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1Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208
CNRS,

5 bd Descartes, 77454 Marne-la-Vallee, France
e-mail:{anas.batou,christian.soize}@univ-paris-est.fr

Keywords: Uncertain rigid body, Random mass, Random center of mass, Random tensor of
inertia.

Abstract. This research is devoted to the construction of the random dynamical response of
a multibody system with uncertain rigid bodies. We first construct a stochastic model of an
uncertain rigid body by replacing the mass, the center of mass and the tensor of inertia by
random variables. The prior probability distributions of the stochastic model are constructed
using the maximum entropy principle under the constraints defined by the available information.
The generator of independent realizations corresponding to the prior probability distribution of
these random quantities are developed. Then, several uncertain rigid bodies can be linked
each others in order to calculate the random response of a multibody dynamical system. An
application is proposed to illustrate the theoretical development.
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1 INTRODUCTION

This study is devoted to the construction of a probabilisticmodel of uncertainties for a rigid
multibody dynamical system made up of uncertain rigid bodies. In some cases, the mass dis-
tribution inside a rigid body is not perfectly known and mustbe considered as random (for
example, the distribution of passengers inside a vehicle) and therefore, this unknown mass dis-
tribution inside the rigid body induces uncertainties in the model of this rigid body. Here, we
propose a new probabilistic modeling for uncertain rigid bodies in the context of the multibody
dynamics. Concerning the modeling of uncertainties in multibody dynamical system, a very
few previous researches have been carried out. These researches concerned parameters which
describe the joints linking each rigid body to the others andthe external sources (see [7], [16],
[3]), [12] ,[13]), but not rigid bodies themselves. In the field of uncertain rigid bodies, a first
work has been proposed in [9, 10], in which the authors take into account uncertain rigid bodies
for rotor dynamical systems using the nonparametric probabilistic approach [18, 19] consisting
in replacing the mass and gyroscopic matrices by random matrices.

In this paper, a general and complete stochastic model is constructed for an uncertain rigid
body. The mass, the center of mass and the tensor of inertia which describe the rigid body
are modeled by random variables. The prior probability distributions of the random variables
are constructed using the maximum entropy principle [6] from Information Theory [17]. The
generator of independent realizations corresponding to the prior probability distributions of
these random quantities are developed and presented. Then,several uncertain rigid bodies
can be linked each others in order to calculate the random response of an uncertain multibody
dynamical system. The stochastic multibody dynamical equations are solved using the Monte
Carlo simulation method.

Section 2 is devoted to the construction of the mean model forthe rigid multibody dynamical
system by using the classical method. In Section 3, firstly, we propose a general probability
model for an unconstrained uncertain rigid body and secondly, the uncertain rigid multibody
dynamical system is obtained by joining this unconstraineduncertain rigid body to the other
rigid bodies. The last section is devoted to an application which illustrates the proposed theory.

2 MEAN MODEL FOR THE RIGID MULTIBODY DYNAMICAL SYSTEM

In this paper, the usual model of a rigid multibody dynamicalsystem for which all the me-
chanical properties are known will be called the mean model (or the nominal model). This
section is devoted to the construction of the mean model for arigid multibody dynamical sys-
tem. This mean model is constructed as in ([14, 15]) and is summarized below.

2.1 Dynamical equations for a rigid body of the multibody system

Let RBi be the rigid body occupying a bounded domainΩi with a given geometry. Letξ be
the generic point of the three dimensional space. Letx = (x1, x2, x3) be the position vector of

point ξ defined in a fixed inertial frame(O , x0,1 , x0,2 , x0,3), such thatx =
−→
Oξ. The rigid body

class is then defined by three quantities.
(1) The first one is the massmi of RBi which is such that

mi =

∫

Ωi

ρ(x) dx , (1)

whereρ(x) is the mass density.
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(2) The second quantity is the position vectorri of the center of massGi, defined in the fixed
inertial frame, by

ri =
1

mi

∫

Ωi

x ρ(x) dx . (2)

(3) Let (Gi , x
′

i,1 , x
′

i,2 , x
′

i,3) be the local frame for which the origin isGi and which is deduced

from the fixed frame(O , x0,1 , x0,2 , x0,3) by the translation
−−→
OGi and a rotation defined by the

three Euler anglesαi, βi andγi. The third quantity is the positive-definite matrix[Ji] of the
tensor of inertia in the local frame such that

[Ji] u = −

∫

Ωi

x′ × x′ × u ρ(x′) dx′ , ∀u ∈ R
3 , (3)

in which the vectorx′ = (x′

1, x
′

2, x
′

3) of the components of vector
−→
Giξ are given in(Gi , x

′

i,1 , x
′

i,2 , x
′

i,3).
In the above equation,u × v denotes the cross product between the vectorsu andv.

2.2 Matrix model for the rigid multibody dynamical system

The rigid multibody dynamical system is made up ofnb rigid bodies and ideal joints in-
cluding rigid joints, joints with given motion (rheonomic constraints) and vanishing joints
(free motion). The interactions between the rigid bodies are realized by these ideal joints
but also by springs, dampers or actuators which produce forces between the bodies. In this
paper, onlync holonomic constraints are considered. Letu be the vector inR6nb such that
u = (r1, ..., rnb

, s1, ..., snb
) in which si = (αi, βi, γi) is the rotation vector. Thenc constraints

are given bync implicit equations which are globally written asϕ(u, t) = 0. The(6nb × 6nb)
mass matrix[M ] is defined by

[M ] =

[
[M r] 0
0 [Ms]

]
, (4)

where the(3nb × 3nb) matrices[M r] and[Ms] are defined by

[M r]=




m1[I3] · · · 0
...

. . .
...

0 · · · mnb
[I3]


 , [Ms] =




[J1]· · · 0
...

. . .
...

0 · · ·[Jnb
]


 , (5)

in which [I3] is the(3× 3) identity matrix. The function{u(t) ,∈ [0 , T ]} is then the solution of
the following differential equation (see [15])

[
[M ] [ϕu]

T

[ϕu] [0]

] [
ü
λ

]
=

[
q − k

− d
dt
ϕt − [ d

dt
ϕu] u̇

]
, (6)

with the initial conditions

u(0) = u0 , u̇(0) = v0 , (7)

in whichk(u̇) is the vector of the Coriolis forces and where[ϕu(u(t), t)]ij = ∂ϕi(u(t), t)/∂uj(t)
andϕt = ∂ϕ/∂t. The vectorq(u, u̇, t) is constituted of the applied forces and torques induced
by springs, dampers and actuators. The vectorλ(t) is the vector of the Lagrange multipliers.
Equation (6) can be solved using an adapted integration algorithm (see for instance [2]).
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3 STOCHASTIC MODEL FOR A MULTIBODY DYNAMICAL SYSTEM WITH UN-
CERTAIN RIGID BODIES

Firstly, a stochastic model for an uncertain rigid body of the multibody dynamical system is
proposed and secondly, the stochastic model for the multibody dynamical system with uncertain
rigid bodies is constructed joining the stochastic model ofthe uncertain rigid bodies.

3.1 Stochastic model for an uncertain rigid body of the multibody dynamical system

The properties of the mean model (or the nominal model) of therigid body RBi are defined
by its massmi, the position vectorr0,i of its center of massGi at initial timet = 0 and the matrix
[J i] of its tensor of inertia with respect to the local frame(Gi , x

′

i,1 , x
′

i,2 , x
′

i,3). The probabilistic
model of uncertainties for this rigid body is constructed byreplacing these three parameters by
the following three random variables: the random massMi, the random position vectorR0,i of
its random center of massGi at initial time t = 0 and the random matrix[Ji] of its random
tensor of inertia with respect to the random local frame(Gi , x

′

i,1 , x
′

i,2 , x
′

i,3). The probability
density functions (PDF) of these three random variables areconstructed using the maximum
entropy principle (see [17], [6]), that is to say, in maximizing the uncertainties in the model
under the constraints defined by the available information.

3.1.1 Construction of the PDF for the random mass

(i) Available information
Let E{.} be the mathematical expectation. The available information for the random massMi

is defined as follows. Firstly, the random variableMi must be positive almost surely. Sec-
ondly, the mean value of the random massMi must be equal to the valuemi of the mean (or
nominal) model. Thirdly, as it is proven in [19], the random mass must verify the inequality
E{M−2

i } < +∞ in order that a second-order solution exists for the stochastic dynamical sys-
tem. In addition, it is also proven that this constraint can be replaced by|E{logMi}| < +∞.
(ii) Maximum entropy principle
The probability density functionµ 7→ p

Mi
(µ) of the random variableMi is constructed by

maximizing the entropy under the constraints defined above.The solution of this optimization
problem is the PDF of a gamma random variable defined on]0,+∞[. This PDF depends on
two parameters which aremi andCMi

. Since parameterCMi
has no physical meaning, it is

eliminated in introducing the coefficient of variationδ
Mi

of the random variableMi such that
δMi

= σ
Mi
/mi whereσ

Mi
is the standard deviation of the random variableMi. Therefore, the

PDF of the random mass is completely defined by the mean valuemi and by the dispersion
parameterδ

Mi
.

3.1.2 Construction of the PDF for the random position vector R0,i

In this subsection, the PDF of the random initial position vectorR0,i of the center of mass of
RBi at initial timet = 0 is constructed.

(i) Available information
The position vectorr0,i of the center of massGi at initial timet = 0 of the mean (or nominal)
model is given. However, the real position is not exactly known andr0,i only corresponds to
a mean position. Consequently, there is an uncertainty about the real position and this is the
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reason why this position is modeled by the random vectorR0,i. Some geometrical and mechan-
ical considerations lead us to introduce an admissible domain Di of random vectorR0,i. We
introduce the vectorh of the parameters describing the geometry of domainDi. In addition, the
mean value of the random vectorR0,i must be equal to the valuer0,i of the mean (or nominal)
model. Therefore, the available information for random variableR0,i can be written as

R0,i ∈ Di(h) a.s. , (a)

E{R0,i} = r0,i ∈ Di(h) . (b)
(8)

(ii) Maximum entropy principle
The probability density functiona 7→ pR0,i

(a) of random variableR0,i is then constructed by
maximizing the entropy with the constraints defined by the available information in Eq. (8).
The solution of this optimization problem depends on two parameters which arer0,i and vector-
valued parameterh, and is such that

pR0,i
(a; h) = 1lDi(h) (a)C0 e

−<λ,a> . (9)

The positive valued parameterC0 and vectorλ are the unique solution of the equations

C0

∫
Di(h)

e−<λ,a> da = 1 , (a)

C0

∫
Di(h)

a e−<λ,a> da = r0,i . (b)
(10)

(iii) Generator of independent realizations
The independent realizations of random variableR0,i must be generated using the constructed
PDF pR0,i

. Such a generator can be obtained using the Monte Carlo Markov Chain (MCMC)
method (Metropolis-Hastings algorithm [5]).

3.1.3 Random matrix [Ji] of the random tensor of inertia.

In this subsection, the random matrix[Ji] of the random tensor of inertia with respect to
(Gi , x

′

i,1 , x
′

i,2 , x
′

i,3) is defined and an algebraic representation of this random matrix is con-
structed. The mass distribution around the random center ofmassGi is uncertain and conse-
quently, the tensor of inertia is also uncertain. This is thereason why the matrix[J i] of the
tensor of inertia of the mean (or nominal) model with respectto (Gi , x

′

i,1 , x
′

i,2 , x
′

i,3) is replaced
by a random matrix[Ji] which is constructed by using the maximum entropy principle.
We introduce the positive-definite matrix[Zi] independent ofmi such that

[Zi] =
1

mi

{
tr([Ji])

2
[I3]− [Ji]

}
. (11)

Then[Ji] can be calculated as a function of[Zi],

[Ji] = mi{tr([Zi]) [I3]− [Zi]} . (12)

It can be proven that[Zi] is positive definite and that each positive definite matrix[Ji] con-
structed using Eq. (12), where[Zi] is a given positive definite matrix, can be interpreted as the
matrix of a tensor of inertia of a physical rigid body for which the mass is1 (see [1]).
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The probabilistic modeling[Ji] of [Ji] consists in introducing the random matrix[Zi] and in
using Eq. (12) in whichmi is replaced by the random variableMi and where[Zi] is replaced by
[Zi]. We then obtain

[Zi] =
1

Mi

{
tr([Ji])

2
[I3]− [Ji]

}
, (13)

[Ji] = Mi{tr([Zi]) [I3]− [Zi]} . (14)

(i) Available information concerning random matrix[Zi]
Let us introduce (1) the nominal value[Z i] of deterministic matrix[Zi] such that[Z i] =
(1/mi){tr([J i])/2[I3] − [J i]} and (2) the upper bound[Zmax

i ] of random matrix[Zi]. Then,
the available information for[Zi] can be summarized as follows,

[Zi] ∈ M
+
3 (R) a.s. ,

{[Zmax
i ]− [Zi]} ∈ M

+
3 (R) a.s. ,

E{[Zi]} = [Z i] ,

E{log(det[Zi])} = C l
i , |C l

i | < +∞ ,

E{log(det([Zmax
i ]− [Zi]))} = Cu

i , |Cu
i | < +∞ .(e)

(15)

For more convenience, random matrix[Zi] is normalized as follow. Matrix[Z i] being positive
definite, its Cholesky decomposition yields[Z i] = [LZi

]T [LZi
] in which [LZi

] is an upper
triangular matrix in the setM3(R) of all the (3 × 3) real matrices. Then, random matrix[Zi]
can be rewritten as

[Zi] = [LZi
]T [Gi] [LZi

] , (16)

in which the matrix[Gi] is a random matrix for which the available information is

[Gi] ∈ M
+
3 (R) a.s. ,

{[Gmax
i ]− [Gi]} ∈ M

+
3 (R) a.s. ,

E{[Gi]} = [I3] ,

E{log(det[Gi])} = C l
i

′

, |C l
i

′

| < +∞ ,

E{log(det([Gmax
i ]− [Gi]))} = Cu

i
′ , |Cu

i
′| < +∞ ,

(17)

in whichC l
i

′

= C l
i − log(det[Z i]), C

u
i
′ = Cu

i − log(det[Z i]) and where the matrix[Gmax
i ] is an

upper bound for random matrix[Gi] and is defined by[Gmax
i ] = ([LZi

]T )−1 [Zmax
i ] [LZi

]−1.

(ii) Maximum entropy principle
The probability distribution of random matrix[Gi] is constructed using the maximum entropy
principle under the constraints defined by the available information given by Eq. (17). The prob-
ability density functionp[Gi]([G ]) with respect to the volume elementd̃G of random matrix[Gi]
is then written as

p[Gi]([G ]) = 1l
M

+

3
(R)([G ])× 1l

M
+

3
(R)([G

max
i ]− [G ])× CGi

×
(
det [G ]

)
−λl ×

(
det ([Gmax

i ]− [G ])
)
−λu

× e− tr([µ][G]) ,
(18)
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in which the positive valued parameterCGi
is a normalization constant, the real parameters

λl < 1 andλu < 1 are Lagrange multipliers relative to the two last constraints defined by
Eq. (17) and the symmetric real matrix[µ] is a Lagrange multiplier relative to the third constraint
defined by Eq. (17). This probability density function is a particular case the Kummer-Beta
matrix variate distribution (see [11], [4]) for which the lower bound is a zero matrix.

ParametersCGi
, λl, λu and matrix[µ] are the unique solution of the equations

E{1l
M

S
3
(R)([Gi])} = 1 ,

E{[Gi]} = [I3] ,

E{log(det[Gi])} = C l
i

′

,
E{log(det([Gmax

i ]− [Gi]))} = Cu
i
′ .

(19)

For fixed values ofλl andλu, parametersCGi
and [µ] can be estimated using Eq. (19). In

Eq. (19), since the parametersC l
i

′

andCu
i
′ have no real physical meaning, the parametersλl and

λu are kept as parameters which then allows the ”shape” of the PDF to be controlled. If exper-
imental data are available for the responses of the dynamical system, then the two parameters
λl andλu can be identified solving an inverse problem. If experimental data are not available,
these two parameters allow a sensitivity analysis of the solution to be carried out with respect
to the level of uncertainties.

(iii) Properties for random matrix[Ji]
It is proven in [1] that using Eq. (14) and the available information defined by Eq. (15), the
following important properties for random matrix[Ji] can be deduced,

{1
2
tr([Ji]) [I3]− [Ji]} ∈ M

+
3 (R) a.s , (a)

{[Jmax
i ]− [Ji]} ∈ M

+
3 (R) a.s , (b)

E{[Ji]} = [J i] , (c)

{λl < −2, λu < 0} ⇒ E{‖[Ji]
−1‖

2
} < +∞ , (d)

(20)

in which the random matrix[Jmax
i ], which represents a random upper bound for random matrix

[Ji], is defined by

[Jmax
i ] = Mi{tr([Z

max
i ]) [I3]− [Zmax

i ]} . (21)

It should be noted that Eq. (20-a) implies that each realization of random matrix[Ji] corresponds
to the matrix of a tensor of inertia of a physical rigid body. In addition, this equation implies that
random matrix[Ji] is almost surely positive definite. Eq. (20-b) provides a random upper bound
for random matrix[Ji]. Eq. (20-c) corresponds to a construction for which the meanvalue of
random matrix[Ji] is equal to the nominal value[J i]. Finally, Eq. (20-d) is necessary for that
the random solution of the nonlinear dynamical system be a second-order stochastic process.

(iv) Generator of independent realizations for random matrix [Ji]
The generator of independent realizations of random matrix[Gi] is based on the Monte Carlo
Markov Chain (MCMC) (Metropolis-Hastings algorithm [5] with the PDF defined by Eq. (18).
Then, independent realizations of random matrix[Zi] are obtained using Eq. (16). Finally,
independent realizations of random matrix[Ji] are obtained using Eq. (14) and independent
realizations of random massMi.
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3.2 Stochastic matrix model for a multibody dynamical system with uncertain rigid bod-
ies and its random response

In order to limit the developments, it is assumed that only one of thenb rigid bodies de-
noted by RBi of the rigid multibody system is uncertain. The extension toseveral uncertain
rigid bodies is straightforward. Let the6nb random coordinates be represented by theR

6nb-
valued stochastic processU = (R1, ...,Rnb

, S1, ..., Snb
) indexed by[0, T ] and let thenc random

Lagrange multipliers be represented by theR
nc-valued stochastic processΛ indexed by[0, T ].

The deterministic Eq. (6) becomes the following stochasticequation

[
[M]

[
ϕ

u

]T
[
ϕ

u

]
[0]

] [
Ü
Λ

]
=

[
q − K

− d
dt
ϕt −

[
d
dt
ϕ

u

]
U̇

]
, (22)

U(0) = U0 , U̇(0) = v0 , a.s. (23)

in which the vectorU0 = (r0,1, . . . ,R0,i, . . . , r0,nb
, s0,1, . . . , s0,nb

) is random due to the random
vectorR0,i. For all given real vectoṙu, the vectorK(u̇) of the Coriolis forces is random due to
the random matrix[Ji]. The random mass matrix[M] is defined by

[M] =

[
[Mr] 0
0 [Ms]

]
, (24)

in which the(3nb × 3nb) random matrices[Mr] and[M]s are defined by

[Mr] =




m1[I3] · · · 0
. . .

... Mi[I3]
...

. . .
0 · · · mnb

[I3]


 , (25)

[Ms] =




[J1] · · · 0
. . .

... [Ji]
...

. . .
0 · · · [Jnb

]


 . (26)

Random Eqs. (22) and (23) are solved using the Monte Carlo simulation method.

4 APPLICATION

In this section, we present a numerical application which validates the methodology pre-
sented in this paper.

4.1 Description of the mean model

The rigid multibody model is made up of five rigid bodies and six joints which are described
in the fixed frame(O, x0,1, x0,2, x0,3) (see Fig. 1). The plan defined by(O, x0,1, x0,2) is identi-
fied below as the ”ground”. The gravity forces in thex0,3-direction are taken into account.
(i) Rigid bodies
In the initial configuration, the rigid bodiesRb1, Rb2, Rb3 andRb4 are cylinders for which the

8
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u1 u2
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Rb1
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Rb2

Rb5

x0,1

x0,2

x0,3

Figure 1: Rigid multibody system.
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Figure 2: Imposed displacementu1(t) (left figure) andu2(t) (right figure).

axes follow thex0,3-direction. In the initial configuration, the rigid bodyRb5 is supposed to
be symmetric with respect to the planes(G5, x0,1, x0,2) and(G5, x0,1, x0,3) in whichG5 is the
center of mass ofRb5.
(ii) Joints
− The jointGround-Rb1 is made up of a prismatic joint followingx0,3-direction. The displace-
ment followingx0,3-direction (see Fig. 1), denoted byu1(t), is imposed. The jointGround-Rb2
is a prismatic joint followingx0,3-direction. The displacement followingx0,3-direction (see
Fig. 1), denoted byu2(t), is imposed. The displacement followingx0,1-direction is uncon-
strained. Imposed displacementsu1(t) andu2(t) are plotted in Fig. 2 fort in [0, 0.03] s.
− The jointsRb1-Rb3 andRb2-Rb4 are constituted of 6D spring-dampers..
− Finally, the jointsRb3-Rb5 andRb4-Rb5 arex0,2-direction revolute joints.

4.2 Random response of the stochastic model

Rigid bodyRb5a is considered as uncertain and is therefore modeled by a random rigid body.
As explained in Section 3, the elements of inertia of the uncertain rigid BodyRb5 are replaced
by random quantities. The fluctuation of the response is controlled by four parametersδ

M5
, h,

λl andλu. A sensitivity analysis is carried out with respect to thesefour parameters. Statistics
on the transient response are estimated using the Monte Carlo simulation method with500 in-
dependent realizations. The initial velocities and angular velocities are zero. The observation
pointPobs belongs toRb5.

(i) Case 1:M5 is random,R0,5 is deterministic and[J5] is deterministic.
We chooseδ

M5
= 0.5. The confidence region, with a probability levelPc = 0.90, of the random

9
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Figure 3: Random transient acceleration of pointPobs, Case 1: confidence region (upper and lower thin solid lines),
mean response (thick solid line) and response of the mean model (dashed line);x0,3-acceleration (left figure) and
x0,1-angular acceleration (right figure).
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Figure 4: Random transient acceleration of pointPobs, Case 2: confidence region (upper and lower envelopes),
mean response and response of the mean model are superimposed;x0,3-acceleration (left figure) andx0,1-angular
acceleration (right figure).

acceleration of pointPobs is plotted in Fig. 3. It can be noted that the acceleration is sensitive to
the mass uncertainties.
(ii) Case 2:Mi is deterministic,R0,5 is deterministic and[J5] is random.
We chooseλl = −5 andλu = −5 for random matrix[J5]. The confidence region, with a
probability levelPc = 0.90, of the random acceleration of pointPobs is plotted in Fig. 4. We
can remark, as it was expected, that the angular acceleration is sensitive to uncertainties on the
tensor of inertia.
(iii) Case 3:M5 is deterministic,R0,5 is random and[J5] is deterministic.
The domain ofR0,5 is supposed to be a parallelepiped which is centered at point(0, 0, 0.55)
for which its edges are parallel to the directionsx0,1, x0,2 andx0,3 and for which the lengths
following these three directions are respectively0.5, 0.2 and0.02. The confidence region, with
a probability levelPc = 0.90, of the random acceleration of pointPobs is plotted in Fig. 5. We
can remark that the angular acceleration is sensitive to uncertainties on initial center of mass of
Rb5.
(iv) Case 4:M5, R0,5 and[J5] are random.
The values of the parameters of the PDF are those fixed in the three previous cases. The con-
fidence region, with a probability levelPc = 0.90, of the random acceleration of pointPobs is
plotted in Fig. 6. It can be viewed that (1) the randomness on the acceleration is mainly due to
the randomness of massM5, (2) the randomness on the angular acceleration is mainly due to
the randomness of the initial positionR0,5 of the center of mass and the random tensor of inertia
[J5].
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Figure 5: Random transient acceleration of pointPobs, Case 3: confidence region (upper and lower envelopes),
mean response and response of the mean model are superimposed;x0,3-acceleration (left figure) andx0,1-angular
acceleration (right figure).

0 0.005 0.01 0.015 0.02 0.025 0.03
−60

−40

−20

0

20

40

60

80

time (s)

ac
ce

le
ra

tio
n 

(m
/s

2 )

0 0.005 0.01 0.015 0.02 0.025 0.03
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (s)

an
gu

la
r 

ac
c.

 (
ra

d/
s2 )

Figure 6: Random transient acceleration of pointPobs, Case 4: confidence region (upper and lower thin solid lines),
mean response (thick solid line) and response of the mean model (dashed line);x0,3-acceleration (left figure) and
x0,1-angular acceleration (right figure).

5 CONCLUSION

We have presented a complete and general probabilistic modeling of uncertain rigid bodies
taking into account all the known mechanical and mathematical properties. This probabilistic
model of uncertainties is used to construct the stochastic equations of uncertain multibody dy-
namical systems. The random dynamical responses can then becalculated. In the proposed
probabilistic model, the mass, the center of mass and the tensor of inertia are modeled by
random variables for which the prior probability density functions are constructed using the
maximum entropy principle under the constraints defined by all the available mathematical,
mechanical and design properties. Several uncertain rigidbodies can be linked each others in
order to obtain the stochastic dynamical model of the uncertain multibody dynamical system.
The theory proposed has been illustrated analyzing a simpleexample. The results obtained
clearly show the role played by uncertainties and the sensitivity of the responses due to un-
certainties on (1) the mass (2) the center of mass and (3) the tensor of inertia. Such a prior
stochastic model allows the robustness of the responses to be analyzed with respect to uncer-
tainties. If experimental data were available on the responses, then the parameters which control
the level of uncertainties could be estimated by solving an inverse stochastic problem.
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