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Abstract

This paper is devoted to the concentration properties of product prob-
ability measures u = p1 ® « -+ ® pn, expressed in term of dimension-free
functional inequalities of the form

ES 1
(/eaQo‘fd/J,> « (/€7<17Q)fd/1) e <1,

where « is a parameter, 0 < a < 1, and Q. f is an appropriate infimum-
convolution operator. This point of view has been introduced by Maurey
[Mau]. It has its origins in concentration inequalities by Talagrand where
the enlargement of sets is done in accordance with the cost function of
the operator Qo f (see [Tall],[Tal2],[Tal3]). A main application of the
functional inequalities obtained here is optimal deviations inequalities for
suprema of sums of independent random variables. As example, we also
derive classical deviations bounds for the one dimensional bin-packing
problem.

Résumé

Cet article est consacré a I’étude de propriétés de concentration des proba-
bilités produit p = p1®- - -@pu,, en termes d’inégalités fonctionnelles indépendantes
de la dimension, de la forme

(/ eaQafdu>a (/ e—(l—a)fd'u>1a <1,

ou « est un parametre 0 < a < 1, et Q,f est un opérateur d’infimum-
convolution approprié. Ce point de vue a été introduit par Maurey [Mau].
Il tient ses origines dans des inégalités de concentration de Talagrand, pour
lesquelles I’élargissement des ensembles est 1ié a la fonction de cotit de 'opérateur
Qo f (voir [Tall],[Tal2],[Tal3]). Comme application majeure de ces inégalités
fonctionnelles, nous obtenons des inégalités de déviations optimales pour les
supréma de sommes de variables aléatoires indépendantes. Par ailleurs, a titre
d’exemple d’utilisation, nous retrouvons des bornes de déviations pour le probleme
du rangement de boites (bin-packing problem).

Key words and phrases: concentration inequalities, transportation inequali-
ties, infimum-convolution operator, empirical processes, bin packing problem.



1 Introduction to the main theorems.

The concentration of measure phenomenon on product spaces has been widely
investigated by M. Talagrand in [Tall], [Tal2] and [Tal3]. In these papers, a large
variety of powerful dimension-free concentration inequalities are obtained by
induction over the dimension of the product space. Consider a probability space
(E1, &1, 1) and its product E = E}, u = u$™. The basic idea of concentration
is that if the measure of a subset A C E is not too small (u(A) > 1/2) then most
of the points z € E are “close” to A. Talagrand expressed it in the following
form: for a given “distance” f(z, A) between x and A one has

KA gy () < 1
[ e auta) < (1)

where K is a non-negative constant. If u(A) is not too small, using Chebyshev
inequality, it follows that the set of elements x € F which are “far” from A is
of small measure, since for ¢t > 0,

L ke
n({r € B.fla,d) > 1)) < — e
The main issue here is to define an interesting notion of “closeness”. The results
of the present paper are connected with the distances associated to the so-
called convex hull approach from [Tall] and [Tal2]. We obtain refinements of
Talagrand’s results by extending the so-called infimum-convolution description
of concentration introduced by Maurey [Mau] (see also [B-G-L]). One of the
main motivation for these investigations is to provide new optimal deviation
bounds for suprema of sums of random variables (see section 3).

Our approach has some of its origins in the so-called ” convex property (7)” of
[Mau] (see also [Sam)]). It is a variant of Maurey’s ” property (7)”. This property
was studied by several authors in connection with concentration properties of
log-concave measures, as the Gaussian and the exponential measure (see [Mau],
[B-G-L], [B-G], [Sch]). The ”convex property (7)” is a dimension-free functional
inequality which is valid for every product measure p := 1 ® -+ ® b, when
each p; is a probability measure on a normed vector space (Fj, || - ||) supported
by a set of diameter less than one. Maurey’s result states: for every convex
measurable function f on the product space F =[]\, F},

/ledu/e*fdug 1.

Here, @ is the infimum-convolution operator associated to the quadratic cost
function C:

Qf(w) = inf [f{y) +Clz—y)], w€F (2)
with C(z) == 1 20 [l2il% 2 = (21,...,2) € F.

We define @, a first variant of the operator ), which is suitable for some
abstract probabilistic situation where metric structure is not a priori provided.
Thus, we extend the ”convex property (7)” from product Banach spaces to any
product probability spaces (E,€&) = [[i-,(E;,&;). For further measurability



considerations, we assume that every singleton {z;}, z; € E;, belongs to the o-
field &;. Let p = p3 ® - - ® py, be a product probability measure on (E, ). We
establish that for every parameter a € (0, 1), and for every bounded measurable
function f on F one has

(/ eaQafdu)é (/ e—<1—a>fdu)lla <1. (3)

This first result is a consequence of a transportation inequality presented further
in the introduction (see Theorem 1.2). We observe that (3) will still holds when
a equal 0 or 1: when « goes to 1, (3) provides

tog [ ¢ fdu< | o (4
and when « goes to 0, it yields
log [ au< [ Qoin 5)

In order to define @, we introduce some notations. For a given measurable
space (F, F), let P(F) be the set of probability measures on F' and T (F) be the
set of all transition probabilities from (F,F) to (F,F). For every ¢(V) € P(F)
and p € T(F), we define (Y @ p € P(F x F) and ((Wp € P(F) as follows: for
Be FQF,

(M op(B):= // 15(z,y)p(z, dy)¢™M (d),
and for Ay € F,
C(l)p(Az) = /P('aA2)dC(1)-

¢W and ¢Wp are the marginals of (") @ p. We say that p transports ¢V
on ¢ if (@ = ¢Wp, and we denote by T(¢1),((?) the set of all transition
probabilities that transport ¢() on ¢(2).

We define a cost function c,,a € (0,1):

1—2)log(l—2¢)—(1—cal)log(l —al)
a(l —a) ’

ca(f) = o for0</<1,

and ¢, (¢) := 400 if £ > 1. The family of function ¢,, 0 < a < 1, dominates the
usual quadratic cost function: c1(€) > cq(€) > co(€) > €22 for every £ > 0. For
every y = (y1,...,yn) € E, let y* denote the vector (yi,...,¥;), 1 <i <n. For
every x € E, we define

Qust@)= it { [ snte.ay
+/ica (/ ﬂm#yipi(xi?dyilyil)) p(x,dy)}, (6)

where the infimum is taken over all transition probabilities p in 7 (E) that can
be written as

p(z,dy) = p1(z1,dy1) @ pa(x2, dy2|yr) @ -+ @ pr(@Tn, dynly™ ), (7)



where p;(-,-|y""1) € T(E;) and
i@, dyily' ™) = Ny ), (dya) + (1= Ni(y'™1))wildys), (8)

with A; being a measurable function on Hl L (E;, &) satisfying 0 < \i(y'~1) <
1, and v; being a probability measure on E abbolutely continuous with respect
to u; (i << v;), for which v;({z;}) = 0. Actually p;(z;,-|y*~!) is a convex
combination of v; and the Dirac measure at point z;. Choosing p;(x;, dy;|y*~!) =
0z, (dy;) for all 1 < i < n in the definition (6), we observe that Q. f < f.

For a better understanding, let us consider the one-dimensional definition of
Qy: forn=1,

0ottt { [ smtontn o [ Lotonin)

p(z,dy) == Ao, + (1 — M)y, 0<A<1. ©))

with

Comparing this definition with the usual definition (2), we see that f(y) has
been replaced by [ f(y)p(z,dy), and the cost C(z — y) by ¢ ([ Lozyp(z,dy)),
the cost to pay to move from the initial position . This cost only depends on
the probability 1 — A to move from z and is independent of the way to move
from x given by v.

A second result of this paper is a functional inequality of the form (3) with
a new operator R, for which the cost term depends on both (1 — A) and the
measure v. More precisely, in dimension one, we set for every x € F,

Rof( mf{ [t + [ da (n#ydg;@?)du(y)} (10)

and in dimension n we set

R.f(z):= inf {/f p(z, dy)

peT(E)

/Z/d ( i dpz(zlgé;lﬁz 1))dui(yi)p(%dy)}, (11)

where the infimum is taken over all transition probabilities p in 7 (F) such that
(7) and (8) hold. The function d,, is defined by its convex Legendre-transform
dl: do () == supyegr (W — di(R)], £ € R, where

ael=0h L (1 —a)e=h — 1

a5 (h) = T ,

heR. (12)

We notice that d,(¢) is equivalent to ¢?/2 at zero. One has
do(£) :=(1+£)log(1+0)—¢, £>0,

¢, Iz Iz
diyo(0) = 200og | 5+ /14 5 | =41+ —1]. (>0,

di(0):==(1—-0)log(1—0)+¢, f 0<t<1,
and d; (¢) := +oo if £ > 1.



Theorem 1.1 For every bounded measurable function f, for every parameter
0<a<1, one has

. 1
1 ey
</ eaR"‘fd,u> (/ e—(l—o‘)fd'u> <1. (13)

The proof of Theorem 1.1 is obtained by induction over n. A similar method
works for (3). However, as already mentioned, we deduce (3) from the trans-
portation type inequality (14) below. Let us recall the definition of the relative
entropy of a measure v with respect to a measure p with density dv/du:

d d
Ent,, (d;) S e log d—d,u

We define a pseudo-distance C,, between probability measures: for ¢V, ¢ ¢
P(E):

Ca(<(1)7 C(2))

= inf Ca Lo,y pi(zi, dyily' ™! z,dy) ¢ (dz),
pET(<(1)7C(2))//; (/ i#yiPi( yily )) p(z, dy)C" (dz)

where the infimum runs over all p in 7(¢(V), ¢(?)) satisfying (7) and (8).

Theorem 1.2 For every (V) and ¢ in P(E) absolutely continuous with re-
spect to i, one has

¢ 1 dc®
( (2) -
Co(¢W ¢ )< Ent (dﬂ>+1_aEntﬂ(dp>. (14)

The connection between (3) and (14) is obtained following the lines of [B-G].
We easily check that

/ Qufdc™ — / A < (¢, ),

Then (3) follows by applying Theorem 1.2 and by choosing (") and ¢?) with
d (1) eaQ(xf d<(2) e_(l_a)f

respective densities dp :feaQafd,u and du _J'ef(lfoz)fdpl'

Remarks:

1. Theorem 1.2 improves the transportation inequality of Marton for con-
tracting Markov chains (see [Mar]), when we restrict the study to product prob-
ability measures. Marton introduces a distance ds defined by

" (32“(1)7 C‘Q)))Q

2
(1)

Since cq(£) > €2/2,¢ > 0, one has n (d2(¢™M, ¢? )) Co(¢M, ). Then,
Marton’s inequality follows by optimizing over « in (14)



2. A first byproduct of (3) and Theorem 1.1 is Talagrand’s concentration
inequalities of the form (1). By monotone convergence, we extend (3) to any real
measurable function f on E satisfying [ e~ (1=9fd; < co. Then by adopting the
convention (+00) x 0 < 1, (3) is extended to all f taking values in RU{+o0}, for
which [ e~/ du < oo holds. For every measurable set A € &, let ¢4 () := 0
if z € A and ¢a(x) := 400 otherwise. Then, for every x € E, one has

Qaqu( p(:c A) 1/2004 (/ x; #ylpz(xzadyz‘yz 1)) p(w,dy).

The infimum is taken over all p in 7 (F) which transport the mass on A, that is:
p(z, A) = 1. This defines a pseudo-distance C,, between z and A: C,(x, A) :=
Qada(z). Applying (3) with the function ¢4, we get Theorem 4.2.4 of [Tall]:

1
aCa(a:,A)d
e w(z) < = (15)
/ p(A)T==

The same argument with the functional inequality (13) gives

aDq(z,A)
e dp(zr) < ————.
/ u(A) ==

where

dpi (i, yi|yi_1)>
Dol 3 p(lznA) 1 / Z/ < #Yi dui(y:) wi(yi)p(z, dy)

For the careful reader of [Tal2], this new result improves Theorem 4.2 of [Tal2]
and Theorem 1 of [Panl].

A simple procedure to reach deviation tails for a given function f is the
following. If f is sufficiently "regular”, Q.f or R,f can be estimated from
below, and (3) or (13) provide bounds for the Laplace transform of f. With the
operator @, the regularity of f is given by the ”best” non-negative measurable
functions h; : E — RT U {400}, 1 <4 < n such that

y) < Z hi(2) g, £y, for p—almostevery z,y € E. (16)

On the right-hand side, the weighted Hamming distance measures how far f(x)
is from f(y). Let ¢}, be the Legendre-transform of ¢,. If (16) holds, then

n

Quaf(x) > f(z) — ZCZ(]M(OU)) for p—almostevery z € E. (17)

i=1

Actually, the "best” functions h;’s minimize the quantity > .- ¢/ (h;(z)). Sim-
ilarly, with R,, the regularity of f is given by the "best” h; : x B, —
R U {+00}, 1 <i < n such that

n
fl@)—fly) < Z hi(z, yi) Ly, 2y, for p—almost every z,y € E. (18)
i=1



This implies: for py-almost every = in F
Rof(@) 2 f(o) = 3 [ dithula,n))dus(uo), (19)
i=1

and the "best” h;’s minimize the quantity Y., [ dZ(hi(z,y:))dui(y;).

At the beginning of section 3, we show how to derive deviation tails from (3)
and (17) when f represents a supremum of sum of non-negative random variables
(see Corollary 3.3). This is a generic simple example. Then, as a main applica-
tion of this paper, the same procedure with (13) and (19) provides deviation’s
bounds when the variables of the sums are not necessarily non-negative (see
Corollary 3.5 and Corollary 3.6). In this matter, the entropy method (developed
by [D-S], [A-M-S]) has been first used by Ledoux [Led1] and then by several au-
thors to improve the results by Talagrand, and to reach optimal constants (see
[B-L-M1], [B-L-M2], [B-B-L-M], [Bousl]|, [Bous2], [Kle], [K-R], [Led2], [Mas],
[Riol], [Rio2]). The entropy method is a general procedure that yields devi-
ation inequalities from a logarithmic Sobolev type inequality via a differential
inequality on Laplace transforms. This is well-known as the Herbst argument.
Our approach is an alternative to the entropy method. For the suprema of em-
pirical sums, Theorem 3.1 and Theorem 3.4 provide exponential deviations tails
that improve in some way the ones obtained with the entropy method. To be
complete, recall that Panchenko [Pan2] introduced a symmetrization approach
that allows to get other concentration results for suprema of empirical processes
from (3).

In Section 4.1, we recover from (3) the Talagrand’s deviation tails (around
the mean instead of the median) for the one-dimensional bin packing problem.

2 Dimension-free functional inequalities for prod-
uct measures.

The first part of this section is devoted to the proof of Theorem 1.2, and the
second part to the proof of Theorem 1.1.

2.1 A transportation type inequality.

Theorem 1.2 is obtained by tensorization of the one-dimensional case. Let ¢(1) #
¢ be two probability measures on (E, £) with respective densities a and b with
respect to p.

For n = 1, the proof of (14) is based on the construction of an optimal
transition probability p* € T(¢™M,¢?)). Let []+ = max(c,0), ¢ € R. For every
x € E with a(z) # 0, we set

pi(z,7) == A@)dz(-) + (1 = A@))v(), (20)
with A(z) := inf (l,g(x)), and v = %% where ||<(1) _ C(Q)HTV

denotes the total variation distance between ¢(Y) and ¢(2),

1
HC(l) _ <(2)HTV =3 / la — bldu = /[a — bl dp.

If a(z) = 0, p*(z,-) is any probability measure in P(F).



Lemma 2.1 According to the above definitions, one has

<zgmx@>:/%(/n#w%m@0cmwm,

and

[ e ([ vesn@an) ¢ ae)
1 ¢V 1 d¢®
< — Ent — Ent .
T o nﬂ(du +1—oz o du
Proof of Lemma 2.1. For any p € T(¢™M,¢®), we consider the measure ¢ :=

(W @p, ¢ € P(ExE). Let A denote the diagonal of E x F and (a be the
restriction of ¢ to A,

A(A)=C(AN(Ax A):=C{(z,z),z € A}) forevery A € €.

Since ¢ € M(¢M, (@), we have (o = cu with ¢ < inf(a,b). Consequently, since
Cq is increasing on RT, we get

/ca <1 - mf(j“) ¢ (dz) < /ca (/ llz;eyp(w,dy)> ¢ (da).

This lower bound is reached for p*. Indeed, setting ¢* = ¢ @ p*, from the
definition (20) one has (X = inf(a,b)p. The function ¢, satisfies for every
u,v > 0,

1
ca(l—g) §@c0(1—u)—|—

” Co(l—v).

(1-a)u
Consequently integrating with respect to (") = ap and using the identity

d¢ B d¢
[ -5 e (57,

for =0 or 1, we get Lemma 2.1. O

Let us now consider the n-dimensional case: (E,&) = [[i_,(E;,&;) and
W= p1 ® -+ ® Uy Let us first introduce some notations. For every 1 < k < n,
let ¢k denote the marginal of ¢(V) on (E¥, &%) := [TF_,(E;,&). The density
of ¢W¥ with respect to py @ - -+ @ puy, is

a(z¥) :=/a(x’“,ykﬂ,...,yn)uk+1(dyk+1)...un(dyn)-

One has (W = ¢ and a® = a. Let {,(gl)(o|xk*1) denote the probability
measure on (Ej, &) with density a” (z |2 ~1) := %, with respect to p.
One has ((Wk = C{l) Q- (j,gl). The same notations are still available with ¢(2)
with its density b: ((2F = dz) Q-0 (,g2).

For every vectors =,y in F, let us consider a sequence of transition prob-
abilities pg(-, JaF =1, g%~ 1) € T(C,il)(-\z’“l), ,§2>(-|yk*1)), 1<k <n De

fine ¢y, (dxy, dyg|z=1 y* 1) == C,il)(dkak_l) @ pr (g, dy|zF~1 y*~1), one has



Ce(ye|zE=t g~ e M ( ,gl)(~|xk*1), ,EQ)(-|yk*1)), and (j is a transition prob-
ability from (Hf;ll(Ei,Ei)) X (Hf;ll(Ei,Ei)) to (B, &) % (B &). The
marginals of (¥ := ¢, @ -+ @ ¢, are ((WF and ¢P*. Setting

P (", dy*) == pi(z1, dyr) @ - © pr (g, dypla™ 1, y" ),
we exactly have ¢* = v(MF @ pF and pFr(W* = (D% By definition, we say that
the transition probability p(x,dy) := p"™(z™,dy") is a well-linked sequence of
the transition probabilities py, 1 < k < n. One has p € T (¢, ).

To get Theorem 1.2, we define p* as a well-linked sequence of optimal tran-
sition probabilities p (-, |z* 1, y* 1) e T (Cél)(-\xk’l), ]iz)(-|y’“’1)) defined as
in (20). And we show that

//an (/ ﬂwéyipf(%dyilyi‘l,xi‘1)> p*(z,dy)d¢™ (dz)
=1

1 ¢ 1 dc®
< —Ent — Ent .
T a n“( du>+6 n”(du)

The left hand-side of this inequality is equal to

Z// Ca (/ ]lIlipr:(x’mdyAxl_l?y1_1)> Cz(l)(d$1|xz_1)<‘*z—1(dmz—l’dyz_l)
i=1

Lemma 2.1 ensures that

/ o ( / nmayip;‘(wi,dwl,y“>> ¢ (dayfzt)

1 dC(l)('|$i 1) 1 dC(z)(‘ \Z/i 1)
< —-Ent, (| ———— |+ —-—Ent,, | ——= | .
[0} tﬂl ( sz' ) ﬁ t'ul < dlii )

The proof of Theorem 1.2 is ended by integrating this inequality with respect to
the coupling measure ¢(**~! € M (C(l)ifl, C(Q)i’l), and then using the classical
tensorization property of entropy

(1) n Q) (. pi—
Entu (dC 1 ) — E /Ent“i (dCléJII)) C(l)iil(d‘riil),
’ i=1 7

dp
2.2 A dimension-free functional inequality.

Theorem 1.1 is obtained by induction over the dimension n using a simple
contraction argument given at the end of this section.
For n = 1, according to (10), one has for every z in E,

Rof() = fa) = sup sup | [(f(w)—f(y))(l—k)(y)

0<A<1 v

10



where v << p and v({z}) = 0. Since d}, denotes the Legendre transform of d,,
it follows

JmﬂMZf@%i/%dﬂ@—ﬂwhmmw

Therefore, Theorem 1.1 implies the next statement.

Lemma 2.2 For every bounded measurable function f,

1 1
* o 11—«
(/ eaf(w)—afda([f(w)—f(y)]+)du(y)dﬂ(w)) (/ e—(l—a)fdu> <1 ()

Actually, for n = 1, Theorem 1.1 is equivalent to this Lemma. To show it, we
need the following observation.

Lemma 2.3 Let f be a bounded measurable function on E. There exists a
measurable function f on E satisfying f(x) < f(x) and

z) < f(=) d ([f (=) = f(y)]+) du(y), foreveryz € E.

To simplify the notations, let |||,y € R denote the LY(u)-norm. For a given
function f, Lemma 2.3 ensures that there exists f for which

e, < ([ exp [af@) - [ a2 (7@) = Fl) dut) | aute))

Then, Lemma 2.2 yields ||ef«f |a < HefH 5 with 8 =1 — «, and the proof of
Theorem 1.1 for n = 1 is finished since f < f.

1
o

Proof of Lemma 2.2. Let A denote the Lebesgue measure on [0,1]. Let h be
the increasing repartition function of f under u: h(t) := p({z € E, f(x) < t}),
t € R. Let g denote the inverse repartition function: g(u) := inf{¢, h(t) >
u},u € [0,1]. Then, one has

pze B, f(x) <t}) =A({uec[0,1],9(u) <t}), teR,

and therefore, (21) is equivalent to

1 o 1 T
(/ ag(t) @ [‘0 d* g(t) (S))det) </ e(la)g(w)dw> E é ]_7 (22)
0 0

where ¢ is an increasing right-continuous function.

We observe that d? is the best non-negative convex function with d%(0) = 0,
satisfying such an inequality. Applying it to the test functions g, (t) := all(,,1(t)
with @ > 0 and 0 < u < 1, we get

1

+(1— u)e““*“dl(@} . [u F(1—we a7 <1 o<u<l

When u — 0, this provides a lower bound for d%(a) which gives exactly its
definition (12). The cost function d, is therefore optimal.

11



By an elementary approximation argument, we only need to prove (22) for
every increasing simple function g with a finite number of values. This is ob-
tained by induction over the number of values of the simple function g. Clearly
(22) holds for constant functions g since d(0) = 0. Then, we apply the next
induction step.

Proposition 2.4 Let g be an increasing simple function on [0,1] that reach
its maximum value on (v,1]. For u € (v,1] and a > 0 let g,(t) = all, (1),
t €10,1]. Then, g satisfies (22) implies g + g., satisfies (22).

The proof of this Proposition is given in Appendix. O

Proof of Lemma 2.3. It suffices to find a transition probability p* satisfying (9)
and a function f, f < f, for which

/f(y)p*(x,dy) + /da (ﬂx#y%) d,u(y)
= fa) - / a (F(@) — Fw)ls) du(y)  (23)

Since dy, is convex, the function ¢, : v — [(d%) ([u— f(y)]+)du(y), is
increasing. By differentiating, one has (d%) (h) = el=®h —e=eh b > 0. If
u — +00, then 1, (u) — 400, and if u — —oo then ¥, (u) — 0. Therefore, by
continuity of v, there exists a real number fy such that

@@y W= 1)) duto) = 1.

_ Let A:={z € E, f(x) < fo}. We define f by f(z) := f(z) if 2 € A, and
f(x) := fo otherwise. Clearly, one has f < f. For a given 2 € E, we define A\(x)
by

1 - A) = / (@) (F(@) — F)ls) duly).

Since (d¥)’ is increasing and (d%)’(0) = 0, if x € A then
0<1-A@) = [(@) (@) - F))) dulw) < 1.

and if z ¢ A then 1—-X(x) = [(d%) ([fo — f(y)]+) du(y) = 1. Define p*(z, dy) =
M), (dy) + (1 — A(z))v,(dy), where v, is the probability measure with density

(d2) (If (=) — FW))+)
1= A(z) '

v
dp

One has v, ({z}) = 0.
With these definitions, the left hand-side of (23) is

(y) =

e ) - do (1= 30 2 )t

= 50) - [ [0) = F)@) (@) - Fw)l)
o (@2 (1) — F)L))] duty).

s - | [<f<m> ~ Fw)(1 - A@))
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If x € A, this expression is

f(x)*/ [(F(2) = F))(ds) ([f () = F()l+) — da ((d2)" ([f(2) = F(»)]+))] duly),

that is f(z) — [dZ ([f(z) — f(¥)]+) du(y). Next, if z ¢ A, the same equality
holds: from the definition of f,, one has

f@) — [0~ 1)) (@) - ) duty)
= (@) - f(@) / (@) (Lo — FW)y) du(y)
T / F)d) (@) — F)ls) du(y)

O

Let us now present the contractivity argument that extends Theorem 1.1 to

any dimension n. We sketch the induction step from n = 1 to n = 2. Then it
suffices to repeat the same argument. Let y = pu1 ® pue and F = Fy X Fs.

We want to show that HeRafHa < Hef’LB , with 8 = 1 — . From definition

(11), one has for every (z1,22) € E,

R, f(x1,22) = infinf {/ {/f(y1,y2)p2($27dy2|y1)

P1 P2

d
+/da (/ oytys ﬁ(fﬁzayﬂyl)dw(yz))] p1(@1|dyr)

+/da </ ]lml;éyljf;(xl,yl)) d#l(yl)}~

We easily check that R, f = RVR®? f, with for g : F; = R, i = 1,2,

RWg(x;) := igif{/g(yi)pi(xi,dyi) +/da (/ ﬂxi;ayifll:t(xi,yi)) dm(yi)}~

Let ||| ;), denotes the L (x;)-norm, v € R. One has

HeRafH _ H HeRmRmf
@ (1)

o(2)

Applying Theorem 1.1 with the measure p; and the function 1 — R(z)f(xl, Z2),
we get

1
B

o]l < =|| [
a(2) -5(2)

(2)
=]

—-B(1)

13



For v < 0, the function h — ||k||,, is concave on the set of positive measurable
functions h (see [H-L-P]). Therefore, by Jensen it follows that

1
o (Jlm ] ) = [l
o ~5(2)

Then, we apply Theorem 1.1 again with the measure us and the function xo —
Flan,2), we et [|e™ |, < [l |, = eIy

et

a@ll_gq)

-8

3 Deviation inequalities for suprema of sums of
independent random variables.

Let F be a countable set and let (X1 ,)ier,. .., (Xnt)ier be n independent
processes. In this part, we state deviations inequalities for the random variable

n
Z = sup E Xt
teF =

It is enough to consider a finite set F = {1,..., N}. The results settled in this
section then extend to any countable set by monotone convergence. One has Z =

f(X), where X = (X1t)er, .-, (Xnt)ter) and f(z) = sup;<pcn Dlic1 Tits
forx = (z1,...,2,) € (RN)n with z; = (2i+)1<t<n. For a given z in (RN)H, if

7(z) := inf {t eF, flx)= me},

then f(x) = Y7 T r(x)- Since f(y) > D01 Yir(z)> T, Y € (RN)n, we notice
that

f($> - f(y) < Z(xz,'r(z) - yz,r(m))ﬂzL¢%
i=1

The condition (18) holds setting hi(x,%:) = [Tir(z) — Vira))+ If all zi4’s
and y;’s are non-negative, then the condition (16) holds with h;(x) = 2; ;(4)-
These observations are the key point to reach deviation results for Z from (3)
and Theorem 1.1 using the estimates (17) and (19).

We first consider the sums of non-negative random variables. Applying (4)
and (5) to Af, A > 0, and using the estimate (17), we get the following basic
results.

Theorem 3.1 Assume X;; > 0 for every i and t, then for every A >0,

logE | [J(1 4+ AXi-(x)) | < AE[Z], (24)
i=1
and
log E [exp(=A\Z)] < Z]E [exp(—)\Xin(X)) — 1} . (25)
i=1

14



As first application of this Theorem, we recover the well-known bound for
the Laplace transform of Z when the X, ;’s belongs to [0,1] (see [Mas]).

Corollary 3.2 Assume X, € [0,1] for every i and t, then for every A € R
log E [exp(AZ)] < E[Z](e* —1).

Proof . For A < 0, the above inequality is an obvious consequence of (25). Next,
for A > 0, by convexity of the exponential function, we observe that

n

log E [exp(AZ)] < logE [[J(1+ (e* = )X -(x))| -

i=1

Then we apply inequality (24). O
For any r € (1, 2], define

n n
2, = ZXZ-T’T(X) < supZX[’t.
i—1 ter i

When the X;+’s are not upper-bounded, Theorem 3.1 induces the following new
results.

Corollary 3.3 IfE[2,] < oo for some r € (1,2], then one has: for any u > 0,

lzzmias? (g 1)] <om |- (seg) | e

and

r—1 u” 1/(r-1)
PlZ <E[Z] —u| < —— | == . 2
2 <Blz) - < e |- () (27)
Proof . Since e +x — 1 < (z"/r) for x > 0 and r € (1, 2], the inequality (25)
implies: for any A > 0,

T

log E fexp(~\(Z ~ E[Z)))] < *E[S,].

The inequality (27) then follows from Chebyshev inequality by optimizing over
all A > 0.

From the inequality (24), using x —log(1+z) < (2" /r), z > 0, r € (1,2], we
also get: for any A > 0,

logE [exp </\Z — )\27.) < AE[Z].
r

Therefore, by Chebyshev inequality, for any v > 0,

r—1 ’U_
X+ X < exp(—v).

]P’[ZZ]E[ZH—

When ¥, is close to its mean E[3,], the optimal choice for A is given by rv =
(r — 1)A"E[2,]. Then, the proof of (26) is complete by taking \"~! = u/E[Z,].
O

15



The non-negativity of the X;;’s is a strong restriction that can be relaxed
with Theorem 1.1. Using the estimate (19), it gives: for any o € (0,1), 8 = 1—aq,

E [ aSan] T E[e2]F <1, A0, (28)

with
So 1= Zn:]E [d?; (A[Xi,T(X) - Xz{,T(X)]-'r) ‘ X} ;
=1

where (X];)ier is an independent copy of X; = (Xi)ier and E[-]|X] is the

conditional expectation given X = (Xi,...,X,). By Chebychev inequality, it
follows that for every m € R, v > 0,

Soz,)\
A

11—«
P [Z >m+ % + ] P[Z <m]* < e (lma)v, (29)

Consequently, it suffices to control the fluctuation of th , to derive deviation
bounds for Z. For r € (1,2], we define

V= ;E [[Xi,r(X) - X;T(X)]i‘ X} '

. . 2 . .
By a Taylor expansion, S is of order %‘/2 as A — 0. V5 is a variance factor,
one has

Vo<V := SupZE [[Xi,t - X;,t]2+| Xiﬁt} :
teF =

When « or 8 goes to zero, (28) gives the following main estimates for the
Laplace transform of Z.

Theorem 3.4 For any A > 0, one has
log E [exp(AZ — $1.,)] < AE[Z], (30)
and
log E [exp(—~A(Z — E[2]))] < E[So.) (31)
For any random variable Y, define the v1-norm by
[Yl[yy := inf {¢ > O] [exp(]Y]/c)] < 2}.

Corollary 3.5 1. IfE[V,] < oo for some r € (1,2], then for any u > 0,

P [Z > E[Z] —&—u—i—; (E‘&] - 1)] < exp l_?“;l (11%;])1/(”)] )

2. If C; := H[X”(X) - X! T(X)]Jer < oo for every i, then for any u > 0,
1

T 4C2%e 1 + Mu
with C? := """ | C? and M := max(C;).

PIZ < ElZ] -] < oxp | “] , (33)

16



Proof . The inequality (32) is a consequence of (30) using dj (z) < (z"/r), z > 0,
r € (1,2], and then following the proof of (26).
Let Y; := [ X r(2) — X;T(X)]_H for any A > 0,

BN = [ O ) PI/C > ol du

If 0 < X\ < 1/C;, then one has

eCiru 1 (1 —CiA)log(1l — CiN) CiA
_ Ci/\ i i < —1 i ’
ig% ev P Ci\ =€ 1-C;\

and therefore

2
E[d}(\Y)] < e~'C2—2

+oo
u B > — —1 2
ll_CiAA e PY;/C; > u]l du=e "C,

Consequently, for any 0 < A < 1/M,

)\2

E <e1C? .
[Soal < e C T3

Finally, (33) follows using (31), applying Chebychev inequality and then opti-
mizing over all 0 < A < 1/M. O

The main interest of (29) and Corollary 3.5 is that no boundedness condition
are needed on the X;,’s. If they are bounded, the results can be refined as
follows.

Corollary 3.6 1. Assume that X;3 < M,;, and E [(Mlt in,t)z] < 1, for
every i and t, then for any u > 0,

P(Z>E[Z]+u) < exp|-— 5 (1 +EU<E)> log (1 + IEELV]) , (34)

U

V]
< e |
= OPITOEV] 2u]’

d*¥ (log (1
with e(u) = 081+ W)
log (1 4 u)
2. Assume that m;+ < X; ¢+ < M, , with M;y —m;; =1 for every i and t,
then for any u > 0,

Pz <EZl—w) < ow|-EM (g )] (35)
< oo mpr)

with do(u) := (1 + u)log(1 + u) — u.

Remarks:

1. These results extend the well-known Bennett’s or Bernstein’s inequalities
(see [Ben], [Bern]). These inequalities apply under the assumption of Theorem

17



3.6 when F = {t0}7 Z = Z?:l Xi,to; and Mi g é Xi,tg S Mi,toa with Mi,tg —
m;, = 1. The Bennett’s inequality asserts

P(Z > E[Z] + u) < exp | —Var(Z)dy (Va:(Z)) , u >0,

or equivalently

P(Z <E[Z] —u) < exp | —Var(Z)dy (Va:(Z)>— , u > 0.

If F = {to} then E[V] = E[V2] = Var(Z). Therefore, (35) exactly recover the
above Bennett inequality. From the Cramér-Chernoff large deviation theorem,
we know that dy is an optimal rate function, reached when Z approximates
a Poisson distribution (for more details, see [Mas]). In the right-hand side
deviation inequality (34), since e(u) — 0 as u — 0, the rate of deviation is
optimal in the moderate deviations bandwidth, and since e(u) — 1 as u — 400,
it is suboptimal in the large deviations bandwidth.

2. If myy < X, < My with M;, —m;; = 1, then by using the classical
symmetrization and contraction argument of Ledoux and Talagrand (see [L-T]
Lemma 6.3 and Theorem 4.12, see also Lemma 14 [Mas]), one can show that

n

> (Xix —E[Xi4)

=1

E[V] < o®+16E |sup

teF

] ; (36)

with 02 := sup,cr > i, Var(X;,). Therefore E[V] is often close to the maximal

variance o2.

3. If the X, ’s are moreover centered and Z = sup,c 7 |> i, X; |, then (36)
yields E[V] < 02 + 16 E[Z]. Therefore, the results of Corollary 3.6 are of the
same nature as the recent results of Klein and Rio [K-R]. A basic difference is
that we do not assume that the X, ;’s are centered. Moreover the proofs to reach
deviation bounds from Theorem 1.1 are simple, especially for the left-hand side
deviations, as regard to the entropy method used in [K-R].

4. We observe that other left-hand side deviation’s bounds for centered X; ;s
in (—o0, 1] were given by Klein [Kle] under additional moment conditions.

Proof of Corollary 3.6. If m;; < X;: < M;; with M;; — m;; = 1, then
Sg’)\ < df(A)Va, A > 0. Consequently (31) gives

log E [exp(~A(Z — E[2]))] < dj(ME [Va].

Then (35) follows by Chebyshev inequality and optimizing over all A > 0. Fi-
nally, it is well-known that (35) implies the Bernstein inequality.

For the right-hand side deviations, by Holder inequality and using (30), we
get forany ¢ >1and 1/p+1/¢=1

E[exp (MZ — E[2]))] < E [exp (55@)] Ao (37)

Define gf/\ ‘= SUP;c 2?21 Yi:(N) withY; 4 (A) :=E [d’{ ()\[Xi’t — Xi/}t]+) | Xi,t} .
We observe that the function = — di (/) is concave, therefore since X;; < M; ,
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and E [(M” — Xi’t)ﬂ < 1, by Jensen inequality,
Yie(A) < df (N[ Mie — X{4ll2) < di(N),

where || .||z denotes the L?-norm. Consequently, applying Corollary 3.2 with
ST x» by homogeneity, we obtain

2d; (Ag)
Do D=9 ea 1 -1 52

log E =S <logE =S <—E |§ .

og [exp (q 17/\q):| S log |:€Xp (q 1,)\q>:| = d:{()\q) |: 17/\Q:|

Then from (37) and since gf)\ < A;V, we get

log E [exp (\(Z — E[Z]))] < ¢(¢ — 1) EV]. (38)

For each A > 0, let ¢(\) denote the largest ¢ > 1 so that H(q) = 0 with
H(q) = di(Ag) = q(g = DA.

Such a g(\) exists since H(1) > 0 and H(q) — —o0 as ¢ — 400. For any A > 0,
(38) ensures that

log E [exp (\(Z — E[Z]))] <

| >

(dﬂm - 1) E[V],
and by Chebyshev inequality

P(Z > E[Z] + u) < exp {—m + % (eqw - 1) E[V]} w>0.  (39)
One has Ag(\)(g(A) — 1) = di(Ag(N)) < g(N\)2d5(N), and therefore

AN (1 _ Ti”) <\

Since — 0, as A — 0, it follows that Ag(\) — 0 as A — 0, and we easily
check that Ag(\) — +00 as A — +00. Consequently, for any u > 0 there exists
Ay such that

(N

u= (eq(’\“)’\“ — 1) E[V].

Hence, g(Ay)Ay, = log (1 + ﬁ), and H(g(A\,)) =0 gives ¢(A\,) = 1+¢ (ﬁ)
The proof of (34) ends by choosing A = A, in (39). Then the Bernstein inequality
easily follows. O

4 The one-dimensional bin packing problem.

The one-dimensional bin-packing problem can be described as follows: given a
finite collection of independent random weights X7, -+, X,, and a collection of
identical bins with capacity C (which exceeds the largest of the weights), what
is the minimum number of bins N = N(X) (X = {X;,1 < i < n}) into which
the weights can be placed without exceeding the bin capacity C. To simplify
we choose C =1sothat 0 < X; <1,1<i<n.
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Theorem 4.1 Denote X2 = Dy X2. Then for every u > 0

P(N >E[N] + 1 4 u) < exp {— 1(51143{;2‘2}+3@J : (40)
and
w2
P(N <E[N]—1-—u) <exp {— 4E[E2J . (41)
Observe that for v > n— 1, P(|JN — E[N]| > 1+ u) = 0 and one early result

[R-T], using martingales approach, is

2u?
P(|N —E[N]| > u) <2exp |——|, u>0.
n

Therefore, the variance factor E[X?] improves the factor n for u < E[X?]. Ob-
viously, the sum of the variance of the X;’s is expected instead of E[¥2]. Up
to constants, our result is Talagrand’s Theorem 6.1 [Tall], where the mean is
replaced by a median of N. Talagrand’s inequality with the median is a con-
sequence of (15). Lugosi [Lug] also obtains these inequalities from the entropy
method, by first recovering some Talagrand’s convex distance inequalities (see

[Lug]).
Proof . We first show that for any = {z1,...,2x}, y = {y1,-- -, Yn}s

N(z) = N(y) S1+2> 2l 4,

i=1

To see this, observe that N(z) < N(y)+N({z;, z; # yi}), then that N ({z;, x; #

yi}) <1+ 230 21,4, | (where | .| denotes the integer part), since among
L2Z 1 1,2y, | bins, at least one of them is half-empty. Then, we deduce
that for any = = {z1,...,2,}, A >0,

Qo (AN)(z) > AN(z +)\+Z (2Azi) = AN (2) + A +2)2 ) a7,

i=1
Following the lines of the proof of (27), we get (41). For the proof of (40),
inequality (3) for @ = 1 combined with Cauchy-Schwarz inequality implies

Efexp (AN —E[N]) = \)] <E[exp2,,]%,  A>0,
where 37 , := Y71 ¢f(AX;). By convexity and since 0 < X; <1,
E[expcj(4AX;)] < 1+ E[X7] (e* —4x — 1) < exp (E [X7] d5(4N)) .
Then (40) follows by Chebyshev inequality. O

5 Appendix

Proof of Proposition 2.4. To simplify the notations, d* denotes d},. For every
measurable increasing functions g on [0, 1], the left-hand side of (22) is

1 1 <
[/ (/ 6—B(g(w)—g(t))dw) ’ e I 4" (g(t)—g(s))ds gy
0 0
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According to Proposition 2.4, we assume that (22) holds for a given simple
increasing function g and we want to show that (22) still holds for g + g,,, that
ist M(u,a) + N(u,a) <1, with

a

M(U,a) = /u (/u efﬂ(g(w)fg(t))dw + (1 _ u)eﬂae,@(g(l)g(t))> B
0 0
e ¢ Is d*(g(t)*g(s))dsdt,

and

1 u 3
N(u,a) := / </ e Ao =9() gy ePa 4 (1 — u)) T ema ki 4" a0 -ale rardsgy,
[ 0

We set A(u) == [; eP9M=9)ds and B(u) = [e *9M=9())ds. Since g is
increasing, and since « and [ are non-negative, we observe that A(u) > u >
B(u) > 0. One has

M(u,a) = /“ (A(w) + (1 — upePa)# ¢malo)=o(0) e [§ d" (90 ~g(s))s gy
0

and N(u,a) = (1 —u) (A(u)eﬁa +(1- u))% e~ fo" d(9(1)=g(s)+a)ds
Since (22) holds with the function g, one has M (u, 0) + N(u,0) < 1. There-
fore, in order to get Proposition 2.4, it suffices to show that

(M(u,a) + N(u,a)) — (M(u,0) + N(u,0)) <0. (42)

The monoticity properties of the functions g and d* ensure that for 0 < ¢ < wu,

[0 gonas < [ a o) - gt
Consequently, since § and a are non-negative, one has
M (u,a) — M(u,0)
< /u [(A@w) + (1 = we™ ) F = (A(w) + (1 - )]
' e~ a()—g(®) e [5" d" (9(1)—g(s))ds 34

= (40w + (1= we™)F — (A(w) + (1= w) F] Bluje e i "o -atnds
(43)

Ba __ 1 1 — e—aa
< 3 + B(U)L. Observing that
a

Let A(u,a) := A(u)

| a6~ gs)+ aas = [ (1) ~ g(s))ds + w0,
0 0
and using (43), the proof of (42) is reduced to show that

B(u) (A(u) + (1 — w)e ) ¥ — B(u) (A(u) + (1 —u))¥

(1= ) (A(w)e + (1= w)) ¥ 70800 — (1) (A(w) + (1 - ) ¥ <0,
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or equivalently after some rearrangements,

Q=

(4G + (1= w)e ™) ¥ (Blu) + (1 - w)ereedl)

< (A(u) + (1 —w)? (B(u) + (1 - u))

Q=

1
Setting ¢(a) := (A(u) + (1 — u)e*ﬁ“)% (B(u) + (1 — u)evaoAwa)) = this in-
equality is exactly ¥ (a) < 9(0). Therefore the proof of Proposition 2.4 is com-
plete if ¥ is a non-decreasing function.
By differentiating, we get for every x > 0,

w/(m) _(1 _ u)e—ﬁw (1 _ U) (]_ _ A(u)eﬂm + B(u)efaa:) 6ocafaA(u,a)

Y(x) (1 —u)e=Fr + A(u) B(u) + (1 — u)eva—ab(w)
(]_ _ U)QS(;U)@_O‘A(“’I)
(1 —w)eP* + A(u)) (B(u) + (1 — u)era—adw)’

p(z) = —e P (B(u) +(1- u)eaa*o‘A(“"’”)> A (we)
+ (L= w)e P + A(u)) (1 — A(uw)e’™ + B(u)e ") e
= —B(u)e P20 4 Bu) (1 —u)e ™ + A(u))
+A(u)e TP (ue=FT — A(u))
Since A(u,x) > 0 for every u > 0 and = > 0, it follows: for every z > 0,
¢p(x) < —DB(u) (ue " — A(u)) + A(u)elath)e (ue " — A(u))
= (A(u)e(‘”'ﬁ)‘” - B(u)) (ue 7" — A(u)).
Observing that for every z > 0,
A(w)et0* — B(u) > A(u) — B(u) > 0,

and
ue P — A(u) <u— A(u) <0,

we conclude that ¢(z) < 0 and therefore ¢'(x) < 0 for every x > 0. This ends
the proof of Proposition 2.4 O
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