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Abstract

We propose new easily computable bounds for di¤erent quantities

which are solutions of Markov renewal equations linked to some continuous-

time semi-Markov process (SMP). The idea is to construct two new discrete-

time SMP which bound the initial SMP in some sense. The solution of

a Markov renewal equation linked to the initial SMP is then shown to

be bounded by solutions of Markov renewal equations linked to the two

discrete time SMP. Also, the bounds are proved to converge.

To illustrate the results, numerical bounds are provided for two quan-

tities from the reliability �eld: mean sojourn times and probability tran-

sitions.

Key-words: Continuous and discrete time homogeneous semi-Markov

processes; Markov renewal equations; Numerical algorithms.

AMS: 60K15; 90B25.

1 Introduction

Semi-Markov processes (SMP) are used in reliability to model the time-evolution

of a system with a �nite (or countable) state space divided into up- and down-
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states. Among quantities of interest to measure the performance of the sys-

tem are di¤erent time-dependent ones, such as: the time-dependent availability,

namely the probability that the system is in an up-state at some time t; the mean

number of failures of the system on some time interval [0; t]; the mean cumulated

up- and down-times on [0; t] (see [Csenki (2002)] e.g. for other quantities). If as-

ymptotic quantities are often easily analytically computable for semi-markovian

systems, it is usually not the case for time-dependent ones. Indeed, lots of them

are solutions of Markov renewal equations, namely Volterra integral equations

of the second kind, and only their Laplace transforms are usually analytically

reachable. Due to the instability of the numerical inversion of the Laplace trans-

form [Cocozza-Thivent (1997)] or [Csenki (2002)], this is not always a very good

method for their numerical computations. Other methods have then been de-

veloped such as the phase method, where the idea is to approach an SMP by a

Markov process for which computations are much simpler. The main problem

here is with the identi�cation of the phases and their number. Other meth-

ods consist in the numerical resolution of the Volterra integral equations, see

[Csenki (2002)] with lots of reference therein or [Fritz, Posgai & Bertsche (2000)].

An algorithm for the computation of the marginal distribution of an SMP has

also been developed recently, using �nite volume methods [Cocozza-Thivent & Eymard (2004)].

Other methods consist in approaching continuous time SMP by discrete time

SMP for which computations are much simpler (see [Csenki (2002)] with refer-

ence therein). In such methods, the main problem is that the accuracy of the

results is generally not known.

In the present paper, we propose some method of the last category, namely

approaching continuous time SMP by discrete time SMP. The precision of the

approximation is here known, and may be made as small as wanted (at least

theoretically): for a given continuous-time (homogeneous) SMP, the principle

is to construct two new SMP with the same Markov chain as the initial SMP,

but with inter-arrival times which bound the initial ones. This allows to bound

solutions of Markov renewal equations linked to the initial SMP by solutions

of Markov renewal equations linked to the two new SMP. The convergence of

the bounds is established with minimal assumptions on the initial semi-Markov

kernel (no assumption of density with respect to Lebesgue measure; no need for
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the inter-arrival times to be almost surely strictly positive; countable but not

necessarily �nite state space). The two new SMP are discrete time processes

and jump only at points kh (k 2 N), which allows exact calculation for the

resolution of the associated Markov renewal equations as in other methods of

the same kind. This provides bounds for di¤erent time-dependent quantities

linked to some general SMP.

A similar method has been used in [Elkins & Wortman (2001)] to bound the

Markov renewal function (a special case of ours) in case of a �nite state space,

though not described in terms of discrete SMP as here. However, this previ-

ous paper is mainly concerned with the numerical computation of the bounds

and its implementation, and does not take in consideration the mathematical

convergence.

An approximating discrete time SMP has also been used in [Blasi, Janssen & Manca (2004)],

[Janssen & Manca (2001)] and [Corradi, Janssen & Manca (2004)], where the

almost sure convergence of the approximating discrete time SMP towards the

initial continuous-time SMP is proved in the sense of the Skorokhod topology.

Contrary to the present paper, the non-homogeneous case is also envisionned

in such papers but the initial semi-Markov kernel is assumed to admit density

with respect to Lebesgue measure, the state space is �nite and the inter-arrival

times are assumed to be almost surely positive. Under such assumptions, their

approximating discrete time SMP roughly meet with one of those considered

here. However, the construction of a second one allows us to get here some

bounds for the goal quantities whereas the accuracy of the numerical results is

not provided in the quoted papers. Also, the link is not made there between the

a.s. convergence in the sense of the Skorokhod topology and the convergence

of the appproximation for the goal quantity, the transition probabilities in their

case (a special case of ours).

Finally, the same bounding method as in the present paper has already been

used in [Mercier (2004)] and [Mercier (2007)] to bounds a few other performance

measures from the reliability �eld, such as 1) cumulative density functions of

sums of i.i.d. nonnegative random variables, 2) renewal functions and 3) cumula-

tive density functions of geometric sums of i.i.d. nonnegative random variables.

Such performance measures may all be interpreted in terms of SMP so that they
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can be seen as special cases of the present paper.

The paper is organized as follows: the notations and assumptions are given in

Section 2, as well as some recalls on SMP. The two discrete SMP are constructed

in Section 3 and bounds for solutions of Markov renewal equations associated to

the initial SMP are derived. The convergence of the bounds when the step size h

goes to 0 is also proved in this section. Solutions for Markov renewal equations

associated to the two new discrete SMP are given in Section 4. Applications and

numerical examples are provided in Section 5 and numerical bounds are com-

puted for two quantities of interest for semi-markovian systems: mean sojourn

times and transition semi-group. Conclusions are derived in Section 6.

2 Notations, assumptions and recalls

Let E be some �nite or countable space and let (Yn; Tn)n2N be a (homogeneous)

Markov renewal process with T0 = 0 and Yn 2 E for all n 2 N. Also, let

(q (i; j; dt))i;j2E be the associated semi-Markov kernel, namely some family of

non-negative measures such that
P

j2E q (i; j; dt) is a probability measure (all

i 2 E) and such that:

P (Yn+1 = j \ Tn+1 � Tn � tjY0 = i0; T1 = t1; :::; Yn�1 = in�1; Tn = tn; Yn = i)

= P (Yn+1 = j \ Tn+1 � Tn � tjYn = i)

= P (Y1 = j \ T1 � tjY0 = i)

=

Z
[0;t]

q (i; j; du)

= q (i; j; [0; t]) ;

for all n 2 N, all t � 0, all t1; ::; tn 2 R+, all i; j 2 E, all i0; :::; in�1 2 E such

that the conditional probability exists.

The transition matrix for the Markov chain (Yn)n2N then is

Pi;j = P (Y1 = jjY0 = i) = Pi (Y1 = j) = q (i; j;R+)

for all i; j 2 E, where Pi stands for the conditional probability distribution

P (�jY0 = i).

We assume that (Tn)n2N is such that supn2N Tn = +1 a.e. (regularity as-

sumption). We recall from [Cinlar (1975)] that su¢ cient conditions for that are:
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Pi (T0 = ::: = Tn = ::: = 0) = 0 for all i 2 E and �nite number of transient states

for the Markov chain (Yn)n2N, or existence of b; c > 0 such that Pi (T1 > b) > c

for all i 2 E (other conditions in [Cinlar (1975)]).

Symbol (Xt)t�0 stands for the continuous-time (homogeneous) SMP associ-

ated with (Yn; Tn)n2N:

Xt = Yn if Tn � t < Tn+1;

for all n 2 N, all t � 0. The transition semi-group for (Xt)t�0 is (Pt)t�0 with:

Pt (i; j) = Pi (Xt = j) ;

for all i; j 2 E, all t � 0. Also, the Markov renewal function � (i; j; [0; t])

associated to (Xt)t�0 is

� (i; j; [0; t]) = Ei

0@X
n�0

1fTn�tg1fYn=jg

1A
for all i; j 2 E, all t � 0, where 1fg stands for the indicator function. � (i; j; [0; t])

is the mean number of visits to j on [0; t] for (Xt)t�0 starting from i. Note that

due to assumption supn2N Tn = +1 a.e., we have Pi (T1 = T2 = ::: = Tn = ::: = 0) =

0 for all i 2 E, so that � (i; j; [0; t]) < +1 for all i; j 2 E, all t � 0, see

[Cinlar (1975)]. Finally, the Markov renewal measure � (i; j; dt) is the non-

negative Stieltjes measure associated to the non-decreasing right-continuous

function t 7�! � (i; j; [0; t]).

We now turn to Markov renewal equations and we denote by B+ the set

of all functions f : E � R+ ! R+ such that the function t 7�! f (i; t) is

uniformly bounded with respect to i 2 E on each compact set, namely kfk[0;t] =

supi2E supu2[0;t] f (i; t) < +1 for all t � 0.

For all f 2 B+, we set:

(dq � f) (i; t) =
X
j2E

Z
[0;t]

f (j; t� u) q (i; j; du) =
X
j2E

Ei
�
f (j; t� T1)1fT1�tg1fY1=jg

�
= Ei

�
f (Y1; t� T1)1fT1�tg

�
and

(d� � f) (i; t) =
X
j2E

Z
[0;t]

f (j; t� s) � (i; j; ds) =
X
j2E

X
n�0

Ei
�
f (j; t� Tn)1fTn�tg1fYn=jg

�
=
X
n�0

Ei
�
f (Yn; t� Tn)1fTn�tg

�
(1)
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with dq � f 2 B+ and d� � f 2 B+.

We recall from [Cinlar (1975)] that, due to the assumption supn2N Tn = +1

a.e., for all g 2 B+, the equation

f = g + dq � f

has one single solution fg 2 B+ which is:

fg = d� � g (2)

with fg < +1.

3 Bounding fg

3.1 Construction of
�
Xh
t

�
t�0 and of

�
Xh+
t

�
t�0

Let b:::c be the �oor function, namely the function from R to Z such that, for

all x 2 R, bxc is the single integer such that:

bxc � x < bxc+ 1

For any h > 0 and any random variable (r.v.) U with general distribution,

we may set:

Uh = h

�
U

h

�
and Uh+ = h

�
U

h

�
+ h

(same notation in all the paper)

with

Uh � U < Uh+

and

lim
h!0+

Uh = lim
h!0+

Uh+ = U

namely: Uh (!) � U (!) < Uh+ (!) and limh!0+ U
h (!) = limh!0+ U

h+ (!) =

U (!) for all ! in the domain of U .

Now, let
�
qh (i; j; dt)

�
i;j2E and

�
qh+ (i; j; dt)

�
i;j2E be the semi-Markov ker-

nels associated to h > 0 and (q (i; j; dt))i;j2E ; and such that:

qh (i; j; [0; t]) = P
�
Y1 = j \ Th1 � tjY0 = i

�
(3)

qh+ (i; j; [0; t]) = P
�
Y1 = j \ Th+1 � tjY0 = i

�
(4)
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with Th1 = h
�
T1
h

�
and Th+1 = h

�
T1
h

�
+ h = Th1 + h.

We can then construct two new SMP
�
Xh
t

�
t�0 and

�
Xh+
t

�
t�0 respectively

associated to
�
qh (i; j; dt)

�
i;j2E and

�
qh+ (i; j; dt)

�
i;j2E with the same initial

distribution as (Xt)t�0. Both of those SMP have semi-Markov kernels supported

by hN. In other words, they are discrete-time SMP. The associated Markov

chains are "copies" of the initial Markov chain (Yn)n2N associated to (Xt)t�0 in

the sense that they have the same initial distribution and the same transition

matrix, due to

qh (i; j;R+) = qh+ (i; j;R+) = q (i; j;R+) = Pi;j

for all i; j 2 E. The visited states for
�
Xh
t

�
t�0 and

�
Xh+
t

�
t�0 actually are the

same for
�
Xh
t

�
t�0 and

�
Xh+
t

�
t�0 as for the initial SMP (Xt)t�0. Those "copies"

of (Yn)n2N are still denoted by (Yn)n2N in all the following.

The inter-arrival times for
�
Xh
t

�
t�0 and

�
Xh+
t

�
t�0 respectively are

�
(Tn+1 � Tn)h

�
n2N

and
�
(Tn+1 � Tn)h+

�
n2N

where

(Tn+1 � Tn)h = h
�
Tn+1 � Tn

h

�
� Tn+1�Tn � (Tn+1 � Tn)h+ = (Tn+1 � Tn)h+h:

Then, the SMP
�
Xh
t

�
t�0 stays shorter in each state than (Xt)t�0 whereas

the SMP
�
Xh+
t

�
t�0 stays longer.

Note that the approximation is made on the inter-arrival times Tn+1 � Tn
and not on the arrival-times Tn. Indeed, in order to construct an approximate

SMP, the approximate n�th inter-arrival time ]Tn+1 � fTn given Y0 = i0; ~T0 =

t0; :::; Yn�1 = in�1; ~Tn�1 = tn�1; Yn = i; ~Tn = tn and Yn+1 = j should be

conditionaly distributed asfT1 given Y0 = i and Y1 = j. This is true if ]Tn+1�fTn
depends on Tn and on Tn+1 only through their increment Tn+1 � Tn (all n 2

N). It is not true any more if the approximation is taken on Tn and Tn+1

themselves. (For instance, taking fTn = h �Tnh � would not lead to a SMP because
h
j
Tn+1
h

k
� h

�
Tn
h

�
6= h

j
Tn+1�Tn

h

k
).

The respective arrival times for
�
Xh
t

�
t�0 and

�
Xh+
t

�
t�0 actually are:

T (h)n =
n�1X
i=0

(Ti+1 � Ti)h

T (h+)n =
n�1X
i=0

(Ti+1 � Ti)h+ = T (h)n + nh (5)
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(note the nh in T (h+)n ).

In the case where E is �nite and q (i; j; dt) admits some density with respect

to Lebesgue measure,
�
Xh+
t

�
t�0 meets with the approximating discrete time

SMP studied in [Blasi, Janssen & Manca (2004)] and [Corradi, Janssen & Manca (2004)]

(with approximate arrival times substituted by (5)).

For all other notations than Yn, T
(h)
n and T (h+)n , we add some subscripts h

and h+ when referring to the SMP
�
Xh
t

�
t�0 and

�
Xh+
t

�
t�0, respectively. For

instance, for g 2 B+, symbol fhg stands for the single solution of f = g+ dqh � f

(under assumption which ensures existence and singleness, see the following).

We �nally express the semi-Markov kernels
�
qh (i; j; dt)

�
i;j2E and

�
qh+ (i; j; dt)

�
i;j2E

with respect to the initial one (q (i; j; dt))i;j2E .

Lemma 1 For all i; j 2 E, all h > 0, the measures qh (i; j; dt) and qh+ (i; j; dt)

have supports included in hN with

qh (i; j; kh) = q (i; j; [kh; (k + 1)h[)

qh+ (i; j; kh) = 1fk�1gq (i; j; [(k � 1)h; kh[) = 1fk�1gqh (i; j; (k � 1)h)

for all k 2 N.

Proof. It is clear that the supports are included in hN. Besides, for all k 2 N,

we have: �
h

�
T1
h

�
� kh

�
, (T1 < h (k + 1))

We get:

qh (i; j; kh) = qh (i; j; [0; kh])� 1fk�1gqh (i; j; [0; (k � 1)h])

= q (i; j; [0; (k + 1)h[)� 1fk�1gq (i; j; [0; kh[)

= q (i; j; [kh; (k + 1)h[)

and similar results for qh+.

3.2 A technical lemma

We now give a technical condition which ensures us with supn2N T
(h)
n = +1 a.e.

and in particular with existence and uniqueness of solutions to Markov renewal

equations associated to
�
qh (i; j; dt)

�
i;j2E (clear for

�
qh+ (i; j; dt)

�
i;j2E due to

supn2N T
(h+)
n � supn2N nh = +1, see (5)).
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Lemma 2 If C = supf(i;j):Pi;j 6=0g Ei (exp (�T1) jY1 = j) < 1, then supn2N T
(h)
n =

+1 a.e. for all 0 < h < � lnC. In case E is �nite, the condition somewhat

simpler minf(i;j):Pi;j 6=0g Ei (T1jY1 = j) > 0 is equivalent to the condition C < 1.

Proof. For all n 2 N and t � 0, we have:

P
�
T (h)n � t

�
� P (Tn � t+ nh) = P

�
e�(t+nh) � e�Tn

�
� et+nhE

�
e�Tn

�
due to Markov inequality. Besides:

E
�
e�Tn

�
= E

 
exp

 
�
n�1X
k=0

(Tk+1 � Tk)
!!

= E

 
E

 
n�1Y
k=0

exp (� (Tk+1 � Tk)) jY0; Y1; :::; Yn

!!

= E

 
n�1Y
k=0

E (exp (� (Tk+1 � Tk)) jY0; Y1; :::; Yn)
!

due to independence of all Tk+1 � Tk (with 0 � k � n� 1) given Y0; Y1; :::; Yn.

By assumption:

E (exp (� (Tk+1 � Tk)) jY0; Y1; :::; Yn) � C < 1

Whence:

P
�
T (h)n � t

�
� et+nhCn = eten(h+lnC) (6)

and by monotony:

lim
n!+1

# P
�
T (h)n � t

�
= P

�
sup
n2N

T (h)n � t
�
= 0

for all 0 < h < � lnC and t � 0. We derive by monotony again that supn2N T
(h)
n =

+1 a.e. for all 0 < h < � lnC. Finally, it is easy to see that, for all i; j 2 E

such that Pi;j 6= 0, the condition Ei (exp (�T1) jY1 = j) < 1 is equivalent to

Pi (exp (�T1) < 1jY1 = j) = Pi (T1 > 0jY1 = j) > 0, which is also equivalent to

Ei (T1jY1 = j) > 0. Whence the result in case E is �nite.

3.3 Bounds for fg and convergence of the bounds

We now turn to the main result of this paper which provides us with bounds

for fg and the convergence of the bounds when h goes to 0.
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Theorem 3 Let (Xt)t�0 be a semi-Markov process such that C =

supf(i;j):P (i;j) 6=0g Ei (exp (�T1) jY1 = j) < 1. For all g 2 B+:

1. if t 7�! g (i; t) is non-decreasing for all i 2 E, then, for all 0 < h < � lnC:

fh+g = d�h+ � g � fg = d� � g � fhg = d�h � g < +1 (7)

2. if g is of the shape g = g1 � g2 with g1; g2 2 B+ and t 7�! gj (i; t) non-

decreasing for j = 1; 2 (all i 2 E), then, for all 0 < h < � lnC:

fh+g1 � fhg2 � fg = fg1 � fg2 � f
h
g1 � f

h+
g2 < +1 (8)

3. if g is uniformly continuous on E�[0; t] where t � 0 (namely setting "g (�)

= supj2E supjx�yj��
x;y2[0;t]

jg (j; x)� g (j; y)j, we have lim�!0+ " (�) = 0), then:

lim
h!0+

fhg (i; t) = lim
h!0+

fh+g (i; t) = fg (i; t)

Proof. Uniqueness, existence and �niteness of fh+g , fg and fhg is clear due

to Lemma 2 and assumption on (Xt)t�0, for all 0 < h < � lnC. Besides,

inequality (7) may easily be derived from the de�nition of d� � g (see (1)),

from the non-increasingness of u 7�! g (j; t� u)1fu�tg and from the fact that

T
(h)
n � Tn < T

(h+)
n . This gives the �rst point. The second point is a direct

consequence from the �rst point using fg = fg1 � fg2 . As for the third point,

for 0 < h < � lnC and n0 2 N �xed, we may write:��fhg (i; t)� fg (i; t)��
=

������
X
n�0

Ei
�
1n

T
(h)
n �t

og �Yn; t� T (h)n

�
� 1fTn�tgg (Yn; t� Tn)

�������
� S1 (n0; h) + S2 (n0; h)

with

S1 (n0; h) =

n0X
n=0

Ei
�����1nT (h)n �t

og �Yn; t� T (h)n

�
� 1fTn�tgg (Yn; t� Tn)

�����
S2 (n0; h) =

X
n>n0

Ei
�����1nT (h)n �t

og �Yn; t� T (h)n

�
� 1fTn�tgg (Yn; t� Tn)

�����
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Writing����1nT (h)n �t
og �Yn; t� T (h)n

�
� 1fTn�tgg (Yn; t� Tn)

����
=

�����1nT (h)n �t
o � 1fTn�tg

�
g
�
Yn; t� T (h)n

�
+ 1fTn�tg

�
g
�
Yn; t� T (h)n

�
� g (Yn; t� Tn)

�����
in S1 (n0; h), we get

S1 (n0; h) �
n0X
n=0

Ei
�����1nT (h)n �t

o � 1fTn�tg
���� g �Yn; t� T (h)n

��

+

n0X
n=0

Ei
�
1fTn�tg

���g �Yn; t� T (h)n

�
� g (Yn; t� Tn)

����
Noting that����1nT (h)n �t

o � 1fTn�tg
���� = 1nT (h)n �t

o � 1fTn�tg � 1ft<Tn<t+nhg
and

���Tn � T (h)n

��� � nh � n0h for all 0 � n � n0;
and using the function "g (�) de�ned in the theorem and similar argument as for

(6), we get:

S1 (n0; h) � kgk[0;t]
n0X
n=0

Pi (t < Tn < t+ nh) + "g (n0h)
n0X
n=0

Pi (Tn � t)

� kgk[0;t]
n0X
n=0

Pi (t < Tn < t+ nh) + (n0 + 1) "g (n0h)

with

lim
h!0+

Pi (t < Tn < t+ nh) = Pi (t < Tn � t) = 0

for all 0 � n � n0. We derive:

lim
h!0+

(S1 (n0; h)) = 0

for all �xed n0. Moreover:

S2 (n0; h) � kgk[0;t]
X
n>n0

h
Pi
�
T (h)n � t

�
+ Pi (Tn � t)

i
� kgk[0;t]

X
n>n0

�
Cnet+nh + Cnet

�
� kgk[0;t]

�
eh(n0+1)

1� Ceh +
1

1� C

�
etCn0+1

We derive:

lim sup
h!0+

��fhg (i; t)� fg (i; t)�� � kgk[0;t] 2

1� C e
tCn0+1

11



for all �xed n0. Taking the limit when n0 ! +1, we get lim suph!0+

��fhg (i; t)� fg (i; t)�� =
0 and the result for fhg . The result for f

h+
g may be proved similarly, which com-

pletes the proof.

In case where the kernel (q (i; j; dt))i;j2E is triangular, one can provide al-

ternate bounds in some special cases:

Proposition 4 Let (Xt)t�0 be a semi-Markov process such that C =

supf(i;j):P (i;j) 6=0g Ei (exp (�T1) jY1 = j) < 1. Then let v : E �! R+ and let

w : E � R+ ! R+ be such that w (i; t) = v (i)Pi (T1 > t). Assume E to be

equipped with some order relation and the kernel (q (i; j; dt))i;j2E to be upper

triangular. Then if v is non decreasing, we have, for all 0 < h < � ln (C),

t � 0, i 2 E :

fh+
wh+

(i; t) � fw (i; t) = Ei (v (Xt)) � fhwh (i; t) (9)

with

wh (i; t) = v (i)Pi
�
Th1 > t

�
= v (i)Pi

�
T1 � th+

�
wh+ (i; t) = v (i)Pi

�
Th+1 > t

�
= v (i)Pi

�
T1 � th

�
Inequalities are reversed in case (q (i; j; dt))i;j2E is lower triangular or v is non

increasing.

Proof. Setting �FYn (t) = PYn (T1 > t) = E
�
1fTn+1�Tn>tgjYn

�
, we have:

fw (i; t) =
X
n2N

Ei
�
1fTn�tgv (Yn)

�FYn (t� Tn)
�

=
X
n2N

Ei
�
1fTn�tgv (Yn)1fTn+1�Tn>t�Tng

�
=
X
n2N

Ei
�
v (Yn)1fTn�t<Tn+1g

�
(10)

= Ei (v (Xt))

Beside, starting again from (10):

fw (i; t) =
X
n2N

Ei
�
v (Yn)

�
1ft<Tn+1g � 1ft<Tng

��
=
X
n2N

Ei (v (Yn)� v (Yn+1))1ft<Tn+1g

12



If (q (i; j; dt))i;j2E is upper triangular, we know that: Yn � Yn+1 and conse-

quently, assuming v to be non decreasing, v (Yn) � v (Yn+1) � 0 for all n 2 N.

Due to T (h)n � Tn < T (h+)n for all n 2 N, we derive:

1n
t<T

(h)
n+1

o � 1ft<Tn+1g � 1nt<T (h+)n+1

o
and (9).

Remark 5 Note that t 7�! w (i; t) is here non increasing whatever the monotony

of v is, so that (7) cannot be applied to g = w. In the case where (q (i; j; dt))i;j2E

is triangular and v is monotone, (9) provides simpler bounds than (8).

Remark 6 In case E = f1; :::;m+ 1g with only possible transitions 1 ! 2 !

:::! m! m+ 1, taking v (i) = 1fm�ig and Ui a random variable with distrib-

ution q (i; i+ 1; dt) for 1 � i � m (U1, ..., Um independent), (9) then provides

bounds for E1 (v (Xt)) = P1 (Xt � m) = P (U1 + :::+ Um � t) which are similar

to those obtained in [Mercier (2007)].

4 Numerical computations

Under assumptions of Theorem 3, it is known that for all g 2 B+ and 0 < h <

� lnC, the equation f = g + dqh � f or equivalently

fhg (i;Nh) = g (i;Nh)+
X
j2E

NX
k=0

qh (i; j; (N � k)h) fhg (j; kh) for all N � 0, all i 2 E

(11)

has got one single solution fhg = d�
h � g (the same for dqh+). We here provide

algorithms very easy to emplement for the recursive computation of fhg and f
h+
g

in case E is �nite (recursion on N).

Proposition 7 Let us assume E to be �nite and minf(i;j):Pi;j 6=0g Ei (T1jY1 = j) >

0. Let g 2 B+ and 0 < h < � lnC where C = maxfi;j2E:P (i;j) 6=0g Ei (exp (�T1) jY1 = j) <

1. For all n 2 N, we set: qh (�; �; N) =
�
qh (i; j;N)

�
i;j2E, f

h
g (�; Nh) =

�
fhg (i;Nh)

�
i2E

columnwise, the same for g (�; Nh) and fh+g (�; Nh). Let I be the identity matrix

with size cardinal(E). The matrix I � qh (�; �; 0) then is non singular and:

fhg (�; 0) =
�
I � qh (�; �; 0)

��1
g (�; 0)

fh+g (�; 0) = g (�; 0)

13



For all N 2 N, we have:

fhg (�; Nh) =
�
I � qh (�; �; 0)

��1 "
g (�; Nh) +

N�1X
k=0

qh (�; �; (N � k)h) fhg (�; kh)
#

(12)

fh+g (�; Nh) = g (�; Nh) +
N�1X
k=0

qh (�; �; (N � k � 1)h) fh+g (�; kh) (13)

Proof. Let � be a eigen value of qh (�; �; 0). We know that:

j�j � max
i2E

0@X
j2E

qh (i; j; 0)

1A = max
i2E

0@X
j2E

Pi (T1 < hjY1 = j)P (i; j)

1A
= max

i2E

0@X
j2E

Pi
�
e�T1 > e�hjY1 = j

�
P (i; j)

1A � ehC < 1

for all 0 < h < � lnC. We derive that 1 is not an eigenvalue of qh (�; �; 0) so

that I � qh (�; �; 0) is non singular. The other results may easily be derived from

(11) and from qh+ (�; �; N) = 1fN�1gqh (�; �; N � 1) for all N 2 N.

Remark 8 The algorithms provided here are the most natural and might surely

be improved (see [Elkins & Wortman (2001)]). As for the computation of fh+g (�; Nh),

a similar algorithm as the present one may also be found in [Barbu, Boussemart, Limnios (2004)]

e.g.. As for the computation of fhg (�; Nh), the matrix inversion (
�
I � qh (�; �; 0)

��1
)

that appears is actually not computed: an LU factorization is provided for

I�qh (�; �; 0) once for all at the beginning of the numerical computations and two

successive triangular systems are then solved each time quantities like
�
I � qh (�; �; 0)

��1
y

are computed (with y a column vector). This saves much computation time.

5 Applications

We �nally provide numerical bounds for two di¤erent performance measures

from the reliability �eld: one in the case where t 7�! g (i; t) is non-decreasing

(the cumulated mean sojourn time), one in the case where g = g1 � g2 with

both gj non-decreasing with respect of t (the transition probabilities).

In all this section, E is �nite, (Xt)t�0 is such thatminf(i;j):Pi;j 6=0g Ei (T1jY1 = j) >

0 and h is such that 0 < h < � ln (C) = � ln
�
maxfi;j2E:P (i;j) 6=0g Ei (exp (�T1) jY1 = j)

�
(see Lemma 2).
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5.1 Cumulated mean sojourn time

For i 2 E, A � E and t � 0, we are interested in the cumulated mean sojourn

time in A on [0; t] starting from i de�ned by:

CA (i; t) = Ei

 Z
[0;t]

1fXu2Agdu

!
=
X
j2A

Z
[0;t]

Pu (i; j) du

Setting

gA (i; t) = 1fi2Ag

Z
[0;t]

Pi (T1 > u) du

for all i 2 E, all t � 0 and using standard methods, one easily gets:

CA = gA + dq � CA

and hence:

CA = d� � gA

where t 7�! gA (i; t) is non-decreasing for all i 2 E and where u 7�! g (i; u) is

uniformly continuous on [0; t]. We derive from Theorem 3: fh+gA � CA = fgA �

fhgA and the convergence of both bounds when h ! 0+. The bounds are then

computed with the results of Proposition 7.

Example 9 A semi-Markov reparable system is considered, which may be up

(i = 1; 2; 3) or down (i = 4; 5) at time t. (The system may go on degrading when

down). The system is initially in state 1 and we are interested in the cumulated

mean down time on [0; t] starting from 1, namely CA (1; t) with A = f4; 5g. We

take:

q (�; �; dt)

=

0BBBBBBBBB@

0 (1� 
)w1 (t) dt+ 
�0 0 0 0

0 0 (1� 
)w2 (t) dt+ 
�0 0 0

0 0 0 (1� 
)w3 (t) dt+ 
�0 0

2
3 (1� 
)w4 (t)

1
6 (1� 
)w4 (t) 0 0 1

6 (1� 
)w4 (t)+
�0
2
3w5 (t)

1
6w5 (t) 0 1

6w5 (t) 0

1CCCCCCCCCA
where �0 stands for the Dirac mass at 0 and wi (t) stands for the Weibull

p.d.f.of W (�i; �i):

wi (t) = �i�it
�i�1e��it

�i
1R+ (t)

15



Note that there may be some instantaneous degradation with probability 
 so

that q (�; �; dt) does not admit density with respect of Lebesgue measure.

We here have:

gA (i; t) = 1fi=4g (1� 
)
Z
[0;t]

e��4t
�4
dt+ 1fi=5g

Z
[0;t]

e��5t
�5
dt

for all i 2 E, t � 0 and we take:

�1 = 10
�6;�1 = 1:6;�2 = 10

�5;�2 = 2:2;�3 = 10
�4;�3 = 3:3;

�4 = 10
�3;�4 = 4:5;�5 = 10

�3;�5 = 3:5; 
 = 10
�1

which respective means mi and coe¢ cients of variations cvi:

m1 ' 5:042� 103; cv1 ' 0:64;m2 ' 1:659� 102; cv2 ' 0:48;

m3 ' 14:62; cv3 ' 0:33;m4 ' 4:236; cv4 ' 0:25;m5 ' 6:48; cv5 ' 0:3165

The numerical results are displayed in Figure 1 for h = 6 as well as the asymp-

totic direction (see [Cinlar (1975)] e.g.):

CA (i; t) �t!+1
X
j2A

Ej (T1) � (1; j; [0; t])

�t!+1 t�
P5

j=4 Ej (T1) � (j)P5
k=1 � (k)Ek (T1)

' 1:49� 10�3 � t

where � is the stationary distribution for the embedded Markov chain (Yn)n2N

and Ek (T1) = (1� 
)mk for 1 � k � 4, E4 (T1) = m5.
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Figure 1. Example 9, Cumulated

Mean Down Time on [0; t], h = 6:
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We can see in such a Figure that the numerical bounds are coherent with the

asymptotic direction.

In order to better study the precision of the results, one also provides the

results for di¤erent values of h and t in Table 1.

t h Lower bound Upper bound t h Lower bound Upper bound

20 0.4929 0.6487 20 2.2879 2.4144

12 0.5431 0.6344 12 2.3215 2.3977

300 6 0.5803 0.6251 2400 6 2.3480 2.3863

3 0.5949 0.6171 3 2.3585 2.3776

1 0.6048 0.6121 1 2.3658 2.3722

20 0.8088 0.8856 20 3.3479 3.5063

12 0.8325 0.8773 12 3.3899 3.4853

600 6 0.8496 0.8716 3300 6 3.4229 3.4708

3 0.8560 0.8670 3 3.4359 3.4598

1 0.8605 0.8641 1 3.4450 3.4530

20 0.9928 1.0585 20 4.5284 4.7165

12 1.0111 1.0503 12 4.5781 4.6913

900 6 1.0251 1.0447 4200 6 4.6171 4.6739

3 1.0306 1.0404 3 4.6323 4.6607

1 1.0344 1.0376 1 4.6431 4.6526

20 1.1894 1.2651 20 5.7825 5.9991

12 1.2095 1.2552 12 5.8395 5.9699

1200 6 1.2255 1.2484 5100 6 5.8842 5.9495

3 1.2318 1.2433 3 5.9015 5.9342

1 1.2363 1.2401 1 5.9139 5.9248

20 1.4195 1.5087 20 7.0787 7.3236

12 1.4430 1.4969 12 7.1429 7.2903

1500 6 1.4618 1.4889 6000 6 7.1931 7.2670

3 1.4693 1.4828 3 7.2124 7.2494

1 1.4745 1.4790 1 7.2260 7.2387

Table 1. Example 9: Cumulated Mean Down Time with respect of h and t
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We can see in such a table that, as expected, the smaller the discretization

step h, the tighter the bounds are. Also, for h �xed, the error �rst decreases

when t increases (for t . 900) and then increases with t. For small t, one may
think that the lack of precision is due to some round-o¤ error. For bigger t, the

loss of precision when t increases is clearly due to the method.

5.2 Transition semi-group

We are now interested in computing the transiton semi-group Pt (i; j) and we

set: fj (i; t) = Pt (i; j) for i; j 2 E and t � 0. We recall that, setting gj (i; t) =

1fi=jgPi (T1 > t) for all i; j 2 E, all t � 0, we have:

fj = gj + dq � fj

namely fj = fgj = d� � gj , see [Cocozza-Thivent (1997)] e.g. or [Cinlar (1975)].

Noting that gj = Ij � uj with Ij (i; t) = 1fi=jg and uj (i; t) = 1fi=jgPi (T1 � t),

we get Pt (i; j) = fgj (i; t) = fIj (i; t)� fuj (i; t) with fIj (i; t) = � (i; j; [0; t]). As

Ij and uj are both non-decreasing with respect of t for all j 2 E, we derive from

(8) :

�h+ (i; j; [0; t])� fhuj (i; t) � Pt (i; j) = fgj (i; t) � �
h (i; j; [0; t])� fh+uj (i; t) (14)

and the convergence of both bounds in case t 7�! Pi (T1 � t) is continuous.

The computation of the numerical bounds provided by (14) is here much

longer than in the previous case where t 7�! gj (i; t) were non-decreasing. This

has lead us to adapt the program in order to take into account only non trivial

terms in (12� 13). Indeed, in reliability theory, mean down times are often

much shorter than mean up times so that non trivial terms (at a given precision)

among the qh (i; j; kh)�s may highly depend on i and j. Keeping only the non

trivial terms in
PN�1

k=0 q
h (i; j; (N � k)h) fhg (j; kh) then save much computation

time.

Example 10 We here consider an example extracted from [Cocozza-Thivent & Eymard (to appear)]

denoted by [CTE] in the following: a system is considered with two components

in cold stand-by redundancy (see [CTE] for details) and its evolution is described

18



by a SMP with state space E = f1; 2; 3; 4g and semi-Markov kernel:

q (�; �; dt) =

0BBBBBB@
0 w1 (t) �W

0
1 (t) 0 w01 (t)

�W1 (t)

l2 (t) �W
0
2 (t) 0 w02 (t)

�L2 (t) 0

0 0 0 0

0 0 0 0

1CCCCCCA dt

where �Wi (t) and �Li (t) stand for the respective survival functions of W (�i; �i)

and of log-normal distribution LN (�i; �i) with p.d.f.

l�i;�i (t) =
1

�t
p
2�
e
� (ln(t)��i)

2

2�2 1R�+ (t) ;

the same for �W 0
i (t) and �L

0
i (t) with �i and �i substituted by �

0
i and �

0
i.

Following [CTE], we take:

�1 = 1=2216
1:5 ' 9:59� 10�6;�1 = 1:5;�01 = 1=112842 ' 7:85� 10�9;�01 = 2;

�2 = 4:5;�2 = 0:5;�
0
2 = 1=2000

1:2 ' 1:09� 10�4;�02 = 1:2

with

m1 ' 2000; cv1 ' 0:68;m0
1 ' 104; cv01 ' 0:52;

m2 ' 102; cv2 ' 0:53;m0
2 ' 1881; cv02 ' 0:84

Bounds for Pt (1; j) (j = 1; ::; 4) as well as numerical results from [CTE] and

asymptotic values are plotted in Figure 2 with 0 � t � 2� 105, h = 4 for j = 1,

h = 2
3 for j = 2 and h = 40 for j = 3 and 4. We can see in such a �gure that

our results seem to more or less coïncide with those from [CTE].
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Upper Bound
Lower Bound
Cocozza­Eymard
Asympt. Probab.

Figure 2. Example 10, Pt (1; j) for j = 1::4:
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In order to better compare the results, we now give in Table 2 the results

from [CET] and our bounds for Pt (1; 3), for di¤erent values of h and t.

t h Lower bound Upper bound t h Lower bound Upper bound

80 0 4� 10�4 200 0:100 37 0:120 85

40 2:2� 10�5 1:9� 10�4 100 0:105 22 0:115 50

80 20 3:4� 10�5 1:1� 10�4 104 40 0:107 73 0:111 82

10 4:1� 10�5 7:5� 10�5 20 0:108 64 0:110 68

5 4:46� 10�5 6:08� 10�5 [CTE] - 0:112 81

80 1� 10�4 8� 10�4 200 0:307 44 0:330 49

40 2� 10�4 5� 10�4 100 0:313 81 0:325 38

160 20 2:2� 10�4 3:7� 10�4 5� 104 40 0:316 98 0:321 61

10 2:4� 10�4 3:1� 10�4 20 0:318 12 0:320 44

5 2:48� 10�4 2:84� 10�4 [CTE] - 0:328

200 5:5� 10�3 1:1� 10�2 400 0:363 67 0:380 12

100 6:4� 10�3 8:9� 10�3 200 0:370 57 0:378 39

103 40 6:8� 10�3 7:8� 10�3 105 100 0:373 01 0:376 90

20 6:96� 10�3 7:45� 10�3 40 0:374 15 0:375 72

[CTE] - 0:007 213 [CTE] - 0:384 61

200 5:04� 10�2 0:063728 400 0:385 00 0:386 25

100 5:33� 10�2 0:059998 200 0:385 70 0:386 19

5� 103 40 5:48� 10�2 5:75� 10�2 1:99� 105 100 0:385 89 0:386 12

20 5:537� 10�2 5:669� 10�2 40 0:385 96 0:386 06

[CTE] - 0:057 54 [CTE] - 0:395 72

Table 2. Example 10, Pt (1; 3) with respect of h and comparison with the results from [CTE]

Here again, the smaller the discretization step h , the tighter the bounds are.

Also, for h �xed, the error �rst increases with t and then decreases.

As for the comparison between the method from [CTE] and the present one,

one can look at the asymptotic value: we know that Pt (1; 3) is increasing with

respect of t (see Figure 2) and that limt!+1 Pt (1; 3) ' 0:386 365 (easy com-

putation using standard method). In Table 2, we can see that the value from

[CTE] for Pt (1; 3) and t = 1:99 � 105 is slightly too big (0:395 72) whereas

our bounds (0:385 96 and 0:386 06) are coherent with the asymptotic value. A
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similar remark is valid for Pt (1; 4) with Pt (1; 4) slightly too small in [CTE] for

t = 1:99� 105 whereas our bounds are coherent.

We can then conclude that, in this example, our bounds seem slightly more

accurate than the results from [CTE] (which may however be improved using

some smaller discretization step).

In case where the semi-Markov kernel is triangular, we �nally provide a

last numerical example to compare the bounds provided by Theorem 3 and by

Proposition 4.

Example 11 A semi-Markov unreparable system is considered with state space

E = f1; :::; 5g, U = f1; 2; 3g, D = f4; 5g. We want to evaluate the unreliability

of the system starting from 1, namely F (t) = P1 (T � t) where T is the time to

failure of the system. The semi-Markov kernel is:

q (�; �; dt)

=

0BBBBBBBBB@

0 (1� 
)w1 (t) dt+ 
�0 0 0 0

0 0 (1� 
)w2 (t) dt+ 
�0 0 0

0 0 0 (1� 
)w3 (t) dt+ 
�0 0

0 0 0 0 (1� 
)w4 (t) dt+ 
�0
0 0 0 0 0

1CCCCCCCCCA
with w1, w2, w3, w4 and 
 the same as in Example 9.

Due to the triangular shape of the kernel, we here have: F (t) = P1 (Xt � 4) =

fw (t) with w (i; t) = v (i)Pi (T1 � t) and v (i) = 1fi�4g, all i 2 E (see Proposi-

tion 4 and Remark 6). As v is non-decreasing and q (�; �; dt) is upper triangular,

we may apply (9). The bounds for the unreliability are plotted in Figure 5 for

h = 5 as provided by (14) (bounds 1) and by (9) (bounds 2).
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Figure 5. Example 11, F (t) by the two

methods, h = 20

We can see that, as expected, the bounds provided by (9) are tighter than

those provided by (14). Beside, the computations are quicker for (9) than for

(14). Then, it is better to use (9) than (14) when possible.

6 Conclusion

We have proposed, in this paper, easily computable bounds for di¤erent time-

dependent quantities for semi-markovian system. The idea used here, namely

approximating continuous-time SMP by discrete-time SMP is not new. How-

ever, contrary to most of previous works (apart from [Elkins & Wortman (2001)],

to our knowledge), the present construction of the approximating processes has

allowed us to control the error between the goal quantities and their approxi-

mations. The theoretical results have been tested on a few numerical examples,

showing the accuracy of the method.

We have focused here in solutions of Markov renewal equations. Note how-

ever that the bounding method might be generalized and that for any function

� non-decreasing e.g. with respect to all Tn and such that the expectations

exist, we would have:

E
�
�

�
(Yn)n2N ;

�
T (h)n

�
n2N

��
� E

�
�
�
(Yn)n2N ; (Tn)n2N

��
� E

�
�

�
(Yn)n2N ;

�
T (h+)n

�
n2N

��
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where T (h)n =
Pn�1

i=0 (Ti+1 � Ti)
h
=
Pn�1

i=0 h
j
Ti+1�Ti

h

k
and T (h+)n = T

(h)
n + nh.

More generally, one could also consider �h = (hi)i2E and the semi-Markov

kernels q�h (i; :; dt) and q�h+ (i; :; dt) (both supported by hiN) with:

q
�h (i; j; khi) = Pi (Y1 = j; khi � T1 < (k + 1)hi)

q
�h+ (i; j; khi) = 1fk�1gq

�h (i; j; (k � 1)hi)

Here again, the bounding would remain true. However, more general �

than in the present paper and/or non constant step size �h would lead to more

complicated computations of the approximate quantities, which only require

here a few lines of implementation.
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Figure 1. Example 9, Cumulated Mean Down Time on [0; t], h = 6:
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Figure 2. Example 10, Pt (1; j) for j = 1::4:
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Figure 3. Example 11, F (t) by the two methods, h = 20
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