ i ∈ E . (2.10)

Indeed, the first term of the right-hand side of (2.10) accounts for the probability that the state does not
change during the time step, the denominator of this term corresponding to the negative part of the right-
hand side of (1.3), i.e. the transition of the state i to another state j . The second term of the right-hand
side of (2.10) takes into account the transitions of all the other states j to the state i . We then construct
an approximation PM,δt

t (·, x)dx of the measure ρ(t)(·, dx) such that PM,δt
t (·, x) is constant on each

{i} × [nδt, (n + 1)δt[ × K :

PM,δt
t (i, x) := p(i,K )

n = Pn(i, x) ∀ i ∈ E, ∀ x ∈ K ,

∀ t ∈ [nδt, (n + 1)δt[, ∀ K ∈M, ∀ n ∈ N. (2.11)

REMARK 2.1 (IMPLEMENTATION OF THE SCHEME) For a practical implementation of the numerical
scheme, the number of non-zero terms in (p(i,K )

n )K∈M has to be finite at each time step n (n ∈ N). This
can be ensured e.g. by the following assumptions: ρ0 has compact support and infK∈MmK > 0, which
implies that the cardinality of {K ∈ M: K ⊂ B(0, R)} is finite for all R > 0, where B(0, R) = {x ∈
R

d : |x | < R}). These additional assumptions are not required for the definition and the study of the
numerical scheme but have to be kept in mind for its implementation.

REMARK 2.2 (VARIABLE TIME STEPS) For the sake of simplicity, we only consider in this paper
a constant time step δt , although it would be easy to generalise our results to the case of a variable
time step.

3. Convergence study

3.1 Estimates

We begin with a technical lemma, which will be useful in the following.

LEMMA 3.1 Under Hypothesis (H-3), we have

|g(i, x, t) − x | �
(

|x | + V2

V1

)
(exp(V1t) − 1) ∀ x ∈ Rd , ∀ t ∈ R+, ∀ i ∈ E . (3.1)
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Proof. Let t � 0 and x ∈ Rd be given. We can write

|g(i, x, t) − x | =
∣∣∣∣∫ t

0
v(i, g(i, x, s))ds

∣∣∣∣
�

∫ t

0
(V1(|g(i, x, s) − x | + |x |) + V2)ds

= (V1|x | + V2)t + V1

∫ t

0
|g(i, x, s) − x |ds.

We set h(t) = |g(i, x, t) − x |. We then have h(t) � (V1|x | + V2)t + V1
∫ t

0 h(τ )dτ . Defining the
continuous function h̃ by h̃(t) = (V1|x | + V2)t + V1

∫ t
0 h̃(τ )dτ , we then get, using Gronwall’s lemma,

that h̃(t) − h(t) � 0 for all t � 0. Since h̃(t) = V1|x |+V2
V1

(exp(V1t) − 1), we get (3.1). �

LEMMA 3.2 (MASS CONSERVATION) Under Hypotheses (H), letM be an admissible mesh on Rd in
the sense given in Section 2 and let δt > 0. Then there exists one and only one family of non-negative
real values (p(i,K )

n )n∈N,i∈E,K∈M which is the solution of (2.4)–(2.10). Moreover, this family is such
that ∑

i∈E

∑
K∈M

mK p(i,K )
n = 1 ∀ n ∈ N. (3.2)

Proof. The existence and uniqueness of the solution (p(i,K )
n )n∈N,i∈E,K∈M to (2.4)–(2.10) is clear. We

prove (3.2) by induction on n. The property is clear for n = 0. Suppose that
∑

i∈E
∑

K∈MmK p(i,K )
n =

1. Then, Pn , p̃(·,·)
n and consequently p(·,·)

n+1 are uniquely defined by (2.8)–(2.10).
Moreover, we have

∑
i∈E

∑
K∈M

mK p(i,K )
n+1 =

∑
i∈E

∑
K∈M

1

δtb(i)
K + 1

mK p̃(i,K )
n + δt

∑
j∈E

∑
L∈M

mL p̃( j,L)
n

δtb( j)
L + 1

∑
i∈E

∑
K∈M

a(i j)
K L ,

with ∑
i∈E

∑
K∈M

a(i j)
K L = 1

mL

∑
i∈E

∫
L

a( j, i, y)
∑

K∈M

∫
K

µ( j, i, y)(dx)dy = b( j)
L .

This leads to

∑
i∈E

∑
K∈M

mK p(i,K )
n+1 =

∑
i∈E

∑
K∈M

1

δtb(i)
K + 1

mK p̃(i,K )
n + δt

∑
j∈E

∑
L∈M

b( j)
L mL p̃( j,L)

n

δtb( j)
L + 1

=
∑
i∈E

∑
K∈M

mK p̃(i,K )
n =

∑
i∈E

∑
K∈M

∑
L∈M

m(i)
K L p(i,L)

n =
∑
i∈E

∑
L∈M

mL p(i,L)
n , (3.3)

which completes the proof. �
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We now build a sequence of radii which permits us to control the propagation of mass by both
mechanisms: transport and change of state. For this purpose, we first notice that for all R > 0 and all
i, j ∈ E , the family {µ(i, j, x)(dy): |x | � R} is weakly compact, which is a direct consequence of
(H -4). The family {µ(i, j, x)(dy)}x∈B(0,R) is then tight (see, e.g., Billingsley (1968)), which allows us
to introduce the function fi, j : R�+ × R�+ → R

�+, given by

∀ R ∈ R�+, ∀ ε ∈ R�+, fi, j (R, ε) = inf

{
r � R, sup

x∈B(0,R)

∫
Rd\B(0,r)

µ(i, j, x)(dy) � ε

}
. (3.4)

We get the following result.

LEMMA 3.3 (PROPAGATION OF THE PROBABILITY MASS) Under Hypotheses (H), let ε > 0, T > 0,

θ > 0 and R0 > 0 be given. Let the sequences (R(k))k∈N and (R
(k)

)k∈N be defined by

R(0) = R0, (3.5)

R
(k) = exp(V1T )R(k) + V2 + θ exp(V1T )

V1
(exp(V1T ) − 1) ∀ k ∈ N, (3.6)

R(k+1) = sup
i, j∈E

fi, j (R
(k) + θT, ε) ∀ k ∈ N. (3.7)

For all δt ∈ (0, T ), defining N ∈ N such that Nδt � T < (N + 1)δt , let the sequence (R(k)
n )n=0,...,N be

defined for all k ∈ N by

R(k)
0 = R(k),

R(k)
n+1 = (R(k)

n + θδt) exp(V1δt) + V2

V1
(exp(V1δt) − 1) ∀ n = 0, . . . , N − 1. (3.8)

Then the following properties hold:

R(k)
n = exp(V1nδt)R(k) +

(
V2

V1
+ θδt exp(V1δt)

exp(V1δt) − 1

)
(exp(V1nδt) − 1) ∀ n = 0, . . . , N , ∀ k ∈ N,

(3.9)

R(k)
n < R(k)

n+1, R(k) � R(k)
n � R

(k)
< R(k+1) � R(k+1)

n ∀ n = 0, . . . , N , ∀ k ∈ N, (3.10)

sup
x∈B(0,R(k−1)

n+1 +θδt), i, j∈E

∫
Rd\B(0,R(k)

n+1)
µ(i, j, x)(dy) � ε ∀ n = 0, . . . , N − 1, ∀ k ∈ N�, (3.11)

∀ k ∈ N, ∀ n = 0, . . . , N − 1 ∀ i ∈ E, ∀ x ∈ Rd ,

|x | < R(k)
n + θδt ⇒ |g(i, x, δt)| < R(k)

n+1.
(3.12)

Proof. Using (3.8), we easily get the proof of (3.9) by induction on n. The proof of (3.10) is a

consequence of exp(V1δt) − 1 � V1δt and therefore θδt
exp(V1δt)−1 �

θ
V1

and of fi, j (R
(k) + θT, ε) �

R
(k) + θT > R

(k)
. Then, using that fi, j (R, ε) is nondecreasing withrespect to R, the relations (3.10)
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and (3.7) yield

fi, j (R(k−1)
n+1 + θδt, ε) � fi, j (R̄(k−1) + θT, ε)

� R(k) < R(k)
n+1 ∀ n = 0, . . . , N − 1, ∀ k ∈ N�, ∀ i, j ∈ E

which gives (3.11) (note that it is important that the last inequality is strict since the infimum in (3.4) is
not necessarily reached). Finally, we get (3.12) using (3.8) and Lemma 3.1. �
LEMMA 3.4 (TIGHTNESS) Under Hypotheses (H), let δt > 0 be given and let M be an admissible
mesh on Rd in the sense given in Section 2. Let θ > |M|/δt and T > δt . Let (p(i,K )

n )i∈E,n∈N,K∈M be
the solution of (2.4)–(2.10).

Then, for all ε0 > 0, there exists R > 0 only depending on ε0, T , V1, V2, A, CardE , ρ0, µ and θ ,
such that ∑

K∈M
K∩B(0,R)	=∅

∑
i∈E

mK p(i,K )
n � 1 − ε0 ∀ n ∈ N s.t. nδt � T, (3.13)

whence the tightness of the family of probability measures (PM,δt
t (·, x)dx){(t,M,δt):|M|/δt<θ ;0<t,δt<T }

on E × Rd .

Proof. Let ε > 0 be given (this real number will be chosen as a function of ε0 at the end of the proof).
We denote by R0 > 0 a real number such that∑

i∈E

∫
Rd\B(0,R0)

ρ0(i, dx) � ε. (3.14)

Hence, R0 only depends on ε and ρ0. We then denote by (R(k))k∈N and (R
(k)

)k∈N the sequences defined
for these values ε > 0 and R0 > 0 by (3.5), (3.6) and (3.7), which therefore only depend on ε, ρ0, T ,
V1, V2, µ and θ . We finally denote by N ∈ N the integer, such that Nδt � T < (N + 1)δt , and by
(R(k)

n )n=0,...,N the sequence defined for all k ∈ N by (3.8). For all n = 0, . . . , N and k ∈ N, we denote
byM(k)

n = {K ∈M, K ∩ B(0, R(k)
n ) = ∅}, and we define

q(k)
n =

∑
K∈M(k)

n

∑
i∈E

mK p(i,K )
n ∀ n = 0, . . . , N , ∀ k ∈ N.

which leads, using (3.14), to

q(k)
0 � ε ∀ k ∈ N. (3.15)

The principle of this proof is to find some k0 ∈ N and some C > 0, independent of M, δt and ε,
such that q(k0)

n � Cε, for all n ∈ N such that nδt � T , which will be sufficient to conclude, choosing

ε = ε0/C and R � R
(k0) for all n ∈ N such that nδt � T . Let k ∈ N� and n = 0, . . . , N − 1 be given.

We have

q(k)
n+1 =

∑
K∈M(k)

n+1

∑
i∈E

⎛⎝ 1

δtb(i)
K + 1

mK p̃(i,K )
n + δt

∑
j∈E

∑
L∈M

a(i j)
K L

δtb( j)
L + 1

mL p̃( j,L)
n

⎞⎠ .
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We thus get

q(k)
n+1 =

∑
K∈M(k)

n+1

∑
i∈E

1

δtb(i)
K + 1

mK p̃(i,K )
n + δt

∑
L∈M(k−1)

n+1

∑
j∈E

∑
K∈M(k)

n+1

∑
i∈E

a(i j)
K L

δtb( j)
L + 1

mL p̃( j,L)
n

+ δt
∑

L∈M\M(k−1)
n+1

∑
j∈E

∑
K∈M(k)

n+1

∑
i∈E

a(i j)
K L

δtb( j)
L + 1

mL p̃( j,L)
n . (3.16)

We first look for a bound for the third term of the right-hand side of (3.16). Let j ∈ E and L ∈
M\M(k−1)

n+1 be given. We have∑
i∈E

∑
K∈M(k)

n+1

a(i j)
K L =

∑
i∈E

1

mL

∫
L

a( j, i, y)
∑

K∈M(k)
n+1

∫
K

µ( j, i, y)(dx)dy. (3.17)

Since we have L ∩ B(0, R(k−1)
n+1 ) 	= ∅ and diam(L) � |M| < θδt , thus we have y ∈ B(0, R(k−1)

n+1 + θδt).

Since K ⊂ R
d\B(0, R(k)

n+1) we can then write, using (3.11),

∀ y ∈ L
∑

K∈M(k)
n+1

∫
K

µ( j, i, y)(dx) �
∫
Rd\B(0,R(k)

n+1)
µ( j, i, y)(dx) � ε. (3.18)

Thus, we get from (3.17) and (3.18) (recall that B = A CardE)

∀ n = 0, . . . , N − 1, ∀ k ∈ N�, ∀ j ∈ E, ∀ L ∈M \M(k−1)
n+1 ,

∑
i∈E

∑
K∈M(k)

n+1

a(i j)
K L � Bε. (3.19)

Since we get a bound of the second term at the right-hand side of (3.16), using∑
K∈M(k)

n+1

∑
i∈E

a(i j)
K L � b( j)

L ∀ j ∈ E, ∀ L ∈M,

we thus get from (3.16) and (3.19)

q(k)
n+1 �

∑
K∈M(k)

n+1

∑
i∈E

1

δtb(i)
K + 1

mK p̃(i,K )
n + δt

∑
L∈M(k−1)

n+1

∑
j∈E

b( j)
L

δtb( j)
L + 1

mL p̃( j,L)
n + δt Bε,

using
∑

L∈M
∑

j∈E mL p̃( j,L)
n = 1 (see (3.3)), which yields

q(k)
n+1 �

∑
K∈M(k)

n+1

∑
i∈E

mK p̃(i,K )
n + δt

∑
L∈M(k−1)

n+1 \M(k)
n+1

∑
j∈E

b( j)
L

δtb( j)
L + 1

mL p̃( j,L)
n + δt Bε.

Therefore, since b( j)
L � B, and thus

b( j)
L

δtb( j)
L +1

� B
δt B+1 , we get

q(k)
n+1 �

∑
K∈M(k)

n+1

∑
i∈E

mK p̃(i,K )
n + δt B

δt B + 1

∑
L∈M(k−1)

n+1 \M(k)
n+1

∑
j∈E

mL p̃n( j, L) + δt Bε.
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Since R(k−1)
n+1 � R(k)

n+1 impliesM(k)
n+1 ⊂M(k−1)

n+1 , we get

q(k)
n+1 �

1

δt B + 1

∑
K∈M(k)

n+1

∑
i∈E

mK p̃(i,K )
n + δt B

δt B + 1

∑
L∈M(k−1)

n+1

∑
j∈E

mL p̃( j,L)
n + δt Bε. (3.20)

Let us now remark that, thanks to the relation (3.12), we obtain

∀ k ∈ N, ∀ n = 0, . . . , N − 1, ∀ i ∈ E, ∀ K ∈M(k)
n+1, ∀ L ∈M, m(i)

K L 	= 0 ⇒ L ∈M(k)
n .

This implies using (2.9) and (2.7)∑
i∈E

∑
K∈M(k)

n+1

mK p̃(i,K )
n � q(k)

n ∀ n = 0, . . . , N , ∀ k ∈ N.

Hence, we get from (3.20)

q(k)
n+1 �

1

δt B + 1
q(k)

n + δt B

δt B + 1
q(k−1)

n + δt Bε.

Since q(k)
0 � ε for all k ∈ N and q(0)

n � 1 for all n ∈ N, we then easily prove by induction on n and on

k that, for all k, n ∈ N, q(k)
n � ε + q̃(k)

n + nδt Bε, where (q̃(k)
n )n,k∈N is defined by

(q̃(0)
n = 1 ∀ n ∈ N) and (q̃(k)

0 = 0 ∀ k ∈ N�) and

(q̃(k)
n+1 = q̃(k)

n + δt Bq̃(k−1)
n ∀ n = 0, . . . , N , ∀ k ∈ N�).

Then an easy inductive argument shows that, for all n = 0, . . . , N , we have q̃(k)
n = n!

k!(n−k)! (δt B)k for

all k = 0, . . . , n (with the usual convention 0! = 1) and q̃(k)
n = 0 for all k > n. This gives

q̃(k)
n � nk

k!
(δt B)k � (BT )k

k!
∀ n ∈ N s.t. nδt � T, ∀ k ∈ N.

We thus obtain

q(k)
n � ε + (BT )k

k!
+ BεT ∀ n ∈ N s.t. nδt � T, ∀ k ∈ N.

We then choose k0 ∈ N such that (BT )k0

k0! � ε. Thus, k0 only depends on ε, B (with B = A CardE) and
T . We then get

q(k0)
n � ε(2 + BT ) ∀ n ∈ N s.t. nδt � T .

The conclusion of the above lemma follows by setting R = R
(k0) (defined by (3.6)) and ε = ε0/(2 +

BT ). �

3.2 Convergence lemmas

Let f ∈ Cb(R
d)E be a given function, and let t1, t2 ∈ R+ be such that 0 � t1 � t2. For a given

admissible mesh in the sense given in Section 2, and for a given δt > 0, using all the notations of
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Section 2, we define the expressions TM,δt
1 ( f, t1, t2) and TM,δt

2 ( f, t1, t2) by

TM,δt
1 ( f, t1, t2) = δt

∑
i∈E

n2−1∑
n=n1

∑
K∈M

mK f
(i,K ) p̃(i,K )

n

δtb(i)
K + 1

, (3.21)

TM,δt
2 ( f, t1, t2) =

∑
i∈E

∫
[t1,t2]

∫
Rd

f (i, x)PM,δt
t (i, x)dx dt, (3.22)

where

f
(i,K ) = 1

mK

∫
K

f (i, x)dx ∀ i ∈ E, ∀ K ∈M, (3.23)

represents the mean value of f on K and where we denote by n1, n2 ∈ N the integers such that n1δt �
t1 < (n1 + 1)δt and n2δt � t2 < (n2 + 1)δt .

REMARK 3.1 Throughout this paper, we use the convention that, if n1 � n2, all the sums
∑n2−1

n=n1
(·) are

set equal to zero.

Similarly, for ϕ ∈ C1
c (Rd)E , we define the expressions TM,δt

3 (ϕ, t1, t2), TM,δt
4 (ϕ, t1, t2),

TM,δt
5 (ϕ, t1, t2), TM,δt

6 (ϕ, t1, t2), TM,δt
7 (ϕ, t1, t2) and TM,δt

8 (ϕ, t1, t2) by

TM,δt
3 (ϕ, t1, t2) =

∑
i∈E

n2−1∑
n=n1

∑
K∈M

mK p̃(i,K )
n

δtb(i)
K

δtb(i)
K + 1

ϕ(i,K ), (3.24)

TM,δt
4 (ϕ, t1, t2) =

∑
i∈E

∫ t2

t1

∫
Rd

b(i, x)ϕ(i, x)PM,δt
t (i, x)dx dt, (3.25)

TM,δt
5 (ϕ, t1, t2) =

∑
i∈E

n2−1∑
n=n1

∑
K∈M

δt
∑
j∈E

∑
L∈M

a(i j)
K L

mL p̃( j,L)
n

δtb( j)
L + 1

ϕ(i,K ), (3.26)

TM,δt
6 (ϕ, t1, t2) =

∑
i∈E

∫ t2

t1

∫
Rd

∑
j∈E

a(i, j, x)

(∫
ϕ( j, y)µ(i, j, x)(dy)

)
PM,δt

t (i, x)dx dt, (3.27)

TM,δt
7 (ϕ, t1, t2) =

∑
i∈E

n2−1∑
n=n1

∑
K∈M

[mK p(i,K )
n+1 − mK p̃(i,K )

n ]ϕ(i,K ), (3.28)

TM,δt
8 (ϕ, t1, t2) =

∑
i∈E

[
−

∫ t2

t1

∫
Rd

v(i, x) · ∇ϕ(i, x)PM,δt
t (i, x)dx dt

−
∫
Rd

ϕ(i, x)PM,δt
t1 (i, x)dx +

∫
Rd

ϕ(i, x)PM,δt
t2 (i, x)dx

]
. (3.29)

Note that considering Scheme (2.10) multiplied by ϕ(i,K ) and summed over i ∈ E , K ∈ M and n =
n1, . . . , n2 − 1, we exactly get

−TM,δt
3 (ϕ, t1, t2) + TM,δt

5 (ϕ, t1, t2) − TM,δt
7 (ϕ, t1, t2) = 0. (3.30)
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On the other hand, using the above definitions, we can write

− TM,δt
4 (ϕ, t1, t2) + TM,δt

6 (ϕ, t1, t2) − TM,δt
8 (ϕ, t1, t2)

=
∑
i∈E

⎡⎣∫ t2

t1

∫
Rd

⎡⎣∑
j∈E

a(i, j, x)

∫
ϕ( j, y)µ(i, j, x)(dy)

−b(i, x)ϕ(i, x) + v(i, x) · ∇ϕ(i, x)

⎤⎦ PM,δt
t (i, x)dx dt

+
∫
Rd

ϕ(i, x)PM,δt
t1 (i, x)dx −

∫
Rd

ϕ(i, x)PM,δt
t2 (i, x)dx

⎤⎦ . (3.31)

The following results will lead to the convergence of the scheme, by proving that the differences be-
tween TM,δt

3 (ϕ, t1, t2) and TM,δt
4 (ϕ, t1, t2), between TM,δt

5 (ϕ, t1, t2) and TM,δt
6 (ϕ, t1, t2) and between

TM,δt
7 (ϕ, t1, t2) and TM,δt

8 (ϕ, t1, t2) can be made as small as desired, letting δt → 0 and |M|/δt → 0.

LEMMA 3.5 Under assumptions (H), let θ > 0, f ∈ Cb(R
d)E , T > 0 and t1, t2 ∈ R+ be such that

0 � t1 � t2 � T . Then, for each ε0 > 0 , there exists δt0, which only depends on ε0, T , f , V1,
V2, A, CardE , ρ0, µ and θ , such that for all δt ∈ [0, δt0], for all admissible meshes M in the sense
given in Section 2, such that |M| � θδt , with PM,δt given by (2.4–2.11) and TM,δt

1 ( f, t1, t2) and

TM,δt
2 ( f, t1, t2) defined, respectively, by (3.21) and (3.22), we have

|TM,δt
1 ( f, t1, t2) − TM,δt

2 ( f, t1, t2)| � ε0, (3.32)

which means precisely that limδt→0,|M|�θδt (T
M,δt
1 ( f, t1, t2) − TM,δt

2 ( f, t1, t2)) = 0.

Proof. Let ε > 0. For a given admissible mesh in the sense given in Section 2, and for a given δt > 0,
using all the notations of Section 2, we define the expression TM,δt

9 ( f, t1, t2) by

TM,δt
9 ( f, t1, t2) = δt

∑
i∈E

n2−1∑
n=n1

∑
K∈M

mK f
(i,K )

p̃(i,K )
n .

We then have

|TM,δt
1 ( f, t1, t2) − TM,δt

9 ( f, t1, t2)| � δt Bδt
∑
i∈E

n2−1∑
n=n1

∑
K∈M

mK | f
(i,K )| p̃(i,K )

n

� δt BT sup
i∈E

‖ f (i, ·)‖L∞(Rd ),

and therefore there exists δt1 > 0 only depending on ε, f , B and T such that if δt � δt1, then
|TM,δt

1 ( f, t1, t2) − TM,δt
9 ( f, t1, t2)| � ε.
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We now consider TM,δt
10 ( f, t1, t2) defined by

TM,δt
10 ( f, t1, t2) =

∑
i∈E

∫ n2δt

n1δt

∫
Rd

f (i, x)PM,δt
t (i, x)dx dt = δt

∑
i∈E

n2−1∑
n=n1

∑
K∈M

mK f
(i,K )

p(i,K )
n .

We then get that

|TM,δt
10 ( f, t1, t2) − TM,δt

2 ( f, t1, t2)| �
∑
i∈E

∫
Rd

(∫ (n1+1)δt

n1δt
| f (i, x)|PM,δt

t (i, x)dt

+
∫ (n2+1)δt

n2δt
| f (i, x)|PM,δt

t (i, x)dt

)
dx,

and therefore |TM,δt
10 ( f, t1, t2)−TM,δt

2 ( f, t1, t2)| � 2δt supi∈E ‖ f (i, ·)‖L∞(Rd ). Therefore, there exists

δt2, only depending on ε and f , such that |TM,δt
10 ( f, t1, t2) − TM,δt

2 ( f, t1, t2)| � ε.

Setting TM,δt
11 ( f, t1, t2) = TM,δt

9 ( f, t1, t2) − TM,δt
10 ( f, t1, t2), we get

TM,δt
11 ( f, t1, t2) = δt

∑
i∈E

n2−1∑
n=n1

∑
K∈M

p(i,K )
n

∑
L∈M

m(i)
LK ( f

(i,L) − f
(i,K )

).

We then get that, for a given R > 0, TM,δt
11 ( f, t1, t2) = TM,δt,R

12 ( f, t1, t2) + TM,δt,R
13 ( f, t1, t2), with

TM,δt,R
12 ( f, t1, t2) = δt

∑
i∈E

n2−1∑
n=n1

∑
K∈M

K∩B(0,R)=∅

p(i,K )
n

∑
L∈M

m(i)
LK ( f

(i,L) − f
(i,K )

)

and

TM,δt,R
13 ( f, t1, t2) = δt

∑
i∈E

n2−1∑
n=n1

∑
K∈M

K∩B(0,R)	=∅

p(i,K )
n

∑
L∈M

m(i)
LK ( f

(i,L) − f
(i,K )

).

Since

|TM,δt,R
12 ( f, t1, t2)( f, δt,M, R)| � 2 sup

i∈E
‖ f (i, ·)‖L∞(Rd )δt

∑
i∈E

n2−1∑
n=n1

∑
K∈M

K∩B(0,R)=∅

p(i,K )
n mK ,

thanks to Lemma 3.4, letting δt � T and therefore |M| � θT , it is possible to choose an R which only
depends on ε, T , V1, V2, A, CardE , ρ0, µ, f and θ such that |TM,δt,R

12 ( f, t1, t2)| � εT .

Now let K ∈ M be such that K ∩ B(0, R) 	= ∅ and L such that m(i)
LK 	= 0. Thanks to Lemma

3.1, we can choose R′ � R + θT � R + diam(K ), only depending on T , V1, V2, θ and R such that
L ⊂ B(0, R′) and K ⊂ B(0, R′). Since f is continuous, it is uniformly continuous on B(0, R′). Let
α ∈ (0, 1) be such that | f (i, x) − f (i, y)| � ε for all (i, x, y) ∈ E × B(0, R′) × B(0, R′) with
|x − y| � α.
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Thanks again to Lemma 3.1, let δt3 > 0, which only depends on α, θ , V1, V2 and T , be such that,
for all δt � δt3, we have |g(i, z, δt) − z| � α/3 for all z ∈ B(0, R′).

As m(i)
LK 	= 0, there is a z ∈ K such that g(i, z, δt) ∈ L . For δt � min(δt3,

α
3θ ), we deduce that, for

all x ∈ K and y ∈ L ,

|x − y| � |x − z| + |z − g(i, z, δt)| + |g(i, z, δt) − y| � α

and consequently | f
(i,L) − f

(i,K )| � ε. This proves that |TM,δt,R
13 ( f, t1, t2)| � εT .

Choosing at the beginning of the proof ε such that ε + ε + εT + εT = ε0, and then taking δt0 =
min(δt1, δt2, T, δt3,

α
3θ ) completes the proof. �

We now deduce the following result.

LEMMA 3.6 Under assumptions (H), let θ > 0, ϕ ∈ C1
c (Rd)E , T > 0 and t1, t2 ∈ R+ be such that

0 � t1 � t2 � T . Then, for each ε0 > 0, there exists δt0, which only depends on ε0, T , ϕ, V1,
V2, A, CardE , ρ0, µ and θ , such that for all δt ∈ [0, δt0], for all admissible meshes M in the sense
given in Section 2, such that |M| � θδt , with PM,δt be given by (2.4)–(2.11) and TM,δt

3 (ϕ, t1, t2),

TM,δt
4 (ϕ, t1, t2), TM,δt

5 (ϕ, t1, t2) and TM,δt
6 (ϕ, t1, t2) defined by (3.24)–(3.27), we have

|TM,δt
3 (ϕ, t1, t2) − TM,δt

4 (ϕ, t1, t2)| � ε0, (3.33)

and

|TM,δt
5 (ϕ, t1, t2) − TM,δt

6 (ϕ, t1, t2)| � ε0, (3.34)

which means precisely that limδt→0,|M|�θδt (T
M,δt
3 ( f, t1, t2) − TM,δt

4 ( f, t1, t2)) = 0 and

limδt→0,|M|�θδt (T
M,δt
5 ( f, t1, t2) − TM,δt

6 ( f, t1, t2)) = 0.

Proof. We consider the function f defined by

f (i, x) = b(i, x)ϕ(i, x) ∀ (i, x) ∈ E × Rd .

Setting Cϕ = supi∈E ‖∇ϕ(i, ·)‖L∞(Rd ), we then have

|b(i)
K ϕ(i,K ) − bϕ

(i,K )| � Cϕ |M|B,

which yields that

|TM,δt
3 (ϕ, t1, t2) − TM,δt

1 ( f, t1, t2)| � Cϕ |M|BT .

Noting that TM,δt
2 ( f, t1, t2) = TM,δt

4 (ϕ, t1, t2), inequality (3.33) is then a direct consequence of
Lemma 3.5 applied to the function f .

We now consider the function f defined by

f (i, x) =
∑
j∈E

a(i, j, x)

(∫
ϕ( j, y)µ(i, j, x)(dy)

)
∀ (i, x) ∈ E × Rd .
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Note that, although the function ϕ has a compact support, we cannot in general expect the same property
for the function f under the Hypothesis (H-4), and we can only deduce that f ∈ Cb(R

d)E . We then
have ∣∣∣∣∣∣mK f

(i,K ) −
∑
j∈E

∑
L∈M

mK a( j i)
L K ϕ( j,L)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

{x∈K }

∑
j∈E

a(i, j, x)

( ∑
L∈M

∫
{y∈L}

ϕ( j, y)µ(i, j, x)(dy)

)
dx

−
∑
j∈E

∑
L∈M

∫
{x∈K }

a(i, j, x)

∫
{y∈L}

µ(i, j, x)(dy)dx
1

mL

∫
{z∈L}

ϕ( j, z)dz

∣∣∣∣∣∣
�

∑
j∈E

∑
L∈M

∫
{x∈K }

∫
{y∈L}

a(i, j, x)

∣∣∣∣ϕ( j, y) − 1

mL

∫
{z∈L}

ϕ( j, z)dz

∣∣∣∣ µ(i, j, x)(dy)dx

� Cϕ |M|BmK .

We thus get that

|TM,δt
5 (ϕ, t1, t2) − TM,δt

1 ( f, t1, t2)| � Cϕ |M|BT .

Noting again that TM,δt
2 ( f, t1, t2) = TM,δt

6 (ϕ, t1, t2), the conclusion follows from the application of
Lemma 3.5 to f . �

We now study the difference between TM,δt
7 (ϕ, t1, t2) and TM,δt

8 (ϕ, t1, t2) defined, respectively, by
(3.28) and (3.29).

LEMMA 3.7 Under assumptions (H), let ϕ ∈ C1
c (Rd)E , T > 0 and t1, t2 ∈ R+ be such that 0 �

t1 � t2 � T . Then, for each ε0 > 0, there exist δt0 and θ0 which only depends on ε0, T , ϕ, v, V1,
V2, A, CardE , ρ0, and µ such that for all δt ∈ [0, δt0], for all admissible meshes M in the sense
given in Section 2, such that |M| � θ0δt , with PM,δt given by (2.4)–(2.11) and TM,δt

7 (ϕ, t1, t2) and

TM,δt
8 ( f, t1, t2) defined by (3.28)–(3.29), we have that

|TM,δt
7 (ϕ, t1, t2) − TM,δt

8 (ϕ, t1, t2)| � ε0, (3.35)

which means precisely that limδt→0,|M|/δt→0(T
M,δt
7 ( f, t1, t2) − TM,δt

8 ( f, t1, t2)) = 0.

Proof. Let ε > 0 be given. LetM be an admissible mesh in the sense given in Section 2, and let δt > 0
be given. Using the notations from Section 2, we define the function ϕM by ϕM(i, x) = ϕ(i,K ) =

1
mK

∫
K ϕ(i, y)dy for all x ∈ K and all K ∈M. We also note that, setting Cϕ = supi∈E ‖∇ϕ(i, ·)‖L∞(Rd ),

we have

|ϕM(i, x) − ϕ(i, x)| � Cϕ |M| ∀ x ∈ Rd , ∀ i ∈ E . (3.36)
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We get from (2.6), (2.8), (2.9), (2.11) and (3.28)

TM,δt
7 (ϕ, t1, t2)

=
∑
i∈E

∑
K∈M

n2−1∑
n=n1

∫
K

[Pn+1(i, x)ϕ(i, x) − Pn(i, g(i, x, −δt))J (i, x, −δt)ϕM(i, x)]dx ds

= 1

δt

∑
i∈E

n2−1∑
n=n1

∫ (n+1)δt

nδt

∫
Rd

[PM,δt
s+δt (i, x)ϕ(i, x)

− PM,δt
s (i, g(i, x, −δt))J (i, x, −δt)ϕM(i, x)]dx ds

= 1

δt

∑
i∈E

∫
Rd

(∫ (n2+1)δt

(n1+1)δt
PM,δt

t (i, y)ϕ(i, y)dt −
∫ n2δt

n1δt
PM,δt

s (i, y)ϕM(i, g(i, y, δt))ds

)
dy.

This leads to TM,δt
7 (ϕ, t1, t2) = −TM,δt

14 (ϕ, t1, t2) − TM,δt
15 (ϕ, t1) + TM,δt

16 (ϕ, t2), where we define

TM,δt
14 (ϕ, t1, t2) = 1

δt

∑
i∈E

∫ n2δt

(n1+1)δt

∫
Rd

PM,δt
s (i, x)[ϕM(i, g(i, x, δt)) − ϕ(i, x)]dx ds,

TM,δt
15 (ϕ, t1) = 1

δt

∑
i∈E

∫ (n1+1)δt

n1δt

∫
Rd

PM,δt
s (i, y)ϕM(i, g(i, y, δt))dy ds

and

TM,δt
16 (ϕ, t2) = 1

δt

∑
i∈E

∫ (n2+1)δt

n2δt

∫
Rd

PM,δt
s (i, y)ϕ(i, y)dy ds.

We first remark that

TM,δt
15 (ϕ, t1) =

∑
i∈E

∫
Rd

PM,δt
t1 (i, y)ϕM(i, g(i, y, δt))dy,

and that

TM,δt
16 (ϕ, t2) =

∑
i∈E

∫
Rd

PM,δt
t2 (i, y)ϕ(i, y)dy.

Hence, TM,δt
16 (ϕ, t2) is exactly one of the three terms constituting TM,δt

8 (ϕ, t1, t2).
Applying Lemma 3.1 and using the fact that the support of ϕ is compact gives the existence of some

C ′
1 > 0 only depending on V1, V2, T and ϕ such that |ϕM(i, g(i, y, δt))−ϕM(i, y)| � (δt +2|M|)C ′

1.
Let θ1 be given (for instance θ1 = 1), we then get that there exists δt1 > 0 such that, for δt � δt1 and
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|M| � θ1δt , we have ∣∣∣∣∣TM,δt
15 (ϕ, t1) −

∑
i∈E

∫
Rd

ϕ(i, x)PM,δt
t1 (i, x)dx

∣∣∣∣∣ � ε.

We have TM,δt
14 (ϕ, t1, t2) = TM,δt

17 (ϕ, t1, t2) + TM,δt
18 (ϕ, t1, t2), where we define

TM,δt
17 (ϕ, t1, t2) = 1

δt

∑
i∈E

∫ n2δt

(n1+1)δt

∫
Rd

PM,δt
s (i, x)[ϕ(i, g(i, x, δt)) − ϕ(i, x)]dx ds

and

TM,δt
18 (ϕ, t1, t2) = 1

δt

∑
i∈E

∫ n2δt

(n1+1)δt

∫
Rd

PM,δt
s (i, x)[ϕM(i, g(i, x, δt)) − ϕ(i, g(i, x, δt))]dx ds.

Defining TM,δt
19 (ϕ, t ′1, t ′2) by

TM,δt
19 (ϕ, t ′1, t ′2) =

∑
i∈E

∫ t ′2

t ′1

∫
Rd

PM,δt
s (i, x)v(i, x) · ∇ϕ(i, x)dx ds

for all t ′1, t ′2 ∈ R+ such that 0 � t ′1 � t ′2 � T , we have TM,δt
19 (ϕ, t1, t2) = TM,δt

19 (ϕ, t1, (n1 + 1)δt) +
TM,δt

19 (ϕ, (n1 + 1)δt, n2δt) + TM,δt
19 (ϕ, n2δt, t2). We note that there exists δt2 > 0, only depending on

ϕ, V1, V2, T and a bound of v on supp(ϕ), such that, for δt � δt2, |TM,δt
19 (ϕ, t1, (n1 + 1)δt)| � ε and

|TM,δt
19 (ϕ, n2δt, t2)| � ε. We can write, since ∂τϕ(i, g(i, x, τ )) = v(i, g(i, x, τ )) · ∇ϕ(i, g(i, x, τ )),

ϕ(i, g(i, x, δt)) − ϕ(i, x) =
∫ δt

0
v(i, g(i, x, τ )) · ∇ϕ(i, g(i, x, τ ))dτ.

Thanks to the regularity properties of ϕ, this gives the existence of some function h: R+ → R with
h(x) → 0 as x → 0, which only depends on ϕ, V1, V2, T and on the properties of v on supp(ϕ), such
that ∣∣∣∣ϕ(i, g(i, x, δt)) − ϕ(i, x)

δt
− v(i, x) · ∇ϕ(i, x)

∣∣∣∣ � h(δt) ∀ x ∈ Rd .

We thus obtain that there exists δt3 > 0 such that, for δt � δt3, we get

|TM,δt
17 (ϕ, t1, t2) − TM,δt

19 (ϕ, (n1 + 1)δt, n2δt)| � ε.

We now observe that, thanks to (3.36),

|TM,δt
18 (ϕ, t1, t2)| � CϕT

|M|
δt

.

We can then choose θ2 = ε, which gives, for |M| � δtθ2, |TM,δt
18 (ϕ, t1, t2)| � CϕT ε. Gathering

the above results, it suffices to choose ε, such that 4ε + CϕT ε = ε0, δt0 = min(δt1, δt2, δt3) and
θ0 = min(θ1, θ2), to conclude the proof of the lemma. �
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REMARK 3.2 The hypothesis |M|/δt −→ 0 is sufficient to guarantee the existence of some θ > 0
such that |M| � θδt . This hypothesis is only imposed in order to ensure that TM,δt

18 (ϕ, t1, t2) −→ 0,

and was not needed elsewhere. In some special cases, however, the term TM,δt
18 (ϕ, t1, t2) vanishes so

that the condition |M|/δt −→ 0 is not required any more. Consider, for example, the case d = 1,
M = {Ik = [kδt,(k + 1)δt[ with k ∈ Z} and g(i, x, s) = x + mi s with mi ∈ Z.

In the case where ρ0(i, x) = u0(i, x)dx , with u0 ∈ L2(Rd)E and µ(i, j, x)(dy) = δx , it is possible
to prove a weak bounded variation inequality, namely, the existence of some C > 0 such that∑

i∈E

N∑
n=0

∑
K ,L∈M

m(i)
K L(p(i,L)

n − p(i,K )
n+1 )2 � C, Nδt � T < (N + 1)δt,

and an L2(Rd × R+) estimate∑
i∈E

∑
K∈M

mK (p(i,K )
n+1 )2 � C ∀ n ∈ N s.t. nδt � T .

The weak limit is then a function of L2(Rd × R+)E , and the convergence can be proved under the hy-
pothesis |M| � θδt . We do not give the details of this result here since it does not lead to a convergence
proof for more general ρ0 and µ.

3.3 Continuity and compactness

We can now state a lemma which ensures the continuity of the approximate solution with respect to the
time variable. Let ϕ ∈ Cb(R

d)E be a given function. For a given admissible mesh in the sense given in
Section 2, and for a given δt > 0, using all the notations of Section 2, we set

Sϕ(M, δt, s, t) =
∑
i∈E

∫
Rd

ϕ(i, x)PM,δt
t (i, x)dx

−
∑
i∈E

∫
Rd

ϕ(i, x)PM,δt
s (i, x)dx ∀ s, t ∈ R+. (3.37)

The statement is then the following.

LEMMA 3.8 Under assumptions (H), let ϕ ∈ C1
c (Rd)E and let T > 0 be given. Then, there exists CS ,

which only depends on T , ϕ, V1, V2, A, CardE , ρ0 and µ, such that, for each ε0 > 0, there exist δt0 and
θ0 which only depends on ε0, T , ϕ, v, V1, V2, A, CardE , ρ0, and µ such that for all δt ∈ [0, δt0], for
all admissible meshesM in the sense given in Section 2, such that |M| � θ0δt , with PM,δt given by
(2.4)–(2.11) and Sϕ(M, δt, s, t) defined by (3.37), we have that

|Sϕ(M, δt, s, t)| � CS|t − s| + ε0, (3.38)

which means precisely that lim supδt→0,|M|/δt→0 |Sϕ(M, δt, s, t)| � CS|t − s|.
REMARK 3.3 We could complete the proof of the above lemma assuming only |M| � θδt instead of
|M|/δt → 0, which would only lead to a different choice for CS .

Proof. Let ε0 > 0 be given. Let θ0 be given by Lemma 3.7, and let δt0 be the minimum between the
values δt0 given by Lemmas 3.5, 3.6 and 3.7, setting in θ = θ0 in Lemmas 3.5 and 3.6 let δt ∈ (0, δt0)
andM be an admissible mesh in the sense given in Section 2, such that |M| � θ0δt , with PM,δt given
by (2.4)–(2.11).
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Starting from (3.31), we get∣∣∣∣∣∑
i∈E

∫
Rd

ϕ(i, x)PM,δt
t1 (i, x)dx −

∑
i∈E

∫
Rd

ϕ(i, x)PM,δt
t2 (i, x)dx

∣∣∣∣∣
� | − TM,δt

4 (ϕ, t1, t2) + TM,δt
6 (ϕ, t1, t2) − TM,δt

8 (ϕ, t1, t2)|

+
∣∣∣∣ ∑

i∈E

∫ t2

t1

∫
Rd

(∑
j∈E a(i, j, x)

∫
ϕ( j, y)µ(i, j, x)(dy)

− b(i, x)ϕ(i, x) + v(i, x) · ∇ϕ(i, x)
)

PM,δt
t (i, x)dx dt

∣∣∣∣.

Using (3.30) and then Lemmas 3.6 and 3.7, we have

| − TM,δt
4 (ϕ, t1, t2) + TM,δt

6 (ϕ, t1, t2) − TM,δt
8 (ϕ, t1, t2)|

= |TM,δt
3 (ϕ, t1, t2) − TM,δt

4 (ϕ, t1, t2) + TM,δt
6 (ϕ, t1, t2)

− TM,δt
5 (ϕ, t1, t2) − TM,δt

8 (ϕ, t1, t2) + TM,δt
7 (ϕ, t1, t2)|

� 3ε0.

Let V be a bound of v on supp(ϕ). Setting

CS = 2B sup
i∈E

‖ϕ(i, ·)‖L∞(Rd ) + V sup
i∈E

‖∇ϕ(i, ·)‖L∞(Rd )

provides the result by substituting ε0/3 by ε0 at the beginning of the proof. �
We can now conclude with the convergence theorem.

THEOREM 3.1 Under assumptions (H), let (Mm, δtm)m∈N be a sequence such that, for all m ∈ N,
Mm is an admissible mesh in the sense given in Section 2 and such that δtm → 0 and |Mm |

δtm
→ 0

as m → ∞. Then, for all t ∈ R+, the tight sequence of probability measures (PMm ,δtm
t (·, x) dx)m∈N

weakly converges to a probability measure on E × R
d , denoted by ρ(t)(·, dx). Moreover, this family

(ρ(t)(·, dx))t∈R+ is the unique weak solution of the Chapman–Kolmogorov equations (1.2).

Proof. Let (tp)p∈N be a sequence of real numbers, dense in R+ and let (Mσp(k), δtσp(k))k∈N be a

sub-sequence of (Mm, δtm)m∈N such that (P
Mσp (k),δtσp (k)

tp
(·, x)dx)k∈N is weakly convergent to a prob-

ability measure (thanks to the tightness property Lemma 3.4 and to the Prohorov theorem). Using
a diagonal method, we can choose a sub-sequence (Mσ(k), δtσ(k))k∈N of (Mm, δtm)m∈N, such that(
P
Mσ(k),δtσ(k)
tp

(·, x)dx
)
k∈N is weakly convergent for all p ∈ N. Such a sub-sequence is again denoted by

(Mm, δtm)m∈N in the following and (PMm ,δtm
tp

(·, x)dx)m∈N is now weakly convergent to a probability
distribution ρ(tp)(·, dx) for all p ∈ N.

Let us now prove that, for all ψ ∈ C1
c (Rd)E , the sequence (

∑
i∈E

∫
Rd ψ(i, x)PMm ,δtm

t (i, x)dx)m∈N
is a Cauchy sequence for all t > 0.
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Let k, m ∈ N. For all p ∈ N, we may write, using the notation (3.37),∣∣∣∣∣∑
i∈E

∫
Rd

ψ(i, x)PMk ,δtk
t (i, x)dx −

∑
i∈E

∫
Rd

ψ(i, x)PMm ,δtm
t (i, x)dx

∣∣∣∣∣
� |Sψ(Mk, δtk, t, tp)| + |Sψ(Mm, δtm, t, tp)|

+
∣∣∣∣∣∑
i∈E

∫
Rd

ψ(i, x)PMk ,δtk
tp

(i, x)dx −
∑
i∈E

∫
Rd

ψ(i, x)PMm ,δtm
tp

(i, x)dx

∣∣∣∣∣ (3.39)

Let T = t + 1 and let ε ∈ (0, 1) be given. We first choose p ∈ N such that |t − tp| � ε. Since the

sequence (PMm ,δtm
tp

(·, x)dx)m∈N is weakly convergent, there exists m0 such that, for all m, k � m0,∣∣∣∣∣∑
i∈E

∫
Rd

ψ(i, x)PMk ,δtk
tp

(i, x)dx −
∑
i∈E

∫
Rd

ψ(i, x)PMm ,δtm
tp

(i, x)dx

∣∣∣∣∣ � ε.

We can now choose m1 � 0 such that, for all m � m1, δtm � δt0 and |Mm | � θ0δtm , where δt0 and θ0
are given by Lemma 3.8 for the value ε. We thus have, for m, k � m1,

|Sψ(Mk, δtk, t, tp)| + |Sψ(Mm, δtm, t, tp)| � 2(CS|t − tp| + ε) � (2CS + 2)ε.

This completes the proof that (
∑

i∈E

∫
Rd ψ(i, x)PMm ,δtm

t (i, x)dx)m∈N is a Cauchy sequence for all
t > 0. We easily obtain the same property for all ψ ∈ Cc(R

d)E by density of C1
c (Rd)E and then for

all ψ ∈ Cb(R
d)E , thanks to the tightness Lemma 3.5. Therefore, there exists a probability measure

ρ(t)(·, dx) such that the sequence (PMm ,δtm
t (·, x)dx)m∈N is weakly convergent to ρ(t)(·, dx).

Moreover, passing to the limit in (3.38), we get that, for all ϕ ∈ C1
c (Rd)E ,∣∣∣∣∣∑

i∈E

∫
Rd

ϕ(i, x)ρ(t)(i, dx) −
∑
i∈E

∫
Rd

ϕ(i, x)ρ(s)(i, dx)

∣∣∣∣∣ � CS|s − t | ∀ s, t ∈ R+,

which gives the continuity of the mapping t �→ ∫ ∑
i∈E ϕ(i, x)ρ(t)(i, dx). The continuity property is

easily extended by density to all ϕ ∈ Cc(R
d)E and to all ϕ ∈ Cb(R

d)E due to tightness. Thanks to
Lemmas 3.6 and 3.7 and the dominated convergence theorem, we have the following properties for all
ϕ ∈ C1

c (Rd)E and t1, t2 � 0:

lim
m→∞ TMm ,δtm

3 (ϕ, t1, t2) = lim
m→∞ TMm ,δtm

4 (ϕ, t1, t2) =
∑
i∈E

∫ t2

t1

∫
Rd

b(i, x)ϕ(i, x)ρ(t)(i, dx)dt,

lim
m→∞ TMm ,δtm

5 (ϕ, t1, t2) = lim
m→∞ TMm ,δtm

6 (ϕ, t1, t2)

=
∑
i∈E

∫ t2

t1

∫
Rd

∑
j∈E

a(i, j, x)

(∫
ϕ( j, y)µ(i, j, x)(dy)

)
ρ(t)(i, dx)dt,

lim
m→∞ TMm ,δtm

7 (ϕ, t1, t2) = lim
m→∞ TMm ,δtm

8 (ϕ, t1, t2)

= −
∑
i∈E

[∫ t2

t1

∫
Rd

v(i, x) · ∇ϕ(i, x)ρ(t)(i, dx)dt

+
∫
Rd

ϕ(i, x)ρ(t1)(i, dx) −
∫
Rd

ϕ(i, x)ρ(t2)(i, dx)

]
.
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We now pass to the limit in (3.30). Since it is clear that ρ(0)(i, dx) = ρ0(i, dx) thanks to (2.4), we
deduce that (ρ(t)(i, dx))t∈R+ is the solution to the Chapman–Kolmogorov equations (1.2). Thanks to
the uniqueness result proven in Cocozza-Thivent et al., we deduce in a classical way that the whole
initial sequence converges in the same sense. �
REMARK 3.4 (ALTERNATE ASSUMPTIONS) In assumptions (H), transition rates are assumed to be
bounded, which is not always the case in practice (consider, for example, Weibull distribution with shape
parameter greater than one). In case of unbounded continuous transition rates, the results are still valid,
however, under additional assumptions on µ(i, j, x)(dy) and on the initial distribution ρ0(·, dx) which
allow one to control the expansion of the support of ρ(t)(·, dx) (or alternatively of PMn ,δtm

t (i, x)).
Indeed, assume for example that the support of ρ0(·, dx) is included in some B(0, M0)(the closure
of B(0, M0)) and that for all i, j ∈ E , the support of µ(i, j, x)(dy) is included in B(0, |x |), it is
then easy to show that, for all T > 0, all 0 < t < T , the support of ρ(t)(·, dx) is bounded and is
included in some B̄(0, M) where M depends on M0, V1, V2 and T . As transition rates are bounded on
B(0, M), we first derive from Cocozza-Thivent et al. the uniqueness for the solution of (1.2) and second,
similarly as in the present paper, the weak convergence of (PMm ,δtm

t (·, x)dx)m∈N to ρ(t)(·, dx) for all
0 < t < T .

4. Numerical example

We present the results obtained using the finite-volume scheme (2.4)–(2.10) on a benchmark taken from
Labeau (1996). The states of the system are defined by E = {1, 2, 3}, and the environment variables
are described by x ∈ R2. The only possible transitions between states are 1 → 2 → 3, which means
that a(i, j, x) 	= 0 only for (i, j) = (1, 2) or (i, j) = (2, 3). We assume that a(1, 2, x) = λ1 and
a(2, 3, x) = λ2 for all x = (x (1), x (2)) ∈ R2, where λ1 = 0.5 and λ2 = 0.3 and that µ(i, j, x)(dy) =
δx (y) (this means that the environmental variables are not modified by transitions). The velocity field

is assumed to satisfy v(i, x) = Ai x , with A1 =
(

1.5 0
1 0.5

)
, A2 =

(
1 0

0.75 0.25

)
and A3 =

(
0.75 0

0 0.5

)
. The

initial data ρ0 is given by the Dirac measure δx0 with x0 = (1, 1) in the state i = 1, which means that∑
i∈E

∫
R2 ϕ(i, x)ρ0(i, dx) = ϕ(1, x0), for all ϕ ∈ C1

b(R2,R)E .
An analytical solution can be obtained in this case Labeau (1996), which satisfies that ρ(t)(1, ·) is a

weighted Dirac measure located at the point g(1, x0, t) of R2, that ρ(t)(2, ·) is supported by a line of R2

and that ρ(t)(3, ·) admits a density with respect to the Lebesgue measure, denoted p(t), supported by a
triangle.

We consider meshes onR2 consisting of squares with side |M|. In order to confine the computations
as much as possible to the geometrical domain which supports ρ(t), we performed consecutive simula-
tions with the values |M| = 5×10−3, |M| = 3.13×10−4 and |M| = 10−5, each simulation being used
to restrict the computational domain of the following one. Figure 1 presents the consecutive numerical
supports of the computational domain. In this figure, the triangular line represents the analytical contour
of the support of ρ(0.1)(3, ·). We then compare, in Fig. 2, the numerical solution (top) with the analyti-
cal one (bottom) for the density p(0.1) of ρ(0.1)(3, ·), with |M| = 10−5. We observe good agreement
between the approximate and the analytical solution, with smoothing due to numerical diffusion. Never-
theless, this solution appears to be sufficiently accurate from the point of view of the densities px (t) and
py(t) of the marginal distributions in the state i = 3, defined by px (t)(x (1)) = ∫

R
p(t)(x (1), x (2))dx (2),

for a.e. x (1) ∈ R, and py(t)(x (2)) = ∫
R

p(t)(x (1), x (2))dx (1), for a.e. x (2) ∈ R. We compare in Figs
3 and 4, respectively, the analytical and numerical results for px (t) and py(t): these figures show an
excellent agreement.
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FIG. 1. Consecutive numerical supports of the computational domain.
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FIG. 2. Density p(0.1). Top: numerical approximation with |M| = 10−5, bottom: analytical solution.

If we compare the use of the finite-volume method for the approximation of the marginal distribu-
tions, and Monte Carlo simulations, we can make the following observations:

• For both methods, it is possible to adjust the precision, by increasing the number of histories for
Monte Carlo simulations and by refining the mesh for the finite-volume method. In the above exam-
ple (see Labeau (1996)), the computing time is here about three quarters of an hour on a PC, which
is longer than those given in Labeau (1996). The precision in Labeau (1996) is, however, lower (this
is shown by a comparison between the marginal distributions).

• The finite-volume method has been shown to be efficient in some cases where some other methods
have been unsuccessful (see Cocozza-Thivent & Eymard and Cocozza-Thivent & Eymard (2003)),
with relatively short computing times on 1D problems. However, one can wonder if these computing
times will remain acceptable if the dimension of the problem increases. On the contrary, it seems
that Monte Carlo simulation is the method of choice for higher dimensional problems.
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FIG. 3. Analytical and numerical function px (0.1)(x).

FIG. 4. Analytical and numerical function py(0.1)(y).

• Finally, an advantage of the finite-volume methods is that it can be extended to the computation of
some stationary cases, with a slight modification of the scheme. In this case, a linear system must
then be solved. One can expect the development of some finite-volume schemes which are able to
handle long-term reliability studies, by mixing a transient model with the techniques used for the
stationary problem.
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