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Abstract

This paper is devoted to the concentration properties of product prob-
ability measures µ = µ1 ⊗ · · · ⊗ µn, expressed in term of dimension-free
functional inequalities of the form(∫

eαQαfdµ

) 1
α
(∫

e−(1−α)fdµ

) 1
1−α

≤ 1,

where α is a parameter, 0 < α < 1, and Qαf is an appropriate infimum-
convolution operator. This point of view has been introduced by Maurey
[Mau]. It has its origins in concentration inequalities by Talagrand where
the enlargement of sets is done in accordance with the cost function of
the operator Qαf (see [Tal1],[Tal2],[Tal3]). A main application of the
functional inequalities obtained here is optimal deviations inequalities for
suprema of sums of independent random variables. As example, we also
derive classical deviations bounds for the one dimensional bin-packing
problem.

Résumé

Cet article est consacré à l’étude de propriétés de concentration des proba-
bilités produit µ = µ1⊗· · ·⊗µn, en termes d’inégalités fonctionnelles indépendantes
de la dimension, de la forme(∫

eαQαfdµ

) 1
α
(∫

e−(1−α)fdµ

) 1
1−α

≤ 1,

où α est un paramètre 0 < α < 1, et Qαf est un opérateur d’infimum-
convolution approprié. Ce point de vue a été introduit par Maurey [Mau].
Il tient ses origines dans des inégalités de concentration de Talagrand, pour
lesquelles l’élargissement des ensembles est lié à la fonction de coût de l’opérateur
Qαf (voir [Tal1],[Tal2],[Tal3]). Comme application majeure de ces inégalités
fonctionnelles, nous obtenons des inégalités de déviations optimales pour les
supréma de sommes de variables aléatoires indépendantes. Par ailleurs, à titre
d’exemple d’utilisation, nous retrouvons des bornes de déviations pour le problème
du rangement de bôıtes (bin-packing problem).

Key words and phrases: concentration inequalities, transportation inequali-
ties, infimum-convolution operator, empirical processes, bin packing problem.
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1 Introduction to the main theorems.

The concentration of measure phenomenon on product spaces has been widely
investigated by M. Talagrand in [Tal1], [Tal2] and [Tal3]. In these papers, a large
variety of powerful dimension-free concentration inequalities are obtained by
induction over the dimension of the product space. Consider a probability space
(E1, E1, µ1) and its product E = En1 , µ = µ⊗n1 . The basic idea of concentration
is that if the measure of a subset A ⊂ E is not too small (µ(A) ≥ 1/2) then most
of the points x ∈ E are “close” to A. Talagrand expressed it in the following
form: for a given “distance” f(x,A) between x and A one has∫

eKf(x,A)dµ(x) ≤ 1

µ(A)
, (1)

where K is a non-negative constant. If µ(A) is not too small, using Chebyshev
inequality, it follows that the set of elements x ∈ E which are “far” from A is
of small measure, since for t ≥ 0,

µ ({x ∈ E, f(x,A) ≥ t}) ≤ 1

µ(A)
e−Kt.

The main issue here is to define an interesting notion of “closeness”. The results
of the present paper are connected with the distances associated to the so-
called convex hull approach from [Tal1] and [Tal2]. We obtain refinements of
Talagrand’s results by extending the so-called infimum-convolution description
of concentration introduced by Maurey [Mau] (see also [B-G-L]). One of the
main motivation for these investigations is to provide new optimal deviation
bounds for suprema of sums of random variables (see section 3).

Our approach has some of its origins in the so-called ”convex property (τ)” of
[Mau] (see also [Sam]). It is a variant of Maurey’s ”property (τ)”. This property
was studied by several authors in connection with concentration properties of
log-concave measures, as the Gaussian and the exponential measure (see [Mau],
[B-G-L], [B-G], [Sch]). The ”convex property (τ)” is a dimension-free functional
inequality which is valid for every product measure µ := µ1 ⊗ · · · ⊗ µn, when
each µi is a probability measure on a normed vector space (Fi, ‖ · ‖) supported
by a set of diameter less than one. Maurey’s result states: for every convex
measurable function f on the product space F :=

∏n
i=1 Fi,∫

eQfdµ

∫
e−fdµ ≤ 1.

Here, Q is the infimum-convolution operator associated to the quadratic cost
function C:

Qf(x) := inf
y∈F

[f(y) + C(x− y)] , x ∈ F, (2)

with C(z) := 1
4

∑n
i=1 ‖zi‖2, z = (z1, . . . , zn) ∈ F.

We define Qα, a first variant of the operator Q, which is suitable for some
abstract probabilistic situation where metric structure is not a priori provided.
Thus, we extend the ”convex property (τ)” from product Banach spaces to any
product probability spaces (E, E) =

∏n
i=1(Ei, Ei). For further measurability
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considerations, we assume that every singleton {xi}, xi ∈ Ei, belongs to the σ-
field Ei. Let µ = µ1 ⊗ · · · ⊗ µn be a product probability measure on (E, E). We
establish that for every parameter α ∈ (0, 1), and for every bounded measurable
function f on E one has(∫

eαQαfdµ

) 1
α
(∫

e−(1−α)fdµ

) 1
1−α

≤ 1. (3)

This first result is a consequence of a transportation inequality presented further
in the introduction (see Theorem 1.2). We observe that (3) will still holds when
α equal 0 or 1: when α goes to 1, (3) provides

log

∫
eQ1fdµ ≤

∫
fdµ, (4)

and when α goes to 0, it yields

log

∫
e−fdµ ≤

∫
Q0fdµ. (5)

In order to define Qα, we introduce some notations. For a given measurable
space (F,F), let P(F ) be the set of probability measures on F and T (F ) be the
set of all transition probabilities from (F,F) to (F,F). For every ζ(1) ∈ P(F )
and p ∈ T (F ), we define ζ(1) � p ∈ P(F × F ) and ζ(1)p ∈ P(F ) as follows: for
B ∈ F ⊗ F ,

ζ(1) � p(B) :=

∫∫
11B(x, y)p(x, dy)ζ(1)(dx),

and for A2 ∈ F ,

ζ(1)p(A2) :=

∫
p(·, A2)dζ(1).

ζ(1) and ζ(1)p are the marginals of ζ(1) � p. We say that p transports ζ(1)

on ζ(2) if ζ(2) = ζ(1)p, and we denote by T (ζ(1), ζ(2)) the set of all transition
probabilities that transport ζ(1) on ζ(2).

We define a cost function cα, α ∈ (0, 1):

cα(`) :=
α(1− `) log(1− `)− (1− α`) log(1− α`)

α(1− α)
, for 0 ≤ ` ≤ 1,

and cα(`) := +∞ if ` > 1. The family of function cα, 0 < α < 1, dominates the
usual quadratic cost function: c1(`) ≥ cα(`) ≥ c0(`) ≥ `2/2 for every ` ≥ 0. For
every y = (y1, . . . , yn) ∈ E, let yi denote the vector (y1, . . . , yi), 1 ≤ i ≤ n. For
every x ∈ E, we define

Qαf(x) := inf
p∈T (E)

{∫
f(y)p(x, dy)

+

∫ n∑
i=1

cα

(∫
11xi 6=yipi(xi, dyi|yi−1)

)
p(x, dy)

}
, (6)

where the infimum is taken over all transition probabilities p in T (E) that can
be written as

p(x, dy) = p1(x1, dy1)� p2(x2, dy2|y1)� · · · � pn(xn, dyn|yn−1), (7)
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where pi(·, ·|yi−1) ∈ T (Ei) and

pi(xi, dyi|yi−1) := λi(y
i−1)δxi(dyi) + (1− λi(yi−1))νi(dyi), (8)

with λi being a measurable function on
∏i−1
j=1(Ej , Ej) satisfying 0 ≤ λi(yi−1) ≤

1, and νi being a probability measure on Ei absolutely continuous with respect
to µi (µi << νi), for which νi({xi}) = 0. Actually pi(xi, ·|yi−1) is a convex
combination of νi and the Dirac measure at point xi. Choosing pi(xi, dyi|yi−1) =
δxi(dyi) for all 1 ≤ i ≤ n in the definition (6), we observe that Qαf ≤ f.

For a better understanding, let us consider the one-dimensional definition of
Qα: for n = 1,

Qαf(x) := inf
p

{∫
f(y)p(x, dy) + cα

(∫
11x 6=yp(x, dy)

)}
,

with

p(x, dy) := λδx + (1− λ)ν, 0 ≤ λ ≤ 1. (9)

Comparing this definition with the usual definition (2), we see that f(y) has
been replaced by

∫
f(y)p(x, dy), and the cost C(x− y) by cα

(∫
11x 6=yp(x, dy)

)
,

the cost to pay to move from the initial position x. This cost only depends on
the probability 1 − λ to move from x and is independent of the way to move
from x given by ν.

A second result of this paper is a functional inequality of the form (3) with
a new operator Rα for which the cost term depends on both (1 − λ) and the
measure ν. More precisely, in dimension one, we set for every x ∈ E,

Rαf(x) := inf
p

{∫
f(y)p(x, dy) +

∫
dα

(
11x 6=y

dp(x, y)

dµ(y)

)
dµ(y)

}
(10)

and in dimension n we set

Rαf(x) := inf
p∈T (E)

{∫
f(y)p(x, dy)

+

∫ n∑
i=1

∫
dα

(
11xi 6=yi

dpi(xi, yi|yi−1)

dµi(yi)

)
dµi(yi)p(x, dy)

}
, (11)

where the infimum is taken over all transition probabilities p in T (E) such that
(7) and (8) hold. The function dα is defined by its convex Legendre-transform
d∗α: dα(`) := suph∈R [h`− d∗α(h)] , ` ∈ R, where

d∗α(h) :=
αe(1−α)h + (1− α)e−αh − 1

α(1− α)
, h ∈ R. (12)

We notice that dα(`) is equivalent to `2/2 at zero. One has

d0(`) := (1 + `) log(1 + `)− `, ` ≥ 0,

d1/2(`) := 2` log

(
`

2
+

√
1 +

`2

4

)
− 4

(√
1 +

`2

4
− 1

)
, ` ≥ 0,

d1(`) := (1− `) log(1− `) + `, if 0 ≤ ` ≤ 1,

and d1(`) := +∞ if ` > 1.
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Theorem 1.1 For every bounded measurable function f , for every parameter
0 < α < 1, one has(∫

eαRαfdµ

) 1
α
(∫

e−(1−α)fdµ

) 1
1−α

≤ 1. (13)

The proof of Theorem 1.1 is obtained by induction over n. A similar method
works for (3). However, as already mentioned, we deduce (3) from the trans-
portation type inequality (14) below. Let us recall the definition of the relative
entropy of a measure ν with respect to a measure µ with density dν/dµ:

Entµ

(
dν

dµ

)
:=

∫
dν

dµ
log

dν

dµ
dµ.

We define a pseudo-distance Cα between probability measures: for ζ(1), ζ(2) ∈
P(E):

Cα(ζ(1), ζ(2))

:= inf
p∈T (ζ(1),ζ(2))

∫∫ n∑
i=1

cα

(∫
11xi 6=yipi(xi, dyi|yi−1)

)
p(x, dy)ζ(1)(dx),

where the infimum runs over all p in T (ζ(1), ζ(2)) satisfying (7) and (8).

Theorem 1.2 For every ζ(1) and ζ(2) in P(E) absolutely continuous with re-
spect to µ, one has

Cα(ζ(1), ζ(2)) ≤ 1

α
Entµ

(
dζ(1)

dµ

)
+

1

1− α
Entµ

(
dζ(2)

dµ

)
. (14)

The connection between (3) and (14) is obtained following the lines of [B-G].
We easily check that∫

Qαfdζ
(1) −

∫
fdζ(2) ≤ Cα(ζ(1), ζ(2)).

Then (3) follows by applying Theorem 1.2 and by choosing ζ(1) and ζ(2) with

respective densities
dζ(1)

dµ
=

eαQαf∫
eαQαfdµ

and
dζ(2)

dµ
=

e−(1−α)f∫
e−(1−α)fdµ

.

Remarks:

1. Theorem 1.2 improves the transportation inequality of Marton for con-
tracting Markov chains (see [Mar]), when we restrict the study to product prob-
ability measures. Marton introduces a distance d2 defined by

n
(
d2(ζ(1), ζ(2))

)2

:= inf
p∈T (ζ(1),ζ(2))

∫∫ n∑
i=1

(∫
11xi 6=yipi(xi, dyi|yi−1)

)2

p(x, dy)ζ(1)(dx).

Since cα(`) ≥ `2/2, ` ≥ 0, one has n
(
d2(ζ(1), ζ(2))

)2 ≤ 2Cα(ζ(1), ζ(2)). Then,
Marton’s inequality follows by optimizing over α in (14).

6



2. A first byproduct of (3) and Theorem 1.1 is Talagrand’s concentration
inequalities of the form (1). By monotone convergence, we extend (3) to any real
measurable function f on E satisfying

∫
e−(1−α)fdµ <∞. Then by adopting the

convention (+∞)×0 ≤ 1, (3) is extended to all f taking values in R∪{+∞}, for
which

∫
e−(1−α)fdµ <∞ holds. For every measurable set A ∈ E , let φA(x) := 0

if x ∈ A and φA(x) := +∞ otherwise. Then, for every x ∈ E, one has

QαφA(x) = inf
p,p(x,A)=1

∫ n∑
i=1

cα

(∫
11xi 6=yipi(xi, dyi|yi−1)

)
p(x, dy).

The infimum is taken over all p in T (E) which transport the mass on A, that is:
p(x,A) = 1. This defines a pseudo-distance Cα between x and A: Cα(x,A) :=
QαφA(x). Applying (3) with the function φA, we get Theorem 4.2.4 of [Tal1]:∫

eαCα(x,A)dµ(x) ≤ 1

µ(A)
α

1−α
. (15)

The same argument with the functional inequality (13) gives∫
eαDα(x,A)dµ(x) ≤ 1

µ(A)
α

1−α
.

where

Dα(x,A) := inf
p,p(x,A)=1

∫ n∑
i=1

∫
dα

(
11xi 6=yi

dpi(xi, yi|yi−1)

dµi(yi)

)
dµi(yi)p(x, dy).

For the careful reader of [Tal2], this new result improves Theorem 4.2 of [Tal2]
and Theorem 1 of [Pan1].

A simple procedure to reach deviation tails for a given function f is the
following. If f is sufficiently ”regular”, Qαf or Rαf can be estimated from
below, and (3) or (13) provide bounds for the Laplace transform of f . With the
operator Qα, the regularity of f is given by the ”best” non-negative measurable
functions hi : E → R+ ∪ {+∞}, 1 ≤ i ≤ n such that

f(x)− f(y) ≤
n∑
i=1

hi(x)11xi 6=yi forµ−almost every x, y ∈ E. (16)

On the right-hand side, the weighted Hamming distance measures how far f(x)
is from f(y). Let c∗α be the Legendre-transform of cα. If (16) holds, then

Qαf(x) ≥ f(x)−
n∑
i=1

c∗α(hi(x)) forµ−almost every x ∈ E. (17)

Actually, the ”best” functions hi’s minimize the quantity
∑n
i=1 c

∗
α(hi(x)). Sim-

ilarly, with Rα, the regularity of f is given by the ”best” hi : E × Ei →
R+ ∪ {+∞}, 1 ≤ i ≤ n such that

f(x)− f(y) ≤
n∑
i=1

hi(x, yi)11xi 6=yi forµ−almost every x, y ∈ E. (18)
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This implies: for µ-almost every x in E

Rαf(x) ≥ f(x)−
n∑
i=1

∫
d∗α(hi(x, yi))dµi(yi), (19)

and the ”best” hi’s minimize the quantity
∑n
i=1

∫
d∗α(hi(x, yi))dµi(yi).

At the beginning of section 3, we show how to derive deviation tails from (3)
and (17) when f represents a supremum of sum of non-negative random variables
(see Corollary 3.3). This is a generic simple example. Then, as a main applica-
tion of this paper, the same procedure with (13) and (19) provides deviation’s
bounds when the variables of the sums are not necessarily non-negative (see
Corollary 3.5 and Corollary 3.6). In this matter, the entropy method (developed
by [D-S], [A-M-S]) has been first used by Ledoux [Led1] and then by several au-
thors to improve the results by Talagrand, and to reach optimal constants (see
[B-L-M1], [B-L-M2], [B-B-L-M], [Bous1], [Bous2], [Kle], [K-R], [Led2], [Mas],
[Rio1], [Rio2]). The entropy method is a general procedure that yields devi-
ation inequalities from a logarithmic Sobolev type inequality via a differential
inequality on Laplace transforms. This is well-known as the Herbst argument.
Our approach is an alternative to the entropy method. For the suprema of em-
pirical sums, Theorem 3.1 and Theorem 3.4 provide exponential deviations tails
that improve in some way the ones obtained with the entropy method. To be
complete, recall that Panchenko [Pan2] introduced a symmetrization approach
that allows to get other concentration results for suprema of empirical processes
from (3).

In Section 4.1, we recover from (3) the Talagrand’s deviation tails (around
the mean instead of the median) for the one-dimensional bin packing problem.

2 Dimension-free functional inequalities for prod-
uct measures.

The first part of this section is devoted to the proof of Theorem 1.2, and the
second part to the proof of Theorem 1.1.

2.1 A transportation type inequality.

Theorem 1.2 is obtained by tensorization of the one-dimensional case. Let ζ(1) 6=
ζ(2) be two probability measures on (E, E) with respective densities a and b with
respect to µ.

For n = 1, the proof of (14) is based on the construction of an optimal
transition probability p∗ ∈ T (ζ(1), ζ(2)). Let [c]+ = max(c, 0), c ∈ R. For every
x ∈ E with a(x) 6= 0, we set

p∗(x, ·) := λ(x)δx(·) + (1− λ(x))ν(·), (20)

with λ(x) := inf
(
1, ba (x)

)
, and ν := [b−a]+

‖ζ(1)−ζ(2)‖TV
µ, where ‖ζ(1) − ζ(2)‖TV

denotes the total variation distance between ζ(1) and ζ(2),

‖ζ(1) − ζ(2)‖TV :=
1

2

∫
|a− b|dµ =

∫
[a− b]+dµ.

If a(x) = 0, p∗(x, ·) is any probability measure in P(E).
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Lemma 2.1 According to the above definitions, one has

Cα(ζ(1), ζ(2)) =

∫
cα

(∫
11x6=yp

∗(x, dy)

)
ζ(1)(dx),

and∫
cα

(∫
11x 6=yp

∗(x, dy)

)
ζ(1)(dx)

≤ 1

α
Entµ

(
dζ(1)

dµ

)
+

1

1− α
Entµ

(
dζ(2)

dµ

)
.

Proof of Lemma 2.1. For any p ∈ T (ζ(1), ζ(2)), we consider the measure ζ :=
ζ(1) � p, ζ ∈ P(E × E). Let ∆ denote the diagonal of E × E and ζ∆ be the
restriction of ζ to ∆,

ζ∆(A) = ζ(∆ ∩ (A×A)) := ζ({(x, x), x ∈ A}) for everyA ∈ E .

Since ζ ∈M(ζ(1), ζ(2)), we have ζ∆ = cµ with c ≤ inf(a, b). Consequently, since
cα is increasing on R+, we get∫

cα

(
1− inf(a, b)

a

)
ζ(1)(dx) ≤

∫
cα

(∫
11x 6=yp(x, dy)

)
ζ(1)(dx).

This lower bound is reached for p∗. Indeed, setting ζ∗ = ζ(1) � p∗, from the
definition (20) one has ζ∗∆ = inf(a, b)µ. The function cα satisfies for every
u, v > 0,

cα

(
1− v

u

)
≤ 1

αu
c0(1− u) +

1

(1− α)u
c0(1− v).

Consequently integrating with respect to ζ(1) = aµ and using the identity∫
c0

(
1− dζ(i)

dµ

)
dµ = Entµ

(
dζ(i)

dµ

)
,

for i = 0 or 1, we get Lemma 2.1. 2

Let us now consider the n-dimensional case: (E, E) =
∏n
i=1(Ei, Ei) and

µ := µ1 ⊗ · · · ⊗ µn. Let us first introduce some notations. For every 1 ≤ k ≤ n,
let ζ(1)k denote the marginal of ζ(1) on (Ek, Ek) :=

∏k
i=1(Ei, Ei). The density

of ζ(1)k with respect to µ1 ⊗ · · · ⊗ µk is

ak(xk) :=

∫
a(xk, yk+1, . . . , yn)µk+1(dyk+1) . . . µn(dyn).

One has ζ(1)n = ζ(1) and an = a. Let ζ
(1)
k (·|xk−1) denote the probability

measure on (Ek, Ek) with density ak(xk|xk−1) := ak(xk)
ak−1(xk−1)

, with respect to µk.

One has ζ(1)k = ζ
(1)
1 �· · ·� ζ

(1)
k . The same notations are still available with ζ(2)

with its density b: ζ(2)k = ζ
(2)
1 � · · · � ζ(2)

k .
For every vectors x, y in E, let us consider a sequence of transition prob-

abilities pk(·, ·|xk−1, yk−1) ∈ T
(
ζ

(1)
k (·|xk−1), ζ

(2)
k (·|yk−1)

)
, 1 ≤ k ≤ n. De-

fine ζk(dxk, dyk|xk−1, yk−1) := ζ
(1)
k (dxk|xk−1)� pk(xk, dyk|xk−1, yk−1), one has
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ζk(·, ·|xk−1, yk−1) ∈ M
(
ζ

(1)
k (·|xk−1), ζ

(2)
k (·|yk−1)

)
, and ζk is a transition prob-

ability from
(∏k−1

i=1 (Ei, Ei)
)
×
(∏k−1

i=1 (Ei, Ei)
)

to (Ek, Ek) × (Ek, Ek). The

marginals of ζk := ζ1 � · · · � ζk are ζ(1)k and ζ(2)k. Setting

pk(xk, dyk) := p1(x1, dy1)� · · · � pk(xk, dyk|xk−1, yk−1),

we exactly have ζk = ν(1)k � pk and pkν(1)k = ν(2)k. By definition, we say that
the transition probability p(x, dy) := pn(xn, dyn) is a well-linked sequence of
the transition probabilities pk, 1 ≤ k ≤ n. One has p ∈ T (ζ(1), ζ(2)).

To get Theorem 1.2, we define p∗ as a well-linked sequence of optimal tran-

sition probabilities p∗k(·, ·|xk−1, yk−1) ∈ T
(
ζ

(1)
k (·|xk−1), ζ

(2)
k (·|yk−1)

)
defined as

in (20). And we show that

∫∫ n∑
i=1

cα

(∫
11xi 6=yip

∗
i (xi, dyi|yi−1, xi−1)

)
p∗(x, dy)dζ(1)(dx)

≤ 1

α
Entµ

(
dζ(1)

dµ

)
+

1

β
Entµ

(
dζ(2)

dµ

)
.

The left hand-side of this inequality is equal to

n∑
i=1

∫∫
cα

(∫
11xi 6=yip

∗
i (xi, dyi|xi−1, yi−1)

)
ζ

(1)
i (dxi|xi−1)ζ∗i−1(dxi−1, dyi−1).

Lemma 2.1 ensures that∫
cα

(∫
11xi 6=yip

∗
i (xi, dyi|xi−1, yi−1)

)
ζ

(1)
i (dxi|xi−1)

≤ 1

α
Entµi

(
dζ(1)( · |xi−1)

dµi

)
+

1

β
Entµi

(
dζ(2)( · |yi−1)

dµi

)
.

The proof of Theorem 1.2 is ended by integrating this inequality with respect to
the coupling measure ζ∗i−1 ∈ M

(
ζ(1)i−1, ζ(2)i−1

)
, and then using the classical

tensorization property of entropy

Entµ

(
dζ(1)

dµi

)
=

n∑
i=1

∫
Entµi

(
dζ(1)( · |xi−1)

dµi

)
ζ(1)i−1(dxi−1).

2.2 A dimension-free functional inequality.

Theorem 1.1 is obtained by induction over the dimension n using a simple
contraction argument given at the end of this section.

For n = 1, according to (10), one has for every x in E,

Rαf(x) = f(x)− sup
0≤λ≤1

sup
ν

∫ [
(f(x)− f(y))(1− λ)

dν

dµ
(y)

−dα
(

(1− λ)
dν

dµ
(y)

)]
dµ(y),

10



where ν << µ and ν({x}) = 0. Since d∗α denotes the Legendre transform of dα,
it follows

Rαf(x) ≥ f(x)−
∫
d∗α ([f(x)− f(y)]+) dµ(y).

Therefore, Theorem 1.1 implies the next statement.

Lemma 2.2 For every bounded measurable function f ,(∫
eαf(x)−α

∫
d∗α([f(x)−f(y)]+)dµ(y)dµ(x)

) 1
α
(∫

e−(1−α)fdµ

) 1
1−α

≤ 1. (21)

Actually, for n = 1, Theorem 1.1 is equivalent to this Lemma. To show it, we
need the following observation.

Lemma 2.3 Let f be a bounded measurable function on E. There exists a
measurable function f̄ on E satisfying f̄(x) ≤ f(x) and

Rαf(x) ≤ f̄(x)−
∫
d∗α
(
[f̄(x)− f̄(y)]+

)
dµ(y), for every x ∈ E.

To simplify the notations, let ‖·‖γ , γ ∈ R denote the Lγ(µ)-norm. For a given

function f , Lemma 2.3 ensures that there exists f̄ for which

∥∥eRαf∥∥
α
≤
(∫

exp

[
αf̄(x)− α

∫
d∗α
(
[f̄(x)− f̄(y)]+

)
dµ(y)

]
dµ(x)

) 1
α

.

Then, Lemma 2.2 yields
∥∥eRαf∥∥

α
≤
∥∥∥ef̄∥∥∥

−β
with β = 1 − α, and the proof of

Theorem 1.1 for n = 1 is finished since f̄ ≤ f .

Proof of Lemma 2.2. Let λ denote the Lebesgue measure on [0, 1]. Let h be
the increasing repartition function of f under µ: h(t) := µ ({x ∈ E, f(x) ≤ t}) ,
t ∈ R. Let g denote the inverse repartition function: g(u) := inf{t, h(t) ≥
u}, u ∈ [0, 1]. Then, one has

µ ({x ∈ E, f(x) ≤ t}) = λ ({u ∈ [0, 1], g(u) ≤ t}) , t ∈ R,

and therefore, (21) is equivalent to(∫ 1

0

eαg(t)−α
∫ t
0
d∗α(g(t)−g(s))dsdt

) 1
α
(∫ 1

0

e−(1−α)g(ω)dω

) 1
1−α

≤ 1, (22)

where g is an increasing right-continuous function.
We observe that d∗α is the best non-negative convex function with d∗α(0) = 0,

satisfying such an inequality. Applying it to the test functions gu(t) := a11(u,1](t)
with a ≥ 0 and 0 ≤ u ≤ 1, we get[

u+ (1− u)eαa−αd
∗
α(a)

] 1
α
[
u+ (1− u)e−(1−α)a

] 1
1−α ≤ 1, 0 ≤ u ≤ 1.

When u → 0, this provides a lower bound for d∗α(a) which gives exactly its
definition (12). The cost function dα is therefore optimal.

11



By an elementary approximation argument, we only need to prove (22) for
every increasing simple function g with a finite number of values. This is ob-
tained by induction over the number of values of the simple function g. Clearly
(22) holds for constant functions g since d∗α(0) = 0. Then, we apply the next
induction step.

Proposition 2.4 Let g be an increasing simple function on [0, 1] that reach
its maximum value on (v, 1]. For u ∈ (v, 1] and a > 0 let gu(t) = a11(u,1](t),
t ∈ [0, 1]. Then, g satisfies (22) implies g + gu satisfies (22).

The proof of this Proposition is given in Appendix. 2

Proof of Lemma 2.3. It suffices to find a transition probability p? satisfying (9)
and a function f̄ , f̄ ≤ f , for which∫

f(y)p?(x, dy) +

∫
dα

(
11x 6=y

dp?(x, y)

dµ(y)

)
dµ(y)

= f̄(x)−
∫
d∗α
(
[f̄(x)− f̄(y)]+

)
dµ(y) (23)

Since d∗α is convex, the function ψα : u 7−→
∫

(d∗α)′ ([u− f(y)]+) dµ(y), is
increasing. By differentiating, one has (d∗α)′(h) = e(1−α)h − e−αh, h ≥ 0. If
u → +∞, then ψα(u) → +∞, and if u → −∞ then ψα(u) → 0. Therefore, by
continuity of ψα, there exists a real number f0 such that∫

(d∗α)′ ([f0 − f(y)]+) dµ(y) = 1.

Let A := {x ∈ E, f(x) ≤ f0}. We define f̄ by f̄(x) := f(x) if x ∈ A, and
f̄(x) := f0 otherwise. Clearly, one has f̄ ≤ f . For a given x ∈ E, we define λ(x)
by

1− λ(x) :=

∫
(d∗α)′

(
[f̄(x)− f̄(y)]+

)
dµ(y).

Since (d∗α)′ is increasing and (d∗α)′(0) = 0, if x ∈ A then

0 ≤ 1− λ(x) =

∫
(d∗α)′ ([f(x)− f(y)]+) dµ(y) ≤ 1,

and if x 6∈ A then 1−λ(x) =
∫

(d∗α)′ ([f0 − f(y)]+) dµ(y) = 1. Define p?(x, dy) =
λ(x)δx(dy) + (1−λ(x))νx(dy), where νx is the probability measure with density

dνx
dµ

(y) =
(d∗α)′

(
[f̄(x)− f̄(y)]+

)
1− λ(x)

.

One has νx({x}) = 0.
With these definitions, the left hand-side of (23) is

f(x)−
∫ [

(f(x)− f(y))(1− λ(x))
dνx
dµ

(y)− dα
(

(1− λ(x))
dνx
dµ

(y)

)]
dµ(y)

= f(x)−
∫ [

(f(x)− f(y))(d∗α)′
(
[f̄(x)− f̄(y)]+

)
− dα

(
(d∗α)′

(
[f̄(x)− f̄(y)]+

))]
dµ(y).

12



If x ∈ A, this expression is

f̄(x)−
∫ [

(f̄(x)− f̄(y))(d∗α)′
(
[f̄(x)− f̄(y)]+

)
− dα

(
(d∗α)′

(
[f̄(x)− f̄(y)]+

))]
dµ(y),

that is f̄(x) −
∫
d∗α
(
[f̄(x)− f̄(y)]+

)
dµ(y). Next, if x 6∈ A, the same equality

holds: from the definition of f0, one has

f(x) −
∫

(f(x)− f(y))(d∗α)′
(
[f̄(x)− f̄(y)]+

)
dµ(y)

= f(x)− f(x)

∫
(d∗α)′ ([f0 − f(y)]+) dµ(y)

+

∫
f(y)(d∗α)′

(
[f̄(x)− f̄(y)]+

)
dµ(y)

=

∫
f̄(y)(d∗α)′

(
[f̄(x)− f̄(y)]+

)
dµ(y)

= f̄(x)−
∫

(f̄(x)− f̄(y))(d∗α)′
(
[f̄(x)− f̄(y)]+

)
dµ(y).

2

Let us now present the contractivity argument that extends Theorem 1.1 to
any dimension n. We sketch the induction step from n = 1 to n = 2. Then it
suffices to repeat the same argument. Let µ = µ1 ⊗ µ2 and E = E1 × E2.

We want to show that
∥∥eRαf∥∥

α
≤
∥∥ef∥∥−β , with β = 1−α. From definition

(11), one has for every (x1, x2) ∈ E,

Rαf(x1, x2) = inf
p1

inf
p2

{∫ [∫
f(y1, y2)p2(x2, dy2|y1)

+

∫
dα

(∫
11x2 6=y2

dp2

dµ2
(x2, y2|y1)dµ2(y2)

)]
p1(x1|dy1)

+

∫
dα

(∫
11x1 6=y1

dp1

dµ1
(x1, y1)

)
dµ1(y1)

}
.

We easily check that Rαf = R(1)R(2)f , with for g : Ei → R, i = 1, 2,

R(i)g(xi) := inf
pi

{∫
g(yi)pi(xi, dyi) +

∫
dα

(∫
11xi 6=yi

dpi
dµi

(xi, yi)

)
dµi(yi)

}
.

Let ‖·‖γ(i), denotes the Lγ(µi)-norm, γ ∈ R. One has

∥∥eRαf∥∥
α

=

∥∥∥∥∥∥∥eR(1)R(2)f
∥∥∥
α(1)

∥∥∥∥
α(2)

.

Applying Theorem 1.1 with the measure µ1 and the function x1 7→ R(2)f(x1, x2),
we get

∥∥eRαf∥∥
α
≤
∥∥∥∥∥∥∥eR(2)f

∥∥∥
−β(1)

∥∥∥∥
α(2)

=

∥∥∥∥∫ e−βR
(2)fdµ1

∥∥∥∥− 1
β

−αβ (2)

.
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For γ < 0, the function h 7→ ‖h‖γ , is concave on the set of positive measurable
functions h (see [H-L-P]). Therefore, by Jensen it follows that

∥∥eRαf∥∥
α
≤
(∫ ∥∥∥e−βR(2)f

∥∥∥
−αβ (2)

dµ1

)− 1
β

=

∥∥∥∥∥∥∥eR(2)f
∥∥∥
α(2)

∥∥∥∥
−β(1)

.

Then, we apply Theorem 1.1 again with the measure µ2 and the function x2 7→
f(x1, x2), we get

∥∥eRαf∥∥
α
≤
∥∥∥∥∥ef∥∥−β(2)

∥∥∥
−β(1)

=
∥∥ef∥∥−β .

3 Deviation inequalities for suprema of sums of
independent random variables.

Let F be a countable set and let (X1,t)t∈F , . . . , (Xn,t)t∈F be n independent
processes. In this part, we state deviations inequalities for the random variable

Z := sup
t∈F

n∑
i=1

Xi,t.

It is enough to consider a finite set F = {1, . . . , N}. The results settled in this
section then extend to any countable set by monotone convergence. One has Z =
f(X), where X = ((X1,t)t∈F , . . . , (Xn,t)t∈F ) and f(x) := sup1≤t≤N

∑n
i=1 xi,t,

for x = (x1, . . . , xn) ∈
(
RN
)n

with xi = (xi,t)1≤t≤N . For a given x in
(
RN
)n

, if

τ(x) := inf

{
t ∈ F , f(x) =

n∑
i=1

xi,t

}
,

then f(x) =
∑n
i=1 xi,τ(x). Since f(y) ≥

∑n
i=1 yi,τ(x), x, y ∈

(
RN
)n

, we notice
that

f(x)− f(y) ≤
n∑
i=1

(xi,τ(x) − yi,τ(x))11xi 6=yi .

The condition (18) holds setting hi(x, yi) = [xi,τ(x) − yi,τ(x)]+. If all xi,t’s
and yi,t’s are non-negative, then the condition (16) holds with hi(x) = xi,τ(x).
These observations are the key point to reach deviation results for Z from (3)
and Theorem 1.1 using the estimates (17) and (19).

We first consider the sums of non-negative random variables. Applying (4)
and (5) to λf , λ ≥ 0, and using the estimate (17), we get the following basic
results.

Theorem 3.1 Assume Xi,t ≥ 0 for every i and t, then for every λ ≥ 0,

logE

[
n∏
i=1

(1 + λXi,τ(X))

]
≤ λE[Z], (24)

and

logE [exp(−λZ)] ≤
n∑
i=1

E
[
exp(−λXi,τ(X))− 1

]
. (25)
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As first application of this Theorem, we recover the well-known bound for
the Laplace transform of Z when the Xi,t’s belongs to [0, 1] (see [Mas]).

Corollary 3.2 Assume Xi,t ∈ [0, 1] for every i and t, then for every λ ∈ R

logE [exp(λZ)] ≤ E[Z](eλ − 1).

Proof . For λ < 0, the above inequality is an obvious consequence of (25). Next,
for λ > 0, by convexity of the exponential function, we observe that

logE [exp(λZ)] ≤ logE

[
n∏
i=1

(1 + (eλ − 1)Xi,τ(X))

]
.

Then we apply inequality (24). 2

For any r ∈ (1, 2], define

Σr :=

n∑
i=1

Xr
i,τ(X) ≤ sup

t∈F

n∑
i=1

Xr
i,t.

When the Xi,t’s are not upper-bounded, Theorem 3.1 induces the following new
results.

Corollary 3.3 If E[Σr] <∞ for some r ∈ (1, 2], then one has: for any u ≥ 0,

P
[
Z ≥ E[Z] + u+

u

r

(
Σr

E[Σr]
− 1

)]
≤ exp

[
−r − 1

r

(
ur

E[Σr]

)1/(r−1)
]
, (26)

and

P [Z ≤ E[Z]− u] ≤ exp

[
−r − 1

r

(
ur

E[Σr]

)1/(r−1)
]
. (27)

Proof . Since e−x + x− 1 ≤ (xr/r) for x ≥ 0 and r ∈ (1, 2], the inequality (25)
implies: for any λ ≥ 0,

logE [exp(−λ(Z − E[Z]))] ≤ λr

r
E[Σr].

The inequality (27) then follows from Chebyshev inequality by optimizing over
all λ ≥ 0.

From the inequality (24), using x− log(1 +x) ≤ (xr/r), x ≥ 0, r ∈ (1, 2], we
also get: for any λ > 0,

logE
[
exp

(
λZ − λr

r
Σr

)]
≤ λE[Z].

Therefore, by Chebyshev inequality, for any v ≥ 0,

P
[
Z ≥ E[Z] +

λr−1

r
Σr +

v

λ

]
≤ exp(−v).

When Σr is close to its mean E[Σr], the optimal choice for λ is given by rv =
(r − 1)λrE[Σr]. Then, the proof of (26) is complete by taking λr−1 = u/E[Σr].
2
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The non-negativity of the Xi,t’s is a strong restriction that can be relaxed
with Theorem 1.1. Using the estimate (19), it gives: for any α ∈ (0, 1), β = 1−α,

E
[
eαλZ−αSα,λ

] 1
α E

[
e−βλZ

] 1
β ≤ 1, λ ≥ 0, (28)

with

Sα,λ :=

n∑
i=1

E
[
d∗α

(
λ[Xi,τ(X) −X ′i,τ(X)]+

)∣∣∣X] ,
where (X ′i,t)t∈F is an independent copy of Xi = (Xi,t)t∈F and E[ · |X] is the
conditional expectation given X = (X1, . . . , Xn). By Chebychev inequality, it
follows that for every m ∈ R, v ≥ 0,

P
[
Z ≥ m+

v

λ
+
Sα,λ
λ

]1−α

P [Z ≤ m]
α ≤ e−α(1−α)v, (29)

Consequently, it suffices to control the fluctuation of S2
α,λ to derive deviation

bounds for Z. For r ∈ (1, 2], we define

Vr :=

n∑
i=1

E
[

[Xi,τ(X) −X ′i,τ(X)]
r
+

∣∣∣X] .
By a Taylor expansion, Sα,λ is of order λ2

2 V2 as λ→ 0. V2 is a variance factor,
one has

V2 ≤ V := sup
t∈F

n∑
i=1

E
[
[Xi,t −X ′i,t]2+

∣∣Xi,t

]
.

When α or β goes to zero, (28) gives the following main estimates for the
Laplace transform of Z.

Theorem 3.4 For any λ ≥ 0, one has

logE [exp(λZ − S1,λ)] ≤ λE [Z] , (30)

and

logE [exp(−λ(Z − E[Z]))] ≤ E [S0,λ] . (31)

For any random variable Y , define the ψ1-norm by

‖Y ‖ψ1
:= inf {c > 0 |E [exp(|Y |/c)] ≤ 2} .

Corollary 3.5 1. If E[Vr] <∞ for some r ∈ (1, 2], then for any u ≥ 0,

P
[
Z ≥ E[Z] + u+

u

r

(
Vr

E[Vr]
− 1

)]
≤ exp

[
−r − 1

r

(
ur

E[Vr]

)1/(r−1)
]
. (32)

2. If Ci :=
∥∥∥[Xi,τ(X) −X ′i,τ(X)]+

∥∥∥
ψ1

<∞ for every i, then for any u ≥ 0,

P [Z ≤ E[Z]− u] ≤ exp

[
− u2

4C2e−1 +Mu

]
, (33)

with C2 :=
∑n
i=1 C

2
i and M := max(Ci).
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Proof . The inequality (32) is a consequence of (30) using d∗1(x) ≤ (xr/r), x ≥ 0,
r ∈ (1, 2], and then following the proof of (26).

Let Yi := [Xi,τ(x) −X ′i,τ(X)]+, for any λ ≥ 0,

E [d∗0(λYi)] =

∫ +∞

0

Ciλ
(
eCiλu − 1

)
P [Yi/Ci ≥ u] du.

If 0 ≤ λ < 1/Ci, then one has

sup
u≥0

eCiλu − 1

eu
= Ciλ exp

(1− Ciλ) log(1− Ciλ)

Ciλ
≤ e−1 Ciλ

1− Ciλ
,

and therefore

E [d∗0(λYi)] ≤ e−1C2
i

λ2

1− Ciλ

∫ +∞

0

eu P [Yi/Ci ≥ u] du = e−1C2
i

λ2

1− Ciλ
.

Consequently, for any 0 ≤ λ < 1/M ,

E [S0,λ] ≤ e−1C2 λ2

1−Mλ
.

Finally, (33) follows using (31), applying Chebychev inequality and then opti-
mizing over all 0 ≤ λ < 1/M . 2

The main interest of (29) and Corollary 3.5 is that no boundedness condition
are needed on the Xi,t’s. If they are bounded, the results can be refined as
follows.

Corollary 3.6 1. Assume that Xi,t ≤ Mi,t, and E
[
(Mi,t −Xi,t)

2
]
≤ 1, for

every i and t, then for any u ≥ 0,

P(Z ≥ E[Z] + u) ≤ exp

− u

2
(

1 + ε
(

u
E[V ]

)) log

(
1 +

u

E[V ]

) , (34)

≤ exp

[
− u2

2E[V ] + 2u

]
,

with ε(u) :=
d∗1 (log (1 + u))

log (1 + u)
.

2. Assume that mi,t ≤ Xi,t ≤ Mi,t, with Mi,t −mi,t = 1 for every i and t,
then for any u ≥ 0,

P(Z ≤ E[Z]− u) ≤ exp

[
−E[V2]d0

(
u

E[V2]

)]
, (35)

≤ exp

[
− u2

2E[V2] + 2
3 u

]
,

with d0(u) := (1 + u) log(1 + u)− u.

Remarks:

1. These results extend the well-known Bennett’s or Bernstein’s inequalities
(see [Ben], [Bern]). These inequalities apply under the assumption of Theorem
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3.6 when F = {t0}, Z =
∑n
i=1Xi,t0 , and mi,t0 ≤ Xi,t0 ≤ Mi,t0 , with Mi,t0 −

mi,t0 = 1. The Bennett’s inequality asserts

P(Z ≥ E[Z] + u) ≤ exp

[
−Var(Z)d0

(
u

Var(Z)

)]
, u ≥ 0,

or equivalently

P(Z ≤ E[Z]− u) ≤ exp

[
−Var(Z)d0

(
u

Var(Z)

)]
, u ≥ 0.

If F = {t0} then E[V ] = E[V2] = Var(Z). Therefore, (35) exactly recover the
above Bennett inequality. From the Cramér-Chernoff large deviation theorem,
we know that d0 is an optimal rate function, reached when Z approximates
a Poisson distribution (for more details, see [Mas]). In the right-hand side
deviation inequality (34), since ε(u) → 0 as u → 0, the rate of deviation is
optimal in the moderate deviations bandwidth, and since ε(u)→ 1 as u→ +∞,
it is suboptimal in the large deviations bandwidth.

2. If mi,t ≤ Xi,t ≤ Mi,t with Mi,t − mi,t = 1, then by using the classical
symmetrization and contraction argument of Ledoux and Talagrand (see [L-T]
Lemma 6.3 and Theorem 4.12, see also Lemma 14 [Mas]), one can show that

E[V ] ≤ σ2 + 16E

[
sup
t∈F

∣∣∣∣∣
n∑
i=1

(Xi,t − E[Xi,t])

∣∣∣∣∣
]
, (36)

with σ2 := supt∈F
∑n
i=1 Var(Xi,t). Therefore E[V ] is often close to the maximal

variance σ2.

3. If the Xi,t’s are moreover centered and Z = supt∈F |
∑n
i=1Xi,t|, then (36)

yields E[V ] ≤ σ2 + 16E[Z]. Therefore, the results of Corollary 3.6 are of the
same nature as the recent results of Klein and Rio [K-R]. A basic difference is
that we do not assume that the Xi,t’s are centered. Moreover the proofs to reach
deviation bounds from Theorem 1.1 are simple, especially for the left-hand side
deviations, as regard to the entropy method used in [K-R].

4. We observe that other left-hand side deviation’s bounds for centered Xi,t’s
in (−∞, 1] were given by Klein [Kle] under additional moment conditions.

Proof of Corollary 3.6. If mi,t ≤ Xi,t ≤ Mi,t with Mi,t − mi,t = 1, then
S2

0,λ ≤ d∗0(λ)V2, λ ≥ 0. Consequently (31) gives

logE [exp(−λ(Z − E[Z]))] ≤ d∗0(λ)E [V2] .

Then (35) follows by Chebyshev inequality and optimizing over all λ ≥ 0. Fi-
nally, it is well-known that (35) implies the Bernstein inequality.

For the right-hand side deviations, by Hölder inequality and using (30), we
get for any q > 1 and 1/p+ 1/q = 1

E [exp (λ(Z − E[Z]))] ≤ E
[
exp

(
p

q
S2

1,λq

)] 1
p

, λ ≥ 0. (37)

Define S̃2
1,λ := supt∈F

∑n
i=1 Yi,t(λ) with Yi,t(λ) := E

[
d∗1
(
λ[Xi,t −X ′i,t]+

)∣∣Xi,t

]
.

We observe that the function x 7→ d∗1(
√
x) is concave, therefore since Xi,t ≤Mi,t
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and E
[
(Mi,t −Xi,t)

2
]
≤ 1, by Jensen inequality,

Yi,t(λ) ≤ d∗1
(
λ‖Mi,t −X ′i,t‖2

)
≤ d∗1(λ),

where ‖ . ‖2 denotes the L2-norm. Consequently, applying Corollary 3.2 with

S̃2
1,λ, by homogeneity, we obtain

logE
[
exp

(
p

q
S2

1,λq

)]
≤ logE

[
exp

(
p

q
S̃2

1,λq

)]
≤ e

p
q d

∗
1(λq) − 1

d∗1(λq)
E
[
S̃2

1,λq

]
.

Then from (37) and since S̃2
1,λ ≤ λ2

2 V , we get

logE [exp (λ(Z − E[Z]))] ≤ q(q − 1)λ2 e
d∗1(λq)

q−1 − 1

2d∗1(λq)
E [V ] . (38)

For each λ > 0, let q(λ) denote the largest q ≥ 1 so that H(q) = 0 with

H(q) = d∗1(λq)− q(q − 1)λ.

Such a q(λ) exists since H(1) ≥ 0 and H(q)→ −∞ as q → +∞. For any λ ≥ 0,
(38) ensures that

logE [exp (λ(Z − E[Z]))] ≤ λ

2

(
eq(λ)λ − 1

)
E[V ],

and by Chebyshev inequality

P(Z ≥ E[Z] + u) ≤ exp

[
−uλ+

λ

2

(
eq(λ)λ − 1

)
E[V ]

]
u ≥ 0. (39)

One has λq(λ)(q(λ)− 1) = d∗1(λq(λ)) ≤ q(λ)2d∗1(λ), and therefore

λq(λ)

(
1− d∗1(λ)

λ

)
≤ λ.

Since
d∗1(λ)
λ → 0, as λ → 0, it follows that λq(λ) → 0 as λ → 0, and we easily

check that λq(λ)→ +∞ as λ→ +∞. Consequently, for any u ≥ 0 there exists
λu such that

u =
(
eq(λu)λu − 1

)
E[V ].

Hence, q(λu)λu = log
(

1 + u
E[V ]

)
, and H(q(λu)) = 0 gives q(λu) = 1 + ε

(
u

E[V ]

)
.

The proof of (34) ends by choosing λ = λu in (39). Then the Bernstein inequality
easily follows. 2

4 The one-dimensional bin packing problem.

The one-dimensional bin-packing problem can be described as follows: given a
finite collection of independent random weights X1, · · · , Xn and a collection of
identical bins with capacity C (which exceeds the largest of the weights), what
is the minimum number of bins N = N(X) (X = {Xi, 1 ≤ i ≤ n}) into which
the weights can be placed without exceeding the bin capacity C. To simplify
we choose C = 1 so that 0 ≤ Xi ≤ 1, 1 ≤ i ≤ n.
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Theorem 4.1 Denote Σ2 =
∑n
i=1X

2
i . Then for every u ≥ 0

P(N ≥ E[N ] + 1 + u) ≤ exp

[
− u2

16E[Σ2] + 3u

]
, (40)

and

P(N ≤ E[N ]− 1− u) ≤ exp

[
− u2

4E[Σ2]

]
. (41)

Observe that for u > n − 1, P(|N − E[N ]| ≥ 1 + u) = 0 and one early result
[R-T], using martingales approach, is

P(|N − E[N ]| ≥ u) ≤ 2 exp

[
− 2u2

n

]
, u ≥ 0.

Therefore, the variance factor E[Σ2] improves the factor n for u ≤ E[Σ2]. Ob-
viously, the sum of the variance of the Xi’s is expected instead of E[Σ2]. Up
to constants, our result is Talagrand’s Theorem 6.1 [Tal1], where the mean is
replaced by a median of N . Talagrand’s inequality with the median is a con-
sequence of (15). Lugosi [Lug] also obtains these inequalities from the entropy
method, by first recovering some Talagrand’s convex distance inequalities (see
[Lug]).

Proof . We first show that for any x = {x1, . . . , xn}, y = {y1, . . . , yn},

N(x)−N(y) ≤ 1 + 2

n∑
i=1

xi11xi 6=yi .

To see this, observe that N(x) ≤ N(y)+N({xi, xi 6= yi}), then that N({xi, xi 6=
yi}) ≤ 1 + b2

∑n
i=1 xi11xi 6=yic (where b . c denotes the integer part), since among

b2
∑n
i=1 xi11xi 6=yic bins, at least one of them is half-empty. Then, we deduce

that for any x = {x1, . . . , xn}, λ ≥ 0,

Qα(λN)(x) ≥ λN(x) + λ+

n∑
i=1

c∗α(2λxi) ≥ λN(x) + λ+ 2λ2
n∑
i=1

x2
i .

Following the lines of the proof of (27), we get (41). For the proof of (40),
inequality (3) for α = 1 combined with Cauchy-Schwarz inequality implies

E [exp (λ(N − E[N ])− λ)] ≤ E
[
exp Σ2

1,4λ

] 1
2 , λ ≥ 0,

where Σ2
1,λ :=

∑n
i=1 c

∗
1(λXi). By convexity and since 0 ≤ Xi ≤ 1,

E [exp c∗1(4λXi)] ≤ 1 + E
[
X2
i

] (
e4λ − 4λ− 1

)
≤ exp

(
E
[
X2
i

]
d∗0(4λ)

)
.

Then (40) follows by Chebyshev inequality. 2

5 Appendix

Proof of Proposition 2.4. To simplify the notations, d∗ denotes d∗α. For every
measurable increasing functions g on [0, 1], the left-hand side of (22) is[∫ 1

0

(∫ 1

0

e−β(g(ω)−g(t))dω

)α
β

e−α
∫ t
0
d∗(g(t)−g(s))dsdt

] 1
α

.

20



According to Proposition 2.4, we assume that (22) holds for a given simple
increasing function g and we want to show that (22) still holds for g + gu, that
is: M(u, a) +N(u, a) ≤ 1, with

M(u, a) :=

∫ u

0

(∫ u

0

e−β(g(ω)−g(t))dω + (1− u)e−βae−β(g(1)−g(t))
)α
β

.e−α
∫ t
0
d∗(g(t)−g(s))dsdt,

and

N(u, a) :=

∫ 1

u

(∫ u

0

e−β(g(ω)−g(1))dω eβa + (1− u)

)α
β

e−α
∫ u
0
d∗(g(t)−g(s)+a)dsdt.

We set A(u) :=
∫ u

0
eβ(g(1)−g(s))ds, and B(u) :=

∫
e−α(g(1)−g(s))ds. Since g is

increasing, and since α and β are non-negative, we observe that A(u) ≥ u ≥
B(u) ≥ 0. One has

M(u, a) =

∫ u

0

(
A(u) + (1− u)e−βa

)α
β e−α(g(1)−g(t))e−α

∫ t
0
d∗(g(t)−g(s))dsdt,

and N(u, a) = (1− u)
(
A(u)eβa + (1− u)

)α
β e−α

∫ u
0
d∗(g(1)−g(s)+a)ds.

Since (22) holds with the function g, one has M(u, 0) +N(u, 0) ≤ 1. There-
fore, in order to get Proposition 2.4, it suffices to show that

(M(u, a) +N(u, a))− (M(u, 0) +N(u, 0)) ≤ 0. (42)

The monoticity properties of the functions g and d∗ ensure that for 0 ≤ t ≤ u,∫ t

0

d∗(g(t)− g(s))ds ≤
∫ u

0

d∗(g(1)− g(s))ds.

Consequently, since β and a are non-negative, one has

M(u, a)−M(u, 0)

≤
∫ u

0

[(
A(u) + (1− u)e−βa

)α
β − (A(u) + (1− u))

α
β

]
.e−α(g(1)−g(t))e−α

∫ u
0
d∗(g(1)−g(s))dsdt

=
[(
A(u) + (1− u)e−βa

)α
β − (A(u) + (1− u))

α
β

]
B(u)e−α

∫ u
0
d∗(g(1)−g(s))ds

(43)

Let ∆(u, a) := A(u)
eβa − 1

β
+B(u)

1− e−αa

α
. Observing that∫ u

0

d∗(g(1)− g(s) + a)ds =

∫ u

0

d∗(g(1)− g(s))ds+ ∆(u, a),

and using (43), the proof of (42) is reduced to show that

B(u)
(
A(u) + (1− u)e−βa

)α
β −B(u) (A(u) + (1− u))

α
β

+ (1− u)
(
A(u)eβa + (1− u)

)α
β e−α∆(u,a) − (1− u) (A(u) + (1− u))

α
β ≤ 0,
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or equivalently after some rearrangements,

(
A(u) + (1− u)e−βa

) 1
β

(
B(u) + (1− u)eαa−α∆(u,a)

) 1
α

≤ (A(u) + (1− u))
1
β (B(u) + (1− u))

1
α .

Setting ψ(a) :=
(
A(u) + (1− u)e−βa

) 1
β
(
B(u) + (1− u)eαa−α∆(u,a)

) 1
α , this in-

equality is exactly ψ(a) ≤ ψ(0). Therefore the proof of Proposition 2.4 is com-
plete if ψ is a non-decreasing function.

By differentiating, we get for every x ≥ 0,

ψ′(x)

ψ(x)
=

−(1− u)e−βx

(1− u)e−βx +A(u)
+

(1− u)
(
1−A(u)eβx +B(u)e−αx

)
eαa−α∆(u,a)

B(u) + (1− u)eαa−α∆(u,x)

=
(1− u)φ(x)e−α∆(u,x)

((1− u)e−βx +A(u))
(
B(u) + (1− u)eαa−α∆(u,x)

) ,
where

φ(x) := −e−βx
(
B(u) + (1− u)eαa−α∆(u,x)

)
eα∆(u,x)

+
(
(1− u)e−βx +A(u)

) (
1−A(u)eβx +B(u)e−αx

)
eαa

= −B(u)e−βxeα∆(u,a) +B(u)
(
(1− u)e−βx +A(u)

)
+A(u)e(α+β)x

(
ue−βx −A(u)

)
Since ∆(u, x) ≥ 0 for every u ≥ 0 and x ≥ 0, it follows: for every x ≥ 0,

φ(x) ≤ −B(u)
(
ue−βx −A(u)

)
+A(u)e(α+β)x

(
ue−βx −A(u)

)
=

(
A(u)e(α+β)x −B(u)

) (
ue−βx −A(u)

)
.

Observing that for every x ≥ 0,

A(u)e(α+β)x −B(u) ≥ A(u)−B(u) ≥ 0,

and
ue−βx −A(u) ≤ u−A(u) ≤ 0,

we conclude that φ(x) ≤ 0 and therefore ψ′(x) ≤ 0 for every x ≥ 0. This ends
the proof of Proposition 2.4 2
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[Rio1] Rio E., Inégalités de concentration pour les processus empiriques de
classes de parties. Probability Theory and Related Fields (2000), 119, 163-
175.
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