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Abstract. This research is devoted to the construction of the random dynamical response of
a multibody system with uncertain rigid bodies. We first construct a stochastic model of an
uncertain rigid body by replacing the mass, the center of mass and the tensor of inertia by
random variables. The prior probability distributions of the stochastic model are constructed
using the maximum entropy principle under the constraints defined by the available information.
The generator of independent realizations corresponding to the prior probability distribution of
these random quantities are developed. Then, several uncertain rigid bodies can be linked
each others in order to calculate the random response of a multibody dynamical system. An
application is proposed to illustrate the theoretical development.
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1 INTRODUCTION

This study is devoted to the construction of a probabilistaxel of uncertainties for a rigid
multibody dynamical system made up of uncertain rigid bedie some cases, the mass dis-
tribution inside a rigid body is not perfectly known and mubst considered as random (for
example, the distribution of passengers inside a vehicdéXlerefore, this unknown mass dis-
tribution inside the rigid body induces uncertainties ia thodel of this rigid body. Here, we
propose a new probabilistic modeling for uncertain rigidies in the context of the multibody
dynamics. Concerning the modeling of uncertainties in finotty dynamical system, a very
few previous researches have been carried out. Thesecakssaroncerned parameters which
describe the joints linking each rigid body to the others @n@dexternal sources (see [7], [16],
[3]), [12] ,[13]), but not rigid bodies themselves. In theldi®f uncertain rigid bodies, a first
work has been proposed [ [9,/10], in which the authors talceaocount uncertain rigid bodies
for rotor dynamical systems using the nonparametric pritisib approach([18, 19] consisting
in replacing the mass and gyroscopic matrices by randonicaatr

In this paper, a general and complete stochastic model strearted for an uncertain rigid
body. The mass, the center of mass and the tensor of ineriehwlescribe the rigid body
are modeled by random variables. The prior probabilityriistions of the random variables
are constructed using the maximum entropy principle [6infimformation Theory([17]. The
generator of independent realizations corresponding éoptior probability distributions of
these random quantities are developed and presented. $éegral uncertain rigid bodies
can be linked each others in order to calculate the randoponsg of an uncertain multibody
dynamical system. The stochastic multibody dynamical egus are solved using the Monte
Carlo simulation method.

Sectiori 2 is devoted to the construction of the mean modé¢héorigid multibody dynamical
system by using the classical method. In Seciion 3, firsty,pnopose a general probability
model for an unconstrained uncertain rigid body and segpmiok uncertain rigid multibody
dynamical system is obtained by joining this unconstrainedertain rigid body to the other
rigid bodies. The last section is devoted to an applicatibichvillustrates the proposed theory.

2 MEAN MODEL FOR THE RIGID MULTIBODY DYNAMICAL SYSTEM

In this paper, the usual model of a rigid multibody dynammatem for which all the me-
chanical properties are known will be called the mean modeti{e nominal model). This
section is devoted to the construction of the mean model fagid multibody dynamical sys-
tem. This mean model is constructed aslinl([14, 15]) and issamzed below.

2.1 Dynamical equationsfor arigid body of the multibody system

Let RB; be the rigid body occupying a bounded dom@inwith a given geometry. Lef be
the generic point of the three dimensional space.xLet (x4, 2, z3) be the position vector of
point¢ defined in a fixed inertial fram@) , 1 , o2, ¥o3), such thak = O&. The rigid body
class is then defined by three quantities.

(1) The first one is the mass; of RB; which is such that

mi= [ otax ®

i

wherep(x) is the mass density.
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(2) The second quantity is the position veatpof the center of mass;, defined in the fixed
inertial frame, by

1
ri_—/ﬂix/)(x)dx : (2)

m;

(3) Let (G, x;, , 7}, ,7;3) be the local frame for which the origin &; and which is deduced

from the fixed framgO , zo ;1 , z 2, z03) by the translatlom and a rotation defined by the
three Euler angles;, j; and% The third quantity is the positive-definite matfix] of the
tensor of inertia in the local frame such that

[Ji]u:—/ X x X' xup(x)dx , YueR® | (3)
Q;

in which the vector’ = (7, 13, r3) of the components of vector;§ are giveninG; , =i, , 2}, , ¥; 3).
In the above equation, x v denotes the cross product between the veci@sdy.

2.2 Matrix model for therigid multibody dynamical system

The rigid multibody dynamical system is made uprgfrigid bodies and ideal joints in-
cluding rigid joints, joints with given motion (rheonomi®mstraints) and vanishing joints
(free motion). The interactions between the rigid bodies r@alized by these ideal joints
but also by springs, dampers or actuators which producedobetween the bodies. In this
paper, onlyn. holonomic constraints are considered. Lebe the vector iR such that
U= (ry,....M,,S,...,S,) iInwhichs; = («;, 8;,7;) is the rotation vector. The, constraints
are given byn,. implicit equations which are globally written @gu,t) = 0. The(6n, x 6n;)
mass matriXM/] is defined by

| @

=10

where the(3n,, x 3n,) matricesM"] and[M/*] are defined by

M= | (5)
* My, [[3] 0-- '[an]

in which [/3] is the(3 x 3) identity matrix. The functioqu(t) , € [0, T]} is then the solution of
the following dlfferentlal equation (see [15])

KA 1Y [ Y ®

with the initial conditions
U(O) = Ug 5 U(O) =V ) (7)

inwhichk(u) is the vector of the Coriolis forces and whége, (u(t), t)];; = dpi(u(t),t)/0u;(t)
ande, = dp/0t. The vectom(u, U, t) is constituted of the applied forces and torques induced
by springs, dampers and actuators. The vea{oy is the vector of the Lagrange multipliers.
Equation[(6) can be solved using an adapted integratiomittigo(see for instance [2]).

3
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3 STOCHASTIC MODEL FOR A MULTIBODY DYNAMICAL SYSTEM WITH UN-
CERTAIN RIGID BODIES

Firstly, a stochastic model for an uncertain rigid body @& thultibody dynamical system is
proposed and secondly, the stochastic model for the mdlidgnamical system with uncertain
rigid bodies is constructed joining the stochastic modéhefuncertain rigid bodies.

3.1 Stochastic model for an uncertain rigid body of the multibody dynamical system

The properties of the mean model (or the nominal model) ofitfid body RB are defined
by its massn;, the position vector, ; of its center of masg; at initial timet = 0 and the matrix
[J,] of its tensor of inertia with respect to the local frage, , z; , , z; , , z; 3). The probabilistic
model of uncertainties for this rigid body is constructedéglacing these three parameters by
the following three random variables: the random méssthe random position vectd, ; of
its random center of mags; at initial timet = 0 and the random matri}J;| of its random
tensor of inertia with respect to the random local fraf@e, z; , , 7}, , 2; ;). The probability
density functions (PDF) of these three random variablescanstructed using the maximum
entropy principle (see [17]|[6]), that is to say, in maximg the uncertainties in the model
under the constraints defined by the available information.

3.1.1 Construction of the PDF for therandom mass

(i) Available information
Let E{.} be the mathematical expectation. The available informétio the random mass/;
is defined as follows. Firstly, the random variabllé must be positive almost surely. Sec-
ondly, the mean value of the random magsmust be equal to the value, of the mean (or
nominal) model. Thirdly, as it is proven in [19], the randonasa must verify the inequality
E{M;?} < +occ in order that a second-order solution exists for the stdahdgnamical sys-
tem. In addition, it is also proven that this constraint cardplaced byE{log M, }| < +oc.
(i) Maximum entropy principle
The probability density functiom — p,, (1) of the random variablé//; is constructed by
maximizing the entropy under the constraints defined abo®lie.solution of this optimization
problem is the PDF of a gamma random variable definehofnoo|. This PDF depends on
two parameters which ane, andC),,. Since parametef'y;, has no physical meaning, it is
eliminated in introducing the coefficient of variatiop. of the random variablé/; such that
om, = o, /m; whereo, is the standard deviation of the random variablg Therefore, the
PDF of the random mass is completely defined by the mean vajuend by the dispersion
parametep,, .

3.1.2 Construction of the PDF for the random position vector R ;

In this subsection, the PDF of the random initial positionteeR, ; of the center of mass of
RB; at initial timet = 0 is constructed.

() Available information

The position vector, ; of the center of mas§; at initial time¢ = 0 of the mean (or nominal)
model is given. However, the real position is not exactlywnandr, ; only corresponds to
a mean position. Consequently, there is an uncertaintytagheueal position and this is the
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reason why this position is modeled by the random veRtor Some geometrical and mechan-
ical considerations lead us to introduce an admissible domaof random vectoR,,. We
introduce the vectadn of the parameters describing the geometry of doniginn addition, the
mean value of the random vectp ; must be equal to the valug; of the mean (or nominal)
model. Therefore, the available information for randomatale R, ; can be written as

Roﬂ' € Dz(h) as. , (CL)

(8)
E{Roi} =1y, € Di(h) . (0)
(i) Maximum entropy principle
The probability density functioa — p, (a) of random variableR,; is then constructed by
maximizing the entropy with the constraints defined by thailable information in Eq.[(8).
The solution of this optimization problem depends on twapaaters which arg, ; and vector-
valued parametdr, and is such that

pRO,i (a; h) = :“Di(h) (a) Cy e ™A (9)
The positive valued parametéf and vector\ are the unique solution of the equations
Cy fD,(h) e~M>da=1 |, (a)

Co [p,mae M da=r,; . (0)

(10)

(iif) Generator of independent realizations

The independent realizations of random varia®je must be generated using the constructed
PDFp, .. Such a generator can be obtained using the Monte Carlo M&kain (MCMC)
method (Metropolls Hastings algorithin [5]).

3.1.3 Random matrix [J;] of therandom tensor of inertia.

In this subsection, the random matfik| of the random tensor of inertia with respect to
(Gi,xi,, 15,5, 2;4) is defined and an algebraic representation of this randomiatcon-
structed. The mass distribution around the random centarasiG,; is uncertain and conse-
quently, the tensor of inertia is also uncertain. This isrgeson why the matrik/,] of the
tensor of inertia of the mean (or nominal) model with respect:; , z; , , 2, , 2} ;) is replaced
by a random matrixJ;| which is constructed by using the maximum entropy principle
We introduce the positive-definite matii¥;] independent ofr; such that

Z]= - {M L] - [J@-]} | (11)

Then[J;] can be calculated as a function|&f],
[Ji] = mi{tr([Z)]) [Is] = [Z]} (12)

It can be proven thdtZ;] is positive definite and that each positive definite matsk con-
structed using Eq[(12), whef&;] is a given positive definite matrix, can be interpreted as the
matrix of a tensor of inertia of a physical rigid body for whithe mass ig (see [1]).

5
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The probabilistic modeling);] of [J;] consists in introducing the random matf#;] and in
using Eq.[(IR) in whichn; is replaced by the random variahlé and whergZ;] is replaced by
[Z;]. We then obtain

2= 37 { “5 2 ) - (13)
D] = Mi{tr([Z:]) [Is] = [Z]} (14)

(i) Available information concerning random matfix;|
Let us introduce (1) the nominal valy&,] of deterministic matrix[Z;] such that[Z,] =
(1/m){tr([J;])/2[13] — [J;]} and (2) the upper bound™*] of random matrixZ;]. Then,
the available information folZ;] can be summarized as follows,
(2] e M3 (R) as. |,
{[Z] - 2]} e Mg (R) as.

E{[z)]} =12 . (15)
E{log(det[Z,])} =C! |, |CY <40
E{log(det([Z[™] — [Zi]))} = CF , |C}| <400 .(e)

For more convenience, random matjZ| is normalized as follow. MatrixZ,] being positive
definite, its Cholesky decomposition yiel@ig;] = [L,]" [L, ] in which [L,] is an upper
triangular matrix in the sdvl;(R) of all the (3 x 3) real matrices. Then, random matfix;]
can be rewritten as

2] = [Lz]" [Gi][Lz] (16)
in which the matriXG;]| is a random matrix for which the available information is
G;] € M3 (R) a.s. |
{[GT] - [Gi]} e M3 (R) a.s.

E{[G]} = [I5] (17)
Eflog(det[G,])} = CV , [Cl] < 400,
E{log(det([GP] — [G)]))} = CF ,  [CY¥| <400

in whichC! = C! —log(det[Z,]), C* = C* — log(det[Z,]) and where the matri}G™*] is an
upper bound for random matriG;] and is defined byGM*] = ([L, ") [ZM*] [Ly )"

(i) Maximum entropy principle

The probability distribution of random matrj;] is constructed using the maximum entropy
principle under the constraints defined by the availablermation given by Eq[(17). The prob-
ability density functiorpc,) ([G ]) with respect to the volume elemefd of random matrixG,]

is then written as

pe([G]) ([G]) X Mg ) (1G] = [G]) X C,

= M R)
_ 1
(det G ] ) (det ([GMMa=] — [G])) Ao e*tf([u][G])’ (18)

6
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in which the positive valued parametéy;, is a normalization constant, the real parameters
A, < land)\, < 1 are Lagrange multipliers relative to the two last constsagtefined by
Eq. (17) and the symmetric real matfj¥ is a Lagrange multiplier relative to the third constraint
defined by Eq.[(17). This probability density function is atjgalar case the Kummer-Beta
matrix variate distribution (seé [11],/[4]) for which theAer bound is a zero matrix.
Parameter€’;,, \;, A\, and matrix/u| are the unique solution of the equations

g
E{log(det[G_)} c’l’ | (19)
] -

E{log(det([G] — [GJ))} = Y

For fixed values of\; and \,, parameter€’, and[u] can be estimated using E§.{19). In
Eq. (19), since the paramete’f# andC* have no real physical meaning, the parameigesd
A, are kept as parameters which then allows the "shape” of tHetBDe controlled. If exper-
imental data are available for the responses of the dynasystem, then the two parameters
A; and )\, can be identified solving an inverse problem. If experimletiéiga are not available,
these two parameters allow a sensitivity analysis of thet&ol to be carried out with respect
to the level of uncertainties.

(iii) Properties for random matrixJ; |
It is proven in [1] that using Eq[(14) and the available imfation defined by EqL(15), the
following important properties for random matiik] can be deduced,

{3tr([3:]) [1s] — [3;]} e M (R) a.s (a)
{97] =[]} e M3 (R) a.s (0) (20)

E{[3]} =[L] (c)

(N <=2, <0} = E{|[3] I} < +00 (d)

in which the random matrifd**], which represents a random upper bound for random matrix
[J;], is defined by

7] = Miftr([Z) [Is) = (271} (21)

It should be noted that Eq._(20-a) implies that each redtinatf random matrixJ;| corresponds
to the matrix of a tensor of inertia of a physical rigid bodyalddition, this equation implies that
random matriXJ;] is almost surely positive definite. E.(20-b) provides alam upper bound
for random matrixJ;]. Eqg. (20-c) corresponds to a construction for which the mede of
random matriXJ;] is equal to the nominal valug,]. Finally, Eq. [20-d) is necessary for that
the random solution of the nonlinear dynamical system bearskorder stochastic process.

(iv) Generator of independent realizations for random rixalt; |

The generator of independent realizations of random mgikis based on the Monte Carlo
Markov Chain (MCMC) (Metropolis-Hastings algorithixi [5] thithe PDF defined by Ed._(118).
Then, independent realizations of random maj#iy are obtained using Eq._(116). Finally,
independent realizations of random matjdx are obtained using Eq._({14) and independent
realizations of random masd,.
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3.2 Stochastic matrix model for a multibody dynamical system with uncertain rigid bod-
iesand itsrandom response

In order to limit the developments, it is assumed that onlg ohthen, rigid bodies de-
noted by RB of the rigid multibody system is uncertain. The extensiorse¢geral uncertain
rigid bodies is straightforward. Let then, random coordinates be represented byRA&:-
valued stochastic proces= (R, ...,R,,. S, ..., S,,) indexed by[0, T'| and let then, random
Lagrange multipliers be represented by Rie-valued stochastic procedsindexed by[0, T').
The deterministic Eq[{6) becomes the following stochastigation

M] [%]THU}:[ q-K (22)
[ ] 0] JLA —ge—gal U]
Uo)=U, , U0 =vy, , a.s. (23)
in which the vectoty = (ro1,...,Ro4, .-, M0, %015 - - - Son,) IS random due to the random

vectorR, ;. For all given real vectou, the vectoK (u) of the Coriolis forces is random due to
the random matrixJ;]. The random mass matrj¥] is defined by

=0 | (24)

in which the(3n,, x 3n;) random matriceM"| and[M]* are defined by

ml[]B] . 0
M= : | ; , (25)
0 M, [13]
[A] 0
my=| ;o R (26)
0 [an]

Random Eqs[(22) ant (23) are solved using the Monte Carlolation method.

4 APPLICATION

In this section, we present a numerical application whiclidates the methodology pre-
sented in this paper.

4.1 Description of the mean model

The rigid multibody model is made up of five rigid bodies andjsints which are described
in the fixed frameO, z 1, xo 2, zo,3) (See Figlll). The plan defined B§, ¢ 1, zo2) is identi-
fied below as the "ground”. The gravity forces in thgs-direction are taken into account.

() Rigid bodies
In the initial configuration, the rigid bodie®b1, Rb2, Rb3 and Rb4 are cylinders for which the

8
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Figure 1: Rigid multibody system.
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Figure 2: Imposed displacement(t) (left figure) andu2(¢) (right figure).

axes follow thex, s-direction. In the initial configuration, the rigid bodyb5 is supposed to
be symmetric with respect to the plan@ss, ¢ 1, z2) and(G5, zo.1, o 3) in Which G5 is the
center of mass oRb5.

(i) Joints

— The jointGround Rb1 is made up of a prismatic joint following, ;-direction. The displace-
ment followingz, s-direction (see Fid.]1), denoted by (), is imposed. The joinEround Rb2
is a prismatic joint followingz, ;-direction. The displacement following, ;-direction (see
Fig.[), denoted by:2(¢), is imposed. The displacement following ;-direction is uncon-
strained. Imposed displacements¢) andu2(t) are plotted in Fid.12 fot in [0, 0.03] s.

— The jointsRb1-Rb3 and Rb2- Rb4 are constituted of 6D spring-dampers..

— Finally, the jointsRb3-Rb5 and Rb4-Rb5 arex »-direction revolute joints.

4.2 Random response of the stochastic model

Rigid bodyRb5a is considered as uncertain and is therefore modeled by amaridid body.
As explained in Section 3, the elements of inertia of the ttagerigid Body Rb5 are replaced
by random quantities. The fluctuation of the response isrotsed by four parameterg,_, h,

A, and ). A sensitivity analysis is carried out with respect to thiEse parameters. Statistics
on the transient response are estimated using the Monte Slarulation method witt500 in-
dependent realizations. The initial velocities and anguddocities are zero. The observation
point P, belongs toRb5.

(i) Case 1:M; is randomR 5 is deterministic andl;| is deterministic.
We choos@,, = 0.5. The confidence region, with a probability levél = 0.90, of the random

9
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Figure 4: Random transient acceleration of pdibs;, Case 2: confidence region (upper and lower envelopes),
mean response and response of the mean model are superimppsacceleration (left figure) aney ;-angular
acceleration (right figure).

acceleration of poinP,, is plotted in Fig[B. It can be noted that the acceleratioeisgive to
the mass uncertainties.

(i) Case 2:M; is deterministicR 5 is deterministic andJs] is random.

We choose\, = —5 and A\, = —5 for random matrix[Js]. The confidence region, with a
probability level P. = 0.90, of the random acceleration of poif},, is plotted in Figl[4. We
can remark, as it was expected, that the angular acceleiatgensitive to uncertainties on the
tensor of inertia.

(ii) Case 3:Mj is deterministicR 5 is random andJs] is deterministic.

The domain ofR, 5 is supposed to be a parallelepiped which is centered at p@ifit0.55)
for which its edges are parallel to the directions, xo2 andx, 3 and for which the lengths
following these three directions are respectively, 0.2 and0.02. The confidence region, with
a probability levelP. = 0.90, of the random acceleration of poiftt,, is plotted in FigLh. We
can remark that the angular acceleration is sensitive tertenaties on initial center of mass of
Rb5.

(iv) Case 4:M;, Ry 5 and[J;] are random.

The values of the parameters of the PDF are those fixed in the girevious cases. The con-
fidence region, with a probability levé?. = 0.90, of the random acceleration of poiR}, is
plotted in FigL6. It can be viewed that (1) the randomnesseratceleration is mainly due to
the randomness of madg;, (2) the randomness on the angular acceleration is mairdytalu
the randomness of the initial positi®y 5 of the center of mass and the random tensor of inertia
[Js].

10
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5 CONCLUSION

We have presented a complete and general probabilisticlmgdd uncertain rigid bodies
taking into account all the known mechanical and matherabpioperties. This probabilistic
model of uncertainties is used to construct the stochagtiateons of uncertain multibody dy-
namical systems. The random dynamical responses can thealdwdated. In the proposed
probabilistic model, the mass, the center of mass and treotesf inertia are modeled by
random variables for which the prior probability densityétions are constructed using the
maximum entropy principle under the constraints defined Ibtha available mathematical,
mechanical and design properties. Several uncertain bigilies can be linked each others in
order to obtain the stochastic dynamical model of the uagerhultibody dynamical system.
The theory proposed has been illustrated analyzing a siexaenple. The results obtained
clearly show the role played by uncertainties and the seitgibf the responses due to un-
certainties on (1) the mass (2) the center of mass and (3etts®t of inertia. Such a prior
stochastic model allows the robustness of the responses andlyzed with respect to uncer-
tainties. If experimental data were available on the respsrthen the parameters which control
the level of uncertainties could be estimated by solvingnaerise stochastic problem.
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