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Comparison of numerical methods for the assessment
of production availability of a hybrid system

Robert Eymard, Sophie Mercier

Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS - UMR 8050), Université de Marne-la-Vallée, Cité Descartes,

5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallée Cedex 2, France
A finite volume (FV) scheme is proposed in order to compute different probabilistic measures for systems from dynamic reliability
field. The FV scheme is tested on a small but realistic benchmark case stemmed from gas industry [Labeau PE, Dutuit Y. Fiabilité 
dynamique et disponibilité de production: un cas illustratif. Proceedings of lm 14, Bourges, France, vol. 2. 2004. p. 431–6 [in French]]. 
The point is to compute the production availability and the annual frequency of loss of nominal production (among other quantities) for
a system of gas production. The results of the FV method are compared to those obtained by Monte Carlo simulation, showing the
accuracy of the method.
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1. Introduction

The assessment of production availability, namely the
probabilistic measure of the production regularity of a
system, is a major concern in reliability studies. A recent
benchmark [1] has been proposed, in order to compare
different numerical methods allowing for such an evalua-
tion in case of a small but realistic industrial situation.
Such a benchmark has already been studied in [2,3]. The
problem is to assess the availability, for a system of gas
production, to deliver the nominal production it is meant
to do, as well as other quantities, such as the annual mean
number of loss of nominal production. The gas production
device is what is called a hybrid system, in the sense that its
time evolution is governed by two different types of
dynamics: a discrete dynamic, which is related to the
existence of discrete events such as failures of components
and a continuous dynamic, linked to the evolution of a
continuous characteristic, here the liquid level in a tank.
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Such hybrid systems are typical of dynamic reliability or
dynamic PSA, see [4] for instance. They may be modelled
with stochastic Petri nets (see [5] with references therein) or
piecewise deterministic Markov processes (PDMP), see [6]
or [2]. Their numerical assessment is frequently done
through Monte Carlo (MC) simulations, see [7] or [8] with
references therein. It may also be done through cell to cell
mapping techniques (CCMT) where the evolution of the
system is approximated by a Markov chain with finite state
space, see [9,10] e.g. Recently, it has been shown that finite
volume (FV) methods could also be used within the same
context [11]. Both methods (CCMT and FV) have already
proved their capacity to be competitive with MC simula-
tions from a computing time point of view, at least in case
of small systems, see [6,10,12]. Though emerging from
different scientific communities, FV methods and contin-
uous-time CCMT (as presented in [10]) actually appear as
very near: indeed, both methods start from a system of
integro-differential equations fulfilled by the marginal
distributions of the involved process; dividing the state
space into cells, such equations are then discretized both in
time and in space; such discretized equations provide what
is called a FV scheme in [11] and an approximating



Table 1

Failure rates for units U1 and U2

Case l1 ðh�1Þ l2 ðh�1Þ l01 ðh
�1
Þ l02 ðh

�1
Þ

1 1=20 000 1=4000 1=20 000 ¼ l1 1=4000 ¼ l2
2 1=2000 1=400 1=2000 ¼ l1 1=400 ¼ l2
3 1=2000 1=400 1=200 1=40
4 1=2000 1=400 1=200 1=40
Markov chain derived from what is called CCMT in [10].
Note, however, that the integro-differential equation used
in [10] is the classical Chapman–Kolmogorov equation (as
in [11]) whereas we use here another system of equations.

The aim of this paper is twofold. On one hand, we
present an extension of the FV method from [11] which
allows for handling such problems as the benchmark. On
the other hand, in order to validate the results of the FV
method, we provide confidence bands for MC simulation
using a regenerative property of the system.

The paper is therefore organized as follows. We first
recall the problem to be studied in Section 2 and we present
the numerical results provided by regenerative Monte
Carlo (RMC) simulation and the FV method. A mathe-
matical formulation of the benchmark problem and of the
different probabilistic quantities to assess is then given in
Section 3 in term of a PDMP. We next recall in Section 4
the mathematical background which is needed to estimate
the accuracy of RMC simulations. The FV scheme, and
some of its basic properties, are presented in Section 5.
Note that an important mathematical work remains to be
done in order to show the convergence of the scheme
towards the marginal distribution of the PDMP. Finally,
we draw some future research lines in Section 6.

2. The benchmark problem and the computational results

2.1. Description of the benchmark

For the sake of completeness, we recall here the
benchmark proposed in [1] and studied in [2,3]. A gas
production device is composed of two parallel production
units, denoted by U1 and U2, which can be up or down.
Maximal production rates for the two units, respectively,
are f1;max ¼ 3200m3=h and f2;max ¼ 5500m3=h. The de-
vice is required to produce gas at the nominal rate fnom ¼

7500m3=h which cannot be produced by a single unit.
When both units are up, the production is then dispatched
between the two of them. In order to prevent production to
be under the nominal level, a reservoir R is used, with
maximal capacity R ¼ 220 000m3: when one or two units
are down, the production is completed by taking in R the
required complementary production as long as R is not
empty. When one unit is down, the other one produces at
its maximum level. The production rate then depends on
the current volume in the reservoir: as long as R is not
empty, the production is nominal. When R comes to be
empty with one unit down, the production is reduced to the
maximum rate of the up unit. Similarly, when both units
are down, the production is nominal as long as R is non-
empty and is zero after. Different cases are envisioned for
the re-filling of the reservoir, which are described below.

All changes of rates of production for the units and of
refilling-emptying for the reservoir are assumed to be
instantaneous. Failure rates for the units are constant.
Recall that for a constant failure rate l, the time to failure
for a unit is exponentially distributed with the following
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probability density function (p.d.f.):

f lðtÞ ¼ l expð�ltÞ for t40.

The numerical values for the failure rates differ accord-
ing to the following cases:

Case 1: We first consider that the reservoir instanta-
neously recovers its maximal capacity R as soon as both
units are up, namely at the end of repair of one unit, the
other one being in up state. The respective failure rates are
l1 ¼ 1=20 000 h�1 and l2 ¼ 1=4000 h�1.

Case 2: We keep the same assumption as in case 1 but the
failure rates are multiplied by 10.

Case 3: We keep the same assumption as in case 1 but the
failure rates now depend on the production level: when a
unit Ui produces gas at its nominal level, namely when
both unit are up (and consequently R full due to the
assumption), its failure rate is the same li as in case 2.
When a unit Ui produces gas at its maximum level, namely
when the other unit is down, the failure rates are multiplied
by 10 again (denoted by l0i).

Case 4: We finally remove the assumption on R
instantaneously full as soon as both units are up. Also,
we keep the assumption of failure rates depending on the
production level, with the same numerical values as in
case 3: when both units are up, if R is full, both units
produce gas at their nominal level with failure rates l1 and
l2. If R is not full, both units are required to produce at
their maximum level in order to refill R with the
complementary production (rate for refilling R:
f1;max þ f2;max � fnom). The failure rates then are l01 and
l02. When unit Ui is up with the other unit down, its failure
rate is l0i too.
We sum up the different failure rates in Table 1, letting

l0i ¼ li in the first two cases so that the same model may be
used in the following for the first three cases.
Repair times are log-normally distributed, with p.d.f.

f ðt̄i ;siÞ
ðtÞ:

f ðt̄i ;siÞ
ðtÞ ¼

1

tsi

ffiffiffiffiffiffi
2p
p exp �

1

2

lnðt=t̄iÞ

si

� �2
 !

for t40,

with the same following parameters in the four cases (note
the time dimension in hours) (Table 2).
The corresponding hazard rates are then given by

miðtÞ ¼ f ðt̄i ;siÞ
ðtÞ

Z þ1
t

f ðt̄i ;siÞ
ðsÞds:

�
(1)



Table 2

Parameters for the p.d.f. f ðt̄i ;si Þ
of the repair times

Unit t̄i (h) si

U1 expð0:23Þ ’ 1:26 2.25

U2 expð0:50Þ ’ 1:65 1.83

Table 3

Asymptotic availability A1

Case RMC RMC (95%) FV

1 0.998 985 2 ½0:998 979 0; 0:998 991 5� 0.999 006 6

d ¼ 3:4s
2 0.989 898 6 ½0:989 819 5; 0:989 977 7� 0.989 817 0

d ¼ �1s
3 0.988 450 1 ½0:988 395 5; 0:988 504 8� 0.988 474 6

d ¼ 0:5s
4 0.971 637 3 ½0:971 281 8; 0:971 992 9� 0.972 897 5

d ¼ 3:5s

The quantities of interest for this benchmark are the
following:
�

Table 4

Asymptotic production availability PA1
the asymptotic availability ðA1Þ, which corresponds to
the asymptotic ratio of time spent in nominal produc-
tion,
Case RMC RMC (95%) FV
�
1 0.999 523 2 ½0:999 520 9; 0:999 525 5� 0.999 521 7
the asymptotic production availability ðPA1Þ, which
corresponds to the asymptotic ratio between the real
and the nominal productions,
d ¼ �0:6s

�
 2 0.995 221 5 ½0:995 194 6; 0:995 248 4� 0.995 052 0

d ¼ �6s
the asymptotic annual number (or stationary frequency)
of total loss of production ðf TLPÞ,
3 0.994 034 2 ½0:994 001 0; 0:994 058 4� 0.993 930 0
�

d ¼ �3:6s

4 0.985 324 2 ½0:985 175 4; 0:985 472 9� 0.985 703 1

d ¼ 2:5s

Table 5

Stationary frequency of total loss of production f TLP (in year�1)

Case RMC RMC (95%) FV

1 0.001 151 ½0:001 132; 0:001 171� 0.001 112 7

d ¼ �2s
2 0.112 95 ½0:113 67; 0:116 92� 0.111 97

d ¼ �0:25s
3 1.214 3 ½1:205 3; 1:223 4� 1.182 6

d ¼ �3:5s
4 2.933 1 ½2:871 0; 2:995 3� 2.736 5

d ¼ �3s

Table 6

Stationary frequency of loss of nominal production f LNP (in year�1)

Case RMC RMC (95%) FV

1 0.076 40 ½0:076 27; 0:076 52� 0.075 09

d ¼ �11s
2 0.752 6 ½0:751 4; 0:753 8� 0.740 17

d ¼ �10s
3 0.829 1 ½0:828 2; 0:830 0� 0.797 61

d ¼ �35s
4 3.498 5 ½3:488 7; 3:508 2� 3.309 8

d ¼ �19s
the asymptotic annual number (or stationary frequency)
of loss of nominal production ðf LNPÞ.

2.2. Computational results

For each of the four envisioned cases, successive
entrances in the perfect working state (where both units
are up and the reservoir is full) appear as renewal times so
that the system appears as a regenerative one. This allows
us to compute the different quantities of interest with what
we call ‘‘regenerative’’ Monte Carlo (RMC) simulations,
where a sample is a cycle of the regenerative associated
process (see Section 4 for details). We simulate n i.i.d.
cycles in each case, with n ¼ 5� 107 in cases 1 and 2, n ¼

108 in case 3 and n ¼ 107 in case 4. This provides us with
95% confidence bands for the different numerical results
and allows us to test the results of the FV method,
developed in Section 5. For each of the computational
results, we have expressed the difference d between the
values given by the FV method with the value given by the
RMC method, in the unit s, equal to half the width of the
confidence band.

We first give in Table 3 the results for the asymptotic
availability A1.

We observe that the results given by the FV method are
quite accurate. In Table 4, we give the asymptotic
production availability PA1, and the same observation
holds.

We now come to the results for the asymptotic annual
numbers (or stationary frequency) of total loss of produc-
tion and of nominal production. In finite horizon, such
quantities are not reachable with the FV scheme. However,
other quantities are accessible, which coincide with those
goal quantities in long-time run. This allows to assess such
stationary frequencies (see Section 3 for details).

The stationary frequency of total loss of production f TLP

is provided in Table 5.
3

The accuracy of the FV scheme is here again quite
acceptable.
We finally give the stationary frequency of loss of

nominal production f LNP in Table 6.



Table 7

Values of vðZÞ in cases 1–3

Z ð1; 1Þ ð1; 0Þ ð0; 1Þ ð0; 0Þ
The accuracy of the FV scheme is here not so good as
for the previous computational results, but remains
acceptable.
vðZÞ ðm3 h�1Þ 0 �4300 �2000 �7500

Table 8

Values of F ðZ;zÞðxÞ in cases 1–3

Znz ð1; 1Þ ð1; 0Þ ð0; 1Þ ð0; 0Þ

ð1; 1Þ ðx1; 0;RÞ ð0; x2;RÞ
ð1; 0Þ ðx1; 0;RÞ ð0;x2; x3Þ

ð0; 1Þ ð0;x2;RÞ ðx1; 0; x3Þ

ð0; 0Þ ð0; x2;x3Þ ðx1; 0; x3Þ

Table 9

Values of aðZ;zÞðxÞ in cases 1–3

Znz ð1; 1Þ ð1; 0Þ ð0; 1Þ ð0; 0Þ

ð1; 1Þ l2 l1
ð1; 0Þ m2ðx2Þ l01
ð0; 1Þ m1ðx1Þ l02
ð0; 0Þ m1ðx1Þ m2ðx2Þ

Table 10

Values of vðZÞ in case 4

Z ð1; 1Þ ð1; 0Þ ð0; 1Þ ð0; 0Þ

vðZÞ ðm3 h�1Þ 1200 �4300 �2000 �7500

Table 11

Values of F ðZ;zÞðxÞ in case 4

Znz ð1; 1Þ ð1; 0Þ ð0; 1Þ ð0; 0Þ

ð1; 1Þ ðx1; 0; x3Þ ð0; x2;x3Þ

ð1; 0Þ ðx1; 0;x3Þ ð0;x2;x3Þ

ð0; 1Þ ð0; x2;x3Þ ðx1; 0;x3Þ

ð0; 0Þ ð0;x2; x3Þ ðx1; 0;x3Þ

Table 12

Values of aðZ;zÞðxÞ in case 4

Znz ð1; 1Þ ð1; 0Þ ð0; 1Þ ð0; 0Þ

ð1; 1Þ l2 if x3 ¼ R

l02 if x3oR

l1 if x3 ¼ R

l01 if x3oR

ð1; 0Þ m2ðx2Þ l01
ð0; 1Þ m1ðx1Þ l02
ð0; 0Þ m1ðx1Þ m2ðx2Þ
3. A mathematical formulation of the problem

Before developing the numerical methods used to get the
previous computational results, we first specify the
mathematical model for the benchmark, using notations
from dynamic reliability. The time-evolution of the system
is described by a PDMP ðI t;X tÞtX0 (see [13] or [14]). The
first part It is discrete with values in

E ¼ fð1; 1Þ; ð1; 0Þ; ð0; 1Þ; ð0; 0Þg,

and describes the state of both units: for Z ¼ ðe1; e2Þ 2 E

and i ¼ 1; 2, Ui is working if ei ¼ 1 and in repair if ei ¼ 0.
The second part X t stands for ‘‘environmental condition’’
according to the vocabulary of dynamic reliability. We here
have X t ¼ ðX 1;t;X 2;t;X 3;tÞ 2 V , where the domain V is
defined by V ¼ R2

þ � ½0;R� and where, for i ¼ 1; 2,
symbol X i;t stands for the duration spent by unit Ui in
its current state (up or down) at time t. For instance, if unit
U1 is down at time t, symbol X 1;t stands for the duration
elapsed since the beginning of its repair. As for symbol
X 3;t, it is the volume of gas in the reservoir at time t,
with 0pX 3;tpR. Between events like failure or end
of repair of one component, the discrete part I t is constant
whereas the continuous part X t has a deterministic
evolution (namely non-random). More precisely, assume
Tn and Tnþ1 to be successive jumps for I t with I t ¼ Z
for TnptoTnþ1, and X Tn ¼ x0 ¼ ðx1;0; x2;0;x3;0Þ, we then
have X t ¼ gðZÞðx0; t� TnÞ, where gðZÞðx; tÞ ¼ ðgðZÞ1 ðx; tÞ; g

ðZÞ
2

ðx; tÞ; gðZÞ3 ðx; tÞÞ is given, for all ðx ¼ ðx1;x2;x3Þ; tÞ 2 V � Rþ,
by

g
ðZÞ
1 ðx; tÞ ¼ x1 þ t,

g
ðZÞ
2 ðx; tÞ ¼ x2 þ t,

g
ðZÞ
3 ðx; tÞ ¼ P½0;R�ðx3 þ vðZÞtÞ, (2)

where vðZÞ depends on the discrete state Z, and P½0;R�ðrÞ ¼ r

if r 2 ½0;R�, 0 if ro0 and R if r4R (the gas volume in the
reservoir R is non-negative and cannot exceed R). Note
that the function gðZÞ satisfies the necessary semi-group
property (see [14])

gðZÞðx; tÞ ¼ gðZÞðgðZÞðx; sÞ; t� sÞ, (3)

all 0osot.
The transition rate from state Z to state z at time t

depends on X t ¼ x and is a function aðZ;zÞðxÞ (with Z; z 2 E,
Zaz, x 2 V ).

At jump time for I t from It� ¼ Z to I t ¼ z, the
environmental variable X t jumps simultaneously from
X t� ¼ x to X t ¼ F ðZ;zÞðxÞ. This is equivalent to consider
that the value of X t after the jump is random with the
distribution given by the Dirac mass d

F ðZ;zÞðxÞðdyÞ.
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The speeds vðZÞ and both of the functions aðZ;zÞðxÞ and
F ðZ;zÞðxÞ are given in Tables 7–12, according to the four
envisioned cases, where we recall that li and l0i are the
constant failure rates for the units and where the hazard
rates ðmiðtÞÞi¼1;2 are defined by (1) (see Section 2.1 for the
numerical values).

The process ðIt;X tÞtX0 clearly is a regenerative process
with successive entrances in state ðð1; 1Þ;RÞ as renewal
times, where state ðð1; 1Þ;RÞ represents the perfect working
state (both units are up and the reservoir is full). Mean
cycle length is finite, so that a stationary distribution
ðpðZ;dxÞÞZ2E exists for the process ðI t;X tÞtX0 and the
distribution rðtÞð�;dxÞ ¼ ðrðtÞðZ;dxÞÞZ2E of ðI t;X tÞ con-
verges towards pð�;dxÞ ¼ ðpðZ;dxÞÞZ2E . Using classical
ergodic theorems, we may now express the four quantities
of interest for the benchmark with p (see [15] for details on
regenerative technics):

Asymptotic availability: The production is nominal as
long as the reservoir is non-empty (X 3;s40). The asympto-
tic availability then is the asymptotic ratio between the time
spent in the event fX 3;s40g on ½0; t� and t:

A1 ¼ lim
t!þ1

1

t

Z t

0

1fX3;s40g ds, (4)

namely:

A1ðoÞ ¼ lim
t!þ1

1

t

Z t

0

1fX3;s40gðoÞds,

where for any event A, we set 1AðoÞ ¼ 1 if o 2 A and 0 if
oeA.

Using ergodic theorem, we get the existence of the limit
(almost surely) and, for almost all o 2 O:

A1ðoÞ

¼
X
Z2E

lim
t!þ1

1

t

Z t

0

1
fIs¼Z and ðX1;s;X2;sÞ2R

2
þ

and X3;s2�0;R�g
ðoÞds

¼
X
Z2E

pðZ;R2
þ��0;R�Þ.

Denoting a.s. for almost surely, we derive:

A1 ¼ 1�
X
Z2E

pðZ;R2
þ � f0gÞ a.s.

¼ 1�
X

Z2Enfð1;1Þg

pðZ;R2
þ � f0gÞ a.s. ð5Þ

because R is almost surely non-empty in state ð1; 1Þ so that
pðð1; 1Þ;R2

þ � f0gÞ ¼ 0. Indeed, as soon as both units are
up, the reservoir is either instantaneously full (cases 1–3)
or, if it is empty (which may happen only in case 4), its
refilling instantaneously begins.

Asymptotic production availability: Let fs be the produc-
tion rate at time s. When R is non-empty ðX 3;s40Þ, the
production is nominal ðfs ¼ fnomÞ. The production is
f1;max when unit U1 is up, unit U2 is down and R is
empty (Is ¼ ð1; 0Þ and X 3;s ¼ 0), the same for f2;max.
Otherwise (U1 and U2 down with R empty), the produc-
5

tion is zero. We get

PA1 ¼ lim
t!þ1

1

t

Z t

0

fs

fnom

ds

¼ lim
t!þ1

1

t

Z t

0

1fX3;s40g þ
f1;max

fnom

1fIs¼ð1;0Þ and X3;s¼0g

�
þ
f2;max

fnom

1fIs¼ð0;1Þ and X3;s¼0g

�
ds, ð6Þ

which gives

PA1 ¼ A1 þ
f1;max

fnom

pðð1; 0Þ;R2
þ � f0gÞ

þ
f2;max

fnom

pðð0; 1Þ;R2
þ � f0gÞds a.s. ð7Þ

Stationary (annual) frequency of total loss of production:
There is total loss of production when the system enters
the state ðð0; 0Þ; 0Þ, namely the state where both units are
down and the reservoir is empty. This occurs in two
situations: either both units are down and R comes to
be empty (X 3;s�40 and X 3;s ¼ 0), or R is empty with
one unit up and the other one down, and the up unit
comes to fail (Is� 2 fð1; 0Þ; ð0; 1Þg and Is ¼ ð0; 0Þ). We
derive

f TLP ¼ lim
t!þ1

8766

t

X
0ospt

ð1fIs¼ð0;0Þ and X3;s�40 and X3;s¼0g

þ 1fX3;s¼0 and Is�2fð1;0Þ;ð0;1Þg and Is¼ð0;0ÞgÞ, ð8Þ

one year is 365:25� 24 ¼ 8766 h.
The summation is here made on the almost surely finite

number of s (0ospt) such that one of the different events
happens at time s. Using such an expression implies to be
able to evaluate the number of times X 3;s reaches its lower
bound 0 on ½0; t� (with Is ¼ ð0; 0Þ). There is no special
problem by MC simulation. However, it is not that clear
how to express directly such a number with respect of p.
We then use the following trick: in infinite horizon, the
evolution of the process may be considered as stationary,
so that the event ‘‘total loss of production’’ happens just as
often as the event ‘‘recover for some production’’. This
second type of event is easier to count: it may only happen
on the recovering of one unit when R is empty and both
units previously down. This means that f TLP resumes to the
stationary annual frequency of transitions between
ðð0; 0Þ; 0Þ and fð1; 0Þ; ð0; 1Þg. Then, we only have to count
jumps for the discrete part I t of the process (while R is
empty), which is now easy to achieve with p. More
precisely, we have:

f TLP ¼ lim
t!þ1

8766

t

X
0ospt

1fX3;s�¼0 and Is�¼ð0;0Þ and Is2fð1;0Þ;ð0;1Þgg

¼ lim
t!þ1

8766

t

�E
X

0ospt

1fX3;s�¼0 and Is�¼ð0;0Þ and Is2fð1;0Þ;ð0;1Þgg

!
a.s.



Beside, using martingale technics for the first equality and
almost sure continuity of ðI t;X tÞtX0 for the second, one
may prove that for Z; z 2 E:

E
X

0ospt

1fX3;s�¼0 and Is�¼Z and Is¼zg

!
ds

¼

Z t

0

EðaðZ;zÞðX�s Þ1fIs�¼Z and X3;s�¼0g
Þds

¼

Z t

0

EðaðZ;zÞðX sÞ1fIs¼Z and X3;s¼0g
Þds

¼

Z t

0

ZZ
R2
þ

aðZ;zÞððx1;x2; 0ÞÞrðsÞðZ;dx1 � dx2 � f0gÞds,

see [16] e.g. in the special case of a pure jump Markov
process with finite state space.

Using aðð0;0Þ;ð1;0ÞÞððx1;x2; 0ÞÞ ¼ m1ðx1Þ and aðð0;0Þ;ð0;1ÞÞððx1;
x2; 0ÞÞ ¼ m2ðx2Þ, we derive

f TLP ¼ lim
t!þ1

8766

t

Z t

0

ZZ
R2
þ

ðm1ðx1Þ þ m2ðx2ÞÞ

�rðsÞðð0; 0Þ;dx1 � dx2 � f0gÞds a.s.

¼ 8766�

ZZ
R2
þ

ðm1ðx1Þ þ m2ðx2ÞÞ

�pðð0; 0Þ;dx1 � dx2 � f0gÞ a.s.

¼ 8766�

Z
Rþ

m1ðx1Þpðð0; 0Þ;dx1 � Rþ � f0gÞ

 

þ

Z
Rþ

m2ðx2Þpðð0; 0Þ;Rþ � dx2 � f0gÞ

!
a.s. ð9Þ

Annual frequency of loss of nominal production: Loss of
nominal production occurs when R comes to be empty,
namely:

f LNP ¼ lim
t!þ1

8766

t

X
0ospt

1fX3;s�40 and X3;s¼0g
. (10)

Similarly as for the total loss of production, considering the
process as stationary, the event ‘‘R comes to be empty’’
happens with the same frequency as the event ‘‘R comes to
be non-empty’’. Such an event occurs on entering the state
where both units are up with previously one unit down and
one unit up, and R empty. Then, f LNP resumes to the
annual frequency of entrances in state ð1; 1Þ from states
ðð0; 1Þ; 0Þ or ðð1; 0Þ; 0Þ. We get

f LNP ¼ lim
t!þ1

8766

t

X
0ospt

1fX3;s�¼0 and Is�2fð0;1Þ;ð1;0Þg and Is¼ð1;1Þg ds

¼ lim
t!þ1

8766

t

Z t

0

Eðaðð0;1Þ;ð1;1ÞÞðX sÞ1fIs¼ð0;1Þ and X3;s¼0g

þ aðð1;0Þ;ð1;1ÞÞðX sÞ1fIs¼ð1;0Þ;X3;s¼0g
Þds a.s.

¼ lim
t!þ1

8766

t

Z t

0

Eðm1ðX 1;sÞ1fIs¼ð0;1Þ and X3;s¼0g

þ m2ðX 2;sÞ1fIs¼ð1;0Þ and X3;s¼0g
Þds a.s. ð11Þ
6

¼ 8766�

Z
Rþ

m1ðx1Þpðð0; 1Þ; dx1 � Rþ � f0gÞ

 

þ

Z
Rþ

m2ðx2Þpðð1; 0Þ;Rþ � dx2 � f0gÞ

!
a.s. ð12Þ

4. RMC simulation

The problem here is to provide confidence bands for
asymptotic quantities by MC simulation. A first method
might be to compute the requested quantities at some large
time T, namely to simulate n independent samples up to
time T and then compute the associated confidence bands.
We have better use here a second method, based on the
regenerative property of the system. Indeed, as already
noted in the previous section, ðI t;X tÞtX0 is a regenerative
process with successive entrances in state ðð1; 1Þ;RÞ as
renewal times. Also, cycles are independent with finite
mean length. Usual results from renewal theory then allow
us to express the goal asymptotic quantities with mean
values on one single cycle. We can then perform MC
simulation to evaluate such quantities with i.i.d. cycles as
samples. The expressions we start with for such computa-
tions are (4,6,8,10). As for the annual frequency of loss of
nominal production for instance, we might have started
from (11). However, such an expression implies numerical
integration of m1ðX 1;sÞ and of m2ðX 2;sÞ on some part of the
cycle, which slows down the computation. Similar a remark
is valid for the annual frequency of total loss of
production.
We first note that each goal quantity may be written as:

c1 ¼ lim
t!1

1

t
cððIu;X uÞ0ouptÞ,

where c is measurable, non-negative and ‘‘additive’’ in the
sense that:

cððIu;X uÞ0ouptþsÞ ¼ cððIu;X uÞ0ouptÞ þ cððIu;X uÞtouptþsÞ

for all s, t40.
Starting from the perfect working state ðð1; 1Þ;RÞ, let

t0 ¼ 0ot1o � � �otko � � � be the renewal times and
a1; a2; . . . ; ak; . . . be the inter-arrival times ðakþ1 ¼ tkþ1 � tkÞ

with EðakÞ ¼ Eða1Þoþ1 (all kX1).
Using standard methods (see [15] for instance in the

special case where cððIu;X uÞ0puotÞ ¼
R t

0
f ðIs;X sÞds), we set

Y kþ1 ¼ cððIu;X uÞtkouptkþ1
Þ for kX0, with EðY kÞ ¼

EðY 1Þoþ1 for the different functions c here envisioned.
Let Nt be such that tNtptotNtþ1 (and consequently

Nt�t=Eða1Þ for large t), we get

1

t
cððIu;X uÞ0ouptÞ ¼

1

t

XNt

k¼1

Y k þ cððIu;X uÞtNt
ouptÞ

!
.

Beside, cððIu;X uÞtNt
ouptÞ=t! 0 when t!þ1 because

0pcððIu;X uÞtNt
ouptÞ=tp

Y Ntþ1

t
�

Y Ntþ1

Ntþ1
�

1

Eða1Þ



Table 13

Main computing characteristics for the RMC method

Case Number of

cycles

Mean cycle

length (h)

Computing time

(h)

1 5� 107 3342 2

2 5� 107 343 2

3 108 344 6.4

4 107 389 1.5
for large t and limt!þ1Y Ntþ1
=Ntþ1 ¼ limn!þ1Y n=n ¼ 0

due to EðY nÞoþ1.
We derive that

c1 ¼ lim
t!1

1

t

XNt

k¼1

Y k a.s.,

where the Y k are independent and identically distributed
(i.i.d.). Using again the fact that Nt�t=Eða1Þ for large t, the
law of large numbers then implies that:

c1 ¼
EðY 1Þ

Eða1Þ
a.s.

Introducing the following empirical means:

Ȳ n ¼
1

n

Xn

k¼1

Y k; ān ¼
1

n

Xn

k¼1

ak,

a natural estimator for c1 then is cn ¼ Ȳ n=ān with cn !

EðY 1Þ=Eða1Þ ¼ c1 a.s. when n!þ1.
In order to compute a 1� e confidence band I e for c1

(Pðc1 2 I eÞ ¼ 1� e), we introduce Zk ¼ Y k � c1ak for
kX0 with EðZkÞ ¼ 0 and we apply the central limit theorem
(CLT) to the i.i.d. ðZnÞn2N. (An alternative would be to
apply the CLT to ðak;Y kÞkX1 and then use the transforma-
tion ða; yÞ7�!y=a, see [15]). With that aim, we need an
estimator for varðZ1Þ with

varðZ1Þ ¼ EðZ2
1Þ ¼ varðY 1Þ � 2c1 covarðY 1; a1Þ þ c21 varða1Þ.

We then introduce the (unbiased) empirical variances
and covariances:

SðY Þn ¼
1

n� 1

Xn

p¼1

ðY p � Ȳ nÞ
2
¼

1

n� 1

Xn

p¼1

Y 2
p � nðȲ nÞ

2

!
,

SðaÞn ¼
1

n� 1

Xn

p¼1

ðap � ānÞ
2
¼

1

n� 1

Xn

p¼1

a2p � nðānÞ
2

!
,

Sða;Y Þn ¼
1

n� 1

Xn

p¼1

ðap � ānÞðY p � Ȳ nÞ

¼
1

n� 1

Xn

p¼1

apY p � nānȲ n

!
,

with SðY Þn ! var ðY 1Þ a.s., SðaÞn ! var ða1Þ a.s. and Sða;Y Þn !

covar ða1;Y 1Þ a.s. when n!þ1, and consequently,
setting

SðZÞn ¼ SðY Þn � 2cnSða;Y Þn þ c2nSðaÞn ,

we have SðZÞn ! var ðZ1Þ a.s. when n!þ1.
Let w be the 1� ðe=2Þ quantile of Nð0; 1Þ, we now derive

from the CLT that for large n:

P

ffiffiffi
n
p

Z̄nffiffiffiffiffiffiffiffiffi
SðZÞn

q
�������

�������pw

0B@
1CA ’ 1� e.
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Substituting Z̄n by Ȳ n � c1ān and using cn ¼ Ȳ n=ān, we
easily get that ½cn � sn; cn þ sn� is a 1� e confidence band
for c1 with

sn ¼
wffiffiffi
n
p

ffiffiffiffiffiffiffiffiffi
SðZÞn

q
ān

.

For the numerical results given in Section 2.2, we take e ¼
5% and w ¼ 1:96. To get the 95% confidence band (namely
cn and sn for each quantity of interest), we have to computePn

p¼1 ap,
Pn

p¼1 a
2
p (needed for each quantity) and

Pn
p¼1 Y p,Pn

p¼1 Y 2
p and

Pn
p¼1 apY p for each quantity. This leads to

the computation of 2þ 4� 3 ¼ 14 summations in the
simulations to get the four confidence bands.
The number of cycles used for the computations as well

as the average cycle lengths and the computing times are
given in Table 13.
We can see in such a table that the difference of models

between cases 2, 3 and 4 is not very influent on the mean
cycle length. As expected, a cycle in case 1 is roughly 10
times longer than in case 2 or 3. This is easily explained by
the fact that the units spend most of their time in up-state
with failure rates which are multiplied by 10 from the case 1
to the cases 2 or 3. Also, a cycle in case 4 is made longer by
the necessity to refill the reservoir before reaching the
perfect working state ðð1; 1Þ;RÞ.
The computing times are rather long but might easily be

shortened improving the implementation and/or using a
parallel computer. Note, however, that the computation of
the confidence bands makes them clearly longer due to the
necessity of computing 14 summations whereas only four
summations would be required otherwise.

5. The FV scheme

We finally come to the main part of this paper with the
presentation of the FV scheme. Such schemes are not
classically used in the framework of probabilistic studies,
since they have mainly been developed by engineers, in
order to approximate the solutions of balance equations of
the type

qA

qt
þ
Xd

i¼1

qFi

qxi

¼ 0.

In this equation, d is the dimension of the space variable
ðx1; . . . ;xdÞ, (frequently, d ¼ 2 or 3), A is a given expression



of some unknown functions of the space and time
variables, and the functions Fi are the components of the
flux of the quantity A. Then, the space domain, in which
the balance equation holds, is discretized into a partition
M of subdomains K 2M called control volumes. The time
is discretized using a time step dt and the above continuous
equation is replaced by the following discrete one

mK

A
ðKÞ
nþ1 � AðKÞn

dt
þ
X
L2M

FnðK ;LÞ ¼ 0.

In the above equation, called the FV scheme, mK is the
d-dimensional measure of K, AðKÞn is the approximation of
A in K at the time ndt, and FnðK ;LÞ is an approximation of
the flux from K to any other control volume L at the time
ndt. This approximation is given as a function of the
unknowns in several control volumes neighbours of K and
L, which generally cannot been obtained using a mathe-
matical procedure. On the contrary, the expression of such
a function is usually based on engineering considerations,
which makes higher the mathematical difficulties for a
convergence proof.

We consider in this section a scheme inspired by these
principles, used to directly approximate the marginal
distributions of the PDMP presented in Section 3 (this is
an essential difference with the MC method). The main
difference between the equations satisfied by these marginal
distributions and physical balance laws is that the
unknown of the problem is a family of probability
measures instead a family of functions. An example of
the mathematical study of such a scheme in a probabilistic
framework is given in [11]. Indeed, the family of
probability measures ðrðtÞðZ;dxÞÞt2Rþ of the process
ðIt;X tÞt2Rþ on E � V happens to be solution of a system
of integro-differential equations [17]. As already told in the
Introduction, we do not use here the classical Chapman–-
Kolmogorov equations as in [10,11] and we prefer use
other equations which are obtained looking at the different
flux of probability mass on some time interval ½t; s� [17].
Denoting by BV the set of all measurable subsets of V, and
for all A 2 BV , by T ðZÞs A ¼ fx 2 V ; gðZÞðx; sÞ 2 Ag, these
equations writeZ

A

rðsÞðZ;dxÞ

¼

Z
T
ðZÞ
s�tA

rðtÞðZ;dxÞ �

Z s

t

Z
T
ðZÞ
s�tA

bðZÞðxÞrðtÞðZ;dxÞdt

þ
X
z2E

Z s

t

Z
V

aðz;ZÞðyÞ1
fF ðz;ZÞðyÞ2T

ðZÞ
s�tAg

rðtÞðz; dyÞdt,

8A 2 BV 8Z 2 E 8sXt 2 Rþ,

rð0ÞðZ; dxÞ ¼ r0ðZ; dxÞ 8Z 2 E, (13)

where bðZÞðxÞ ¼
P

z2EaðZ;zÞðxÞ.
The first term in the right hand of (13) corresponds to the

transport of the probability mass along the characteristics
u 7�!gðZÞðx; uÞ on ½t; s�, the second term to the exit of
8

probability mass due to jumps out of Z on ½t; s� and the
third term to the arrival of probability mass due to jumps
towards Z on ½t; s�.
To define the FV scheme for these equations, we first

define a family ðMðZÞÞZ2E , such that, for all Z 2 E, MðZÞ is a

finite partition of ½0;T ðZÞ1 � � ½0;T
ðZÞ
2 � � ½0;R� by polyhedral

subsets, for large enough times T
ðZÞ
1 and T

ðZÞ
2 so that most

part of the mass of rðTÞðZ; dxÞ is in ½0;T ðZÞ1 ��

½0;T ðZÞ2 � � ½0;R�. We then select a value dt40 as time step.

Following the ideas given in the introduction of this

section, we intend to define an approximation PM;dt
t ð�; xÞdx

of the measure rðtÞ ð�; dxÞ such that PM;dt
t ð�;xÞ is constant on

each fZg � ½ndt; ðnþ 1Þ dt½�K :

PM;dt
t ðZ;xÞ:¼pðZ;KÞn 8Z 2 E 8x 2 K ,

8t 2 ½ndt; ðnþ 1Þdt½ 8K 2MðZÞ 8n 2 N,

PM;dt
t ðZ;xÞ:¼0,

8Z 2 E 8x 2 Vn½0;T ðZÞ1 � � ½0;T
ðZÞ
2 �

� ½0;R� 8t 2 Rþ 8n 2 N, ð14Þ

where ðpðZ;KÞn Þ
n2N;Z2E;K2MðZÞ is a family of real values to be

constructed, recursively on n. The asymptotic distribution
pðZ;dxÞ is then approximated by the FV approximation of
rðTÞðZ;dxÞ for T large enough so that the distribution is
nearly stabilized.
In order to construct the FV scheme (we consider in this

paper an implicit version of the FV scheme given in [11]),
we start from (13) divided by dt, in which symbol s is
replaced by tþ dt, symbol A by K 2MðZÞ. We also use the

relation
R

T
ðZÞ
dt

K
¼
R

T
ðZÞ
dt

KnK
þ
R

K
�
R

KnT
ðZÞ
dt

K
. We thus get

T1 þ T2 ¼ �T3 þ T4 with

T1 ¼
1

dt

Z
K

rðtþ dtÞðZ; dxÞ �

Z
K

rðtÞðZ; dxÞ

� �
,

T2 ¼
1

dt

Z
KnT
ðZÞ
dt

K

rðtÞðZ;dxÞ �
1

dt

Z
T
ðZÞ
dt

KnK

rðtÞðZ;dxÞ,

T3 ¼
1

dt

Z tþdt

t

Z
T
ðZÞ
tþdt�t

K

bðZÞðxÞrðtÞðZ; dxÞdt,

T4 ¼
X
z2E

1

dt

Z tþdt

t

Z
V

aðz;ZÞðyÞ1
fF ðz;ZÞðyÞ2T

ðZÞ
tþdt�t

Kg
rðtÞðz;dyÞdt.

(15)

The FV scheme is obtained by providing approximate
expressions eTi for Ti, i ¼ 1; 2; 3; 4, as functions of the
unknowns pðZ;KÞn (dedicated to approximate 1=mK �R

K
rðtÞðZ;dxÞ for t ’ ndt). As for the first term T1, it is

simply approximated by

eT1 ¼ mK

p
ðZ;KÞ
nþ1 � pðZ;KÞn

dt
. (16)



In order to approximate the term T2, we define for all
Z 2 E, K 2MðZÞ and L 2MðZÞ the flux of probability mass
from K to L in the state Z by

v
ðZÞ
KL ¼

1

dt

Z
K

1
fgðZÞðx;dtÞ2Lg

dx 8K 2MðZÞ 8L 2MðZÞnfKg,

v
ðZÞ
KK ¼ 0 8K 2MðZÞ. (17)

Noting that

KnT
ðZÞ
dt K ¼ fx 2 K : gðZÞðx; dtÞ 2

S
L2MðZÞnfKg Lg, a natural

approximation for the first term of T2 then isP
L2MðZÞv

ðZÞ
KLpðZ;KÞn . We actually prefer

P
L2MðZÞv

ðZÞ
KLp
ðZ;KÞ
nþ1

which leads to an implicit and more stable version of the
scheme. Such a remark is valid for all other approxima-
tions.

Approximating the second term of T2 in the same way,
definition (17) now leads to:

eT2 ¼
X

L2MðZÞ

ðv
ðZÞ
KLp
ðZ;KÞ
nþ1 � v

ðZÞ
LK p

ðZ;LÞ
nþ1 Þ. (18)

Note that, in the case where the functions gðZÞ happen to
satisfy

qgðZÞðx; tÞ

qt
¼ vðZÞðgðZÞðx; tÞÞ,

where the vector field vðZÞ is regular enough (this is assumed
in [11], but is not true on the whole domain V in the case
handled in this paper), and assuming that LaK is such
that K \ La; is regular enough, then v

ðZÞ
KL is accurately

approximated by

v̄
ðZÞ
KL ¼

Z
K\L

maxð0; vðZÞðxÞ � nKLðxÞÞdsðxÞ,

where nKLðxÞ is the unit vector, normal to K \ L and
oriented from K to L, and dsðxÞ is the 2-dimensional
Lebesgue measure on K \ L. Such an expression may then
be used to compute v

ðZÞ
KL.

We now turn to the approximation of term T3, which
could simply be done by eT3 ¼ b

ðZÞ
K mK p

ðZ;KÞ
nþ1 , setting

mK a
ðZ;zÞ
KL ¼

Z
K

aðZ;zÞðxÞ1
fF ðZ;zÞðxÞ2Lg

dx

8ðK ;LÞ 2MðZÞ �MðzÞ 8ðZ; zÞ 2 E2,

mK b
ðZÞ
K ¼

Z
K

bðZÞðxÞdx ¼
X
z2E

X
L2MðzÞ

mK a
ðZ;zÞ
KL

8K 2MðZÞ 8Z 2 E.

Unfortunately, numerical tests show that this is not
accurate enough on the meshes which have been used
here, and a better approximation of T3 has to be provided.
Actually, we approximate the integral

R tþdt
t

. . . dt of T3 by
some sort of weighted mean of the extreme points obtained
9

for t ¼ t and tþ dt and we take:eT3 ¼ q
ðZ;KÞ
nþ1 ¼ ð1� yðZ;KÞÞbðZÞK mK p

ðZ;KÞ
nþ1

þ
yðZ;KÞP

M2MðZÞ v
ðZÞ
MK

X
L2MðZÞ

v
ðZÞ
LK b

ðZÞ
L mLp

ðZ;LÞ
nþ1 ,

8K 2MðZÞ 8Z 2 E 8n 2 N, ð19Þ

where the value yðZ;KÞ has to be chosen as close as possible

to 1
2
for the best accuracy. Also, gathering the expressionseT2 and eT3, we can see that, for all L 2MðZÞnfKg, the

expression v
ðZÞ
LK p

ðZ;LÞ
nþ1 is multiplied by 1� ðyðZ;KÞ=P

M2MðZÞ v
ðZÞ
MK Þb

ðZÞ
L mL, which should remain positive to

ensure the unconditional positivity of the scheme. We
therefore define yðZ;KÞ by

yðZ;KÞ ¼ min
1

2
;

1

b
ðZÞ
L mL

X
M2MðZÞ

v
ðZÞ
MK

8<:
9=;

L2MðZÞ s:t: v
ðZÞ
LK

40

0B@
1CA.

Note that reducing the size h of the control volumes
enables that yðZ;KÞ ¼ 1

2
, since v

ðZÞ
MK behaves as h2 whereas mL

behaves as h3.
We finally turn to the approximation eT4 of the term T4,

which we chose such that there is conservation of the
probability mass. Using the previous approximation q

ðZ;KÞ
nþ1

of the probability mass escaping from fZg � K to E � V

(see term T3), we take:eT4 ¼
X
z2E

X
L2MðzÞ

q
ðz;LÞ
nþ1 a

ðz;ZÞ
LK , (20)

with

aðZ;zÞKL ¼
a
ðZ;zÞ
KL

b
ðZÞ
K

8ðK ;LÞ 2MðZÞ �MðzÞ 8ðZ; zÞ 2 E2.

The scheme is now obtained by eT1 þ eT2 ¼ � eT3 þ eT4,
which gives, using the expressions given by (16) and
(18)–(20),

mK

p
ðZ;KÞ
nþ1 � pðZ;KÞn

dt
þ
X

L2MðZÞ

ðv
ðZÞ
KLp
ðZ;KÞ
nþ1 � v

ðZÞ
LK p

ðZ;LÞ
nþ1 Þ

¼ �q
ðZ;KÞ
nþ1 þ

X
z2E

X
L2MðzÞ

q
ðz;LÞ
nþ1 a

ðz;ZÞ
LK

8K 2MðZÞ 8Z 2 E 8n 2 N, ð21Þ

with the initial condition

mK p
ðZ;KÞ
0 ¼

Z
K

r0ðZ; dxÞ 8K 2MðZÞ 8Z 2 E. (22)

We may observe that (21) happens to be a linear system,
the unknowns of which are, at the time step n, the values
p
ðZ;KÞ
nþ1 , for all Z 2 E and K 2MðZÞ. Different methods can be

used for finding a solution to (21), such as the following
iterative one: initialize the unknowns by

p
ðZ;KÞ
ð0Þ ¼ pðZ;KÞn 8K 2MðZÞ 8Z 2 E, (23)



and solve, for all l 2 N,

mK

p
ðZ;KÞ
ðlþ1Þ � pðZ;KÞn

dt
þ
X

L2NK

ðv
ðZÞ
KLp
ðZ;KÞ
ðlþ1Þ � v

ðZÞ
LK p

ðZ;LÞ
ðlþ1ÞÞ

¼ �q
ðZ;KÞ
ðlþ1Þ þ

X
z2E

X
L2MðzÞ

q
ðz;LÞ
ðlÞ aðz;ZÞLK

8K 2MðZÞ 8Z 2 E. ð24Þ

Note that it is easy to solve (24) for the particular data
handled in this paper, by numbering the control volumes
K 2MðZÞ in each state Z 2 E in such a way that v

ðZÞ
KL40

implies that the number of L is greater than that of K.
Therefore (24) is a simple triangular linear system with
unknowns p

ðZ;KÞ
ðlþ1Þ. It is then possible to prove that the above

algorithm converges, since it leads to a contraction in some
discrete space. However, in the case considered in this
paper, some faster methods (such as the BiCGSTAB
algorithm) have been used.

The numerical results given in Section 2.2 have been
computed using expressions (5,7,9,12) of the goal quan-
tities substituting pðZ; dxÞ by PM;dt

T ð�;xÞdx for some large T.
The value of T has been chosen equal to 100 000 h in cases 1
and 2, and to 50 000 h in cases 3 and 4. In each case, a grid
110� 110� 100 has been used for partition of

½0;T ðZÞ1 � � ½0;T
ðZÞ
2 � � ½0;R�. We have set, in the four cases,

T
ð1;1Þ
1 ¼ T

ð1;0Þ
1 ¼ T

ð1;1Þ
2 ¼ T

ð0;1Þ
2 ¼ 106 h, T

ð0;1Þ
1 ¼ T

ð0;0Þ
1 ¼

2:5� 105 h and T
ð1;0Þ
2 ¼ T

ð0;0Þ
2 ¼ 105 h. The computing

times vary from 9mn in case 1 to less than one hour in
case 4. Note that, just as for RMC simulations, a parallel
computer might be used for the FV method, but it would
require much more programming work. Therefore the
comparison of both methods cannot be entirely based on
the computing time criterion. However, it seems clear that
the FV method may give similar results as MC simulation
with much quicker computations. Note that for both
methods, the precision may be improved either by
increasing the number of cycles for MC or by adjusting
the different parameters for the FV scheme.

6. Conclusion

This paper shows that the FV method can be successfully
used to approximate the marginal distributions of stochas-
tic processes involved in the model of hybrid systems, as an
alternative to MC simulations. It leads to accurate results
for an admissible computing time. Nevertheless, some
10
mathematical work remains to be performed as the proof
of the convergence of the numerical scheme. Also, some
computational work must be done in order to make
possible the handling of high-dimensional problems.
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